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Abstract. According to the Thurston No Wandering Triangle Theorem, a

branching point in a locally connected quadratic Julia set is either preperiodic

or precritical. Blokh and Oversteegen proved that this theorem does not hold
for higher degree Julia sets: there exist cubic polynomials whose Julia set is a

locally connected dendrite with a branching point which is neither preperiodic

nor precritical. In this article, we reprove this result, constructing such cubic
polynomials as limits of cubic polynomials for which one critical point even-

tually maps to the other critical point which eventually maps to a repelling

fixed point.

Notations

• C is the complex plane,
• D is the unit disk,
• S1 is the unit circle.
• T := R/Z.

Introduction

In this article, we consider polynomials f : C → C of degree at least 2 as
dynamical systems: the orbit of a point z ∈ C is the set

O(z) := {f◦n(z)}n≥0.
The orbit of a point is finite if and only if the point is preperiodic. More precisely,
a point α ∈ C is preperiodic if f◦(r+s)(α) = f◦r(α) for some integers r ≥ 0 and
s ≥ 1. If r and s are minimal integers such that f◦(r+s)(α) = f◦r(α), then r is the
preperiod and s is the period. The point α is periodic if the preperiod is 0. In this
case, the point is repelling if

∣∣(f◦s)′(α)
∣∣ > 1.

The filled-in Julia set Kf is the set of points with bounded orbit and the Julia set
Jf is its topological boundary. The sets Kf and Jf are compact subsets of C. They
are completely invariant: f−1(Kf ) = f(Kf ) = Kf and f−1(Jf ) = f(Jf ) = Jf .
Preperiodic points are contained in Kf . Repelling periodic points are contained in
Jf . In fact, Jf is the closure of the set of repelling periodic points (see e.g. [1, 5]).

A point ω ∈ C is a critical point if the derivative of f vanishes at ω. The topology
of Kf and Jf is related to the behavior of critical orbits. For example, Kf and Jf
are connected if and only if the critical points of f belong to Kf (see e.g. [1, 5]).

A dendritic polynomial is a polynomial f for which Jf is a dendrite, i.e., Jf is
connected and locally connected and contains no simple closed curve. This is the
case whenever each critical point is preperiodic to a repelling periodic point (see
[3, Th. V.4.2]).
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Example 1. The Julia set of the quadratic polynomial f(z) = z2 + i is a dendrite
(see Figure 1). The unique critical point is ω = 0 and its orbit is

0 // i // −1 + i
((
−ijj

The derivative of f◦2 at −1 + i is 4 + 4i which has modulus 4
√

2 > 1.

Figure 1. The Julia set Jf for f(z) = z2 + i is a dendrite.

Assume Jf is locally connected. A point ξ ∈ Jf is a branching point if Jf \ {ξ}
has (at least) three connected components. According to Thurston [7], if f is a
quadratic polynomial, the orbit of such a branching point contains a periodic point
or a critical point. A point z ∈ C is precritical if f◦n(z) = ω for some critical point
ω and some integer n ≥ 0.

Theorem 2 (Thurston). Let f be a quadratic polynomial with locally connected
Julia set Jf . If ξ ∈ Jf is a branching point, then ξ is preperiodic or precritical.

Blokh and Oversteegen [2] proved that such a result does not hold for higher
degree polynomials.

Theorem 3 (Blokh-Oversteegen). There exist dendritic cubic polynomials having
a branching point which is neither preperiodic nor precritical.

Our goal is to give a new proof of this result. The strategy of our proof consists
in exhibiting a sequence {fn} of dendritic polynomials with a sequence {ξn} of
branching points in Jfn which are precritical to both critical points of fn and
preperiodic to a repelling fixed point of fn, such that

• the sequence {fn} converges to a dendritic polynomial f ,
• the sequence {ξn} converges to a branching point ξ in Jf and
• ξ is neither precritical nor preperiodic for f .

More precisely, we exhibit sequences satisfying:

• f◦jnn (ξn) = ωn, f◦knn (ωn) = ω′n and f◦`nn (ω′n) = αn for some increasing
sequences of integers {jn}, {kn} and {`n}, where ωn and ω′n are the two
critical points of fn and αn is a repelling fixed point of fn;
• Jfn \ {ξn} has (at least) three connected components containing points βn,
β′n and β′′n such that fn(βn) = fn(β′n) = fn(β′′n) = βn.
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We shall see that we can choose fn+1 arbitrarily close to fn for each n; this is
enough to deduce Theorem 3.

The paper is structured as follows. In §1 we introduce the notion of admissible
polynomials and state key results used in the proof of Theorem 3: convergence of
nodal points, convergence of Carathéodory loops and a Key Proposition regarding
the existence of a particular sequence of admissible polynomials. In §2 we prove
Theorem 3 assuming those key results. Finally, in §3 we prove the convergence of
nodal points, in §4 we prove the convergence of Carathéodory loops and in §5 we
prove the Key Proposition.

1. Definitions and key results

1.1. Dendrites. A dendrite J ⊂ C is a connected and locally connected compact
set containing no simple closed curve. In this article, we assume in addition that J
is not reduced to a point. Properties of dendrites are discussed in [9]. In particular,
a dendrite is uniquely arcwise connected.

Definition 4. Given two points β and β′ in a dendrite J , we denote [β, β′]J the
arc joining β and β′ in J .

Definition 5. The nodal point of three points β, β′ and β′′ in a dendrite J is the
unique point which belongs simultaneously to [β, β′]J , [β′, β′′]J and [β′′, β]J .

If ξ ∈ J , then any connected component C of J \{ξ} is open in J and C\C = {ξ}.

Definition 6. A point ξ in a dendrite J is non-separating if J \ {ξ} is connected.

Definition 7. A point ξ in a dendrite J is a branching point if J \ {ξ} has (at
least) three connected components. It separates β, β′ and β′′ in J if β, β′ and β′′

are in three distinct connected components of J \ {ξ}.

