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Abstract. We show the existence of angles α ∈ R/Z such that the quadratic
polynomial Pα(z) = e2iπαz + z2 has a Siegel disk with C∞-smooth boundary.
This result was first announced by R. Pérez-Marco in 1993.

Introduction

Assume U is an open subset of C and f : U → C is a holomorphic map which
satisfies f(0) = 0 and f ′(0) = e2iπα, α ∈ R/Z. We say that f is linearizable at 0
if it is topologically conjugate to the rotation Rα : z 7→ e2iπαz in a neighborhood
of 0. If f : U → C is linearizable, there is a largest f -invariant domain ∆ ⊂ U
containing 0 on which f is conjugate to the rotation Rα. This domain is simply
connected and is called the Siegel disk of f . A basic but remarkable fact is that the
conjugacy can be taken holomorphic.

In this article, we are mainly concerned with the dynamics of the quadratic
polynomials Pα : z 7→ e2iπαz + z2, with α ∈ R \ Q. They have z = 0 as an
indifferent fixed point.

For every α ∈ R\Q, there exists a unique formal power series φα(z) = z+b2z
2 +

b3z
3 + . . . such that

φα ◦Rα = Pα ◦ φα.

We denote by rα ≥ 0 the radius of convergence of the series φα. It is known (see
[Y1] for example) that rα > 0 for Lebesgue almost every α ∈ R. More precisely,
rα > 0 if and only if α satisfies the Bruno condition (see definition 2 below).

From now on, we assume that rα > 0. In that case, the map φα : B(0, rα) → C
is univalent, and it is well known that its image ∆α coincides with the Siegel disk
of Pα associated to the point 0. The number rα is called the conformal radius of
the Siegel disk. The Siegel disk is also the connected component of C\J(Pα) which
contains 0, where J(Pα) is the Julia set of Pα, i.e., the closure of the set of repelling
periodic points. Figure 1 shows the Julia sets of the quadratic polynomials Pα, for
α =

√
2 and α =

√
10. Both polynomials have a Siegel disk colored grey.

In this article, we investigate the structure of the boundary of the Siegel disk. It
is known since Fatou that this boundary is contained in the closure of the forward
orbit of the critical point ωα = −e2iπα/2 (for example, see [Mi] Theorem 11.17 or
[Mi] Corollary 14.4). By plotting a large number of points in the forward orbit
of ωα, we should therefore get a good idea of what those boundaries look like.
In practice, that works only when α is sufficiently well-behaved, the number of
iterations needed being otherwise enormous.

In 1983, Herman [He1] proved that when α satisfies the Herman condition, the
critical point actually belongs to the boundary of the Siegel disk. (Recall that Her-
man’s condition is the optimal arithmetical condition to ensure that every analytic
circle diffeomorphism with rotation number α is analytically linearizable near the
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J(P√2)
J(P√10)

Figure 1. Left: the Julia set of the polynomial z 7→ e2iπ
√

2z + z2.
Right: the Julia set of the polynomial z 7→ e2iπ

√
10z + z2. In both

cases, there is a Siegel disk.

circle. We will not give a precise description here. See [Y2] for more details.) Using
a construction due to Ghys, Herman [He2] also proved the existence of quadratic
polynomials Pα for which the boundary of the Siegel disk is a quasi-circle which
does not contain the critical point. Later, following an idea of Douady [D] and
using work of Światek [S] (see also [P2]), he proved that when α is Diophantine of
exponent 2, the boundary of the Siegel disk is a quasi-circle containing the critical
point. In [McM1], McMullen showed that the corresponding Julia sets have Haus-
dorff dimension less than 2 and that when α is a quadratic irrational, the boundary
of the Siegel disk is self-similar about the critical point. More recently, Petersen
and Zakeri [PZ] proved that for Lebesgue almost every α ∈ R/Z, the boundary is
a Jordan curve containing the critical point. Moreover, when α is not Diophantine
of exponent 2, this Jordan curve is not a quasi-circle (see [PZ]).

In [PM], Pérez-Marco proves that there exist univalent maps in D having Siegel
disks compactly contained in D whose boundaries are C∞-smooth Jordan curves.
This result is very surprising and very few people suspected that such a result
could be true. The boundary cannot be an analytic Jordan curve since in that
case the linearizing map would extend across it by Schwarz reflection. Pérez-Marco
even produces examples where an uncountable number of intrinsic rotations extend
univalently to a neighborhood of the closure of the Siegel disk. Pérez-Marco’s
results have several nice corollaries (see [PM]). For example, it follows that there
exist analytic circle diffeomorphisms which are C∞ linearizable but not analytically
linearizable. This answers a question asked by Katok in 1970.

In a 1993 seminar at Orsay, Pérez-Marco announced the existence of quadratic
polynomials having Siegel disks with smooth boundaries. According to Pérez-
Marco, his proof is rather technical. In 2001, the second and third authors [BC1]
found a different approach to the existence of such quadratic polynomials. In [A],
the first author considerably simplified the proof.

Definition 1. We say that the boundary of a Siegel disk ∆α is accumulated by
cycles if every neighborhood of ∆α contains a (whole) periodic orbit of Pα.
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Main Theorem. Assume α ∈ R is a Bruno number and r ∈ (0, rα) and ε > 0 are
real numbers. Let u : R/Z → C be the function t 7→ φα(re2iπt). Then, there exists
a Bruno number α′ with the following properties:

• |α′ − α| < ε,
• rα′ = r,
• the linearizing map φα′ : B(0, r) → ∆α′ extends continuously to a function

φα′ : B(0, r) → ∆α′ ,1

• the function v : R/Z→ C defined by v(t) = φα′(re2iπt) is a C∞ embedding
(thus the boundary of the Siegel disk is a smooth Jordan curve), and

• the functions u and v are ε-close in the Fréchet space C∞(R/Z,C).

Additional Information. We may choose α′ so that the boundary of the Siegel
disk ∆α′ is accumulated by cycles.2

Remark. When the polynomial Pα is not linearizable, i.e., rα = 0, it is known
that 0 is accumulated by cycles (see [Y1]). It may be the case that the boundary
of the Siegel disk of a quadratic polynomial is always accumulated by cycles.

Corollary 1. There exist quadratic polynomials with Siegel disks whose boundaries
do not contain the critical point.

First Proof. Let α be any Bruno number, choose r ∈ (0, rα) sufficiently small so
that φα(∂B(0, r)) ⊂ B(0, 1/10). Then, for ε small enough, the boundary of the
Siegel disk ∆α′ given by the Main Theorem is contained in B(0, 1/5). Therefore,
the critical point ωα′ = −e2iπα′/2 cannot belong to the boundary of the Siegel disk
∆α′ .

Second Proof. The Main Theorem gives quadratic polynomials with Siegel disks
whose boundaries are smooth Jordan curves. But an invariant Jordan curve cannot
be smooth at both the critical point and the critical value.

Note that our proof of the existence of quadratic Siegel disks whose boundaries
do not contain critical points is completely different from Herman’s proof.

Corollary 2. The set S ⊂ R of real numbers α for which Pα has a Siegel disk with
smooth boundary is dense in R and has uncountable intersection with any open
subset of R.

Remark. By [He1] or [PZ], the set S has Lebesgue measure zero.

