
A NEW PROOF OF A CONJECTURE OF YOCCOZ

XAVIER BUFF AND ARNAUD CHÉRITAT

Abstract. We give a new proof of the following conjecture of Yoccoz:

(∃C ∈ R) (∀θ ∈ R) log R(Pθ) ≤ −Y (θ) + C,

where Pθ(z) = e2iπθz + z2, R(Pθ) is the conformal radius of the Siegel disk of
Pθ (or 0 if there is none) and Y (θ) is Yoccoz’s Brjuno function.

In a former article we obtained a first proof based on the control of parabolic
explosion. Here, we present a more elementary proof based on Yoccoz’s initial
methods.

We then extend this result to some new families of polynomials such as zd+c
with d > 2. We also show that the conjecture does not hold for e2iπθz + zd

with d > 2.

Introduction and statements

Definition 1. Assume θ ∈ R \Q and f : (C, 0) → (C, 0) is a holomorphic germ of
the form

f(z) = ei2πθ z + O(z2).

Then, there is a unique formal series

φf (Z) = Z +

+∞∑

n=2

bnZn

in C[[Z]] such that

φf (ei2πθ Z) = f ◦ φf (Z).

We let R(f) ∈ [0, +∞] be the radius of convergence of the linearizing series φf .

Definition 2. Let Pθ : C → C be the quadratic polynomial defined by:

Pθ(z) = ei2πθ z + z2.

In [Y], Yoccoz used a technique of Il’Yashenko and the polynomial-like map
theory of Douady and Hubbard to prove the following result.

Theorem A (Yoccoz). For all ε > 0, there exists a constant c(ε) > 0 such that
the following holds. If θ is such that R(Pθ) > 0 and if f : D → C is a univalent
map such that f(0) = 0 and f ′(0) = ei2πθ, then:

R(f) ≥ c(ε) ·
(
R(Pθ)

)1+ε
.

Our first result, whose proof takes its roots in the one of Yoccoz, asserts that
one can choose a constant c(ε) which does not depend on ε. This follows from the
results obtained in [BC1] but there, the techniques are much more elaborate than
the ones we present here.

Theorem 1. Assume f : D → C is a univalent map such that f(0) = 0 and
f ′(0) = ei2πθ with θ ∈ R \ Q. Then

R(f) ≥
1

10
R(Pθ).

We shall prove this theorem in section 1. The constant 1/10 is not optimal.
1
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Definition 3. Yoccoz’s arithmetic Brjuno function is defined by

Y (θ) =

+∞∑

n=0

θ0 · · · θn−1 log
1

θn

where θ0 = Frac(θ) = θ − bθc and θn+1 = Frac(1/θn) when θ is irrational, and
Y (θ) = +∞ if θ is rational.

Definition 4. A Brjuno number is an irrational real number θ satisfying Brjuno’s
condition:

θ ∈ B ⇐⇒ Y (θ) < +∞.

Theorem B (Yoccoz). There exists a constant C ∈ R such that for all θ ∈ B, for
all univalent function f : D → C fixing the origin with multiplier ei2πθ,

log R(f) ≥ −Y (θ) − C.

Corollary (Yoccoz). If θ is a Brjuno number, R(Pθ) > 0 and

log R(Pθ) ≥ −Y (θ) − C − log 2.

The term − log 2 comes from the fact Pθ is univalent only on the disk D(0, 1/2).

Theorem C (Yoccoz). There exists a constant C ∈ R such that for all θ ∈ R \ Q

there exists a univalent function f : D → C fixing the origin with multiplier ei2πθ,
such that

log R(f) ≤ −Y (θ) + C.

This includes the case θ /∈ B (i.e. Y (θ) = +∞) if we interpret the above inequality
as R(f) = 0.

Combining theorems A and C, Yoccoz obtained the following corollaries.

Corollary (Yoccoz). For all ε > 0, there exists Cε ∈ R (that a priori may tend to
+∞ as ε −→ 0) such that for all θ ∈ R \ Q,

log R(Pθ) ≤ −(1 − ε)Y (θ) + Cε.

In particular, if θ is not a Brjuno number, then R(Qθ) = 0.