Note that a nodal point is not necessarily a branching point. For example, when
β′′ ∈ [β, β′]J , then the nodal point of β, β′ and β′′ in J is the point β′′. In fact,
the nodal point ξ of β, β′ and β′′ in J separates β, β′ and β′′ in J if and only if
ξ /∈ {β, β′, β′′}.

The complement C \ J of a dendrite is connected and simply connected. It
follows that there is a (unique) conformal representation φ : C \ D → C \ J such
that φ(z)/z → R > 0 as z → ∞. Since J is locally connected, a theorem by
Torhorst [8], based on the work on prime-ends of Carathédory (see the discussion
in [6]), asserts that φ extends to a continuous map φ : C \ D → C. Since J has
empty interior, this map is surjective and restricts to a map ϕ : S1 → J .

Definition 8. The Carathéodory loop of J is the restriction ϕ : S1 → J .

The Carathéodory loop is a continuous and surjective map from S1 to J . We
shall use the following result whose proof is given in §3.

Lemma 9 (Convergence of nodal points). Let {Jn} be a sequence of dendrites.
Assume the associated sequence {ϕn : S1 → Jn} of Carathéodory loops converges
uniformly to some non constant map ϕ : S1 → C. Then,

• J := ϕ(S1) is a dendrite with Carathéodory loop ϕ;
• if {βn}, {β′n} and {β′′n} are sequences of points in Jn converging to β, β′

and β′′ in J , then the corresponding sequence of nodal points of βn, β′n and
β′′n in Jn converges to the nodal point of β, β′ and β′′ in J .
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1.2. Admissible polynomials. Consider the affine space A of monic cubic poly-
nomials fixing 0. We will restrict our study to the open subset V ⊂ A of polynomials
f such that:

(1) f has three distinct repelling fixed point α = 0, β and γ;
(2) f has two distinct critical points ωα, ωβ ;
(3) the ray of angle 0 does not bifurcate and lands at α;
(4) the ray of angle 1/2 does not bifurcate and lands at β;
(5) the rays of angles 1/4 and −1/4 do not bifurcate, land at γ, and separate

the plane in two connected components
• Uα containing α, ωα and f(ωβ) and
• Uβ containing β, ωβ , f(ωα) and f◦2(ωα).

Figure 2 shows the ray configuration and the position of the points involved in
the definition of V.

Uβ Uα

ωαωβ αβ
γf(ωα)

f◦2(ωα)

f(ωβ)

1
4

− 1
4

1
2

0

Figure 2. The ray configuration and the position of the points
involved in the definition of V. The angle of each external ray is
indicated.

Definition 10. A cubic polynomial f ∈ V is admissible if it has critical points ω
and ω′ and a branching point ξ, such that:

(1) ξ is precritical to ω, ω is precritical to ω′ and ω′ is prefixed to α;
(2) ξ separates β, β′ and β′′ in Jf , where f−1(β) = {β, β′, β′′}.

We set ξf := ξ and denote by jf the integer j ≥ 0 such that f◦j(ξ) = ω.

Our key result, proved in §5, is the following.

Proposition 11 (Key proposition). Assume f ∈ V is an admissible polynomial.
Then, there is a sequence {gm} of admissible polynomials which converges to f ,
such that {ξgm} converges to ξf and jgm > jf for all m.

This result shall be completed with the following observation. An admissible
polynomial is strictly postcritically finite. It follows that its Julia set is a dendrite
(see Figure 3) and thus, has an associated Carathéodory loop. We shall prove in
§4 that the convergence of polynomials implies the convergence of the associated
Carathéodory loops.
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ω′ = f◦2(ω)f(ω) ω = ξβ

β′′

β′

α = f(ω′)γ

Figure 3. The Julia set of an admissible polynomial f with crit-
ical points ω and ω′. We have f◦2(ω) = ω′ and f(ω′) = α. In this
example, jf = 0.

Lemma 12 (Convergence of Carathéodory loops). Let {gm} be a sequence of cubic
polynomials, with locally connected Julia sets, which converges to an admissible
polynomial f . Then, the sequence of Carathéodory loops of Jgm converges uniformly
to the Carathéodory loop of Jf .

2. Existence of non preperiodic and non precritical branching points

We now prove Theorem 3, assuming Lemmas 9 and 12 and Proposition 11.

2.1. An admissible polynomial. We first prove that there exists an admissible
polynomial. The polynomial f : C→ C defined by

f(z) = z(z − 3ω)2

is monic, fixes 0, has critical points at ω and ω′ = 3ω and satisfies f(ω′) = 0. Then,

f(ω) = 4ω3 and f◦2(ω) = 4ω3(4ω3 − 3ω)2.

The equation f◦2(ω) = 3ω has a unique real negative solution which is

ω := −1

4

√
6 + 2

√
9 + 8

√
3.

The graph of f : R → R is shown on Figure 4 and the Julia set Jf is shown in
Figure 3.

The fixed points of f are α := 0, β := 3ω − 1 and γ := 3ω + 1 ∈ (β, α). The
respective multipliers at α, β and γ are 9ω2 > 1, 3− 6ω > 1 and 3 + 6ω < −1. In
particular, the three fixed points are repelling.

We have that

β = 3ω − 1 < f(ω) = 4ω3 < f◦2(ω) = ω′ = 3ω < γ = 3ω + 1 < ω < 0 = α.

The intersection of the Julia Jf with the real axis is the interval [β, α]. Since f is
a real polynomial, the ray of angle 0 is (α,+∞) and lands at α. The ray of angle
1/2 is (−∞, β) and lands at β. Since the multiplier of γ is negative, the orbit of a
ray landing at γ must alternate in between the upper half-plane and the lower half-
plane. Since f(ω′) = α, the rays of angles 1/3 and −1/3 land at ω′ and separate
β from γ. It follows that the digits of ternary expansion of the rays landing at γ
alternate between 0 and 2: those rays have angle 1/4 and −1/4 and separate the
plane in two connected components. The one containing α contains ω and f(ω′).
The one containing β contains ω′ = f◦2(ω) and f(ω). So, the polynomial f belongs
to V.