Proof. Given any Bruno number α and any η > 0, the conformal radius rα′ (for
the α′ provided by the Main Theorem) can take any value in the interval (0, rα)
and so the intersection of S with the interval (α − η, α + η) is uncountable. The
proof is completed since the set of Bruno numbers is dense in R.

It follows from a theorem of Mañé that the boundary of a Siegel disk of any
rational map is contained in the accumulation set of some recurrent critical point
(see for example [ST]). Thus, for a quadratic polynomial, a critical point with orbit

1It automatically maps the boundary of B(0, r) to the boundary of ∆α′ .
2In that case, the critical point of Pα′ is not accessible through the basin of infinity (see for

example [K] or [Z]).
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falling on the boundary of a fixed Siegel disk must belong itself to this boundary.
As a consequence, if Pα has a Siegel disk ∆α with smooth boundary, the orbit of
the critical point avoids ∆α and thus all the preimages of the Siegel disk also have
smooth boundaries.

The main tool in the proof of the Main Theorem is a perturbation lemma.

Main Lemma. Given any Bruno number α and any radius r1 such that 0 < r1 <
rα, there exists a sequence of Bruno numbers α[n] −→ α such that rα[n] → r1.

We shall also need the following standard fact: if θn → θ and rθn ≥ r then rθ ≥ r
(thus the conformal radius is upper semicontinuous) and φθn

→ φθ uniformly on
compact subsets of B(0, r). Indeed, the linearizing maps φθn

|B(0,r) are univalent
with φθn(0) = 0, φ′θn

(0) = 1, and thus form a normal family. Passing to the limit
in the equation

φθn
(e2iπθnz) = Pθn

(φθn
(z)),

we see that any subsequence limit of {φθn
} linearizes Pθ and thus coincides with

φθ on B(0, r) by uniqueness of the linearizing map.

Proof of the Main Theorem assuming the Main Lemma. We define se-
quences α(n) and εn inductively as follows. Let rn be a decreasing sequence converg-
ing to r with r0 = rα. Take α(0) = α, ε0 = ε/10. Assuming that α(n) and εn are
defined, let εn+1 < εn/10 be such that rθ < rα(n) + εn whenever |θ− α(n)| < εn+1

(this is possible by upper semicontinuity). With the help of the Main Lemma,
choose α(n + 1) such that |α(n + 1)− α(n)| < εn+1/10, rn+1 < rα(n+1) < rn, and
the real-analytic functions un+1 : t 7→ φα(n+1)(re2iπt) and un : t 7→ φα(n)(re2iπt)
are εn+1-close in the Fréchet space C∞(R/Z,C).

Let α′ = lim α(n). By the construction, |α′ − α(n)| < εn+1 for n ≥ 0. By the
definition of εn+1, this implies rα′ < rα(n) + εn. Since εn → 0 and rα(n) → r, we
have rα′ ≤ r. On the other hand, by upper semicontinuity, we have rα′ ≥ lim rα(n),
so rα′ = r. The functions un converge to a C∞ function v : R/Z → C which is
ε-close to u = u0 in the Fréchet space C∞(R/Z,C). In particular (by taking ε
smaller) this implies that v is an embedding. Since φα′ = lim φα(n)|B(0,r), it follows
that φα′ has a continuous (actually C∞) extension to the boundary of B(0, r) given
by φα′(re2iπt) = v(t). This completes the proof of the Main Theorem.

The purpose of Figure 2 is to illustrate this construction. We have drawn the
boundary of three quadratic Siegel disks, for α = (

√
5 + 1)/2, α(1) which is close

to α and α(2) which is much closer to α(1). For α(1), there is a cycle of period
8 that forces the boundary of the Siegel disk to oscillate slightly. For α(2), there
is an additional cycle (of period 205) that forces the boundary to oscillate much
more. We have not been able to produce a picture for a possible choice of α(3).
The number of iterates of the critical point required to get a relevant picture was
much too large.

In this article, we present two independent proofs of the Main Lemma. The
second and third authors found a proof that goes as follows. We first give a lower
bound for the size of the Siegel disk of a map which is close to a rotation as done
in [C] part 2 (see Section 3). We then use the techniques of parabolic explosions
in the quadratic family introduced in [C] part 1 in order to control the conformal
radius from above (see Section 4). A proof of the Main Lemma follows (see section
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∂∆α ∂∆α(1)

∂∆α(2)

Figure 2. The first steps in the construction of a Siegel disk with
smooth boundary. In the last frame, we plotted the period 8 cycle
that creates the first order oscillation. The period 205 cycle that
creates the stronger oscillation is too close to ∂∆α(2) to be clearly
represented here.

5). This approach has the advantage of showing that one can find smooth Siegel
disks accumulated by cycles (see section 6).

The first author simplified this proof (see Section 7), replacing the technique of
parabolic explosion by Yoccoz’s Theorem on the optimality of the Bruno condition
for the linearization problem in the quadratic family [Y1]. A further simplification
replaces the estimates of Section 3 by a result of Risler [R]. This argument can
be read immediately after the arithmetic preparation in Sections 1 and ??. This
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approach automatically applies to other families where the optimality of the Bruno
condition is known to hold, as the examples of Geyer [G].

We would like to end this introduction with an observation. In the same way one
uses lacunary Fourier series to produce C∞ functions which are nowhere analytic,
our Siegel disks can be produced with rotation numbers whose continued fractions
have large coefficients (in a certain sense) which are more and more spaced out.
The two phenomena are not completely unlinked. Indeed, if φ : D → ∆ is the
normalized linearizing map, then the coefficients bk of the power series of φ are the
Fourier coefficients of the angular parametrization of the boundary of ∆. These
coefficients also depend on the arithmetic nature of α. Indeed, they are defined by
the recursive formula

b1 = rα and bn+1 =
1

e2iπα(e2iπnα − 1)

n∑

i=1

bibn+1−i.

If the (k + 1)-st entry in the continued fraction of α is large, e2iπqkα − 1 is close to
0 and b1+qk

is large (pk/qk is the k-th convergent of α, see the definition below).

Acknowledgments. We wish to express our gratitude to A. Douady, C. Henriksen,
R. Pérez-Marco, L. Tan, J. Rivera and J.C. Yoccoz, for helpful discussions and
suggestions and the referee for many detailed comments.

1. Arithmetical preliminaries

This section gives a short account of a very classical theory. See for instance
[HW] or [Mi].

If (ak)k≥0 are integers, we use the notation [a0, a1, . . . , ak, . . .] for the continued
fraction

[a0, a1, . . . , ak, . . .] = a0 +
1

a1 +
1

. . . +
1

ak +
.. .

.

We call ak the k-th entry of the continued fraction. The 0-th entry may be any
integer in Z, but we require the others to be positive. Then the sequence of finite
fractions converges, and the notation refers to its limit. We define two sequences
(pk)k≥−1 and (qk)k≥−1 recursively by

p−1 = 1, p0 = a0, pk = akpk−1 + pk−2,
q−1 = 0, q0 = 1, qk = akqk−1 + qk−2.

The numbers pk, qk satisfy

qkpk−1 − pkqk−1 = (−1)k.

In particular, pk and qk are coprime. Moreover, if a1, a2, . . . are positive integers,
then for all k ≥ 0, we have

pk

qk
= [a0, a1, . . . , ak].