Corollary (Yoccoz). R(Pθ) > 0 if and only if θ is a Brjuno number.

The second author found an independent proof of the optimality of Brjuno’s
condition in [C], working directly in the family Pθ. He looked at how parabolic
points explode into cycles and how these cycles hinder each others. The control
on parabolic explosion uses the combinatorics of quadratic polynomials, and the
Yoccoz inequality on the limbs of the Mandelbrot set. The relative Schwarz lemma
of the first author then enabled us to have a good enough control on conformal
radii to prove the following result, conjectured by Yoccoz [Y]. This result is an
immediate corollary of Yoccoz’s theorem C and our theorem 1, which provides a
new proof.

Theorem 2. There exists a constant C ∈ R such that for all θ ∈ R,

log R(Pθ) ≤ −Y (θ) + C.

Note that the function

Υ : B → R defined by Υ(θ) = log R(Pθ) + Y (θ)

is therefore uniformly bounded. In [BC2], we prove that this function is uniformly
continuous, and thus, has a continuous extension to R.

In section 2, we show that our techniques extend to other families of polynomials.
Let us define a class of well-behaved polynomials that was studied by Lukas Geyer
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in [G]. Given a polynomial f : C → C, a critical orbit tail is an equivalence class
in the set of forward critical orbits1, with the relation z ≡ z′ ⇐⇒ ∃m, n ∈ N such
that f◦n(z) = f◦m(z′). We say it is infinite if a point of the class (and therefore
every point in the class) has infinite forward orbit.

Definition 5. We will say that a polynomial has property (G) if the number of
infinite critical orbit tails is equal to the number of indifferent cycles.

Remark. If f has property (G), its iterates do not necessarily.

By the Fatou-Shishikura inequality, the number of non-repelling cycles of a poly-
nomial is bounded from above by the number of infinite critical orbit tails and the
number of irrationally indifferent cycles is bounded from above by the number of
infinite critical orbit tails outside the basins of attraction of (super)-attracing or
parabolic cycles. Thus, if f has property (G), the non-repelling cycles are parabolic
or indifferent cycles and the basin of attraction of each parabolic cycle contains at
most one infinite critical orbit tail. It follows that each parabolic cycle has exactly
one cycle of petals and is virtually repelling (see [BE]).

Lukas Geyer proved optimality of Brjuno’s condition for polynomials having
property (G) (and even for a bigger class2), by using the same method as Yoccoz.
It is therefore natural that our new observation adapts in this setting.

Definition 6. The critical orbits of a polynomial f : C → C are the sets
{
f◦k(c)

}
k≥0

where c is a critical point of f . A point z in a critical orbit is said to be free3 if for
all critical point c′, ∀k ∈ N, ∀` ∈ N∗,

(
f◦k(c′) = f◦`(z)

)
=⇒

(
k ≥ ` and f◦(k−`)(c′) = z

)
.

We denote by Zf the set of non-free points of critical orbits.

When a critical point has a finite forward orbit, then the critical point and its
iterates are non-free points.

Definition 7. A polynomial has “property (G) with bound N” if in addition to
having property (G), the cardinal of the union of all indifferent cycles and the set
Zf is at most N .4

Theorem 3. Let N ∈ N and C be a compact set of degree d polynomials f fixing
0 with indifferent multiplier ei2πθ(f), having property (G) with bound N . Then
∃C ∈ R such that ∀f ∈ C,

log R(f) ≤ −Y (θ(f)) + C.

Remark. We did not try to get the most general result possible. For instance, it
is possible that the hypothesis that 0 has period 1 is not required.5

The following result is a corollary of Yoccoz’s theorem B and our theorem 3.

Corollary 1. Under the same assumptions as in theorem 3 the function

Υ :
{
f ∈ C

∣∣ θ(f) ∈ B
}
→ R defined by Υ(f) = log R(f) + Y

(
θ(f)

)

is uniformly bounded.

