
THE QUADRATIC DYNATOMIC CURVES ARE SMOOTH AND
IRREDUCIBLE

BUFF XAVIER AND TAN LEI

Dedicated to John Milnor’s 80’th birthday

Abstract. We reprove here the smoothness and the irreducibility of the quadratic
dynatomic curves

{
(c, z) ∈ C2 | z is n-periodic for z2 + c

}
.

The smoothness is due to Douady-Hubbard. Our proof here is based on elementary
calculations on the pushforwards of specific quadratic differentials, following Thurston
and Epstein. This approach is a computational illustration of the power of the far more
general transversality theory of Epstein.

The irreducibility is due to Bousch and Lau-Schleicher with different approaches. Our
approach is inspired by the proof of Lau-Schleicher. We use elementary combinatorial
properties of the kneading sequences instead of internal addresses.

1. Introduction

For c ∈ C, let fc : C→ C be the quadratic polynomial

fc(z) := z2 + c.

A point z ∈ C is periodic for fc if f ◦nc (z) = z for some integer n ≥ 1; it is of period n if
f ◦kc (z) 6= z for 0 < k < n. For n ≥ 1, let Xn ⊂ C2, be the dynatomic curve defined by

Xn :=
{

(c, z) ∈ C2 | z is periodic of period n for fc
}
.

The objective of this note is to give new proofs of the following known results.

Theorem 1.1 (Douady-Hubbard). For every n ≥ 1, the closure of Xn in C2 is a smooth
affine curve.

Theorem 1.2 (Bousch and Lau-Schleicher). For every n ≥ 1 the closure of Xn in C2 is
irreducible.

Theorem 1.1 has been proved by Douady-Hubbard in [DH] using parabolic implosion
techniques. Milnor [Mi4], Section 5 reproved the result with a different approach. Milnor
[Mi2] reformulated in the language of quadratic differentials a proof of Tsujii showing that
the topological entropy of the real quadratic polynomial x 7→ x2 + c varies monotonically
with respect to the parameter c. Our approach here to prove Theorem 1.1 is similar. We
use elementary calculations on quadratic differentials and Thurston’s contraction princi-
ple. Our calculation is a computational illustration of the far deeper and more conceptual
transversality theory of Epstein [E].
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Theorem 1.2 has been proved by Bousch [B] using a combination of algebraic and
dynamical arguments, and independently by Lau and Schleicher [LS, Sc2] using dynamical
arguments only. Morton [Mo] proved a generalized version of this result, using more
algebraic methods. Our approach here follows essentially [LS, Sc2], except we replace
their argument on internal addresses (Lemma 4.5 in [Sc2]) by a purely combinatorial
argument on kneading sequences (Lemma 4.2 below), also we make use of a result of
Petersen-Ryd ([PR]) instead of Douady-Hubbard’s parabolic implosion theory.

Interested readers may consult Bousch [B] or Milnor [Mi4] for other results on the
curves Xn. Manes [Ma] proves that the irreducibility of the dynatomic curves may fail in
some other families of rational maps, such as the family of odd quadratic rational maps.

The somewhat similar curve consisting of cubic polynomial maps with periodic critical
orbit is smooth of known Euler characteristic, due to the works of Milnor and Bonifant-
Kiwi-Milnor ([Mi3, BKM]). But the irreducibility question remains open.

In Section 2 we prove that the topological closure Xn ⊂ C2 is an affine curve by intro-
ducing dynatomic polynomials defining the curve, in Section 3 we prove the smoothness
while in Section 4 we prove the irreducibility. Sections 3 and 4 can be read independently.

Acknowledgments. We wish to express our thanks to Adam Epstein and John Milnor
for helpful discussions, to William Thurston for his encouragement, and to Schleicher,
Silverman and the anonymous referee for their useful comments.

2. Dynatomic polynomials

In this section, we define the dynatomic polynomials Qn ∈ Z[c, z] (see [Mi1] and [Si])
and show that

Xn =
{

(c, z) ∈ C2 | Qn(c, z) = 0
}
.

For n ≥ 1, let Pn ∈ Z[c, z] be the polynomial defined by

Pn(c, z) := f ◦nc (z)− z.
The dynatomic polynomials Qn will be defined so that

Pn =
∏
k|n

Qk.

Example 1. For n = 1 and n = 2, we have

P1(c, z) = z2 − z + c, P2(c, z) = z4 + 2cz2 − z + c2 + c,
Q1(c, z) = z2 − z + c, Q2(c, z) = z2 + z + c+ 1
P1(c, z) = Q1(c, z), P2(c, z) = Q1(c, z) ·Q2(c, z).

Further examples may be found in [Si, Table 4.1].

