BULLETIN OF THE POLISH ACADEMY OF SCIENCES MATHEMATICS Vol. 53, No. 3, 2005

COMPLEX ANALYSIS

A Determinantal Proof of the Product Formula for the Multivariate Transfinite Diameter

by

Jean-Paul CALVI and PHUNG VAN MANH

Presented by Józef SICIAK

Summary. We give an elementary proof of the product formula for the multivariate transfinite diameter using multivariate Leja sequences and an identity on vandermondians.

1. Introduction and statement of the result. Let \mathbb{N}_d^n denote the set of *n*-indices of length at most *d* endowed with the graded lexicographic order (\prec). The cardinality of \mathbb{N}_d^n , denoted by N_d^n , is equal to $\binom{n+d}{d}$. A vandermondian (of order *d*) is the determinant of an $N_d^n \times N_d^n$ matrix of the form (z_α^β) where $z_\alpha \in \mathbb{C}^n$, $[\cdot]^\beta$ is the usual monomial and the rows and columns are ordered according to \prec . Such a determinant is denoted by VDM(z) where $\mathbf{z} := (z_\alpha : \alpha \in \mathbb{N}_d^n)$. It is a polynomial of degree

$$\ell_d^n := n \binom{n+d}{n+1}$$

in the $(N_d^n)^n$ coordinates of the z_{α} 's. The *d*th *diameter* $D_d(K)$ of a compact subset K of \mathbb{C}^n is defined by

(1)
$$D_d(K) = \sup\{|\mathrm{VDM}(\mathbf{z})|^{1/\ell_d^n} : \mathbf{z} \in K^{N_d^n}\},$$

and a collection z for which the supremum is achieved in (1) is called a *Fekete* system (of order d) for K. Now, the transfinite diameter D(K) is the limit of $D_d(K)$ as d goes to ∞ . That such a limit exists is by no means obvious (when n > 1). It is a beautiful result of V. Zaharjuta [9] who not only proved the convergence of $(D_d(K))$ but also related its limit to complex polynomial approximation.

²⁰⁰⁰ Mathematics Subject Classification: Primary 32U20.

Key words and phrases: multivariate transfinite diameter, Vandermonde determinants, Leja sequences.