1or, equivalently, in the set of critical points
2for the class of saturated polynomials, i.e. polynomials such that the number of infinite critical

orbit tails in the Julia set is equal to the number of indifferent cycles
3this is not a standard terminology
4in a family of polynomials with bounded degrees, it is equivalent to bound the cardinal of Zf

and to bound the sum of local degrees at points in Zf
5But in this case, there is one more condition: that the indifferent cycle 0 belongs to, does not

collapse on itself. This condition is not implied by the others.
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Corollary 2. For each integer d ≥ 2, this holds if C is the boundary of the central
hyperbolic component of the family of unicritical polynomials zd + c, i.e. the set of
c ∈ C for which the polynomial zd + c has an indifferent fixed point.

Corollary 3. For each integer d ≥ 2, this holds also for the family
{
ei2πθ z(1 − z)d−1}θ∈R.

Proof. The critical points are z = 1/d and z = 1 (with multiplicity d − 2). The
second critical point is mapped in one step on z = 0. Thus we may apply theorem 3
with N = 2. �

Corollary 4. For the family

fθ(z) = ei2πθ(z + zd),

the following holds: ∃C > 0 such that ∀θ ∈ R,

−
Y

(
(d − 1)θ

)

d − 1
− C ≤ log R(fθ) ≤ −

Y
(
(d − 1)θ

)

d − 1
+ C.

Proof. The family fθ is semi-conjugated to the previous family: more precisely
let φ(z) = −zd−1, and gθ(z) = ei2πθ z(1 − z)d−1. Then6

φ ◦ fθ = g(d−1)θ ◦ φ.

The first claim follows at once. �

In appendix A, lemma 2, we will prove that for any integer m ≥ 2, the function

θ ∈ B 7→ Y (θ) −
Y (mθ)

m

is unbounded on any interval. It follows that the function

θ ∈ B 7→ log R(fθ) + Y (θ)

is unbounded on any interval.
In appendix A, lemma 3, we will prove that

(∃C > 0) (∀m ∈ N∗) (∀θ ∈ R) Y (θ) ≤ Y (mθ) + C log m.

It follows7 that

log R(fθ) ≤ −
Y (θ)

d − 1
+ C ′.

This suggests the following conjecture.

Conjecture 1. There exists a constant C = C(d) ∈ R such that for all polynomial
f of degree d with an indifferent fixed point at the origin,

log R(f) ≤ −
Y (θ)

d − 1
+ log min |ci| + C

where the ci are the critical points of f and θ is the rotation number at the origin.

There are possible refinements according to how many recurrent critical points
are associated to the indifferent fixed point.

6Note how the rotation number changed.
7for this, the following statement would have been enough: ∀m ∈ N∗, ∃Cm ∈ R, ∀θ ∈ R,

Y (θ) ≤ Y (mθ) + Cm
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1. Optimality of the quadratic polynomial

In this section, we prove theorem 1. Our proof follows closely Yoccoz’s proof of
theorem A.

Let us assume that θ ∈ R \ Q and R(Pθ) > 0, since otherwise, there is nothing
to prove. Consider a univalent function f : D → C fixing 0 with multiplier ei2πθ.
Following Il’Yashenko and Yoccoz, consider the one-parameter families of maps

{
fa : D(0, 1) → C

}
a∈C

and
{
gb : D

(
0, 1/|b|

)
→ C

}
b∈C

defined by:

fa(z) = f(z) + az2 and gb(w) =
1

b
f1/b(bw) =

1

b
f(bw) + w2.

The family gb extends analytically at b = 0 by g0 = Pθ. We have:

(∀b ∈ C∗) R(gb) =
1

|b|
R(f1/b).

Definition 8. A quadratic-like map is a ramified covering f : U → V of degree 2,
between two simply connected domains U b V .

The following observation is due to Yoccoz [Y].

Lemma 1. If |b| ≤ 1/10, the map gb has a quadratic-like restriction gb : Ub → V
with

Ub =
{
z ∈ D(0, 4)

∣∣ gb(z) ∈ D(0, 44/9)
}

and V = D(0, 44/9).

Proof. Since f is univalent, we have, for all z ∈ D:

∣∣f(z)
∣∣ ≤ |z|

(
1 − |z|

)2 .