With an abuse of notation, we will identify polynomials in Z[c, z] and polynomials in
Z[z] with Z = Z[c]. In particular, we shall write R(c, z) when R ∈ Z[z]. Note that
Pn ∈ Z[z] is a monic polynomial (its leading coefficient is 1) of degree 2n.

Proposition 2.1. There exists a unique sequence of monic polynomials
(
Qn ∈ Z[z]

)
n≥1,

such that for all n ≥ 1, we have Pn =
∏
k|n

Qk.
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Proof. The proof goes by induction on n. For n = 1, it is necessary and sufficient to define

Q1(c, z) := P1(c, z) = z2 − z + c.

Note that Q1 ∈ Z[z] is indeed monic. Assume now that n > 1 and that the polynomials
Qk are defined for 1 ≤ k < n. Set

A :=
∏

k|n,k<n

Qk.

Since the polynomials Qk ∈ Z[z] are monic, the polynomial A ∈ Z[z] is also monic. So,
we may perform a Euclidean division to find a monic quotient Q ∈ Z[z] and a remainder
R ∈ Z[z] with degree(R) < degree(A), such that Pn = QA + R. We need to show that
R = 0, which enables us to set Qn := Q.

Let ∆ ∈ Z[c] be the discriminant of A. We claim that ∆(0) 6= 0. Indeed, for each

k < n, the polynomial Qk(0, z) ∈ Z[z] divides Pk(0, z) = z2
k − z whose roots are simple.

So, the roots of Qk(0, z) are simple. In addition, a root z0 of Qk(0, z) is a periodic point
of f0 whose period m divides k. We have m = k since otherwise,

Qk(0, z) · Pm(0, z) = Qk(0, z) ·
∏
j|m

Qj(0, z)

would have a double root at z0 and would at the same time divide

Pk(0, z) =
∏
j|k

Qj(0, z)

whose roots are simple. So, if 1 ≤ k1 < k2 < n, then Qk1(0, z) and Qk2(0, z) do not have
common roots. This shows that the roots of A(0, z) are simple, whence ∆(0) 6= 0.

Fix c0 ∈ C such that ∆(c0) 6= 0 (since ∆ does not identically vanish, this holds for
every c0 outside a finite set). Then, the roots of A(c0, z) ∈ Z[z] are simple. Such a root
z0 is a periodic point of fc0 , with period dividing n, whence a root of Pn(c0, z). As a
consequence, A(c0, z) divides Pn(c0, z) in C[z]. It follows that R(c0, z) = 0 for all z ∈ C.
Since this is true for every c0 outside a finite set, we have that R = 0 as required. �

Remark 1. The proof we gave shows that the dynatomic polynomials Qn have no re-
peated factors (otherwise Qn(0, z) ∈ Z[z] would have a double root) and moreover, if
k1 6= k2, then Qk1 and Qk2 do not have common factors (otherwise Qk1(0, z) ∈ Z[z] and
Qk2(0, z) ∈ Z[z] would have a common root). Those facts will be used later.

Remark 2. The degree of Qk is at most that of Pk, that is 2k. It follows that the degree

of A :=
∏

k|n,k<n

Qk is at most 2n − 2, and so, the degree of Qn = Pn/A is at least 2. In

particular, for n ≥ 1, the set Xn is non-empty.

We extensively used the properties of roots of Qn(0, z) ∈ Z[z]. We will now study the
properties of the roots of Qn(c0, z) ∈ C[z] for an arbitrary parameter c0 ∈ C.

Proposition 2.2. Let n ≥ 1 be a positive integer and c0 ∈ C be an arbitrary parameter.
Then, z0 ∈ C is a root of Qn(c0, z) ∈ C[z] if and only if one of the following three exclusive
conditions is satisfied:
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(1) z0 is periodic for fc0, the period is n and the multiplier is not 1; in that case
Qn(c0, z) has a simple root at z0, or

(2) z0 is periodic for fc0, the period is n and the multiplier is equal to 1; in that case
Qn(c0, z) has a double root at z0, or

(3) z0 is periodic for fc0, the period m < n is a proper divisor of n and the multiplier
of z0 as a fixed point of f ◦mc0 is a primitive n

m
-th root of unity; in that case Qn(c0, z)

has a root of order n
m

at z0.

Proof. If Qn(c0, z0) = 0, then Pn(c0, z0) = 0 and so, z0 is periodic for fc0 and the period
m divides n. Conversely, if z0 is periodic of period m for fc0 , then Pk(c0, z0) = 0 if and
only if k is a multiple of m. In particular, if k is not a multiple of m, then Qk(c0, z0) 6= 0.
Since

0 = Pm(c0, z0) =
∏
k|m

Qk(c0, z0),

we deduce that Qm(c0, z0) = 0.