Set ξ := ω. Then, ξ is precritical to ω, ω is precritical to ω′ and ω′ is prefixed
to α := 0. So, Condition (1) in Definition 10 is satisfied with jf = 0. In addition,
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α = 0
ωω′

f(ω)β
γ

Figure 4. The graph of the real polynomial f(z) = z(z − 3ω)2.

ξ separates β, β′ and β′′ in Jf (see Figure 5), so that Condition (2) in Definition
10 is satisfied.

f(ω′) = f(α) = α

α

β = f(β)

β

f

f(ω)

β′

ωω′

β′′

Figure 5. A schematic representation of the preimage of [β, α] by
f illustrating why ω separates β, β′ and β′′ in Jf

2.2. A sequence of admissible polynomials. We now build a Cauchy sequence
of admissible polynomials.

Let f be an admissible polynomial and let ξf be the associated branching point
(see Definition 10). According to this definition, the points

ξf , f(ξf ), . . . , f◦(jf−1)(ξf )

are not critical points of f and are pairwise distinct. For each integer j, the map
V × C → C : (g, z) 7→ g◦j(z) is continuous at (f, ξf ) and the critical points of g
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depend continuously on g. Thus, there exists εf > 0 such that for |z− ξf | < εf and
‖g − f‖∞ < εf , the points

z, g(z), . . . , g◦(jf−1)(z)

are not critical points of f and are pairwise distinct. Here, and along the paper, we
denote by || · ||∞ the supremum over a big enough compact set. This compact set
can be chosen in order to contain a neighbourhood of all Julia sets of polynomials
we consider, that is polynomials belonging to a neighbourhood of the connectedness
locus of monic cubic polynomials.

According to Proposition 11, there is a sequence {gm} of admissible polynomials
which converges to f , such that {ξgm} converges to ξf and jgm > jf for all m.
According to Lemma 12, the sequence of Carathéodory loops ϕgm of Jgm converges
uniformly to the Carathéodory loop ϕf of Jf . So, for all ε > 0, if m is large enough,
then

|ξgm − ξf | < ε, ‖gm − f‖∞ < ε and ‖ϕgm − ϕf‖∞ < ε.

Let us now define recursively a sequence {fn} of admissible polynomials and a
sequence {εn} of positive numbers as follows. We let f0 be any admissible polyno-
mial and set ε0 := εf0/2. Once fn and εn are defined, we let fn+1 be an admissible
polynomial such that jfn+1

> jfn ,

|ξfn+1
− ξfn | < εn, ‖fn+1 − fn‖∞ < εn and ‖ϕfn+1

− ϕfn‖∞ < εn.

We then set

εn+1 =
1

2
min

(
εn, εfn+1

)
.

Figures 6 and 7 illustrate the Julia sets of f0, f1, f2, f3 for such a sequence. Ob-
serve that for all n ≥ 0 and all p ≥ 0, εn+p ≤ εn/2p ≤ εfn/2p+1. As a consequence,

|ξfn+p − ξfn | < 2εn ≤ εfn , ‖fn+p − fn‖∞ < 2εn ≤ εfn
and

‖ϕfn+p
− ϕfn‖∞ < 2εn ≤ εfn .

In particular, the sequences {fn}, {ξfn}, and {ϕfn} are Cauchy sequences.

2.3. Proof of Theorem 3. The sequences {fn}, {ξfn}, and {ϕfn} converge to f ,
ξ and ϕ. We now prove that ξ is a wandering non-precritical branching point of f .

Let βn, β′n, β′′n be the landing points of the rays of angles 1/2, 1/6 and −1/6 for
fn, so that

• f−1n (βn) = {βn, β′n, β′′n} and
• ξn is the nodal point of βn, β′n and β′′n in Jfn .

The sequences {βn}, {β′n} and {β′′n} converge to the landing points β, β′ and β′′

of the rays of angles 1/2, 1/6 and −1/6 for f . According to Lemma 9, J := ϕ(S1)
is a dendrite with Carathéodory loop ϕ and ξ is the nodal point of β, β′ and β′′ in
J .

We claim that Jf = J . Indeed, the critical orbits of f are approximated by the
critical orbits of fn. So, they are bounded and Jf is connected. According to [4],

Jf ⊆ J := lim
n→+∞

Jfn ⊆ Kf .

Since J is a dendrite and Jf ⊆ J is connected, Jf itself is a dendrite. It follows
that Kf = Jf = J .
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β0 ω′0 ω0

β′0

β′′0

(a) f0(z) = 8.7534421003338z + 5.9172433109798z2 + z3, j = 0, k = 2, ` = 1.

β1 ω1
ω′1

β′1

β′′1
(b) f1(z) = (8.6656058283165+0.059672002492800i)z+(5.8731379216063+0.020430827270432i)z2+z3,

j = 2, k = 2, ` = 3.

β2 ω′2
ω2

β′2

β′′2
(c) f2(z) = (8.6620018002588+0.049185458993292i)z+(5.871351730126+0.017466126249776i)z2+z3,

j = 4, k = 5, ` = 5.

β3 ω3
ω′3

β′3

β′′3
(d) f3(z) = (8.6620495410606+0.049156312358058i)z+(5.871375113635+0.017446586001088i)z2+z3,

j = 9, k = 8, ` = 10.

Figure 6. A sequence of 3 perturbations of the polynomial f0 in-
troduced in §2.1. We draw the external rays landing at the corre-
sponding branching points ξ. In all figures f◦j(ξ) = ω, f◦k(ω) = ω′

and f◦`(ω′) = 0.

We claim that ξ is neither preperiodic nor precritical for f , so that it cannot
coincide with β, β′ or β′′. As a consequence, ξ is a branching point which is neither
preperiodic nor precritical, as required.

To prove that ξ is neither preperiodic nor precritical, we use that for all n,

|ξ − ξfn | < εfn and ‖f − fn‖∞ < εfn .

By definition of εfn , the points

ξ, f(ξ), . . . , f◦(jfn−1)(ξ)

are not critical points of f and are pairwise distinct. Since the sequence {jfn} is
increasing, it takes arbitrarily large values. Therefore, all the points in the f -orbit
of ξ are not critical points of f and are pairwise distinct.
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β′0

ω0

β′′0

(a) f0

β′1

ω′1

β′′1

(b) f1

β′2

ω2

β′′2

(c) f2

β′3

ω′3

β′′3

(d) f3

Figure 7. Zooms in Figure 6.