The number pk/qk is called the k-th convergent of α.
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For any irrational number α ∈ R \Q, we denote by bαc ∈ Z the integer part of
α, i.e., the largest integer ≤ α, by {α} = α − bαc the fractional part of α, and we
define two sequences (ak)k≥0 and (αk)k≥0 recursively by setting

a0 = bαc, α0 = {α}, ak+1 =
⌊

1
αk

⌋
and αk+1 =

{
1
αk

}
,

so that
1
αk

= ak+1 + αk+1.

We then set β−1 = 1 and βk = α0α1 . . . αk.
It is well known that

α = [a0, a1, . . . , ak, . . .].
More precisely, we have the following formulas.

Proposition 1. Let α be an irrational number and define the sequences (ak)k≥0,
(αk)k≥0, (βk)k≥−1, (pk)k≥−1 and (qk)k≥−1 as above, so that

pk

qk
= [a0, a1, . . . , ak].

Then, for k ≥ 0, we have the formulas

α =
pk + pk−1αk

qk + qk−1αk
, qkα− pk = (−1)kβk,

qk+1βk + qkβk+1 = 1 and
1

qk+1 + qk
< βk <

1
qk+1

.

The last inequalities imply, for k ≥ 0,

1
2qkqk+1

<

∣∣∣∣α−
pk

qk

∣∣∣∣ <
1

qkqk+1
.

Moreover, for all k ≥ 0,
αk = [0, ak+1, ak+2, . . .]

2. The Yoccoz function

Definition 2 (The Yoccoz function and Bruno numbers). If α is an irrational
number, we set

Φ(α) =
+∞∑

k=0

βk−1 log
1
αk

,

where αk and βk are defined as in section 1. If α is a rational number we set
Φ(α) = +∞. We say α ∈ R is a Bruno number if Φ(α) < +∞.

Remark. Observe that for any k0 ≥ 0, and all α irrational, we have

(1) Φ(α) =
k0−1∑

k=0

βk−1 log
1
αk

+ βk0−1Φ(αk0).

In [Y1], Yoccoz uses a modified version of continued fractions but we will not
need that modification. The function Φ we will use is not exactly the same as the
one introduced by Yoccoz, but the difference between the two functions is bounded
(see [Y1], page 14).
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For the next proposition, we will have to approximate α by sequences of irrational
numbers. In order to avoid the confusion between such a sequence and the sequence
(αk)k≥0 introduced previously, we will denote the new sequence by (α[n])n≥0. One
corollary of the following proposition is that the closure of the graph of Φ contains
all the points (α, t) with t ≥ Φ(α).

Definition 3. Given any Bruno number α = [a0, a1, . . .], any real number A ≥ 1
and any integer n ≥ 0, we set

T (α, A, n) = [a0, a1, . . . , an, An, 1, 1, . . .]

where An = bAqnc is the integer part of Aqn .

Proposition 2. Let α ∈ R be a Bruno number and A ≥ 1 be a real number. For
each integer n ≥ 0, set α[n] = T (α, A, n). Then, α[n] −→ α and

Φ(α[n]) −→
n→∞

Φ(α) + log A.

Proof. That α[n] → α is clear, since convergence of the entries in the continued
fraction ensures convergence of the numbers themselves. For each integer n ≥ 0,
let us denote by (αk[n])k≥0 and (βk[n])k≥−1 the sequences associated to α[n]. For
each fixed k, we have

lim
n→∞

αk[n] = αk and lim
n→∞

βk[n] = βk.

In particular,

lim
n→∞

βk−1[n] log
1

αk[n]
= βk−1 log

1
αk

.

Observe that for k ≤ n, the convergents of α[n] and α are the same, namely pk/qk.
Hence, if 0 < k ≤ n− 1, we have by Proposition 1

βk−1[n] <
1
qk

and
1

αk[n]
≤ 1

βk[n]
< 2qk+1.

It follows that when 0 < k ≤ n− 1, we have

βk−1[n] log
1

αk[n]
<

log 2
qk

+
log qk+1

qk
.

The right terms form a convergent series since α is a Bruno number. Thus, as
a function of k, the pointwise convergence with respect to n of the summand
βk−1[n] log 1/αk[n] is dominated. Therefore we have

(2)
n−1∑

k=0

βk−1[n] log
1

αk[n]
−→

n→∞

+∞∑

k=0

βk−1 log
1
αk

= Φ(α).

We will now estimate the term βn−1[n] log(1/αn[n]) in the Yoccoz function.
First, observe that

1
αn[n]

= An +
1
θ
,

where θ = [1, 1, 1, . . .] = (
√

5 + 1)/2 is the golden mean. If A = 1, then An = 1 and
we trivially get

βn−1[n] log
1

αn[n]
→

n→∞
0.



SIEGEL DISKS WITH SMOOTH BOUNDARIES 9

Let us now assume that A > 1. As n →∞, we have log An ∼ qn log A and thus,

βn−1[n] log
1

αn[n]
∼

n→∞
βn−1[n]qn log A.

We know that βn−1[n]qn ∈ (1/2, 1) and we would like to prove that in our case,
this sequence tends to 1. Observe that

βn−1[n]qn = 1− βn[n]qn−1 = 1− αn[n] · qn−1

qn
· βn−1[n]qn,

so
βn−1[n]qn =

qn

qn + αn[n]qn−1
,

which clearly tends to 1 as n →∞. As a consequence,

(3) βn−1[n] log
1

αn[n]
−→

n→∞
log A.

Finally, we have αn+1[n] = 1/θ and thus by (1)

(4)
+∞∑

k=n+1

βk−1[n] log
1

αk[n]
= βn[n] · Φ

(
1
θ

)
−→

n→∞
0.

Combining the limits (2), (3) and (4) gives the required result.

Remark. The above proof shows that instead of using a sequence of the form
α[n] = T (α, A, n), we could have taken any sequence α[n] = [a0, . . . , an, An, θn],
where An are positive integers such that

A1/qn
n −→ A

and θn > 1 are Bruno numbers such that

Φ(1/θn) = o(qnAn).

3. Semi-continuity with loss for Siegel disks

3.1. Normalized statements. We will bound from below the size of Siegel disks
of perturbations of rotations on the unit disk. We will use a theorem due to Yoccoz
[Y1] and generalize a theorem independently due to Risler [R] and Chéritat [C].

Definition 4. For any irrational α ∈ (0, 1), let Oα be the set of holomorphic
functions f defined in an open subset of D containing 0, which satisfy f(0) = 0 and
f ′(0) = e2iπα. We define Sα as the set of functions f ∈ Oα which are defined and
univalent on D.

Given f ∈ Oα, consider the set Kf of points in D whose infinite forward orbit
under iteration of f is defined. The map f is linearizable at 0 if and only if 0
belongs to the interior of Kf . In that case, the connected component of the interior
of Kf which contains 0 is the Siegel disk ∆f for f (as defined at the beginning of
the introduction). We denote by inrad(∆f ) the radius of the largest disk centered
at 0 and contained in ∆f .

Theorem 1 (Yoccoz). There exists a universal constant C0 such that for any Bruno
number α and any function f ∈ Sα,

inrad(∆f ) ≥ exp(−Φ(α)− C0).
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Remark. The function Φ defined by Yoccoz in [Y1] is not exactly the same as
the one we defined in this article, but the difference between the two functions is
bounded by a universal constant, so that Theorem 1 holds as stated here.