Case 1. If the multiplier ρ of z0 as a fixed point of f ◦mc0 is not a root of unity, then
Pn(c0, z) has a simple root at z0 whenever n is a multiple of m. In that case, Qm(c0, z)
is a factor of Pn(c0, z) and so, no other factor of Pn can vanish at z0. As a consequence,
Qn(c0, z0) vanishes if and only if n = m. In addition, Qm(c0, z) ∈ C[z] has a simple root
at z0.

Next, if the multiplier ρ of z0 as a fixed point of f ◦mc0 is a primitive s-th root of unity,
then the multiplier of z0 as a fixed point of f ◦mkc0

is ρk. It is equal to 1 if and only if k is
a multiple of s. In that case, z0 is a multiple root of Pmk(c0, z) of order s + 1. Indeed,
fc0 has only one cycle of attracting petals since this cycle must attract the unique critical
point of fc0 .

Case 2. If s = 1, then Pn(c0, z) has a double root at z0 whenever n is a multiple of m.
As above, Qn(c0, z0) vanishes if and only if n = m, but this time, Qm(c0, z) ∈ C[z] has a
double root at z0.

Case 3. If s ≥ 2, then Pn(c0, z) has a simple root at z0 whenever n is a multiple of
m but not a multiple of ms, and a multiple root at z0 of order s + 1 whenever n is a
multiple of ms. So, Qn(c0, z0) vanishes if and only if n = m or n = ms; the polynomial
Qm(c0, z) ∈ C[z] has a simple root at z0 and the polynomial Qms(c0, z) ∈ C[z] has a root
of order s at z0. �

Proposition 2.3. For all n ≥ 1, we have

Xn =
{

(c, z) ∈ C2 | Qn(c, z) = 0
}
.

If (c, z) ∈ Xn − Xn, then z is periodic for fc, its period m is a proper divisor of n, and
the multiplier of z as a fixed point of f ◦mc is a primitive n

m
-th root of unity.

Proof. Let Yn ∈ C2 be the affine curve defined by Qn:

Yn :=
{

(c, z) ∈ C2 | Qn(c, z) = 0
}
.

According to the previous Proposition,
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• if (c, z) belongs to Xn, then Qn(c, z) = 0 and so, Xn ⊆ Yn.
• if (c, z) ∈ Yn −Xn, then z is periodic for fc, its period m is a proper divisor of n,

and the multiplier of z as a fixed point of f ◦mc is a primitive n
m

-th root of unity.
In particular, Qm(c, z) = 0. Since Qn and Qm do not have common factors, this
only occurs for a finite set of points (c, z) ∈ Yn. Thus, Yn ⊆ Xn. �

Remark 3. We saw that Xn−Xn is finite. More generally, the set of points (c0, z0) ∈ Xn

such that f ◦nc0 (z0) = z0 and (f ◦nc0 )′(z0) = 1 is finite. Indeed, for such a point, c0 is a root
of the discriminant of Pn ∈ Z[z]. Since the roots of Pn(0, z) are simple, this discriminant
does not vanish at c = 0, and so, its roots form a finite set.

3. Smoothness of the dynatomic curves

Our objective is now to give a proof of Theorem 1.1. We will prove the following
more precise version. We shall denote by πc : C2 → C the projection (c, z) 7→ c and by
πz : C2 → C the projection (c, z) 7→ z.

Theorem 3.1. For every n ≥ 1, the affine curve Xn is smooth. More precisely, for
(c0, z0) ∈ Xn, we have:

(1) if z0 ∈ Xn has multiplier different from 1, then πc : Xn → C is a local isomorphism;
(2) if z0 ∈ Xn has multiplier 1, then πz : Xn → C is a local isomorphism; in addition,

πc : Xn → C has local degree 2.
(3) if z0 ∈ Xn−Xn has multiplier a primitive s-th root of unity, then πz : Xn → C is

a local isomorphism; in addition, πc : Xn → C has local degree s.

Corollary 3.2. Any intersection between the curves Xm and Xn is transverse, and there
are no three-fold intersections.

The idea for proving Theorem 3.1 is to apply the Implicit Function Theorem. In

particular, we will prove that
∂Qn

∂z
(c0, z0) 6= 0 in Case 1 (this is almost immediate), and

that
∂Qn

∂c
(c0, z0) 6= 0 in Cases 2 and 3. This is where we have to work: following Epstein,

we will first relate this partial derivative to the coefficient of a quadratic differential of the
form (fc0)∗q−q (for a specific q in each case); we will then show that (fc0)∗q 6= q by using
(a generalization of) Thurston’s Contraction Principle. This approach is fundamentally
different from Douady-Hubbard’s original proof, where Fatou-Leau’s flower theorem on
parabolic periodic points as well as Douady-Hubbard’s parabolic implosion theory play
an essential role.

