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Let f(z) = e2iπθz + z2, where θ is a quadratic irrational. McMullen proved that the Siegel disk
for f is self-similar about the critical point. We give a lower bound for the ratio of self-similarity,
and we show that if θ = (

√
5 − 1)/2 is the golden mean, then there exists a triangle contained in

the Siegel disk, and with one vertex at the critical point. This answers a 15 years old conjecture.
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1 Introduction

Definition 1 The polynomial Pθ is defined by

Pθ(z) = e2iπθz + z2,

where θ has continued fraction expansion

θ = [a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 +
. . .

.

In the following, for x ∈ R/Z, {x} denotes the unique real number representing x in ]−1/2, 1/2],
and

pn

qn
= [a1, . . . , an]

denote the rational approximation to θ obtained by truncating its continued fraction.
In 1942, Siegel [Si] proved that when θ is a diophantine number, the polynomial Pθ is conformally

conjugate to a rotation near the origin. The maximal domain D on which this conjugacy is defined
is called the Siegel disk for Pθ. It is the Fatou component of Pθ containing 0. In particular, this
result holds when θ is of bounded type, i.e. sup ai < ∞.

In 1986, Herman [H] and Świa̧tek [Sw] proved that when θ is of bounded type, the boundary ∂D
of the Siegel disk is a quasi-circle containing the critical point ωθ = −e2iπθ/2. The proof is based
on a quasi-conformal surgery due to Ghys and Douady (see [D]). In 1993, Petersen [P] proved that
the Julia set J(Pθ) has Lebesgue measure zero, and is locally connected.

In 1997, McMullen [McM2] obtained results concerning the geometry of the Julia set J(Pθ). In
particular, he proved that if θ is a quadratic irrational, then the boundary of the Siegel disk for Pθ

is self-similar about the critical point. This result was conjectured and observed numerically more
than a decade ago by Manton, Nauenberg and Widom [MN] [W].

The number θ is a quadratic irrational if and only if the continued fraction of θ is preperiodic.
In that case, the rotation x 7→ x + θ, x ∈ R/Z is self-similar (see [McM2] theorem 2.1). More
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precisely, if θ = [a1, a2, . . .], where an+s = an for n ≥ N , we can set

α = θN+1θN+2 . . . θN+s,

where θi = [ai, ai+1, ai+2, . . .]. Then for n ≥ N ,

{qn+sθ} = (−1)sα · {qnθ}.

Our first goal is to prove the following result.

Theorem 1 Let θ = [a1, a2, . . .], where an+s = an for n ≥ N , be a quadratic irrational and λ ∈ D∗
be the scaling ratio for the self-similarity of the Siegel disk of Pθ about the critical point. Besides,
let α be defined as above. Then

0 < α < |λ| < 1.

McMullen mentioned to us that this bound on λ in terms of α via a modulus estimate is very similar
to Bers’ inequality for quasifuchsian groups; there one knows that the length of a hyperbolic geodesic
in Q(X, Y ) is bounded by the hyperbolic length of the corresponding geodesic on X or Y (see [B]
Theorem 3 and [McM3] Prop. 6.4).

In [McM2] (corollary 7.5), McMullen also shows that when the continued fraction expansion
of θ has odd period, then the boundary of the Siegel disk does not spiral about the critical point.
This means that any continuous branch of arg(z − ωθ) defined along ∂D \ {ωθ} is bounded. In
particular, this result holds for the golden mean Siegel disk, where θ = (

√
5 − 1)/2 = [1, 1, 1, . . .].

Our second result is the following.

Theorem 2 Using the same notations, if −π/ log(α2) > 1/2, then the Siegel disk of the polynomial
Pθ, contains a triangle with one vertex at ωθ.

Corollary 1 The Siegel disk of the polynomial Pθ, θ = (
√

5 − 1)/2, contains a triangle with one
vertex at ωθ.

The corollary is immediate since for θ = (
√

5− 1)/2 = [1, 1, 1, . . .] we have α = θ = (
√

5− 1)/2,
and

− π

log(α2)
∼ 3.264251306 >

1
2
.

On figure 1, we have drawn the filled-in Julia set of the polynomial Pθ, θ = (
√

5− 1)/2. We have
also zoomed near the critical point ωθ to show the self-similarity of the boundary of the Siegel disk.