This completes the proof of Theorem 3 assuming Lemmas 9 and 12 and Propo-
sition 11.

3. Convergence of nodal points

Here, we prove Lemma 9. Let {Jn} be a sequence of dendrites. Assume the
associated sequence {ϕn : S1 → Jn} of Carathéodory loops converges uniformly to
some non constant map ϕ : S1 → C.

We first prove that J := ϕ(S1) is a dendrite. Since ϕ is continuous, J is
connected and locally connected. The Carathéodory loop ϕn : S1 → Jn is the
boundary value of a continuous map φn : C \ D → C which is univalent in C \ D.
The sequence {ϕn : S1 → Jn} converges uniformly to some ϕ : S1 → C; according
to the Maximum Modulus Principle, the sequence {φn : C \ D → C} converges
uniformly to some φ : C \ D → C. As a non constant limit of univalent maps,
φ : C \ D → C is univalent and J = ∂U with U := φ(C \ D). In particular, J has
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empty interior. Since the Julia set Jn has empty interior, the maps φn : C \D→ C
are surjective, and so, the limit φ : C \ D → C is surjective. Indeed, if w ∈ C and
φn(zn) = w, then φ(z) = w for any limit value z of the sequence {zn}. It follows
that C = U t J . Therefore, J contains no simple closed loop since, otherwise,
either U = C \ J is not connected, or J has non-empty interior.

We now assume {βn}, {β′n} and {β′′n} are sequences of points in Jn converging
to β, β′ and β′′ in J . We must prove that the sequence of nodal points of βn, β′n
and β′′n in Jn converges to the nodal point of β, β′ and β′′ in J . This is based on
the following lemma.

Given two distinct points θ and θ′ in T, we set

[θ, θ′]T := {t ∈ S1 ; θ, t and θ′ are in counterclockwise order on T}.

Lemma 13. Let J ⊂ C be a dendrite with Carathéodory loop ϕ : S1 → J . Let θ
and θ′ be two distinct points in S1. Then,[

ϕ(θ), ϕ(θ′)
]
J = ϕ

(
[θ, θ′]T

)
∩ ϕ
(
[θ′, θ]T

)
.

Proof. Let S :=
[
ϕ(θ), ϕ(θ′)

]
J be the arc joining ϕ(θ) and ϕ(θ′) in J . Since ϕ is

continuous, ϕ
(
[θ, θ′]T

)
and ϕ

(
[θ′, θ]T

)
are connected. Since they both contain ϕ(θ)

and ϕ(θ′),
S ⊆ ϕ

(
[θ, θ′]T

)
∩ ϕ
(
[θ′, θ]T

)
.

Now, assume ξ ∈ ϕ
(
[θ, θ′]T

)
∩ ϕ
(
[θ′, θ]T

)
, i.e., ξ = ϕ(t) = ϕ(t′) with t ∈ [θ, θ′]T and

t′ ∈ [θ′, θ]T. The rays of angles t and t′ separate J in two connected components:
one contains ϕ(θ) and the other contains ϕ(θ′). Thus, ϕ(θ) and ϕ(θ′) are in distinct
connected components of J \ {ξ}. Since S is an arc joining ϕ(θ) and ϕ(θ′) in J ,
we necessarily have ξ ∈ S. Therefore,

ϕ
(
[θ, θ′]T

)
∩ ϕ
(
[θ′, θ]T

)
⊆ S. �

Corollary 14. Let J ⊂ C be a dendrite with Carathéodory loop ϕ : S1 → J . Let
θ, θ′ and θ′′ be three distinct points in S1. Then, the nodal point of ϕ(θ), ϕ(θ′) and
ϕ(θ′′) in J is

ϕ
(
[θ, θ′]T

)
∩ ϕ
(
[θ′, θ′′]T

)
∩ ϕ
(
[θ′′, θ]T

)
.

If the three points βn, β′n and β′′n are not distinct for infinitely many n, then the
nodal point in Jn coincides with the corresponding multiple point, and Lemma 9
follows easily. So, without loss of generality, assume the points are distinct and let
θn, θ′n and θ′′n be three distinct points in S1 with ϕn(θn) = βn, ϕn(θ′n) = β′n and
ϕn(θ′′n) = β′′n. Let ξ be a limit value of the sequence {ξn}. We must show that ξ is
the nodal point of β, β′ and β′′ in J .

Extracting a subsequence and reordering the points if necessary, we may assume
that θn, θ′n and θ′′n are in counterclockwise order on S1. Let ξn be the nodal points
of βn, β′n and β′′n in Jn. According to Lemma 13, there are points

tn ∈ [θn, θ
′
n]T, t′n ∈ [θ′n, θ

′′
n]T and t′′n ∈ [θ′′n, θn]T

with
ξn = ϕn(tn) = ϕn(t′n) = ϕn(t′′n).

Extracting a further subsequence if necessary, we may assume that {ξn}, {θn},
{θ′n}, {θ′′n}, {tn}, {t′n} and {t′′n} converge to ξ, θ, θ′, θ′′, t, t′ and t′′. Since {ϕn}
converges uniformly to ϕ, we have that

ϕ(θ) = β, ϕ(θ′) = β′, ϕ(θ′′) = β′′ and ϕ(t) = ϕ(t′) = ϕ(t′′) = ξ.
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If θ, θ′ and θ′′ are not distinct, let us say θ = θ′, then t = θ = θ′ and ξ = β = β′

is the nodal point of β, β′ and β′′ in J . Otherwise, if θ, θ′ and θ′′ are distinct,
t ∈ [θ, θ′]T, t′ ∈ [θ′, θ′′]T and t′′ ∈ [θ′′, θ]T; the proof follows from Corollary 14.

4. Convergence of Carathéodory loops

In this section, we prove Lemma 12. Our proof relies on puzzle techniques.