Once we know that in Cases 2 and 3, the projection πz : Xn → C is a local isomorphism,
the local degree of the projection πc : Xn → C follows from Proposition 2.2. Indeed, if

Qn(c0, z) ∈ C[z] has a root of order ν at z0 and if
∂Qn

∂c
(c0, z0) 6= 0, then

Qn(c0 + η, z0 + ε) = aη + bεν + o(η) + o(εν) with a 6= 0 and b 6= 0

and the solutions of Qn(c, z) = 0 are locally of the form
(
c(z), z

)
with

c(z0 + ε) = c0 −
b

a
εν + o(εν).
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3.1. Case 1 of Theorem 3.1. Let (c0, z0) ∈ Xn be such that the multiplier of z0 as
a fixed point of f ◦nc0 is not 1. Then, Qn(c0, z0) = 0, but Qk(c0, z0) 6= 0 for k < n, and
(f ◦nc0 )′(z0) 6= 1. Since ∏

k|n

Qk(c, z) = Pn(c, z),

we have

∂Qn

∂z
(c0, z0) ·

∏
k|n,k<n

Qk(c0, z0) =
∂Pn
∂z

(c0, z0) = (f ◦nc0 )′(z0)− 1 6= 0.

As a consequence,
∂Qn

∂z
(c0, z0) 6= 0. By the Implicit Function Theorem, Xn is smooth

near (c0, z0) and the projection πc : Xn → C is a local isomorphism.

3.2. Case 2 of Theorem 3.1. Let (c0, z0) ∈ Xn be such that the multiplier of z0 as a
fixed point of f ◦nc0 is 1. As previously, since Qn(c0, z0) = 0 and∏

k|n

Qk(c, z) = Pn(c, z),

we have
∂Qn

∂c
(c0, z0) ·

∏
k|n,k<n

Qk(c0, z0) =
∂Pn
∂c

(c0, z0).

Since for all k < n, Qk(c0, z0) 6= 0 it is enough to prove that

∂Pn
∂c

(c0, z0) 6= 0.

We shall use the following notations: for n ≥ 0, we let ζn : C→ C be defined by

ζn(c) := f ◦nc (z0),

and we set
zn := ζn(c0) = f ◦nc0 (z0) and δn := f ′c0(zn) = 2zn.

Since Pn(c, z0) = f ◦nc (z0)− z0 = ζn(c)− z0, we have

(3.1)
∂Pn
∂c

(c0, z0) = ζ ′n(c0).

Lemma 3.3 (Compare with [Mi2]). We have

ζ ′n(c0) = 1 + δn−1 + δn−1δn−2 + . . .+ δn−1δn−2 · · · δ1.

Proof. The function ζ0 is constant (equal to z0). From ζn(c) =
(
ζn−1(c)

)2
+ c, we obtain

ζ ′n(c0) = 1 + δn−1ζ
′
n−1(c0) with ζ ′0(c0) = 0.

The result follows by induction. �

In order to prove that

1 + δn−1 + δn−1δn−2 + . . .+ δn−1δn−2 · · · δ1 6= 0

we shall now work with meromorphic quadratic differentials.
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3.2.1. Quadratic differentials. A meromorphic quadratic differential q on C takes the
form q = q dz2 with q a meromorphic function on C. We use Q(C) to denote the
set of meromorphic quadratic differentials on C whose poles (if any) are all simple. If
q = q dz2 ∈ Q(C) and U is a bounded open subset of C, the norm

‖q‖U :=

∫∫
U

∣∣q(x+ iy)
∣∣ dxdy

is well defined and finite.

Example 2. ∥∥∥∥ dz2

z

∥∥∥∥
D(0,R)

=

∫ 2π

0

∫ R

0

1

r
r drdθ = 2πR .

3.2.2. Pushforward. For f : C → C a non-constant polynomial and q = q dz2 a mero-
morphic quadratic differential on C, the pushforward f∗q is defined by

f∗q := Tq dz2 with Tq(z) :=
∑

f(w)=z

q(w)

f ′(w)2
.

If q ∈ Q(C), then f∗q ∈ Q(C) also.

Lemma 3.4 (Compare with [Mi2] or [L]). For f = fc, we have

(3.2)


f∗

(
dz2

z

)
= 0

f∗

(
dz2

z − a

)
=

1

f ′(a)

(
dz2

z − f(a)
− dz2

z − c

)
if a 6= 0.

Proof. If f(w) = z, then w = ±
√
z − c and

dw2 =
dz2

4(z − c)
.