In the following, when we say that a sequence of functions fn converges uniformly
on compact subsets of D to a function f , we do not require the fn to be defined on
D. We only ask that any compact set K ⊂ D be contained in the domain of fn for
n large enough. In this case, we write fn ⇒ f on D.

Theorem 2 (Risler-Chéritat). Assume α is a Bruno number, fn ∈ Oα and fn ⇒
Rα on D. Then,

lim
n→∞

inrad(∆fn
) = 1.

Our goal is to generalize this result as follows.

Theorem 3. Assume (α[n])n≥0 is a sequence of Bruno numbers converging to a
Bruno number α such that

lim sup
n→∞

Φ(α[n]) ≤ Φ(α) + C

for some constant C ≥ 0. Assume fn ∈ Oα[n] with fn ⇒ Rα on D. Then,

lim inf
n→∞

inrad(∆fn) ≥ e−C .

The proof will be given in section 3.3.

Corollary 3. Under the same assumption on α and (α[n])n≥0 as in Theorem 3,
we have

lim inf
n→∞

rα[n] ≥ rαe−C .

Proof. Since α[n] → α, we have Pα[n] → Pα uniformly on compact subsets of C.
Let us consider the maps

fn(z) =
1
rα

φ−1
α ◦ Pα[n] ◦ φα(rαz).

Then, fn ∈ Oα[n] and fn ⇒ Rα on D. We can now apply Theorem 3.

Corollary 4. Assume α is a Bruno number and α[n] is a sequence of Bruno
numbers such that Φ(α[n]) → Φ(α). Then, rα[n] → rα.

Proof. By Corollary 3 with C = 0, we know that if Φ(α[n]) → Φ(α), then

lim inf
n→∞

rα[n] ≥ rα.

As mentioned in the introduction after the statement of the Main Lemma, the
conformal radius depends upper semicontinuously on α, and so, rα[n] → rα.

3.2. The Douady-Ghys renormalization. In this section, we describe a renor-
malization construction introduced by Douady [D] and Ghys. This construction is
at the heart of Yoccoz’s proof of Theorem 1. We adapt this construction to our
setting, i.e, to maps which are univalent on D and close to a rotation.

Step 1. Construction of a Riemann surface. Consider a map f ∈ Sα. Let H
be the upper half plane. There exists a unique lift F : H→ C of f such that

e2iπF (Z) = f(e2iπZ) and F (Z) = Z + α + u(Z),

where u is holomorphic, Z-periodic and u(Z) → 0 as Im(Z) →∞.
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Definition 5. For δ > 0, and 0 < α < 1 we define Sδ
α as the set of functions

f ∈ Sα such that for all Z ∈ H,

|u(Z)| < δα and |u′(Z)| < δ.

Remark. a) If δ < 1, the condition |u′(Z)| < δ implies that F has a continuous
and injective extension to H, and so, f has a continuous and injective extension to
D.

b) One can verify the following statement: Given α ∈ (0, 1) and δ ∈ (0, 1/2), if
f ∈ Sα, and if |f(z)− e2iπαz| < δα and |f ′(z)− e2iπα| < δ/4 on D, then f ∈ Sδ

α.

We now assume that δ ∈ (0, 1/2) and f ∈ Sδ
α. Set L0 = iR+ and L′0 = F (L0).

Note that for all Z ∈ H, F (Z) belongs to the disk centered at Z +α with radius δα.
It follows that the angle between the horizontal and the segment [Z, F (Z)] is less
than arcsin(δ) < π/6. Moreover, for all Z ∈ H, we have | arg(F ′(Z))| < arcsin(δ).
So the tangents to the smooth curve L′0 make an angle of less than π/6 with the
vertical. This implies that the union L0 ∪ [0, F (0)] ∪ L′0 ∪ {∞} forms a Jordan
curve in the Riemann sphere bounding a region U such that for Y > 0, the segment
[iY, F (iY )] is contained in U . We set U = U ∪ L0.

Denote by B0 the half-strip

B0 = {Z ∈ H | 0 < Re(Z) < 1}
and consider the map H : B0 → U defined by

H(Z) = (1−X)iαY + XF (iαY ) = αZ + Xu(iαY )

where Z = X + iY , (X,Y ) ∈ [0, 1]× [0, +∞). Then,

∂H

∂Z
=

1
2

(
∂H

∂X
+ i

∂H

∂Y

)
=

1
2
(
u(iαY )− αXu′(iαY )

)

and
∂H

∂Z
=

1
2

(
∂H

∂X
− i

∂H

∂Y

)
= α +

1
2
(
u(iαY ) + αXu′(iαY )

)
.

It follows that ∣∣∣∣
∂H

∂Z

∣∣∣∣ < αδ and
∣∣∣∣
∂H

∂Z

∣∣∣∣ > α(1− δ)

and since δ < 1/2, H is a Kδ-quasiconformal homeomorphism between B0 and U ,
with Kδ = 1/(1− 2δ).

If we glue the sides L0 and L′0 of U via F , we obtain a topological surface V.
We denote by ι : U → V the canonical projection. The space V is a topological
surface homeomorphic to a closed 2-cell with a puncture with the boundary ∂V =
ι([0, F (0)]). We set V = V \ ∂V. Since the gluing map F is analytic, the surface V
has a canonical analytic structure induced by that of U (see [C] page 70 or [Y1] for
details).

When Z ∈ L0, H(Z + 1) = F (H(Z)), and so the homeomorphism H : B0 → U
induces a homeomorphism between the half cylinder H/Z and the Riemann surface
V. This homeomorphism is clearly quasiconformal on the image of B0 in H/Z, i.e.,
outside an R-analytic curve. It is therefore quasiconformal in the whole half cylinder
(R-analytic curves are removable for quasiconformal homeomorphisms). Therefore,
there exists an analytic isomorphism between V and D∗, which, by a theorem of
Carathéodory, extends to a homeomorphism between ∂V and ∂D. Let φ : V → D∗
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be such an isomorphism and let K : U → H be a lift of φ ◦ ι by the exponential
map Z 7→ exp(2iπZ) : H→ D∗. The map K is unique up to post-composition with
a real translation. We choose φ and K such that K(0) = 0. By construction, if
Z ∈ L0, then

K(F (Z)) = K(Z) + 1.

Step 2. The renormalized map. Let us now set

U ′ = {Z ∈ U | Im(Z) > 5δ}, V ′ = ι(U ′)
and let V ′ be the interior of V ′.

Let us consider a point Z ∈ U ′. The segment [Z− 1, Z] intersects neither L′0 nor
[0, F (0)]. So either Z − 1 ∈ U or Re(Z − 1) < 0. For m ≥ 0, the iterates

Zm
def= F ◦m(Z − 1)

stay above the line starting at Z − 1 and going down with a slope tan(arcsin(δ))
(< 2δ when δ < 1/2), as long as Zm ∈ H. Since Re(Z−1) ≥ −1 and Im(Z−1) > 5δ,
there exists a least integer n ≥ 0 such that Zn is defined and Re(Zn) ≥ 0.

