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Abstract. Weconstruct newmultivariate polynomial interpolation schemes of

Hermite type. The interpolant of a function is obtained by specifying suitable

discrete differential conditions on the restrictions of the function to algebraic

hypersurfaces. The least space of a finite-dimensional space of analytic func-

tions plays an essential role in the definition of these differential conditions.

1 Introduction

An n-dimensional Hermite (or Birkhoff) interpolation scheme of degree d is

a collection H = {µs : s ∈ S} of discrete (differential) functionals µs such

that for every suitably defined function f there exists a unique polynomial p

of n variables and degree at most d satisfying µs(p) = µs( f ), s ∈ S. The

polynomial p is then called the H -interpolation polynomial of f . Classical

Lagrange-Hermite interpolation furnishes themost important general example

of a specific univariate Hermite scheme. In the multivariate case it is generally

difficult to check whether a given set of functionals H is a Hermite scheme,

even when every µs ∈ H is a point-evaluation functional, µs( f ) = f (us),

which corresponds to ordinary Lagrange interpolation.Actually, the solemulti-

variate case for which the verification that H is a Hermite scheme is absolutely

straightforward is obtained by taking H = { f → Dα( f )(a), |α| ≤ d}. In that
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