It follows that when |b| ≤ 1/10, |w| = 4 and |ζ| ≤ 44/9,
∣∣∣∣
1

b
f(bw)

∣∣∣∣ ≤
100

9
= 16 −

44

9
< |w2 − ζ|.

By Rouché’s theorem, every ζ ∈ D(0, 44/9) has exactly two preimages by gb in
D(0, 4). Thus, gb : Ub → V is proper of degree 2. If Ub were not connected, the
component of Ub containing 0 would be mapped biholomorphically to V , which, by
Schwarz’s lemma, is not possible since

∣∣g′b(0)
∣∣ = 1. �

We now introduce in the argument the following two facts (they both are valid
in a much more general setting). The following result is a corollary of lemma 1.

Proposition 1. The map b 7→ log R(gb) is harmonic in a neighborhood of D(0, 1/10).

Proof. Choose r0 > 1/10 so that gb : Ub → V is quadratic-like for all b ∈ D(0, r0).
Those quadratic-like maps all have an indifferent fixed point. This is the only non
repelling cycle of the quadratic-like map. Therefore, the Julia set of the quadratic-
like map undergoes a holomorphic motion as b varies in D(0, r0). The radius of
convergence of φgb

coincides with the conformal radius of the Siegel disk ∆b of the
quadratic-like restriction.

Now, when a Siegel disk has a boundary which undergoes a holomorphic motion,
its conformal radius has a logarithm log rad∆b that varies harmonically. The fol-
lowing proof of this was communicated to us by Saeed Zakeri. First, note that the
conformal radius varies continuously. Then, consider an extension8 of the holomor-
phic motion to a holomorphic motion of all the plane, but which does not necessarily
commute with the dynamics. Let b0 be any parameter and wn be any sequence in

8Slodkowsky’s theorem provides one, but we can also use the Bers-Royden or the Sullivan-
Thurston version since this argument is local in terms of the parameter.
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the Siegel disk of parameter b0, converging to a point in the boundary of ∆b0 . For
b close to b0 let wn(b) be the point that the motion transports wn to. Now look at

un(b) = φ−1
gb

(
wn(b)

)
.

For each b, the sequence
(
wn(b)

)
converges to a point in the boundary of the Siegel

disk ∆b. Thus,
∣∣un(b)

∣∣ converges to rad∆b. As the map

(b, w) 7→
(
φgb

(w), w)

is bi-analytic, b 7→ un(b) is analytic. Therefore, log |un(b)| is harmonic (it does not
vanish). Now, the map b 7→ log rad∆b is the limit of these harmonic functions. �

Definition 9. Let avg
|a|=r

m(a) denote the average of the function m(a) on the circle

|a| = r (with respect to the Lebesgue measure on the circle).

As an immediate consequence of proposition 1, we have the following equality:

(1) log R(Pθ) = avg
|b|=1/10

log R(gb) = log 10 + avg
|a|=10

log R(fa).

Proposition 2. We have log R(f) ≥ avg
|a|=10

log R(fa)

Proof. Look at the formal linearizing power series of fa:

φfa
(Z) = Z +

+∞∑

n=2

bn(a)Zn.

By Hadamard’s theorem,

1

R(fa)
= lim sup

n→+∞

n

√
|bn(a)|.

The coefficients bn(a) are polynomials in a. Thus

1

n
log

∣∣bn(0)
∣∣ ≤ avg

|a|=10

1

n
log

∣∣bn(a)
∣∣.

By lemma 1, for |a| = 10, the map fa has a quadratic-like restriction. In that case,
the linearizing map φfa

takes its values in D and it follows from Cauchy inequalities
that ∣∣bn(a)

∣∣ ≤ 1(
R(fa)

)n .

We have seen that R(gb) is a continuous non vanishing function on the circle |b| =
1/10. Thus, when |a| = 10, R(fa) = R(gb)/10 reaches a minimum c > 0 and

1

n
log

∣∣bn(a)
∣∣ ≤ log

1

R(fa)
≤ log

1

c
.

This uniform upper bound allows us to apply Fatou’s lemma:

− log R(f) = lim sup
n→+∞

1

n
log |bn(0)| ≤ avg

|a|=10

lim sup
n→+∞

1

n
log |bn(a)| = − avg

|a|=10

log R(fa).