Acknowledgements. We wish to thank Adrien Douady for mentioning this problem. We are
grateful to Curt T. McMullen for carefully reading a first version of this paper and suggesting
several improvements. We also want to thank John H. Hubbard, Misha Lyubich and Carsten L.
Petersen for valuable comments and the Departments of Mathematics at Cornell University, at the
Technical University of Denmark and at Université Paul Sabatier in Toulouse for hospitality during
the research that went into this paper.

2 The scaling ratio.

In the following, θ = [a1, a2, . . .], where an+s = an for n ≥ N , will always be a quadratic irrational.
We denote by Rθ(z) = e2iπθz the rotation of angle θ. The polynomial Pθ has a Siegel disk D, and
the conformal mapping φ : D → D, linearizes Pθ, i.e. conjugates Pθ to the rotation Rθ. By results
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Figure 1: The filled-in Julia set of the polynomial Pθ, θ = (
√

5− 1)/2.
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Figure 2: The linearizing map φ : D → D sending ωθ to 1.

of Herman and Świa̧tek, this conjugacy extends to a quasi-symmetric conjugacy φ : ∂D → S1.
Since φ is unique up to rotation, we can normalize it so that it maps ωθ ∈ ∂D to 1 ∈ S1 (see Figure
2).

Now, recall that

• pn/qn = [a1, . . . , an] is the rational approximation to θ obtained by truncating its continued
fraction,

• θi = [ai, ai+1, ai+2, . . .], and

• α = θN+1θN+2 . . . θN+s.

In [McM2], McMullen proves that for n ≥ N ,

{qn+sθ} = (−1)sα{qnθ}.
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It follows that in a neighborhood of z = 1, the contraction

z 7→ zα, for s even, and
z 7→ z̄α, for s odd

conjugates Rqn

θ to R
qn+s

θ , for n ≥ N . Let us prove it for s odd. For z in a sufficiently small
neighborhood of 1, we have

Rqn

θ (z)
α

= e2πiqnθz
α

=
(
e−2πi{qnθ}z̄

)α
= e−2πiα{qnθ}z̄α = R

qn+s

θ (z̄α).

In [McM2] (theorem 7.1), McMullen proves that there is a neighborhood U of ωθ and a constant
ε > 0 such that for all z ∈ U ∩D, the mapping ψ defined by

ψ(z) =

{
φ−1 ([φ(z)]α) , for s even, and
φ−1

(
[φ(z)]α

)
, for s odd,

• is well defined,

• satisfies the expansion

ψ(z) =

{
ωθ + λ(z − ωθ) + O

(|z − ωθ|1+ε
)
, for s even, or

ωθ + λ(z − ωθ) + O
(|z − ωθ|1+ε

)
, for s odd,

with 0 < |λ| < 1, and

• conjugates P qn

θ to P
qn+s

θ .

The main difficulty is to prove that ψ is C1+ε at ωθ.
Now let us define the scaling map

Λ(z) =

{
ωθ + λ(z − ωθ), for s even, or
ωθ + λ(z − ωθ), for s odd,

For conveniency, we will use the spherical metric

dσ(z) =
|dz|

1 + |z − ωθ|2

(instead of the usual |dz|/(1 + |z|2)). Then the distance between two points x and y in P1 satisfy

σ(x, y) ≤ inf
(
|x− y|, 1

|x− ωθ| +
1

|y − ωθ|
)

.

This spherical metric enables us to define a Hausdorff distance dH between compact subsets of the
sphere. McMullen shows the following theorem.

Theorem 3 McMullen ([McM2], corollary 7.3) The blow-ups Sn = Λ−n(∂D) of the bound-
ary of the Siegel disk converge to a Λ-invariant quasi-circle through ∞, for the Hausdorff topology
on compact subsets of the sphere.

Proof. Indeed, there exists constants C1 and δ > 0 such that for all n large enough

dH(Sn, Sn+1) < C1|λ|nδ.

To see that, we need to prove that
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• for any x ∈ Sn there exists a y in Sn+1 with σ(x, y) < C1|λ|nδ, and

• for any y in Sn+1 there exists a x ∈ Sn with σ(x, y) < C1|λ|nδ.

We will only prove the first point; a similar argument works for the second one. We first choose
a constant C and an open neighborhood U ′ of ωθ sufficiently small so that ψ(U ′) ⊂ U ′, and so that
for any z ∈ U ′,

|ψ(z)− Λ(z)| < C|z − ωθ|1+ε.