We then have

f∗

(
dz2

z − a

)
=

dz2

4(z − c)

(
1√

z − c− a
+

1

−
√
z − c− a

)
=

a dz2

2(z − c)(z − f(a))
.

If a = 0, we get the first equality in (3.2). Otherwise, we get the second equality using

1

f ′(a)

(
1

z − f(a)
− 1

z − c

)
=

f(a)− c
2a(z − c)(z − f(a))

=
a

2(z − c)(z − f(a))
. �

3.2.3. A particular quadratic differential. Let

q :=
n−1∑
k=0

ρk
z − zk

dz2
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be a quadratic differential in Q(C). Applying Lemma 3.4, and writing f for fc0 , we obtain

f∗q =
n−1∑
k=0

ρk
δk

(
dz2

z − zk+1

− dz2

z − c0

)
.

We want to choose q so that f∗q and q differ only by a pole at c0. It amounts then to
solve the following linear system on the unknown coefficient vector (ρ0, · · · , ρn−1):

ρn−1
δn−1

= ρ0,
ρk
δk

= ρk+1, k = 0, · · · , n− 2

Notice that δ0δ1 · · · δn−1 is the multiplier of z0 as a periodic point of fc0 , which is 1 by
assumption. The above linear system has indeed a non null solution :

ρ0 = 1, ρn−1 = δn−1, ρn−2 = δn−1δn−2, · · · , ρ1 = δn−1δn−2 · · · δ1 .
Therefore, for

(3.3) q :=
n−1∑
k=0

ρk
z − zk

dz2, ρk = δn−1δn−2 · · · δk, k = n− 1, n− 2, · · · , 0

we have

f∗q = q−

(
n−1∑
k=0

ρk

)
· dz2

z − c0
.

According to Equation (3.1) , Lemma 3.3 and the definition of ρk,

∂Pn
∂c

(c0, z0) = ζ ′n(c0) =
n−1∑
k=0

ρk.

It is therefore enough to prove that f∗q 6= q. This is done in the next paragraph using a
Contraction Principle.

3.2.4. Contraction Principle. The following lemma is a weak version of Thurston’s con-
traction principle (which applies in the setting of rational maps on P1).

Lemma 3.5 (Contraction Principle). For a non-constant polynomial f and a round disk
V of radius large enough so that U := f−1(V ) is relatively compact in V , we have

‖f∗q‖V ≤ ‖q‖U < ‖q‖V , ∀q ∈ Q(C).

Proof. The strict inequality on the right is a consequence of the fact that U is relatively
compact in V . The inequality on the left comes from

‖f∗q‖V =

∫∫
x+iy∈V

∣∣∣∣∣∣
∑

f(w)=x+iy

q(w)

f ′(w)2

∣∣∣∣∣∣ dxdy
≤
∫∫

x+iy∈V

∑
f(w)=x+iy

∣∣∣∣ q(w)

f ′(w)2

∣∣∣∣ dxdy =

∫∫
u+iv∈U

∣∣q(u+ iv)
∣∣ dudv = ‖q‖U . �

Corollary 3.6. If f : C→ C is a polynomial and if q ∈ Q(C), then f∗q 6= q.

This completes the proof in Case 2.
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3.3. Case 3 of Theorem 3.1. Let (c0, z0) ∈ Xn−Xn be such that z0 is periodic for fc0
with period m < n dividing n and multiplier ρ, a primitive s-th root of unity with s := n

m
.

According to Proposition 2.2 (3) , the polynomial Qn(c0, z) ∈ C[z] has a root of order
s ≥ 2 at z0, so that

(3.4)
∂Qn

∂z
(c0, z0) = 0.

We want to show that
∂Qn

∂c
(c0, z0) 6= 0.

Let us write

(3.5) Pn(c, z) = Pm(c, z) ·R(c, z) with R(c, z) =
∏

k|n,k-m

Qk(c, z).

Since Qn(c0, z0) = 0, we have

∂R

∂z
(c0, z0) =

∂Qn

∂z
(c0, z0) ·

∏
k|n,k-m,k<n

Qk(c0, z0) = 0 and

∂R

∂c
(c0, z0) =

∂Qn

∂c
(c0, z0) ·

∏
k|n,k-m,k<n

Qk(c0, z0).

It is therefore enough to prove
∂R

∂c
(c0, z0) 6= 0.

3.3.1. Variation along Xm. Note that (c0, z0) ∈ Xm and the multiplier ρ of z0 as a fixed
point of f ◦mc0 is ρ 6= 1. Thus, according to Case 1, Xm is locally the graph of a function
ζ(c) defined and holomorphic near c0 with ζ(c0) = z0. The point ζ(c) is periodic of period
m for fc. We denote by ρc its multiplier and set

ρ̇ :=
dρc
dc

∣∣
c0
.