�

Equality 1 and proposition 2 yield:

log R(f) ≥ avg
|a|=10

log R(fa) = log R(Pθ) − log 10,

whence R(f) ≥
1

10
R(Pθ). This completes the proof of theorem 1. Q.E.D.
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2. Other families of polynomials

In this section, we shall first prove theorem 3. Assume N ∈ N and C is a compact
set of degree d polynomials f fixing 0 with indifferent multiplier ei2πθ(f), having
property (G) with bound N . Let Zf be the set of non-free points of critical orbits
(see definition 6). Set

Gf (z) =
∏

i

(z − wi)
ni

∏

j

(z − uj)
2

where {wi} = Zf \ {0}, ni = the local degree of f at wi, and uj are the indifferent
periodic points of f (including 0). Let

gf,a = f + aGf .

First, by compactness of C, by the bound N , and by the definition of Gf , we see
that Gf is a bounded family over C. Therefore, there exists r > 0 and R > 0,
independent of f , such that |a| < r =⇒ gf,a(z) is a polynomial-like map of degree

d from the component of g−1
f,a

(
D(0, R)

)
contained in D(0, R) to D(0, R). For any

fixed f ∈ C, as a varies in D(0, r), this polynomial-like map cannot undergo a
parabolic bifurcation. Therefore its Julia set undergoes a holomorphic motion. So,
the same analysis as in section 1 holds and we can thus write:

∀f ∈ C, log R(f) = avg
|a|=r/2

log R(gf,a).

Second, we claim that the indifferent cycles of f stay bounded away from 0 when
f varies in C. Otherwise, there would be a map f0 ∈ C having a parabolic fixed
point at 0, which could be approximated by maps in C having an indifferent fixed
point at 0 and at least one indifferent cycle close to 0. Then either f0 would have at
least two cycles of petals at 0, or the parabolic fixed point at 0 would be virtually
indifferent (see [B] for a definition). In both cases, the basin of attraction of 0
would contain at least two critical points (see [BE] for a proof), contradicting the
fact that f0 has property (G). Thus, G′′

f (0) is bounded away from 0.

Let g̃f,a(z) = agf,a(a−1z). Then, as a −→ ∞, g̃f,a tends (pointwise) to the
degree 2 polynomial

P (z) = ei2πθ(f) z +
G′′

f (0)

2
z2

The same analysis as in section 1 also holds and yields

log R(P ) ≥ avg
|a|=r/2

R(g̃f,a).

Now

log R(P ) = log R(ei2πθ(f) z + z2) − log
|G′′

f (0)|

2
and

log R(g̃f,a) = log R(gf,a) + log |a|

and we proved that

log R(ei2πθ(f) z + z2) ≤ −Y (θ(f)) + C.

Putting it altogether, we get

log R(f) ≤ − log r/2 − log
|G′′

f (0)|

2
− Y (θ(f)) + C.

Since G′′
f (0) is bounded away from 0, we get the upper bound of the theorem.

To apply then Yoccoz’s theorem B, there remains to remark that the maps f ∈ C
are all univalent on a common disk D(0, r′), since they have bounded degree and
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critical points are necessarily bounded away from 0. This completes the proof of
theorem 3. Q.E.D.

Appendix A. Estimates on Yoccoz’s Brjuno function

Lemma 2. For any integer m ≥ 2, the function

θ ∈ B 7→ Y (θ) −
Y (mθ)

m

is unbounded on any interval.

Proof. The proof relies on the following fact. For any rational number p/q with
p and q coprime, any integer k ≥ 1, and any Brjuno number θ,

(2) Y

(
p

q
+

k

N + θ

)
=

N→+∞

log N

q
+ O(1).

Let us first show how this enables us to conclude. Assume p/q is a rational number
with p and q coprime and assume q and m are coprime. Choose a Brjuno number
θ and set

θN =
p

q
+

1

N + θ
.

Note that

mθN =
mp

q
+

m

N + θ
with mp and q coprime.