We then set
δ =

1
2

(
1− 1

1 + ε

)
,

which is positive. Observe that for all n large enough, the ball Bn centered at ωθ with radius
|λ|n(1−δ) is contained in U ′. Then, for any x ∈ Sn, Λn(x) belongs to ∂D and

• either Λn(x) ∈ Bn, ψ(Λn(x)) ∈ ∂D and y = Λ−(n+1) (ψ(Λn(x)) belongs to Sn+1; then a simple
computation gives

σ(x, y) <
C

|λ| |λ|
nδ,

• or Λn(x) 6∈ Bn and y = Λ−1(x) belongs to Sn+1; moreover

σ(x, y) ≤ 1
|x− ωθ| +

1
|y − ωθ| ≤ 2|λ|nδ.

Hence dH(Sn, Sn+1) is decreasing geometrically and the sequence Sn is converging for the Hausdorff
topology to a limit S which has to be Λ-invariant. Since the sets Sn are all K quasi-circles with the
same K (they are mapped onto each other by the scaling map Λ), the limit is also a K quasi-circle.

Since Pθ is a quadratic polynomial, the Siegel disk D has one preimage D′ 6= D which is
symmetric to D with respect to ωθ. The blow-ups Λ−n(D′) and Λ−n(D) both converge, for the
Hausdorff topology on compact subsets of the sphere, to Λ-invariant quasi-disks D (bounded by the
quasi-circle S) and D′ passing through ∞ and ωθ (see figure 1). In particular, observe that D/Λ2

and D′/Λ2 are two annuli in the torus (C\{ωθ})/Λ2. We consider Λ2 instead of Λ, because when s
is odd, Λ is orientation reversing. Notice that when s is even, this torus is conformally equivalent
to C∗/λ2, and when s is odd, this torus is conformally equivalent to the torus C∗/(λλ̄). Besides,
the annuli are conformally equivalent. Let

M = mod(D/Λ2) = mod(D′/Λ2)

be their modulus.
The key-point in this paper is that we can compute the exact value of the modulus M .

Lemma 1 The modulus M is equal to −π/ log(α2).

Proof. Indeed, we can define the scaling map

A(z) =

{
1 + α(z − 1), for s even, and
1 + α(z − 1), for s odd.

It is the differential at 1 of the contraction which conjugates Rqn

θ to R
qn+s

θ , for n ≥ N . Then

φn = A−n ◦ φ ◦ Λn
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is a conformal equivalence between Λ−n(D) and A−n(D), which extends quasi-symmetrically to a
map φn : Λ−n(∂D) → A−n(∂D). Besides, φn(ωθ) = 1, and

A ◦ φn+1 = φn ◦ Λ.

By Caratheodory’s convergence theorem, the sequence φn converges when n tends to infinity, to a
conformal map

φ∞ : D → H = {z ∈ C | Re(z) < 1}
such that A ◦ φ∞ = φ∞ ◦ Λ (see [McM2] Theorem 8.1, statement 7). In particular, we see that
the annulus D/Λ2 is isomorphic to the annulus H/A2. This last annulus has a modulus M =
−π/ log(α2). ¤

We will now use a classical inequality on annuli embedded in a torus.

Lemma 2 Let Ai ⊂ T, be disjoint annuli embedded in a torus

T = C/(2πiZ+ τZ), Re(τ) > 0.

The segment [0, τ ] projects to a simple closed curve γ on T. If the annuli Ai are homotopic to γ,
then

n∑

i=1

modAi ≤ 2πRe(τ)
|τ |2 .

Proof. Let Bi be the annulus
{z | 0 < Im(z) < hi}/Z,

where Z acts by translations, with hi = modBi = modAi, so that Ai and Bi are conformally
equivalent. And let fi : Bi → Ai be a conformal mapping. We can endow the torus T with the
Euclidean metric; then the simple closed curve

x 7→ fi(x, y), 0 ≤ x ≤ 1

has length at least |τ |. Hence, we find

2πRe(τ) = Area(T)
≥

∑

i

Area(Ai)

=
∑

i

∫

Bi

|f ′i(x, y)|2dxdy

=
∑

i

∫ hi

0

(∫ 1

0
|f ′i(x, y)|2dx

)
dy

≥
∑

i

∫ hi

0

(∫ 1

0
|f ′i(x, y)|dx

)2

dy

≥
∑

i

∫ hi

0
|τ |2dy

=
∑

i

hi|τ |2.

