Ann. Inst. Fourier, Grenoble 48, 1 (1998), 205–222

THE DISTRIBUTION OF EXTREMAL POINTS FOR KERGIN INTERPOLATION: REAL CASE

by T. BLOOM and J.-P. CALVI

1. Introduction.

The general purpose of this note is to study, in some cases, the sequences of Kergin interpolation operators that are the best (see below) for approximating holomorphic functions. Let K be a \mathbb{C} -convex (for the definition see [1], [2] or [3]) compact set in \mathbb{C}^n , $n \geq 1$. We say that an infinite triangular array of points in K

(1.1)
$$A = \{A_j^d; \ j = 0, 1, \dots, d; d = 1, 2, \dots\}$$

is extremal for Kergin interpolation on K if, for every function f holomorphic on a neighborhood of K (i.e. $f \in H(K)$), the Kergin interpolation polynomial $\mathcal{K}_{A^d}f$ of f with respect to the points A_0^d, \ldots, A_d^d converges to f uniformly on K as $d \to \infty$. If such an array exists, we say that K admits an extremal array. The question of knowing whether a given array A is extremal or not is related, as we shall see, to the study of the distribution of the points, that is to the behavior of the sequence of probability measures

(1.2)
$$\mu_d^A = \mu_d := \frac{1}{d} \sum_{j=0}^d [A_j^d], \qquad (d = 1, 2, \ldots)$$

where [x] stands for the Dirac measure of the point x.

The first author was supported by NSERC of Canada.

Key words: Kergin interpolation - Polynomial approximation of holomorphic functions - Logarithmic potentials.

Math. classification: 32A05 - 41A05 - 41A63.

T. BLOOM & J.-P. CALVI

Recently, examples of extremal arrays have been found in the case of circular convex sets (see [4] and below). Here, we shall study the case of (totally) real sets, the definition of which follows.

One says that a real subspace V of \mathbb{C}^n is totally real if $V \cap iV = \{0\}$. A compact set is said to be totally real if it is contained in a translate of a totally real subspace, in particular its interior as a subset of \mathbb{C}^n is empty. A compact set of the form

(1.3)
$$E = \{ a + r \cos \theta e_1 + r \sin \theta e_2, \ 0 \le r \le 1, \ \theta \in [0, 2\pi] \}$$

is said to be a (totally real) ellipse if the space $V := \operatorname{vect}_{\mathbb{R}}(e_1, e_2)$ is a totally real plane. The measure $d\sigma_E$ is then defined, by $\int_E f d\sigma_E = \frac{1}{2\pi} \int_0^{2\pi} f(\cos\theta e_1 + \sin\theta e_2) d\theta$ for all functions f continuous on E. $d\sigma_E$ is supported on the boundary of E as a subset of V. In fact, if A is an affine automorphism from \mathbb{R}^2 to V that maps the unit disc of center 0 onto E, then the measure $d\sigma_E$ is only the image by A of the standard $\frac{1}{2\pi} d\theta$ measure on the unit circle. A segment $E = \{a + te_1, t \in [-1, 1]\}$ (not reduced to one point) is said to be a degenerate ellipse, the measure $d\sigma_E$ is defined by $\int f d\sigma_E = \frac{1}{\pi} \int_0^{\pi} f(a + \cos\theta e_1) d\theta$. Thus $d\sigma_E$ is the image of the arcsin distribution on [-1, 1] by the map $t \to a + te_1$.

The main result of this paper is the characterization of those totally real compact convex sets which admit an extremal array.

THEOREM 1. — Let $n \ge 1$. A totally real convex compact set K in \mathbb{C}^n (not reduced to one point) admits an extremal array if and only if it is a (possibly degenerate) ellipse. Furthermore, in this case, an array A is extremal for K if and only if the sequence μ_d^A converges weakly to $d\sigma_K$.

Using basic properties of Kergin interpolation, we shall easily reduce the statement to the simpler

THEOREM 2. — Let K be a convex compact set in $\mathbb{R}^n \subset \mathbb{C}^n$ of non void interior (as a subset of \mathbb{R}^n).

(1) If n = 1, every K (which must be an interval) admits extremal arrays.

(2) If n = 2, K admits extremal arrays if and only if it is an ellipse.

(3) If n > 2, there is no extremal array in K.

In the first two cases, an array A is extremal if and only if μ_d^A converges weakly to $d\sigma_K$ as $d \to \infty$.