Then,

Y (θN ) =
N→+∞

log N

q
+ O(1) and Y (mθN ) =

N→+∞

log N

q
+ O(1).

Thus,

Y (θN ) −
Y (mθN )

m
=

N→+∞

m − 1

m
·
log N

q
+ O(1) −→

N→+∞
+∞.

It follows that the function

θ ∈ B 7→ Y (θ) −
Y (mθ)

m

is unbounded in any neighborhood of p/q. This implies our lemma since the set of
rational numbers p/q with q and m coprime is dense in R.

Let us now prove estimate (2). We will use the continued fraction notation :

[a0, a1, . . . , an] = a0 +
1

a1 +
1

.. . +
1

an

.

Set θN =
p

q
+

k

N + θ
. If N is large enough, p/q is an approximant of θN :

p

q
= [a0, a1, . . . , an] and θN = [a0, a1, . . . , an + αn] with αn ∈ ]0, 1[ .

Set
p′

q′
= [a0, a1, . . . , an−1]

and for k < n, set

αk = [0, a1, . . . , ak].
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Then, p′q − q′p = 1,9

α0α1 · · ·αn−1 = |q′θN − p′| =

∣∣∣∣
q′p − p′q

q
+

kq′

N + θ

∣∣∣∣ −→
N→+∞

1

q
,

α0α1 · · ·αn = |qθN − p| =
kq

N + θ
−→

N→+∞
0

and
1

αn
= −

q′θN − p′

qθN − p
=

N + θ

k
−

q′

q
=

θ

k
mod

1

kq
.

In particular, αn+1, which is the fractional part of 1/αn, can take only kq values
which all are Brjuno numbers. It follows that

Y (θN ) = log
1

α0
+ . . . + α0α1 · · ·αn−2 log

1

αn−1︸ ︷︷ ︸
O(1)

+ α0α1 · · ·αn−1 log
1

αn︸ ︷︷ ︸
q−1 log N+O(1)

+ α0α1 · · ·αnY (αn+1)︸ ︷︷ ︸
o(1)

=
log N

q
+ O(1).

�

Lemma 3. ∃C > 0, ∀m ∈ N∗, ∀θ ∈ R,

Y (θ) ≤ Y (mθ) + C log m.

Proof. We will use the Brjuno sum:

B(θ) =
∑

n∈N

log qn+1

qn

where pn/qn are the approximants of θ. We have the following arithmetical property
(c.f. [Y], page 14): ∣∣B(θ) − Y (θ)

∣∣ is bounded.

We recall that

(a) if pn/qn are the approximants of α then

1

2qnqn+1
<

∣∣∣∣α −
pn

qn

∣∣∣∣ <
1

qnqn+1
,

and also that
(b) qn ≥ Fn where Fn is the n-th Fibonacci number. Last,
(c) if |α − p/q| < 1/2q2, then p/q is an approximant of α.

Now, for every approximant pn/qn of θ, note mpn/qn = p′/q′ with q′ = qn/(m∧qn).
Either p′/q′ is itself an approximant of mθ in which case if we note p′′/q′′ the next
approximant of mθ, then

1

2q′q′′
<

∣∣∣∣mθ −
p′

q′

∣∣∣∣ = m

∣∣∣∣θ −
pn

qn

∣∣∣∣ <
m

qnqn+1

whence

q′′ >
qn+1qn

2mq′
>

qn+1

2m

and thus
log q′′

q′
≥

log qn+1

q′
−

log 2m

q′
≥

log qn+1

qn
−

log 2m

q′
.

9since θN > p/q, n is even
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Or mpn/qn = p′/q′ is not an approximant of mθ, which means that
∣∣∣∣mθ −

p′

q′

∣∣∣∣ ≥
1

2q′2
,

and thus
1

qnqn+1
≥

∣∣∣∣θ −
pn

qn

∣∣∣∣ ≥
1

2mq′2

whence

qn+1 ≤
2mq′2

qn
≤ 2mqn

and thus
log qn+1

qn
≤

log qn

qn
+

log 2m

qn
.