This is the required inequality. ¤
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In our case, τ is a branch of log(λ2) when s is even and of log(λλ̄) when n is odd. Using

|Re(τ)| = − log(|λ|2),

we get

2M ≤ − 2π

log(|λ|2) .

Combining this with the exact value of the modulus M gives

− 2π

log(α2)
≤ − 2π

log(|λ|2) ,

which is equivalent to
α < |λ|.

This proves theorem 1.

3 Triangle in the golden Siegel disk.

We will now show that if θ = (
√

5− 1)/2 is the golden mean, then the Siegel disk of Pθ contains a
triangle with vertex at the critical point ωθ. It is enough to show that the quasi-disk D contains a
sector with vertex at ωθ .

McMullen has already done the main step in that direction (see [McM2] corollary 7.5). He
proved that when s is odd (and in our case s = 1), the boundary of the Siegel disk does not spiral
about the critical point. That means that there exists a continuous branch of χ(z) = log(z − ωθ)
defined on D with bounded imaginary part. Indeed, the condition that D is Λ-invariant implies that
D is Λ2-invariant. Now the scaling ratio of Λ2 is λλ̄ and consequently the strip χ(D) is invariant
by the translation T (z) = z + log(λλ̄). This translation being real, the imaginary part of χ(z) is
bounded when z ∈ D.

To prove the existence of a sector in D, it is enough to show that the strip χ(D) contains a
horizontal band

B = {z ∈ C | y1 < Im(z) < y2},
for some y1 < y2 in R (see figure 3).

On figure 3, we have drawn the Julia set of the polynomial Pθ, θ = (
√

5 − 1)/2 and its image
under the map χ(z) = log(z − ωθ). It is very difficult to get a good picture of the Julia set J(Pθ)
near the critical point ωθ. However, it is possible to get a good idea of the boundary of the Siegel
disk since the orbit of the critical point is dense in ∂D.

To prove that the strip χ(D) contains a horizontal band, recall that the quotient χ(D)/T is an
annulus of modulus −π/ log(α2), where in our case α = θ = (

√
5− 1)/2. Since

− π

log(α2)
∼ 3.264251306 >

1
2
,

the existence of a sector in D is a consequence of the following lemma (see [McM1], Thm 2.1).

Lemma 3 Assume S is a periodic strip of period τ ∈ R, i.e. S + τ = τ . If S/τ is an annulus of
modulus

mod(S/τ) >
1
2
,
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Figure 3: The filled-in Julia set of the polynomial Pθ, θ = (
√

5− 1)/2 and its image under the map
χ(z) = log(z − ωθ).

then S contains a horizontal band

B = {z ∈ C | y1 < Im(z) < y2},
for some y1 < y2 in R.

Proof. We will proceed by contradiction. If we cannot put a horizontal band in S, then there is
a horizontal line which intersects both the upper boundary of S and the lower boundary of S. We
can assume without loss of generality that this line is the real axis. Under the mapping z 7→ e2iπz/τ ,
the strip projects to an annulus A ∈ C∗, and the real axis projects to the unit circle S1 = {|z| = 1}.
Hence, the bounded component of C∗ \ A contains a point z1 of modulus 1, and the unbounded
component of C∗ \A contains a point z2 of modulus 1.

It is known (see [LV] page 56-65) that the modulus of an annulus separating the points 0 and
z1 from the points z2 and ∞, with |z1| = |z2| = 1 is bounded from above by the modulus of the
annulus

Amax = C \ (]−∞,−1] ∪ [0, 1]) .

In particular, when mod(S/τ) > mod(Amax), we see that we get a contradiction. Douady indicated
to us that this modulus is equal to 1/2. Indeed, let us first consider a square pillow with side-length
1. This pillow is isomorphic to P1. We can map two opposite corners to 0 and ∞, and a third
corner to 1. By symmetry of the square pillow, the remaining corner is mapped to −1. The annulus
Amax is then isomorphic to the pillow cut along two opposite sides. This is a cylinder with height
1 and circumference 2. Hence the modulus of this cylinder is 1/2. ¤

Remark: We would like to mention that for the angle θ = [2, 2, 2, 2, . . .] =
√

2− 1, the modulus of
the corresponding annulus is

−π/ log(α2) ∼ 1.782213977 >
1
2
.
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Hence, our proof enables us to conclude that there is still a triangle in the Siegel disk with vertex
at the critical point (see figure 4).

