TOTALLY REAL POINTS IN THE MANDELBROT SET

XAVIER BUFF AND SARAH KOCH

ABSTRACT. Recently, Noytaptim and Petsche proved that the only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $f_c(z) := z^2 + c$ is postcritically finite are 0, -1 and -2 [NP]. In this note, we show that the only totally real parameters $c \in \overline{\mathbb{Q}}$ for which f_c has a parabolic cycle are $\frac{1}{4}$, $-\frac{3}{4}$, $-\frac{5}{4}$ and $-\frac{7}{4}$.

INTRODUCTION

Consider the family of quadratic polynomials $f_c : \mathbb{C} \to \mathbb{C}$ defined by

$$f_c(z) := z^2 + c, \quad c \in \mathbb{C}.$$

The Mandelbrot set M is the set of parameters $c \in \mathbb{C}$ for which the orbit of the critical point 0 under iteration of f_c remains bounded:

$$M := \left\{ c \in \mathbb{C} \mid \forall n \ge 1, \ f_c^{\circ n}(0) \in \overline{D}(0,2) \right\}.$$

Definition 1. A parameter $c \in \mathbb{C}$ is *postcritically finite* if the orbit of 0 under iteration of f_c is finite.

Definition 2. A parameter $c \in \mathbb{C}$ is *parabolic* if f_c has a periodic cycle with multiplier a root of unity.

Postcritically finite parameters and parabolic parameters are algebraic numbers contained in M. More precisely, $c \in \mathbb{C}$ is a postcritically finite parameter if and only if c is an algebraic integer whose Galois conjugates all belong to M (see [M] and [Bu]). In addition, if $c \in \mathbb{C}$ is a parabolic parameter, then 4c is an algebraic integer (see [Bo]); moreover, 4c is an algebraic unit in $\mathbb{Z}/2\mathbb{Z}$ (see [M, Remark 3.2]).

Definition 3. An algebraic number $c \in \overline{\mathbb{Q}}$ is *totally real* if its Galois conjugates are all in $\overline{\mathbb{Q}} \cap \mathbb{R}$.

Recently, Noytaptim and Petsche [NP] completely determined the totally real postcritically finite parameters.

Proposition 1 (Noytaptim-Petsche). The only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $z \mapsto z^2 + c$ is postcritically finite are -2, -1 and 0.

Their proof relies on the fact that the Galois conjugates of a postcritically finite parameter are also postcritically finite parameters, thus contained in M, and on the fact that $M \cap \mathbb{R} = [-2, \frac{1}{4}]$ has small arithmetic capacity. In this note, we revisit their proof. We then determine the totally real parabolic parameters.

Proposition 2. The only totally real parameters $c \in \overline{\mathbb{Q}}$ for which $z \mapsto z^2 + c$ has a parabolic cycle are $\frac{1}{4}$, $-\frac{3}{4}$, $-\frac{5}{4}$ and $-\frac{7}{4}$.

Acknowledgments. We thank Valentin Huguin for useful discussions, and Curtis McMullen for introducing us to these questions.

The research of the second author was supported in part by the NSF.

X. BUFF AND S. KOCH

1. Postcritically finite parameters

We first revisit the proof of Novtaptim and Petsche [NP].

Proof of Proposition 1. Assume that c is a totally real postcritically finite parameter. Then, c and all of its Galois conjugates are real postcritically finite parameters, thus lie in the interval [-2, 0]. Indeed,

- for $c \in (0, \frac{1}{4})$, the orbit of 0 under iteration f_c is infinite, converging to an attracting fixed point of f_c ; • for $c = \frac{1}{4}$ the orbit of 0 under iteration f_c is infinite, converging to a
- parabolic fixed point of f_c at $z = \frac{1}{2}$;
- for $c \in (-\infty, -2) \cup (\frac{1}{4}, +\infty)$ the orbit of 0 under iteration f_c is infinite, converging to ∞ .

Let a be a solution of a+1/a = c; that is, $a^2 - ca + 1 = 0$. Then a is an algebraic integer of modulus 1 with nonpositive real part, and all of its Galois conjugates also have modulus 1 and nonpositive real part.

By Kronecker's theorem, a is a root of unity. And since the Galois conjugates of a all have nonpositive real part, the only possibilities are the following:

- a = -1, which is mapped to c = -2;
 a = e^{±i2π/3}, which is mapped to c = -1;
- $a = \pm i$, which is mapped to c = 0.

Therefore, the only postcritically finite parameters that are totally real are -2, -1, -1and 0.

2. PARABOLIC PARAMETERS

We now present the proof of Proposition 2. Note that $c = \frac{1}{4}$, $c = -\frac{3}{4}$, $c = -\frac{5}{4}$ and $c = -\frac{7}{4}$ are indeed parabolic parameters. Indeed,

- $f_{\frac{1}{4}}$ has a fixed point with multiplier 1 at $z = \frac{1}{2}$;
- $f_{-\frac{3}{4}}$ has a fixed point with multiplier -1 at $z = -\frac{1}{2}$;
- $f_{-\frac{5}{4}}^{4}$ has a cycle of period 2 with multiplier -1 consisting of the two roots of $4z^2 + 4z - 1$;
- $f_{-\frac{7}{4}}$ has a cycle of period 3 with multiplier 1 consisting of the three roots of $\frac{4}{8}z^3 + 4z^2 - 18z - 1$.