Finally,

B(θ) =
∑

case 1

log qn+1

qn
+

∑

case 2

log qn+1

qn

≤
∑ log q′′

q′
+ log(2m)

∑ 1

q′
+

∑′ log Fn

Fn
+ log(2m)

∑ 1

Fn
.

The prime in the sum means the summand needs to be replaced by the smallest
non increasing sequence greater or equal to the sequence log Fn/Fn. For different
values of n, the approximants p′/q′ of mθ are different since p′/q′ = mpn/qn and
thus

B(θ) ≤ B(mθ) + log(2m)
∑ 1

Fn
+

∑′ log Fn

Fn
+ log(2m)

∑ 1

Fn

Since Fn is exponentially increasing, the sums (independent of θ) they are involved
in are finite. �

Appendix B. Remarks

This section does not claim to bring new results. It is just a discussion of probably
known and hopefully useful facts.

First, remember that for a germ f(z) = ei2πθ z+O(z2), the radius of convergence
R(f) of its linearizing formal power series φf ∈ C[[Z]] is not necessarily equal to
the conformal radius of the maximal linearization domain ∆(f) of f . An obvious
possibility would be that f has an extension to a bigger domain, which has a bigger
maximal linearization domain. But this is not the only thing that can happen,
since φf is not necessarily injective on its disk of convergence. In fact φf can be
any convergent power series of the form z + O(z2). Indeed, for such a φ, we can
set f(z) = φ

(
ei2πθ φ−1(z)

)
near 0. . .

For instance, φ(z) = ez −1 = z + . . . has infinite radius of convergence, and is
not injective on C. The map φ can also have critical points.

B.1. Subharmonicity. If θ is a Brjuno number, then for all analytic family fa(z) =
ei2πθ z + O(z2) of analytic germs, the function a 7→ − logR(fa) is the lim sup of
subharmonic functions:

u : a 7→ − logR(fa) = lim sup
n→+∞

1

n
log |bn(a)|.

By Yoccoz’s theorem C, these functions are locally uniformly bounded above.
Therefore, by Fatou’s lemma, the function a 7→ − log R(fa) is (everywhere) be-
low its average on circles. But we can say more: by the Brelot-Cartan theorem (see
[Ra]), if we note u∗(a) = lim sup

a′→a
u(a′), then u∗ is subharmonic and u = u∗ except

on a polar set.
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We however cannot say that u itself is subharmonic (iff u = u∗) because it is
not necessarily upper semicontinuous, as the following counterexample shows. Let

f0 = ei2πθ z + O(z2) be the restriction to D of a map f̃ defined on an open set Ω

containing D, and such that its Siegel disk ∆(f̃) in Ω goes over the edge of D. For

instance f̃(z) = ei2πθ z on Ω = C. Let fa = f0 + az2g(z) for a ∈ C, where g(z)
is any analytic function on D that is singular on all of ∂D. Then for a 6= 0, the
linearizing map φfa

must map its disk of convergence in D (as in [Y]). Also, and as
a corollary, it is injective on its disk of convergence and maps it to the Siegel disk
of fa. This implies that

lim sup
a→

6=
0

R(fa) ≤ rad(U) < R(f0)

where U is the biggest f0-invariant subdisk of ∆(f̃) that is contained in D, and
rad(U) is its conformal radius with respect to 0.

Now, the upper semicontinuity holds if, instead of considering a 7→ − log R(fa)
we consider a 7→ − log rad(∆(fa

∣∣
D
)) and if fa −→ f0 for the compact open topology

on D. This is a corollary of the work of Risler [Ri]. Lower semicontinuity also holds,
this time for an elementary reason: if rad∆(fan

) tends to some real r, the conformal
maps φn : D → ∆(fan

) sending 0 to 0 with derivative rad∆(fan
) make a normal

family. They are also known to linearize fan
. Therefore, any limit of the φn must

linearize fa. Thus rad∆(fa) ≥ r. Analytic dependence on the parameter is not
needed.

Proposition 3. Given θ ∈ B, let Hθ(D) be the set of analytic functions f : D → C

fixing 0 with multiplier ei2πθ, equipped with the compact open topology.10

The map

(
Hθ(D) → ]0, 1]

f 7→ rad∆(f)

)
is continuous.