Let us show that Zn ∈ U . If Z − 1 ∈ U , then n = 0 and there is nothing to
prove. Otherwise, n ≥ 1 and Re(Zn−1) < 0. Since Zn−1 is above the line starting
at Z − 1 and going down with a slope 2δ, we have Im(Zn−1) > 3δ. Consider
the horizontal segment I joining Zn−1 to L0. Let J be its image under F . Since
|F ′(Z) − 1| < δ < 1/2, J is a curve whose tangents make an angle less than π/6
with the horizontal. Thus, J is to the right of Zn and in particular, to the right of
L0. Moreover, the tangents of L′0 make an angle less than π/6 with the vertical. So,
J joins Zn to L′0 and remains to the left of L′0. Finally, points in I have imaginary
part greater than 3δ, and since |F (Z)−Z−α| < δα < δ, points in J have imaginary
part greater than 2δ. Thus, J does not hit the segment [0, F (0)]. It follows that
Zn ∈ U . Now define a “first-return map” G : U ′ → U by setting G(Z) = Zn. Note
that G is a priori discontinuous since the integer n depends on Z. Figure 3 shows
the construction of the map G.

The map G : U ′ → U induces a univalent map g : φ(V ′) → D∗ such that
g ◦φ ◦ ι = φ ◦ ι ◦G. (The fact that g is univalent is not completely obvious; see [Y1]
for details). We define the renormalization of f by

R(f) : z 7→ g(z).

By the removable singularity theorem, this map extends holomorphically to the
origin once we set R(f)(0) = 0, and it is possible to show that [R(f)]′(0) = e2iπ/α

(again, see [Y1] for details). Thus, R(f) ∈ Oα1 , where α1 denotes the fractional
part of 1/α. This completes the description of the renormalization operator.

3.3. The proof of Theorem 3. Let us now assume that (α[n])n≥0 is a sequence
of Bruno numbers converging to a Bruno number α such that

lim sup
n→∞

Φ(α[n]) ≤ Φ(α) + C

for some constant C ≥ 0. We define the sequences (αk)k≥0, (βk)k≥−1, (αk[n])k≥0

and (βk[n])k≥−1 as in section 1.

Lemma 1. For all k ≥ 0, we have

lim sup
n→∞

Φ(αk[n]) ≤ Φ(αk) +
C

βk−1
.



SIEGEL DISKS WITH SMOOTH BOUNDARIES 13

−1

F F F F

F
F

F

U
0

L0

U ′

H
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G(Z)

Figure 3. The regions U , U ′ and the map G : U ′ → U .

Proof. We have by (1)

Φ(α[n])− Φ(α) =
k−1∑

j=0

(
βj−1[n] log

1
αj [n]

− βj−1 log
1
αj

)

+βk−1[n]Φ(αk[n])− βk−1Φ(αk).

For each fixed j ≥ 0, we have αj [n] → αj and βj [n] → βj as n →∞, and so,

lim
n→∞

βj−1[n] log
1

αj [n]
= βj−1 log

1
αj

.

Thus,

C ≥ lim sup
n→∞

Φ(α[n])− Φ(α)

= lim sup
n→∞

βk−1[n]Φ(αk[n])− βk−1Φ(αk)

= βk−1

(
lim sup

n→∞
Φ(αk[n])− Φ(αk)

)
.

Now, for all k ≥ 0, we set

ρk = inf
{

lim inf
n→∞

inrad(∆fn)
}

,

where the infimum is taken over all sequences
(
fn ∈ Oαk[n]

)
n≥0

such that fn ⇒ Rαk

on D. Similarly, we set

ρ′k = inf
{

lim inf
n→∞

inrad(∆fn)
}

,
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where the infimum is taken over all sequences
(
fn ∈ Sδn

αk[n]

)
n≥0

such that δn → 0

(note that this implies fn ⇒ Rαk
on D). It is easy to check that each infimum is

realized for some sequence fn. We will show that

log ρ0 ≥ −C,

which is a restatement of Theorem 3.

Lemma 2. For all k ≥ 0, we have ρk = ρ′k.

Proof. We clearly have ρ′k ≥ ρk since Sδn

αk[n] ⊂ Oαk[n]. Now, assume (δn)n≥0 and
(fn ∈ Oαk[n])n≥0 are sequences such that δn → 0 and fn ⇒ Rαk

on D. Then, we
can find a sequence of real numbers λn < 1 such that λn → 1 and

gn : z 7→ 1
λn

fn(λnz)

belongs to Sδn

αk[n]. The Siegel disk ∆fn contains λn∆gn . Therefore

lim inf
n→∞

inrad(∆fn) ≥ lim inf
n→∞

λn inrad(∆gn) ≥ ρ′k.

This shows that ρk ≥ ρ′k.

Lemma 3. For all k ≥ 0, we have

log ρk ≥ −Φ(αk)− C

βk−1
− C0,

where C0 is the universal constant provided by Theorem 1. In particular, ρk > 0.

Proof. Indeed, Theorem 1 implies that when fn ∈ Sαk[n], then

log inrad(∆fn) ≥ −Φ(αk[n])− C0.

Since by Lemma 1

lim sup
n→∞

Φ(αk[n]) ≤ Φ(αk) +
C

βk−1
,

the lemma follows.

Let us now fix some k ≥ 0. Assume that
(
fn ∈ Sδn

αk[n]

)
n≥0

is a sequence of

functions such that δn → 0. Then, fn ⇒ Rαk
on D and for large n, δn < 1/2. So,

we can perform the Douady-Ghys renormalization. We lift fn : D → C to a map
Fn : H→ C via π : Z 7→ exp(2iπZ):

H
Fn //

π

²²

C
π

²²
D∗

fn

// C∗.

We similarly define Un, U ′n, Vn, ιn : Un → Vn, Hn : B0 → Un, φn : Vn → D∗ and
Kn : Un → H. Recall that Hn conjugates the translation T1 : Z 7→ Z + 1 (from the
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left boundary of B0 to the right boundary of B0) to Fn (from the left boundary of
Un to the right boundary of Un):

(B0, T1)

Hn

²²
(Un, Fn)

Kn //

ιn

²²

(H, T1)

π

²²
(Vn, Id)

φn

// (D∗, Id).

Then, we define a “first-return map” Gn : U ′n → Un which induces a univalent map
gn defined on the interior D∗

n of φn ◦ ιn(U ′n) such that gn ◦ φn ◦ ιn = φn ◦ ιn ◦Gn:

U ′n
Gn //

φn◦ιn

²²

Un

φn◦ιn

²²
D∗

n gn

// D∗.

The renormalized map is
R(fn) : z 7→ gn(z).

Note that R(fn) belongs to Oαk+1[n] and not to Sαk+1[n].

Lemma 4. The maps φn ◦ ιn : Un → D∗ converge to Z 7→ e2iπZ/αk uniformly on
compact subsets of Bαk

= {Z ∈ H | 0 ≤ Re(Z) < αk}.
Proof. The lifts Fn converge to the translation Z 7→ Z + αk. It follows that
the Kδn-quasiconformal homeomorphisms Hn : B0 → Un converge to the scaling
map Z 7→ αkZ uniformly on B0. Moreover, Kn ◦ Hn : B0 → Kn(Un) is a Kδn-
quasiconformal homeomorphism which satisfies Kn ◦Hn(Z + 1) = Kn ◦Hn(Z) + 1
for Z ∈ iR+ and sends 0 to 0. Therefore, it extends by periodicity to a Kδn-
quasiconformal automorphism of H fixing 0, 1 and ∞ (the extension is quasicon-
formal outside Z+ iR+, and thus it is quasiconformal on H since R-analytic curves
are removable for quasiconformal homeomorphisms). Since Kδn = 1/(1− 2δn) → 1
as n → ∞, we see that Kn ◦ Hn converges uniformly on compact subsets of H to
the identity as n → ∞. As a consequence, the maps Kn converge to Z 7→ Z/αk

uniformly on compact subsets of Bαk
. So, the maps φn ◦ ιn : Un → D∗ converge to

Z 7→ e2iπZ/αk uniformly on compact subsets of Bαk
.