4.1. The puzzle of an admissible polynomial. In the whole section, f ∈ V
is an admissible polynomial. We denote by φf : C \ D → C \ Jf the Böttcher
coordinate conjugating z 7→ z3 to f , with φf (z)/z → 1 as z → ∞. This Böttcher
coordinate extends as a continuous map φf : C \ D → C and the restriction to S1
is the Carathéodory loop ϕf : S1 → Jf .

Let Γ0
f be the union of the equipotential

{
φf (2e2πiθ) ; θ ∈ T

}
, the external rays

of angles 1/4 and −1/4 and their landing point γ. For m ≥ 0, set

Γmf := f−m(Γ0
f ).

Definition 15. The puzzle pieces of depth m ≥ 0 are the bounded connected
components of C \ Γmf . If z ∈ Jf is not an iterated preimage of γ, we denote by

pm(z) the puzzle piece of depth m which contains z.

There are two puzzle pieces of depth 0: one contains α, ωα and f(ωβ); the other
contains β, ωβ , f(ωα) and f◦2(ωα). By construction, the puzzle pieces of depth
m ≥ 1 are the connected components of the preimages of the puzzle pieces of depth
m− 1. Therefore, if p is a puzzle piece of depth m ≥ 1, then f(p) is a puzzle piece
of depth m− 1 and f : p→ f(p) is a ramified covering.

The union of the rays of angles 1/4 and −1/4 is invariant by f . It follows that
the puzzle pieces of depth 1 do not intersect those rays; therefore, each puzzle piece
of depth 1 is entirely contained in a puzzle piece of depth 0. By induction on the
depth, each puzzle piece of depth m is entirely contained in a puzzle piece of depth
m− 1.

In particular, a puzzle piece contains at most one critical point. So, if p is a
puzzle piece of depth m ≥ 1, then f : p → f(p) is an isomorphism if p does not
contain a critical point, and a ramified covering of degree 2 otherwise.

Figure 8 shows the puzzle pieces of depth m ∈ {0, 1, 2, 3} for some admissible
polynomial f ∈ V. We use one color for the puzzle pieces which are iterated preim-
ages of p0(α) and another one for the puzzle pieces which are iterated preimages of
p0(β).

The main result from which we deduce Lemma 12 is the following.

Proposition 16. The maximum diameter of a puzzle piece of depth m tends to 0
as m tends to +∞.

Proof of Lemma 12 assuming Proposition 16. First, if g ∈ V is sufficiently close
to f , the Böttcher coordinate φg tangent to identity at infinity is defined on the
circle of radius 2, and we may still define Γ0

g as the union of the equipotential{
φg(2e2πiθ) ; θ ∈ T

}
, the external rays of angles 1/4 and −1/4 and their landing

point γg. And for m ≥ 0, we may define

Γmg := g−m(Γ0
g).

Then, for each fixed m, Γmg depends holomorphically on g in some neighborhood of
f .
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p0(β) p0(α)

Figure 8. The puzzle pieces of depth m ∈ {0, 1, 2, 3}, for some
admissible polynomial f ∈ V.

Second, according to Proposition 16, given ε > 0, we may choose m ≥ 0 suffi-
ciently large so that the puzzle pieces of f of depth m have diameters at most ε/2.
Let U be a sufficiently small neighborhood of f in V so that the puzzle of depth m
depends holomorphically on g in U: for g ∈ U, there is a continuous map

ψ : U× C 3 (g, z) 7→ ψg(z) ∈ C

such that for each g ∈ U, ψg : C → C is a homeomorphism sending Γmf to Γmg .

Shrinking U if necessary, we may assume that for g ∈ U, ||ψg − id||∞ < ε/2.
Third, assume p is a puzzle piece of f of depth m, θ ∈ T and g ∈ U has a locally

connected Julia set. Let ϕg : S1 → Jg be the corresponding Carathéodory loop.
Then, ϕf (e2πiθ) ∈ p if and only if ϕg(e

2πiθ) ∈ ψg(p). Thus, ||ϕg − ϕf ||∞ < ε. �

Proof of Proposition 16. We will use the fact that f is expanding for a suitable
orbifold metric (see [5, Th. 19.6]). Assume k ≥ 1 and ` ≥ 1 are integers such that
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f◦k(ω) = ω′ and f◦`(ω′) = α. Consider the function ν : C→ {1, 2, 4} defined by

ν(z) :=


1 if z /∈ Pf ,
2 if z = f◦n(ω) with 1 ≤ n ≤ k and

4 if z = f◦n(ω′) with 1 ≤ n ≤ `.

The orbifold (C, ν) has Euler characteristic

χ(C, ν) = 1− 1

2
k − 3

4
` < 0,

so that there is a universal covering of orbifold π : D→ C which ramifies precisely
with local degree ν(z) above z ∈ C. Then, there is a metric of orbifold µ which is
smooth outside Pf and blows up at points in Pf , such that π∗µ is the hyperbolic
metric on D. There are constants K1 and K2 such that for all puzzle piece p,

diam(p) ≤ K1diamµ(p) and diamµ(p) ≤ K2,

where diamµ(p) stands for the diameter of p for the metric µ.
In addition, there is a holomorphic map F : D → D such that the following

diagram commutes:

D

π

��

DFoo

π

��
C

f // C.
The map F is contracting for the hyperbolic metric on D. It follows that there is a
constant κ < 1 such that

∀z ∈ p0(α) ∪ p0(β), ‖Dzf‖µ >
1

κ

(this norm may blow up at points in f−1(Pf )). In particular, if p is a puzzle piece,
then

diamµ(p) ≤

{
κdiamµ

(
f(p)

)
if p ∩ Cf = ∅ and

2κdiamµ

(
f(p)

)
if p ∩ Cf 6= ∅.

Lemma 17. The piece p1(α) maps isomorphically to p0(α).