Lemma 3.7. We have
∂R

∂c
(c0, z0) =

sρ̇

ρ(ρ− 1)
.

Proof. Differentiating the first equation in (3.5) with respect to z, and evaluating at(
c, ζ(c)

)
, we get:

∂Pn
∂z

(
c, ζ(c)

)︸ ︷︷ ︸
ρsc−1

=
∂Pm
∂z

(
c, ζ(c)

)︸ ︷︷ ︸
ρc−1

·R
(
c, ζ(c)

)
+ Pm

(
c, ζ(c)

)︸ ︷︷ ︸
0

· ∂R
∂z

(
c, ζ(c)

)
whence

ρsc − 1 = (ρc − 1) ·R
(
c, ζ(c)

)
.

Differentiating with respect to c and evaluating at c0, we get:

sρs−1ρ̇ = ρ̇R(c0, z0)︸ ︷︷ ︸
0

+ (ρ− 1)
∂R

∂c
(c0, z0) + (ρ− 1)

∂R

∂z
(c0, z0)︸ ︷︷ ︸
0

ζ ′(c0) = (ρ− 1)
∂R

∂c
(c0, z0).
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The result follows since ρs = 1 and so, ρs−1 = 1/ρ. �

Thus, we are left with proving that ρ̇ 6= 0. This will be done by using a particular
meromorphic quadratic differential having double poles along the cycle of z0.

3.3.2. Quadratic differentials with double poles.

Lemma 3.8 (Compare with [L]). For f = fc, we have

f∗

(
dz2

(z − a)2

)
=

dz2

(z − f(a))2
− 1

2a2

(
dz2

z − f(a)
− dz2

z − c

)
if a 6= 0.

Proof. If f(w) = z, then w = ±
√
z − c and

dw2 =
dz2

4(z − c)
.

Then

f∗

(
dz2

(z − a)2

)
=

dz2

4(z − c)

(
1

(
√
z − c− a)2

+
1

(−
√
z − c− a)2

)
=

(z − c+ a2) dz2

2(z − c)(z − c− a2)2
=

(z − c+ a2) dz2

2(z − c)(z − f(a))2
.

Decomposing the last expression into partial fractions gives

z − c+ a2

2(z − c)(z − f(a))2
=

A

(z − f(a))2
+

B

z − f(a)
+

C

z − c
with

A =
f(a)− c+ a2

2(f(a)− c)
=

2a2

2a2
= 1, C =

c− c+ a2

2(c− f(a))2
=

a2

2a4
=

1

2a2

and

B = −C = − 1

2a2
. �

3.3.3. A particular quadratic differential with double poles. As in Case 2, we will try to
find a quadratic differential q with double poles along the orbit of z0 so that (fc0)∗q and
q differ only by a simple pole at c0. Set

zk := f ◦kc0 (z0), δk := f ′c0(zk) = 2zk.

Since
δ0δ1 · · · δm−1 = ρ 6= 1,

there is a unique m-tuple µ := (µ0, . . . , µm−1) ∈ Cm such that

µk+1 =
µk
2zk
− 1

2z2k
,

where the indices are considered to be modulo m. Indeed, this is a linear system in Cm

of the form µ = Aµ+ b with Am =
1

ρ
Im. Thus

µ =
ρ

ρ− 1
(Im + A+ A2 + · · ·+ Am−1) · b .
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Now consider the quadratic differential q (with double poles) defined by

(3.6) q :=
m−1∑
k=0

(
1

(z − zk)2
+

µk
z − zk

)
dz2.

By the calculation of (fc0)∗q in Lemmas 3.4 and 3.8, the polar parts of q and (fc0)∗q
along the cycle of z0 are identical.

Lemma 3.9 (Levin). Setting f = fc0, we have

f∗q = q− ρ̇

ρ
· dz2

z − c0
.

Proof. Note that f∗q has an extra simple pole at the critical value c0 with coefficient

m−1∑
k=0

(
− µk

2zk
+

1

2z2k

)
= −

m−1∑
k=0

µk+1.

We need to show that this coefficient is equal to − ρ̇
ρ
.

Set
ζk(c) := f ◦kc

(
ζ(c)

)
and ζ̇k := ζ ′k(c0).

Then

ζk+1(c) = fc
(
ζk(c)

)
=
(
ζk(c)

)2
+ c, ζn = ζ0 and ζ̇k+1 = 2zkζ̇k + 1.

It follows that

ζ̇k+1µk+1 − µk+1 = 2zkζ̇kµk+1 = ζ̇kµk −
ζ̇k
zk
.