Figure 4: The filled-in Julia set of the polynomial Pθ, θ =
√

2− 1.

In fact we can conclude that there is an angle in the Siegel disk as long as θ = [a, a, a, a, . . .],
with a ≤ 23. Indeed, for a = 23, we have α = θ = (

√
533− 23)/2, and

−π/ log(α2) ∼ .5006714845 >
1
2
.

On the other hand, when a = 24, we get α = θ = (
√

580− 24)/2, and

−π/ log(α2) ∼ .4939944446 <
1
2
.

In this case, our proof does not enable us to conclude anything. We have drawn the corresponding
Julia set on figure 5. We have also drawn its image under the map χ(z) = log(z − ωθ) to show
that the boundary of the Siegel disk “oscillates”. It is a reason why our proof does not enable us
to conclude anything, whereas it seems that one can put a triangle in the Siegel disk with vertex
at the critical point.

4 Questions.

We have seen that when the period of a quadratic irrational is odd, then the boundary of the
corresponding Siegel disk does not spiral around the critical point.

Question 1: Is there a quadratic irrational θ such that the boundary of the Siegel disk of Pθ spirals?

Question 2: Does the boundary of the Siegel disk always spiral when the period of θ is even?
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Figure 5: The filled-in Julia set of the polynomial Pθ, θ = [24, 24, 24, . . .] and its image under the
map χ(z) = log(z − ωθ).

To answer those two questions, one has to show that the scaling ratio λ ∈ D∗ is not a real
number. Computer experiments suggests that for θ = [2, 1, 2, 1, 2, 1, . . .], the ratio λ is not real.
Hence, the boundary of the Siegel disk spirals. We have drawn the Julia set of the polynomial Pθ

for θ = [2, 1, 2, 1, 2, 1, . . .], and its image under the map χ(z) = log(z − ωθ) (see figure 6). It should
be clear that the strip corresponding to the Siegel disk is not horizontal.

Question 3: Is there a quadratic irrational θ with odd period, but for which there is no triangle
with vertex at ωθ contained in the Siegel disk?

This problem seems to be related to question 1. Indeed, if there is a quadratic irrational such
that the boundary of the Siegel disk of Pθ spirals, then the period s of θ is even. Let us write
θ = [a1, . . . , as, a1, . . . , as, . . .]. Now consider the quadratic irrational θ′ = [a′1, . . . , a′ks+1, . . .] of
period ks + 1, where k is a large integer, and where

a′1 = a1, and
a′i = ai−1, if 2 ≤ i ≤ ks + 1.

Then, one can expect that the boundary of the Siegel disk of Pθ′ will oscillate. On figure 7, we have
drawn the filled-in Julia set of the polynomial Pθ, θ = [50, 50, 1, 50, 50, 1, 50, 50, 1, . . .] and its image
under the map χ(z) = log(z − ωθ). It is very difficult to obtain a good picture of the boundary of
the Siegel disk near the critical point. The dark region on figure 7 corresponds to something we
extrapolated.

Finally, we know that |λ| < 1 for every quadratic irrational θ. When we show that there is a
triangle in the Siegel disk, we don’t get any lower bound on the angle of the vertex which is at the
critical point. We could get one if we knew that |λ| is not too close to 1.

Question 4: Is there a constant δ < 1 such that |λ| < δ for any quadratic irrational θ?
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Figure 6: The filled-in Julia set of the polynomial Pθ, θ = [2, 1, 2, 1, 2, 1 . . .] and its image under the
map χ(z) = log(z − ωθ).

We can even be more optimistic.

Question 5: Is there a constant δ < 1 such that |λ| < δs, where s is the period of the quadratic
irrational θ?

Finally, we would like to ask a last question, which seems to be a analog of Świa̧tek’s a-priori
bounds for Blaschke fractions having an irrational rotation number:

Question 6: Are there constants δ1 < δ2 < 1 such that (δ1)s < |λ| < (δ2)s, where s is the period
of the quadratic irrational θ?
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