Proof. Recall that the external rays of angles 1/4 and −1/4 separate the plane in
two connected components (see Figure 2): Uα containing α and Uβ containing β.
Each ray in Uα has angle in (−1/4, 1/4). It has two preimages in Uβ , one with angle
in (1/4, 5/12) and one with angle in (−5/12,−1/4), and one preimage in Uα with
angle in (−1/12, 1/12). As a consequence, the component of f−1(Uα) containing
α is contained in Uα and maps isomorphically to Uα. The other component is
contained in Uβ and maps to Uα with degree 2.

Since p0(α) ⊂ Uα, it follows that the component p1(α) of f−1
(
p0(α)

)
containing

α maps isomorphically to p0(α). �

It follows by induction on m ≥ 1 that pm(α) is the image of pm−1(α) by the
inverse branch f−1 : p0(α) → p1(α) and that f◦m : pm(α) → p0(α) is an isomor-
phism. As a consequence,

diamµ

(
pm(α)

)
≤ K2 · κm.
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If m is large enough so that pm(α) ∩ Pf = {α}, then f◦` : pm+`(ω
′) → pm(α) is a

ramified cover of degree 2 and

diamµ

(
pm+`(ω

′)
)
≤ 2κ`diamµ

(
pm(α)

)
.

It follows that there is a constant K3 such that

diamµ

(
pm(ω′)

)
≤ K3 · κm.

If m is large enough so that pm(ω′) ∩ Pf = {ω′}, then f◦k : pm+k(ω) → pm(ω′) is
a ramified cover of degree 2 and

diamµ

(
pm+k(ω)

)
≤ 2κkdiamµ

(
pm(ω)

)
.

It follows that there is a constant K4 ≥ K3 such that

diamµ

(
pm(ω)

)
≤ K4 · κm.

Finally, assume p is a piece of depth m and let n ∈ [0,m] be the least integer such
that q := f◦n(p) contains a critical point. Then, q is a piece of depth m − n and
f◦n : p→ q is an isomorphism, so that

diamµ(p) ≤ κndiamµ(q) ≤ κn ·K4 · κm−n = K4 · κm. �

5. The key proposition

The goal of this section is to prove the Key Proposition (Proposition 11).

5.1. Ray configuration. We shall first describe some general configuration of
external rays for polynomials f ∈ V.

Lemma 18. Assume f ∈ V and assume the ray of angle θ lands on f(ω) for some
critical point ω. Then, the two preimage rays landing at ω separate α and β. One
has angle in (0, 5/12)T and one has angle in (−5/12, 0)T

Proof. Each ray contained in Uα (with angle in (−1/4, 1/4)T) has a single preimage
in Uα with angle in (−1/12, 1/12)T, and two preimages in Uβ , one with angle in
(1/4, 5/12)T and one with angle in (−5/12,−1/4)T. So, if a ray lands at f(ωβ) ∈ Uα,
then one preimage ray with angle in (1/4, 5/12)T and one preimage ray with angle
in (−5/12,−1/4)T land at ωβ ∈ Uβ . Those rays separate α and β (see Figure 9).

Similarly, if a ray lands at f(ωα) ∈ Uβ , then one preimage ray with angle in
(1/12, 1/4)T and one preimage ray with angle in (−1/4,−1/12)T land at ωα ∈ Uα.
Those rays separate α and β (see Figure 9). �

Lemma 19. For f ∈ V, the rays of angles 5/12 and −5/12 land at a common point
and bound an open set Wf containing α; the rays of angles 5/36 and −5/36 land
at a common point and bound an open set Vf containing α. Moreover, f(Vf ) = Wf

and f : Vf →Wf is an isomorphism.

The result is illustrated on Figure 10.

Proof. The rays of angles 1/4 and −1/4 land at a common fixed point γ. This point
has three distinct preimages, including itself. The rays of angles 5/12 and −5/12
are contained in Uβ and have to land at common preimage of γ contained in Uβ ,
while the rays of angles 1/12 and −1/12 are contained in Uα and have to land at
the other preimage of γ contained in Uα.

As in the proof of Lemma 17, the component U ′α of f−1(Uα) contained in Uα
maps isomorphically to Uα. Similarly, the component U ′β of f−1(Uβ) contained in
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f

UαUβ

γ

γ

1
4

− 1
4

1
4

− 1
4

α

α

β

β f(ωβ)f(ωα)

ωβ ωα

− 5
12

5
12

− 5
36

5
36

6

Figure 9. Sketch of the configuration of external rays described
in the proof of Lemma 18.

Uβ maps isomorphically to Uβ . The first is bounded by the rays of angles 1/12 and
−1/12 and the second is bounded by the rays of angles 5/12 and −5/12.

By assumption, f(ωα) ∈ Uβ and f◦2(ωα) ∈ Uβ , so that f(ωα) ∈ U ′β . It follows

that the region Wf bounded by the rays of angle 5/12 and −5/12 and containing
α contains a single critical value f(ωβ). Note that f(ωβ) ∈ Uα ⊂ Wf . As a
consequence, f−1(Wf ) has two connected components. One contains ωβ and maps
with degree 2 to Wf . The other, Vf , contains U ′α and maps isomorphically to Wf .
This last component Vf contains the ray of angle 0 and so, is bounded by the
preimages of the rays of angles 5/12 and −5/12 whose angles are closest to 0, i.e.,
the rays of angles 5/36 and −5/36. �

5.2. Polynomials with (k, `)-configuration. Here, we assume f ∈ V has (k, `)-
configuration, i.e.,

f◦k(ω) = ω′ and f◦`(ω′) = α with k ≥ 1 and ` ≥ 1.

As g varies in V the two critical points of g depend holomorphically on g and
0 remains the landing point of the ray of angle 0. Denote by ω : V → C and
ω′ : V→ C holomorphic maps following the critical points of g ∈ V with ω(f) = ω
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f

UαWf

Vf

U ′α

U ′β

γ

γ

α

αf(ωβ)f(ωα)

ωβ ωα

6
− 5

12

5
12

− 5
36

5
36

Figure 10. The open set Vf containing α and bounded by the
rays of angles 5/36 and −5/36 maps isomorphically to the open
set Wf containing α and bounded by the rays of angles 5/12 and
−5/12.

and ω′(f) = ω′. In addition, for m ≥ 0, let {ω−m : V → C}m≥0 be defined
recursively by

ω0 := ω and ω−m−1(g) ∈ Vg with g
(
ω−m−1(g)

)
= ω−m(g).