Lemma 5. For all k ≥ 0, we have

log ρk ≥ αk log ρk+1.

Proof. Let us assume that ρk < 1 since otherwise, the result is obvious. Let us
choose a sequence δn → 0 and a sequence of functions fn ∈ Sδn

αk[n] which converge
to the rotation Rαk

and such that

ρk = lim
n→∞

inrad(∆fn).

Then, we can find a sequence of points zn ∈ D such that |zn| → ρk and the orbit of
zn under iteration of fn escapes from D. By conjugating fn with a rotation fixing 0
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if necessary, we may assume that zn ∈ (0, 1). Let us consider the points Zn ∈ iR+

such that e2iπZn = zn. Then, Im(Zn) → − log(ρk)/2π. Since δn → 0, it follows
that for n large enough, Zn ∈ U ′n.

Recall that by Lemma 3, ρk > 0. So Zn remains in a compact subset of Bαk
=

{Z ∈ H | 0 ≤ Re(Z) < αk}. Thus, Lemma 4 implies that for n large enough,
the point z′n = φn ◦ ιn(Zn) is close to e2iπZn/αk . In particular, we see that for n

large enough, |z′n| → ρ
1/αk

k . Moreover, since the orbit of zn escapes from D under
iteration of fn, the orbit of Zn under iteration of Fn escapes from H and thus the
orbit of z′n under iteration of R(fn) escapes from D. It follows that

log ρk = lim
n→∞

log |zn| = αk lim
n→∞

log |z′n| ≥ αk lim inf
n→∞

log inrad
(
∆R(fn)

)
.

But Lemma 4 also implies that the sequence (R(fn))n≥0 converges to the rotation
Rαk+1 uniformly on compact subsets of D. The definition of ρk+1 implies that

lim inf
n→∞

log inrad(∆R(fn)) ≥ log ρk+1,

and this completes the proof.

The proof of Theorem 3 is now completed easily. Indeed, we see by induction
that for all k ≥ 0, we have

log ρ0 ≥ α0 · · ·αk log ρk+1 = βk log ρk+1.

And by Lemma 3, we get

log ρ0 ≥ −βkΦ(αk+1)− C − βkC0.

We clearly have
lim

k→∞
βkC0 = 0.

Moreover, the first term on the right side is the tail of the series defining Φ(α) (see
equation (1)). This series converges, and so,

lim
k→∞

βkΦ(αk+1) = 0.

4. Parabolic explosion for quadratic polynomials

From now on, in the notation p/q for a rational number, we imply that p and q
are coprime with q > 0.

Let us fix a rational number p/q. Then, 0 is a parabolic fixed point of the
quadratic polynomial Pp/q : z 7→ e2iπp/qz + z2. It is known (see [DH1], chapter IX)
that there exists a complex number A ∈ C∗ such that

P ◦qp/q(z) = z + Azq+1 +O(zq+2).

This number should not be mistaken for the formal invariant of the parabolic germ,

i.e., the residue of the 1-form
dz

z − P ◦qp/q(z)
at 0.

Definition 6. For each rational number p/q, let us denote by A(p/q) the coefficient
of zq+1 in the power series at 0 of P ◦qp/q.
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Definition 7. Let Pq be the set of parameters α ∈ C such that P ◦qα has a parabolic
fixed point with multiplier 1. For each rational number p/q, set

Rp/q = dist
(

p

q
,Pq \

{
p

q

})
.

Remark. Note that we consider complex perturbations of p/q: Pα : z 7→ e2iπαz +
z2.

Proposition 2 in [BC2] (see also proposition 2.3 part 1 in [C]) asserts that for all
rational numbers p/q,

(5) Rp/q ≥
1
q3

.

When α 6= p/q is a small perturbation of p/q, 0 becomes a simple fixed point of
Pα and P ◦qα has q other fixed points close to 0. The dependence of these fixed points
on α is locally holomorphic when α is not in Pq. If we add p/q, we get a holomorphic
dependence on the q-th root of the perturbation α−p/q. The following proposition
corresponds to proposition 2.2 part 1 in [C] (compare with [BC2] Proposition 1).

Proposition 3. For each rational number p/q, there exists a holomorphic function
χ : B = B(0, R

1/q
p/q) → C with the following properties:

(1) χ(0) = 0,

(2) χ′(0)q = − 2πiq

A(p/q)
6= 0,

(3) for every δ ∈ B \ {0},
〈
χ(δ), χ(ζδ), . . . , χ(ζq−1δ)

〉
forms a cycle of period

q of Pα with ζ = e2iπp/q and α =
p

q
+ δq . In other words,

χ(ζδ) = Pα(χ(δ)) for every δ ∈ B.

Moreover, any function satisfying the above conditions is of the form δ 7→ χ(ζkδ)
for some k ∈ {0, . . . , q − 1}.

In this article, we prefer to normalize χ differently. We will use the symbol ψ for
the new function, and define it by ψ(δ) = χ(δ/χ′(0)) wherever it is defined. This
amounts to replacing the relation α = p

q + δq by

α =
p

q
− A(p/q)

2iπq
δq.

There are two advantages in doing this. First, this function does not depend on the
choice of χ among the q possibilities. Second, it makes the statement of proposition
6 look nicer. Let

(6) ρp/q =
∣∣∣∣
2πqRp/q

A(p/q)

∣∣∣∣
1/q

,

and let us give the version of proposition 3 that we will use here.

Proposition 4. For each rational number p/q, there exists a unique holomorphic
function ψ = ψp/q : B(0, ρp/q) → C such that

(1) ψ(0) = 0,
(2) ψ′(0) = 1,
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(3) for every δ ∈ B(0, ρp/q) \ {0},〈
ψ(δ), ψ(ζδ), ψ(ζ2δ), . . . , ψ(ζq−1δ)

〉

forms a cycle of period q of Pα with ζ = e2iπp/q and

α =
p

q
− A(p/q)

2iπq
δq.

In particular,
ψ(ζδ) = Pα(ψ(δ)) for every δ ∈ B(0, ρp/q) .

We will now make use of the following lemma which appears in Jellouli’s thesis
[J1] (compare with [J2] Theorem 1).

Lemma 6. Assume α ∈ R \ Q is chosen so that Pα has a Siegel disk ∆α and let
pk/qk → α be the convergents of α given by the continued fraction. Then, P ◦qk

pk/qk

converges uniformly to the identity on every compact subset of ∆α.

Proposition 5. Assume α is an irrational number such that Pα has a Siegel disk
and pk/qk are the convergents to α. Then,

lim inf
k→∞

ρpk/qk
≥ rα.

Proof.
Let φα : B(0, rα) → ∆α be the linearizing map which fixes 0 and has derivative

1 there. For each k ≥ 0, set

gk = φ−1
α ◦ Ppk/qk

◦ φα.