Therefore
m−1∑
k=0

µk+1 =
m−1∑
k=0

(
ζ̇k+1µk+1 − ζ̇kµk +

ζ̇k
zk

)
=

m−1∑
k=0

ζ̇k
zk

=
ρ̇

ρ
,

where the last equality is obtained by evaluating the logarithmic derivative of

ρc :=
m−1∏
k=0

2ζk(c)

at c0. �

To complete the proof that ρ̇ 6= 0, we will use a generalization of the Contraction
Principle due to Epstein.

Lemma 3.10 (Epstein). We have f∗q 6= q.

Proof. The proof rests again on the contraction principle, but we can not apply directly
Lemma 3.5 since q is not integrable near the cycle 〈z0, . . . , zm−1〉. Consider a sufficiently
large round disk V so that U := f−1(V ) is relatively compact in V . Given ε > 0, we set

Vε :=
m⋃
k=1

f ◦k
(
D(z0, ε)

)
and Uε := f−1(Vε).
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For ε sufficiently small, we have

‖f∗q‖V−Vε ≤ ‖q‖U−Uε = ‖q‖V−Vε − ‖q‖V−U + ‖q‖Vε−Uε − ‖q‖Uε−Vε .

If we had f∗q = q, we would have

0 < ‖q‖V−U ≤ ‖q‖Vε−Uε − ‖q‖Uε−Vε ≤ ‖q‖Vε−Uε .

However, ‖q‖Vε−Uε tends to 0 as ε tends to 0, which is a contradiction. Indeed, q = q dz2,
the meromorphic function q being equivalent to 1

(z−z0)2 as z tends to z0. In addition, since

the multiplier of z0 has modulus 1,

D(z0, ε) ⊂ Vε − Uε ⊂ D(z0, ε
′) with

ε′

ε
−→
ε→0

1.

Therefore,

‖q‖Vε−Uε ≤
∫ 2π

0

∫ ε′

ε

1 + o(1)

r2
rdrdθ = 2π(1 + o(1)

)
log

ε′

ε
−→
ε→0

0. �

The proof of Theorem 1.1 is now completed.

4. Irreducibility of the dynatomic curves

Our objective is now to give a proof of Theorem 1.2, i.e. the irreducibility of the
dynatomic curves Xn. Note that since the affine curve Xn is defined by a polynomial Qn

which has no repeated factors, this will prove that Qn is irreducible.

Since Xn is smooth, we may equivalently prove the following result.

Theorem 4.1. For every n ≥ 1, the set Xn is connected.

4.1. Kneading sequences. Set T = R/Z and let τ : T→ T be the angle doubling map

τ : T 3 θ 7→ 2θ ∈ T.

By abuse of notation we shall often identify an angle θ ∈ T with its representative in
[0, 1[. In particular, the angle θ/2 ∈ T is the element of τ−1(θ) with representative in
[0, 1/2[ and the angle (θ + 1)/2 is the element of τ−1(θ) with representative in [1/2, 1[.

Every angle θ ∈ T has an associated kneading sequence ν(θ) = ν1ν2ν3 . . . defined by

νk =



1 if τ ◦(k−1)(θ) ∈
]
θ

2
,
θ + 1

2

[
,

0 if τ ◦(k−1)(θ) ∈ T−
[
θ

2
,
θ + 1

2

]
,

? if τ ◦(k−1)(θ) ∈
{
θ

2
,
θ + 1

2

}
.

For example, ν(1/7) = 11? and ν(7/31) = 1100?.

We shall say that an angle θ ∈ T, periodic under τ , is maximal in its orbit if its
representative in [0, 1) is maximal among the representatives of τ ◦j(θ) in [0, 1) for all
j ≥ 1. If the period is n and the binary expansion of θ is .ε1 . . . εn, then θ is maximal
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τ

θ/2=1/14

θ=1/7

2/7

(θ+1)/2=4/7

τ

τ

Figure 1. The kneading sequence of θ = 1/7 is ν(1/7) = 11?.

in its orbit if and only if the periodic sequence ε1 . . . εn is maximal (in the lexicographic
order) among its iterated shifts, where the shift of a sequence ε1ε2ε3 indexed by N is

σ(ε1ε2ε3 . . .) = ε2ε3ε4 . . . .

Example 3. The angle 7/31 = .00111 is not maximal in its orbit but 28/31 = .11100 is
maximal in the same orbit.

The following lemma indicates cases where the binary expansion and the kneading
sequence coincide.

Lemma 4.2. Let θ ∈ T be a periodic angle which is maximal in its orbit and let .ε1 . . . εn be
its binary expansion. Then, εn = 0 and the kneading sequence ν(θ) is equal to ε1 . . . εn−1?.