The sequence is well defined since g : Vg → Wg is an isomorphism and Vg ⊂ Wg.
As m→ +∞, the sequence {ω−m} converges locally uniformly to 0 on V.

We now exhibit a particular sequence {gm}m≥m0 of polynomials converging to
f in V.

Lemma 20. Assume f ∈ V has (k, `)-configuration. Then, there is a sequence
{gm}m≥m0

converging to f in V such that gm has (m+ `, k+ `)-configuration with
critical points ωm and ω′m satisfying:

ωm = ω′(gm), ω′m := ω(gm) and g◦`m (ωm) = ω−m(gm).

Remark 21. The roles of the two critical points are exchanged: the sequence {ωm}
converges to ω′ and the sequence {ω′m} converges to ωm (see Figure 11).
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ω−1 α = f(ω′)ωω′ = f◦2(ω)f(ω′)
ω−2

(a) f

g1(ω′1)

ω1

g◦21 (ω′1)

g◦21 (ω1) = ω′1
α = g◦31 (ω′1)

g1(ω1)

(b) g1

g2(ω2)

g◦22 (ω2) α = g◦32 (ω′2)g◦32 (ω2) = ω′2

g2(ω′2) g◦22 (ω′2)

ω2

(c) g2

Figure 11. An admissible polynomial f with a (2, 1)-configur-
ation together with two perturbations g1 and g2.

Proof. For (a, b) ∈ C2, let fa,b ∈ A be the cubic polynomial defined by

fa,b(z) = z3 − 3

2
(a+ b)z2 + 3abz.

The critical points of fa,b are a and b, so that f = fω,ω′ .
Consider the analytic sets

Σ :=
{

(a, b) ∈ C2 ; f
◦(k+`)
a,b (a) = 0

}
and Σ′ :=

{
(a, b) ∈ C2 ; f◦`a,b(b) = 0

}
.

There are parameters (a, b) which belong neither to Σ nor to Σ′ (for example, when

a := i
√

2/2 and b = −i
√

2/2, then a is a fixed point of fa,b). As a consequence, Σ
and Σ′ are 1-dimensional complex curves.

By assumption, (ω, ω′) ∈ Σ∩Σ′. The intersection Σ∩Σ′ consists of postcritically
finite polynomials, thus is bounded in C2. It follows that (ω, ω′) is an isolated point
of Σ ∩Σ′. Let a : (D, 0)→ (C, ω) and b : (D, 0)→ (C, ω′) be non constant analytic
germs so that

(
a(t), b(t)

)
∈ Σ ∩V for t ∈ D. Set Ft := fa(t),b(t) ∈ V and consider

the sequence of functions {σm : D→ C}m≥0 defined by

σm(t) := F ◦`t
(
b(t)

)
− ω−m(Ft).

As m tends to +∞, the sequence {σm} converges to σ : D 3 t 7→ F ◦`t
(
b(t)

)
∈ C.

Note that σ vanishes at 0 but does not identically vanish since otherwise, the curve
t 7→ Ft would take its values in Σ∩Σ′, contradicting the previous observation that
(ω, ω′) is an isolated point of Σ ∩Σ′. It follows from the Rouché Theorem that for
m large enough, σm vanishes at some point tm ∈ D with tm → 0 as m→ +∞. The
result follows with gm := Ftm , ωm := b(tm) and ω′m := a(tm). �

5.3. Admissible perturbations. Here, we prove the Key Proposition (Proposi-
tion 11). Its proof follows directly from Lemma 22.
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We assume f ∈ V is admissible, β is the landing point of the ray of angle 1/2
for f , ξ is the nodal point of β, β′ and β′′ in Jf with f−1(β) = {β, β′, β′′}, and

f◦j(ξ) = ω, f◦k(ω) = ω′ and f◦`(ω′) = α.

Let {gm}m≥m0 be a sequence of cubic polynomials provided by Lemma 20. For
m ≥ m0, let βm be the landing point of the ray of angle 1/2 for gm, and let ξm be
the nodal point of βm, β′m and β′′m in Jgm with g−1m (βm) = {βm, β′m, β′′m}.

Lemma 22. If m is large enough, then g
◦(j+k)
m (ξm) = ωm.

The idea of the proof is the following. For any polynomial in V, the fixed point
α = 0 is the landing point of a unique external ray (of angle 0). If the polynomial
has (k, `)-configuration, then f◦` sends the critical point ω′ to α with local degree
2 and f◦k sends the critical point ω to ω′ with local degree 2. It follows that ω′ is
the landing point of exactly two external rays and ω is the landing point of exactly
four external rays.

If in addition f is admissible, then f◦j sends ξ to ω with local degree 1, and ξ is
the landing point of exactly four external rays separating β, β′ and β′′. Note that
f◦(j+k) has a critical point at ξ with critical value ω′.

For the perturbed map gm, the critical point ωm is the landing of exactly four

external rays. The map g
◦(j+k)
m has a critical point close to ξ with critical value

close to ωm, but different from ωm. It follows that there are two points ξ±m close to

ξ which are mapped to ωm by g
◦(j+k)
m . Exactly four rays land at each of these two

points. We shall see that those eight rays converge to the four rays landing at ξ for
f , and that one of the two points ξ±m separates βm, β′m and β′′m in Jgm .

Proof. Note that f◦j : (C, ξ)→ (C, ω) has local degree 1 at ξ, f◦k : (C, ω)→ (C, ω′)
has local degree 2 at ω and f◦` : (C, ω′) → (C, α) has local degree 2 at ω′. Let

D b D̂ be sufficiently small disks around α = 0 so that Pf ∩ D̂ = {0}. Let D̂′

be the component of f−`(D̂) which contains ω′, and let D̂′′ be the component of

f−j−k(D̂′) which contains ξ. For m large enough,

• g−`m (D) has a component D′m b D̂
′ containing ωm and g◦km (ω′m),

• g−j−km (D′m) has a component D′′m b D̂′′ containing a point ζm and two
points ξ±m such that

g◦jm (ζm) = ω′m and g◦(j+k)m (ξ+m) = g◦(j+k)m (ξ−m) = ωm.