Then, since φ′α(0) = 1, an elementary computation gives

g◦qk

k = z + A(pk/qk)z1+qk +O(z2+qk).

The previous lemma implies that g◦qk

k converges to the identity uniformly on com-
pact subsets of B(0, rα). For any radius r < rα, we may find an integer N so that
g◦qk

k is defined on B(0, r) for n ≥ N . Since g◦qk

k takes its values in B(0, rα), we
have

|A(pk/qk)| = 1
2π

∣∣∣∣∣
∫

∂B(0,r)

g◦qk

k (z)
z2+qk

dz

∣∣∣∣∣ ≤
rα

r1+qk
.

This, combined with (5) and (6) gives

lim inf
k→∞

ρpk/qk
≥ lim inf

k→∞

(
2π

q2
k

)1/qk

·
(

r

rα

)1/qk

· r = r.

The result follows by letting r → rα.

We may now study the asymptotic behavior of the functions ψpk/qk
as k →∞.

Proposition 6. Assume α ∈ R is an irrational number such that Pα has a Siegel
disk ∆α and pk/qk are the convergents of α. Then,

• lim
k→∞

ρpk/qk
= rα and

• the sequence of functions ψpk/qk
: B(0, ρpk/qk

) → C converges uniformly on
compact subsets of B(0, rα) to the linearization φα : B(0, rα) → ∆α which
fixes 0 with derivative 1.
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Proof. We have just seen that

lim inf
k→∞

ρpk/qk
≥ rα.

Therefore, given any radius r < rα, the function ψpk/qk
is defined on the disk

B(0, r) for large enough k. If α ∈ B(p/q, Rp/q) and z is a periodic point of Pα,
then |z| ≤ 1+ e2π.3 Therefore, the functions ψpk/qk

all take their values in the disk
B(0, 1 + e2π). It follows that the sequence of functions

ψpk/qk
: B(0, r) → B(0, 1 + e2π)

is normal. Let ψ : B(0, r) → C be a subsequence limit. We have

ψpk/qk
(e2iπpk/qkδ) = Pα[k] ◦ ψpk/qk

(δ),

where

α[k] =
pk

qk
− A(pk/qk)

2iπqk
δqk .

Since
|A(pk/qk)| ≤ rα

r1+qk

by the proof of Proposition 5, we have∣∣∣∣
A(pk/qk)

2iπqk
δqk

∣∣∣∣ ≤
rα

2πrqk

(
δ

r

)qk

−→
k→∞

0.

It follows that α[k] → α as k →∞. Hence, for any δ ∈ B(0, r), we have

ψ(e2iπαδ) = Pα ◦ ψ(δ).

Since ψ′(0) = 1, ψ is non-constant and so it coincides with the linearizing parametriza-
tion φα : B(0, rα) → ∆α. As a consequence, the whole sequence {ψpk/qk

} converges
on compact subsets of B(0, rα) to the isomorphism φα.

Now, let r be defined by
r = lim sup

k→∞
ρpk/qk

.

By passing to a subsequence if necessary, we may assume that the sequence ρpk/qk

converges to r. Then, the same argument as above shows that the extracted sub-
sequence ψpk/qk

converges on compact subsets of B(0, r) to a holomorphic map
φ : B(0, r) → C which fixes 0 with derivative 1 and linearizes Pα. In particular,
the linearizing parametrization φα : B(0, rα) → ∆α is holomorphic on the disk of
radius r and so, r ≤ rα.

Corollary 5. Assume α is a Bruno number and let pk/qk be the convergents of
α defined by its continued fraction. Assume α[n] is a sequence of Bruno numbers
such that ∣∣∣∣α[n]− pn

qn

∣∣∣∣
1/qn

−→
n→∞

λ < 1.

For each n, let δn be a complex number which satisfies

pn

qn
− A(pn/qn)

2iπqn
δqn
n = α[n].

3Since Rp/q ≤ 1, if α ∈ B(p/q, Rp/q), then Im(α) > −1 and thus |e2iπα| < e2π. So, if

α ∈ B(p/q, Rp/q) and |z| > 1 + e2π , then |Pα(z)| = |z| · |z + e2iπα| > |z| and z cannot be a

periodic point of Pα.
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Then, the set

On = ψpn/qn

{
δne2iπk/qn

∣∣ k = 1, . . . , qn

}

is a periodic orbit of Pα[n] of period qn which converges to the analytic curve
φα(∂B(0, λrα)) in the Hausdorff topology on compact subsets of C. As a result,
the conformal radius rα[n] of the Siegel disk of the quadratic polynomial Pα[n] sat-
isfies

lim sup
n→∞

rα[n] ≤ λrα.

Proof. As n →∞,

|δn| =
∣∣∣∣α[n]− pn

qn

∣∣∣∣
1/qn

·
∣∣∣∣

2πqn

A(pn/qn)

∣∣∣∣
1/qn

→ λrα.

Moreover, the sequence ψpn/qn
converges to the linearizing parametrization φα :

B(0, rα) → ∆α. Therefore, the sequence of compact sets On converges to φα(∂B(0, λrα))
for the Hausdorff topology on compact subsets of C.

Let us assume that r is the limit of a subsequence rα[nk]. Then, for any r′ < r,
if k is sufficiently large, φα[nk] is defined on the disk B(0, r′). The maps φα[nk] :
B(0, r′) → C are univalent, fix 0 and have derivative 1 at the origin. Therefore,
extracting a further subsequence if necessary, we may assume that the sequence
φα[nk] : B(0, r′) → ∆α[nk] converges to a non-constant limit φ : B(0, r′) → C. The
map φα[nk] take its values in the Siegel disk ∆α[nk], and so it omits the periodic
orbit On of Pα[n]. As a consequence, the limit map φ must omit φα(∂B(0, λrα)).

Therefore, the map φ−1
α ◦φ sends B(0, r′) into B(0, λrα), fixes 0 and has derivative

1 at 0. Thus, by Schwarz’s lemma, r′ ≤ λrα. Letting r′ → r shows that lim sup
n→∞

rα[n]

is less than or equal to λrα.

5. A first proof of the Main Lemma

In this section, we give a first proof of the Main Lemma based on Corollaries 3
and 5.

Let α be a Bruno number and choose r1 < rα. For all n ≥ 1, set α[n] =
T (α, r/r1, n) (see Definition 3). Then,

Φ(α[n]) −→ Φ(α) + log
r

r1
and

∣∣∣∣α[n]− pn

qn

∣∣∣∣
1/qn

−→ r1

r
.

The first limit is proved in Proposition 2, the second follows from
∣∣∣∣α[n]− pn

qn

∣∣∣∣ =
βn

qn
=

αn[n]
q2
n

· βn−1[n]qn ∼ 1
q2
nAn

with An = b(r/r1)qnc.
According to Corollary 3, we have lim inf

n→∞
rα[n] ≥ r1 and according to Corollary

5, we have lim sup
n→∞

rα[n] ≤ r1. This proves the Main Lemma.