Proof of Proposition 2. Assume that c is a totally real parabolic parameter. Then, the Galois conjugates of c also are parabolic parameters. Either $c = \frac{1}{4}, c = -\frac{3}{4}, c = -\frac{3}{4}$ $c = -\frac{5}{4}$, or c and all of its Galois conjugates lie in the interval $\left[-2, -\frac{5}{4}\right]$. Indeed, a parabolic cycle must attract the orbit of 0 under iteration of f_c . However,

- for $c \in \left(-\frac{3}{4}, \frac{1}{4}\right)$, the orbit of 0 under iteration f_c converges to an attracting fixed point of f_c ;
- for $c \in (-\frac{5}{4}, -\frac{3}{4})$ the orbit of 0 under iteration f_c converges to an attracting
- cycle of period 2 of f_c ; for $c \in (-\infty, -2) \cup (\frac{1}{4}, +\infty)$ the orbit of 0 under iteration f_c converges to

Let us assume that $c \in [-2, -\frac{5}{4}]$. Then, b := 4c+6 and all of its Galois conjugates lie in the interval [-2, 1). Let a be a solution of a + 1/a = b; that is, $a^2 - ba + 1 = 0$.

Then a is an algebraic integer of modulus 1 with real part less than $\frac{1}{2}$, and all of its Galois conjugates also have modulus 1 and real part less than $\frac{1}{2}$.

By Kronecker's theorem, a is a root of unity. And since the Galois conjugates of a all have real part less than $\frac{1}{2}$, the only possibilities are the following:

- a = -1, b = -2 and c = -2; this is not a parabolic parameter;
- $a = e^{\pm i 2\pi/3}$, b = -1 and $c = -\frac{7}{4}$; this is indeed a parabolic parameter;
- $a = \pm i, b = 0$ and $c = -\frac{3}{2}$; in that case 4c = -6 is not an algebraic unit in $\overline{\mathbb{Z}}/2\overline{\mathbb{Z}}$ and so, c is not a parabolic parameter;
- a = e^{±i2π/5}, b = 2 cos(^{2π}/₅) and c = ^{√5-13}/₈; in this case, f_c has an attracting cycle of period 4 and so, c is not a parabolic parameter;
 a = e^{±i4π/5}, b = 2 cos(^{4π}/₅) and c = ^{-√5-13}/₈; then the Galois conjugate
- $\frac{\sqrt{5}-13}{8}$ is not a parabolic parameter and so, c is not a parabolic parameter.

This completes the proof of the proposition.

Remark: the following proof that $-\frac{3}{2}$ is not a parabolic parameter was explained to us by Valentin Huguin. It follows from [Bo] that for all $n \ge 1$,

discriminant $(f_c^{\circ n}(z) - z, z) = P_n(4c)$ with $P_n(b) \in \mathbb{Z}[b]$ and $\pm P_n$ monic. As an example,

$$P_1(b) = -b + 1$$
, $P_2(b) = (b - 1)(b + 3)^3$, $P_3(z) = (b - 1)(b + 7)^3(b^2 + b + 7)^4$

and

$$P_4(z) = (b-1)(b+3)^3(b+5)^6(b^3+9b^2+27b+135)^4(b^2-2b+5)^5.$$

Note that this yields an alternate proof that $c = \frac{1}{4}$, $c = -\frac{3}{4}$, $c = -\frac{5}{4}$ and $c = -\frac{7}{4}$ are parabolic parameters. In addition,

$$P_n(0) = \operatorname{discriminant} \left(z^{2^n} - z, z \right) \equiv 1 \pmod{2}.$$

As a consequence

$$P_n(-6) \equiv 1 \pmod{2}.$$

Thus, for all $n \ge 1$, the roots of $f_{-\frac{3}{2}}^{\circ n}(z) - z$ are simple, which shows that $f_{-\frac{3}{2}}$ has no parabolic cycle.

References

- [Bo] T. Bousch, Les racines des composantes hyperboliques de M sont des quarts d'entiers algébriques, Frontiers in Complex Dynamics: a volume in honor of John Milnor's 80th birthday, A. Bonifant, M. Lyubich, S. Sutherland, editors. Princeton University Press 2014, 25 - 26
- [Bu] X. BUFF, On Postcritically Finite Unicritical Polynomials, New York J. Math. 24 (2018) 1111 - 1122.
- [M]J. MILNOR, Arithmetic of unicritical polynomial maps, Frontiers in Complex Dynamics: a volume in honor of John Milnor's 80th birthday, A. Bonifant, M. Lyubich, S. Sutherland, editors. Princeton University Press 2014, 15-24.
- [NP] C. NOYTAPTIM & C. PETSCHE, Totally real algebraic integers in short intervals, Jacobi polynomials, and unicritical families in arithmetic dynamics, Preprint (2022).

Email address: xavier.buff@math.univ-toulouse.fr

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de NARBONNE, 31062 TOULOUSE CEDEX, FRANCE

Email address: kochsc@umich.edu

X. BUFF AND S. KOCH

Department of Mathematics, 530 Church Street, East Hall, University of Michigan, Ann Arbor MI 48109, United States