Proposition 4. If U is a one complex dimensional parameter space and

(a, z) ∈ U × D 7→ fa(z) = ei2πθ z + O(z2)

is analytic, then the map
a 7→ − log rad∆(fa)

is continuous and subharmonic.

Proof. We already mentioned the continuity.
Now, here is a trick11 that yields subharmonicity with little effort: consider a
function g as in the discussion above, i.e. holomorphic on D and with singularities
at all points of ∂D. Consider the sequence of families

(a, z) 7→ τ−1
n fa(τnz) +

1

n
z2g(z) with τn = 1 −

1

n
.

They all satisfy − logR = − log rad∆ (as in [Y]), whence all these are (continuous)
subharmonic functions of a. By the previous proposition, these functions tend
(locally uniformly) to − log rad∆(fa).

B.2. Holomorphic motions.

Proposition 5. Let (Ua) be simply connected open subsets of C whose boundaries
move holomorphically with respect to a. Let ca be a holomorphically varying point in
Ua and r(a) be the conformal radius of Ua with respect to ca. Then, a 7→ − log r(a)
is a subharmonic function.

10uniform convergence on compact subsets of D

11It would be nice to have a more satisfactory (no power series) proof. Also, it could be true
that subharmonicity still holds if the domain of definition of f undergoes a holomorphic motion.
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Proof. Let Va be the image of Ua by the inversion z 7→ 1/(z − ca). The set Va is
unbounded and undergoes a holomorphic motion of its boundary. The conformal
radius of Ua is the inverse of the capacity radius of C\Va, which is itself expressable
by an energy minimization as follows:12

− log r(a) = log capacity radius = − inf
µ

E(µ)

where µ varies in the set of probability measures on ∂Va and E(µ) (the energy) is
defined by

E(µ) =

∫∫

∂Va×∂Va

− log
∣∣u − v

∣∣dµ(u)dµ(v)

where the integrand is understood to be +∞ when u = v. Choose a basepoint a0

and let ξa(z) : ∂Va0
→ ∂Va be the holomorphic motion. Then, for all probability

measure µ on ∂Va0
,

E
(
(ξa)∗µ

)
=

∫∫

∂Va0
×∂Va0

− log
∣∣ξa(u) − ξa(v)

∣∣dµ(u)dµ(v).

This is a harmonic function of a. Now, the supremum sup−E = − inf E in the
energetic definition of − log r(a) yields a subharmonic function.

B.3. Harmonicity.

Proposition 6. If fa : Ua → C is an analytic family of maps of the form f(z) =
ei2πθ z+O(z2) and if the boundary of the Siegel disk ∆(fa) undergoes a holomorphic
motion (we do not require ∆(fa) b Ua), then the function a 7→ − log rad∆(fa) is
harmonic.

Proof. Same as in the second proof of proposition 1 (courtesy of S. Zakeri). �

This is kind of surprising: let A denote the fact that a simply connected domain
undergoes a holomorphic motion (of its boundary), and B denote the fact that this
domain is a Siegel disk of an analytically varying family of analytic maps (with
fixed rotation number) in D. Then

A =⇒ − log rad is subharmonic,

B =⇒ − log rad is subharmonic,

(A and B) =⇒ − log rad is harmonic. . .

Is it fair that when a number has two reasons to be negative, then it is null?

B.4. Other radii of interest. We have

R(f) = the radius of convergence of φf

and

rad∆(f) = the biggest radius ≤ R below which φf maps in ∆(f).

Here are a few other “natural” radii that one could study

A = the biggest radius ≤ R on which φf is injective,

B = the biggest radius ≤ R on which φf has no critical point,

C = the biggest radius ≥ R on which φf has a meromorphic extension φ̃f ,

D = the biggest radius ≤ C on which φ̃f is injective,

E = the biggest radius ≤ C on which φ̃f has no critical point.

12As a variant of this, one could instead use the transfinite diameter.



A NEW PROOF OF A CONJECTURE OF YOCCOZ 13

References

[B] X. Buff, Virtually Repelling Fixed Points. Publicacions Matemàtiques 47, 195–209
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