Figure 4 shows the boundary of the Siegel disks for α = (
√

5+1)/2 = [1, 1, 1, . . .],
and α[n], n = 5, . . . , 8 with An = b1.5qnc. The reader should try to convince
himself that as n grows, this boundary oscillates more and more between ∂∆α and
φα(∂B(0, 2rα/3)) both of which appear in the last frame.
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∂∆α[8]

∂∆α[5]

∂∆α[7]

∂∆α and φα(∂B(0, 2rα/3))

∂∆α[6]

Figure 4. Some boundaries of Siegel disks for a sequence α[n].
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6. Accumulation by cycles

Let us explain how to modify the proof of the Main Theorem in order to obtain
the existence of a Siegel whose boundary is smooth and accumulated by periodic
cycles.

We define sequences of Bruno numbers α(n), positive numbers εn and rn and a
sequence of finite sets Cn – which will be repelling cycles for Pα(n) – as follows.

Take α(0) = α, ε0 = ε/10, r0 = rα and let C0 be the repelling fixed point of
Pα. Assuming that α(n), εn, rn and Cn are defined, let εn+1 < εn/10 be such that
rθ < rα(n)+εn and Pθ has a repelling cycle εn-close to Cn whenever |θ−α(n)| < εn+1

(this is possible since repelling cycles move holomorphically).
Next, choose rn+1 ∈ (r, rα(n)) sufficiently close to r so that rn+1 − r < εn+1

and φα(n)(∂B(0, rn+1)) is εn+1-close to φα(n)(∂B(0, r)) in the Hausdorff metric.
Finally, choose α(n + 1) such that

• |α(n + 1)− α(n)| < εn+1/10,
• rα(n+1) > r,
• the real-analytic functions un+1 : t 7→ φα(n+1)(re2iπt) and un : t 7→

φα(n)(re2iπt) are εn+1-close in the Fréchet space C∞(R/Z,C),4 and
• Pα(n+1) has a repelling cycle Cn+1 which is εn+1-close to φα(n)(∂B(0, rn+1))

– and so, 2εn+1-close to φα(n)(∂B(0, r)) – in the Hausdorff metric (this is
possible by Corollary 5).

Let α′ = lim α(n). Since for n ≥ 1, rn − r < εn we see that rn is a decreasing
sequence converging to r. Thus, as in the proof of the Main Theorem, we have
rα′ = r and the functions un converge to a C∞ embedding v : R/Z → C which
parametrizes the boundary of the Siegel disk ∆α′ . By the construction, for each
n ≥ 1, |α′ − α(n)| < εn+1, so Pα′ has a cycle C ′n which is εn-close to Cn. Since Cn

is 2εn-close to un−1(R/Z) and v(R/Z) is 2εn-close to un−1(R/Z) in the Hausdorff
metric, we see that C ′n is εn−1-close to the boundary of the Siegel disk ∆α′ .

7. A second proof of the Main Lemma

In this section, we give a second proof of the main lemma based on Yoccoz’s
Theorem on the optimality of the Bruno condition for the linearization problem
in the quadratic family [Y1]. We also use the following continuity result of Risler
(which is contained in Proposition 10 of [R]): If θm → θ are Bruno numbers and
Φ(θm) → Φ(θ) then rθm → rθ. Risler’s continuity result was recovered (with a
different proof) in Corollary 4.

Let pn/qn ∈ Q be an increasing sequence converging to α. Let

α[n] = inf{θ ∈ (pn/qn, α] \Q such that rθ ≥ r1} ∈ [pn/qn, α].

Notice that α[n] → α and rα[n] ≥ r1 (see the discussion after the statement of
the Main Lemma). In particular, Pα[n] is linearizable. In order to prove the Main
Lemma, it is enough to show that rα[n] ≤ r1 for every n.

By Yoccoz’s Theorem on the optimality of the Bruno condition for the lineariza-
tion problem in the quadratic family, we know that α[n] is actually a Bruno number.
Let {θm} be an increasing sequence of Bruno numbers in (pn/qn, α[n]) converging
to α[n] and satisfying lim Φ(θm) = Φ(α[n]) (the existence of such a sequence is
implied by Proposition 2 and the remark that follows, see Proposition 1 of [R]

4It follows that un+1(R/Z) and un(R/Z) are εn+1-close in the Hausdorff metric.
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for another proof). By the definition of α[n], we have rθm < r1, and by Risler’s
continuity result, lim

m→∞
rθm

= rα[n], so rα[n] ≤ r1.

Remark. Lukas Geyer has given an alternative argument for the key estimate

lim sup
θ→α[n], θ>α[n]

rθ ≥ rα[n] and lim sup
θ→α[n], θ<α[n]

rθ ≥ rα[n],

which is the “hard” property of the conformal radius of quadratic polynomials
exploited above, as opposed to the “soft” property of upper semicontinuity. It is
based on the fact that the function α 7→ log rα ∈ [−∞,∞) (extended as −∞ to Q)
is the boundary value of a harmonic function defined on the upper half plane which
is bounded from above (see [Y1]).

8. Conclusion

As mentioned in the introduction, Petersen and Zakeri proved that there exists
quadratic Siegel disks whose boundaries are Jordan curves containing the critical
point but are not quasicircles. They even give an arithmetical condition for this
to hold: when α = [a0, a1, a2, . . .] with {an} unbounded but log an = O(

√
n) as

n →∞.
The quadratic Siegel disks constructed by Herman which do not contain the

critical point in their boundaries are quasidisks. The authors do not know if one
can control the regularity of the boundary with Herman’s methods.

The techniques we developed in this article are very flexible. We can apply them
in order to prove the existence of Siegel disks whose boundaries are Jordan curves
avoiding the critical point but are not quasicircles or, for each integer k ≥ 0, the
existence of Siegel disks whose boundaries are Ck but not Ck+1 (see [BC3]).

One can also ask about the Hausdorff dimension of the boundaries of Siegel
disks. It is known that when α = [a0, a1, a2, . . .] with {an} bounded, the Hausdorff
dimension is greater then 1 (Graczyk-Jones [GJ]) and less than 2 (because it is a
quasi-circle). In the case of Siegel disks with smooth boundaries, the Hausdorff
dimension is obviously equal to 1. This naturally leads to the following.

Problem 1. Does there exist a quadratic Siegel disk whose boundary is a Jordan
curve with Hausdorff dimension 2?

We believe we can produce a quadratic Siegel disk whose boundary does not
contain the critical point and has packing dimension 2 and Hausdorff dimension 1.
The problem of producing a Siegel disk whose boundary has Hausdorff dimension 2
seems more tricky.

Next, the quadratic Siegel disks we produce are accumulated by cycles. This is
the way we control that the Siegel disk is not larger than expected. Pérez-Marco
has produced maps which are univalent in the unit disk, have Siegel disks with
smooth boundaries that are not accumulated by cycles.

Problem 2. Does there exist a quadratic polynomial having a Siegel disk whose
boundary is not accumulated by cycles?

Finally, it is known that when α satisfies the Herman condition (see the in-
troduction), the critical point is on the boundary of the Siegel disk. It would be
interesting to quantify the construction we give in this article.
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Problem 3. Give an arithmetical condition which ensures that the critical point
is not on the boundary of the Siegel disk. Or, give an arithmetical condition which
ensures that the boundary of the Siegel disk is smooth.

References

[A] A. Avila, Smooth Siegel disks via semicontinuity: a remark on a proof of Buff and
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Julia sets, in The Mandelbrot set, Theme and Variations, London Math. Soc.
Lect. Note 274, Ed. Tan Lei, Cambridge Univ. Press (2000), 265–279.
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