As m tends to +∞, the sequence {ζm} and {ξ±m} converge to ξ. A summary of the
dynamics within the preimages of D before and after perturbation is provided in
Figure 12.

Given θ ∈ T, denote by R(θ) the ray of angle θ for f , and by Rm(θ) the ray of
angle θ for gm. There is a single ray landing at α: R(0). So, there are two rays
landing at ω′, four rays landing at ω and four rays landing at ξ. Let θ1, θ2, θ3 and
θ4 be the angles of the four rays landing at ξ, cyclically ordered counterclockwise.
Then, modulo 1, we have that 3j+kθ1 = 3j+kθ3 =: η1 and 3j+kθ2 = 3j+kθ4 =: η2,
and the rays R(η1) and R(η2) land at ω′. In addition, modulo 1, we have that
3`η1 = 3`η2 = 0 and R(0) lands at α = 0.

Since g◦`m (ωm) 6= 0 and Rm(0) lands at α = 0, for m large enough, the rays

Rm(η1) and Rm(η2) land at two distinct points in D′m. Since g
◦(k+`)
m (ω′m) = 0,

one of those rays lands at g◦km (ω′m). Without loss of generality, relabelling the
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2− 1
2− 11− 1

f◦`
f◦kf◦j

D

αω′ωξ

2− 1
2− 11− 1

g◦`m
g◦kmg◦jm

D

α

ω

ω′
ξ+m

g◦`m (ω)

g◦km (ω′)

ξ−m

ζm

g◦jm (ξ+m)

g◦jm (ξ−m)
D′mD′′m

Figure 12. Dynamics within the preimages of the disk D con-
taining α before and after perturbation.

rays if necessary, we may assume that this ray is Rm(η1). Then, Rm(θ1) and
Rm(θ3) land at ζm, whereas Rm(θ2) and Rm(θ4) land at two distinct points in D′′m.
Note that the four rays R(θ1), R(θ2), R(θ3) and R(θ4) land at ξ and separate the
plane in four connected components. The points β, β′ and β′′ are in 3 distinct
connected components. So, 1/2, 1/6 and −1/6 must belong to distinct components
of T \ {θ1, θ2, θ3, θ4}. Without loss of generality, relabelling the rays if necessary,
we may assume that one of the angles 1/2, 1/6 and −1/6 belongs to (θ1, θ2)T, one
belongs to (θ2, θ3)T and one belongs to (θ3, θ1)T (see Figure 13).

According to Lemma 18, the two rays landing at ω′m separate α = 0 and βm.
One has angle in (0, 5/12)T and the other has angle in (−5/12, 0)T (see Lemma 18).
Let us recall that g◦`m (ωm) = ω−m(gm) is the m-th iterated preimage of ω′m by the
univalent branch gm : Vgm →Wgm . It follows from Lemma 19 that, if a ray in Wgm

has angle in (0, 5/12)T (respectively (−5/12, 0)T), then the preimage ray in Vgm has
angle in (0, 5/36)T (respectively (−5/36, 0)T). Consequently, the rays landing at
g◦`m (ωm) have angles with representatives

ε+m ∈
(

0,
5

12 · 3m

)
and ε−m ∈

(
− 5

12 · 3m
, 0

)
.

They separate α = 0 and βm.
Set δ±m := ε±m/3

` and η±m := δ±m/3
j+k. Then, for m large enough, each of the four

rays

Rm(η1 + δ+m), Rm(η1 + δ−m), Rm(η2 + δ+m) and Rm(η2 + δ−m)

land in D′m at a point z satisfying g◦`m (z) = g◦`m (ωm). This point is necessarily ωm
itself (see Figure 13). Similarly, each of the eight rays

Rm(θ1 + η±m), Rm(θ2 + η±m), Rm(θ3 + η±m) and Rm(θ4 + η±m)

land in D′′m at a point z satisfying g
◦(j+k)
m (z) = ωm. This point in necessarily ξ+m

or ξ−m. So, four of those rays land at ξ+m and four of them land at ξ−m.
If m is large enough, θ1+η+m, θ2+η±m and θ3+η−m belong to (θ1, θ3)T and θ3+η+m,

θ4 + η±m and θ1 + η−m belong to (θ3, θ1)T. The rays of angles θ1 and θ3 separate the
plane in two connected components. So, relabelling the points ξ±m if necessary, we
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f◦(j+k)

f◦`

g
◦(j+k)
m

g◦`m

g◦`m (ωm)

α

α = f◦`(ω′)

ε+m

ε−m

ωm

g
◦(j+k)
m (ζm)

ω′ = f◦(j+k)(ξ)

η1

η2

η1 + δ−m

η1 + δ+m

η2 + δ−m

η2 + δ+m

ξ

β′′

β′

β

ζm

ξ−m

ξ+m

β′′m

β′m

βm

θ1

θ2

θ3

θ4

θ1 + η+m

θ2 + η−m

θ2 + η+m

θ3 + η−m

-

-

-

-

Figure 13. External rays of f landing near ξ, ω′ and α and
external rays of gm landing near ζm, ωm and α. The angles of the
external rays are indicated.

may assume that

Rm(θ1 + η+m), Rm(θ2 + η−m), Rm(θ2 + η+m) and Rm(θ3 + η−m)

land at ξ+m and that

Rm(θ3 + η+m), Rm(θ4 + η−m), Rm(θ4 + η+m) and Rm(θ1 + η−m)

land at ξ−m (see Figure 13).
Finally, if m is large enough, one of the angles 1/2, 1/6 and −1/6 belongs

to (θ1 + η+m, θ2 + η−m)T, one belongs to (θ2 + η+m, θ3 + η−m)T and one belongs to
(θ3 + η+m, θ1 + η−m)T. Then, the branching point separating βm, β′m and β′′m in Jgm
is ξm = ξ+m. �
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