For example,
28

31
= .11100 and ν(θ) = 1110?.

Proof. Since θ is maximal in its orbit under τ , the orbit of θ is disjoint from ]θ/2, 1/2]∪]θ, 1].
It follows that the orbit τ ◦j(θ), j = 0, 1, . . . , n− 2 have the same itinerary relative to the

two partitions T−
{

0,
1

2

}
and T−

{
θ

2
,
θ + 1

2

}
. The first one gives the binary expansion

whereas the second gives the kneading sequence. Therefore, the kneading sequence of θ

is ε1 . . . εn−1?. Since τ ◦(n−1)(θ) ∈ τ−1(θ) =

{
θ

2
,
θ + 1

2

}
and since

θ + 1

2
∈ ]θ, 1], we must

have τ ◦(n−1)(θ) =
θ

2
<

1

2
. So εn, as the first digit of τ ◦(n−1)(θ), must be equal to 0. �

4.2. Filled-in Julia sets and the Mandelbrot set. We will use results proved by
Douady and Hubbard in the Orsay Notes [DH] that we now recall. Some simplified
proofs of these results have been obtained by Schleicher in his Ph.D. thesis (see Schleicher
[Sc1] and also Milnor [Mi4]) and by Petersen-Ryd in [PR].

For c ∈ C, we denote by Kc the filled-in Julia set of fc, that is the set of points z ∈ C
whose orbit under fc is bounded. We denote by M the Mandelbrot set, that is the set of
parameters c ∈ C for which the critical point 0 belongs to Kc.
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25/31

θ=28/31

(θ+1)/2

7/31

θ/2=14/31

1/2

19/31

0

Figure 2. The kneading sequence of θ := 28/31 = .11100 is ν(28/31) = 1110?.

I. If c ∈M , thenKc is connected. There is a conformal isomorphism φc : C−Kc → C−D
which satisfies φc ◦ fc = f0 ◦ φc. The dynamical ray of angle θ ∈ T is

Rc(θ) :=
{
z ∈ C−Kc | arg

(
φc(z)

)
= 2πθ

}
.

If θ is rational, then as r tends to 1 from above, φ−1c (re2πiθ) converges to a point γc(θ) ∈ Kc.
We say that Rc(θ) lands at γc(θ). We have fc ◦ γc = γc ◦ τ on Q/Z. In particular, if θ is
periodic under τ , then γc(θ) is periodic under fc. In addition, γc(θ) is either repelling (its
multiplier has modulus > 1) or parabolic (its multiplier is a root of unity).

II. If c /∈ M , then Kc is a Cantor set. There is a conformal isomorphism φc : Uc → Vc
between neighborhoods of ∞ in C, which satisfies φc ◦ fc = f0 ◦ φc on Uc. We may choose
Uc so that Uc contains the critical value c and Vc is the complement of a closed disk.
For each θ ∈ T, there is an infimum rc(θ) ≥ 1 such that φ−1c extends analytically along
R0(θ)∩

{
z ∈ C | rc(θ) < |z|

}
. We denote by ψc this extension and by Rc(θ) the dynamical

ray

Rc(θ) := ψc

(
R0(θ) ∩

{
z ∈ C | rc(θ) < |z|

})
.

As r tends to rc(θ) from above, ψc(re
2πiθ) converges to a point x ∈ C. If rc(θ) > 1, then

x ∈ C−Kc is an iterated preimage of 0 and we say that Rc(θ) bifurcates at x. If rc(θ) = 1,
then γc(θ) := x belongs to Kc and we say that Rc(θ) lands at γc(θ). Again, fc ◦γc = γc ◦ τ
on the set of θ such that Rc(θ) does not bifurcate. In particular, if θ is periodic under τ
and Rc(θ) does not bifurcate, then γc(θ) is periodic under fc.

The Mandelbrot set is connected. The map

φM : C−M 3 c 7→ φc(c) ∈ C− D

is a conformal isomorphism. For θ ∈ T, the parameter ray RM(θ) is

RM(θ) :=
{
c ∈ C−M | arg

(
φM(c)

)
= 2πθ

}
.

It is known that if θ is rational, then as r tends to 1 from above, φ−1M (re2πiθ) converges to
a point γM(θ) ∈M . We say that RM(θ) lands at γM(θ).

If θ is periodic for τ of exact period n and if c = γM(θ), then the point γc(θ) is periodic
for fc with period dividing n and multiplier a root of unity. If the period of γc(θ) for
fc is exactly n then the multiplier is 1, γc(θ) disconnects Kc in exactly two connected
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RM (28/31)

M

RM (27/31)

RM (28/31)

RM (27/31)

Figure 3. The parameter rays RM(27/31) and RM(28/31) land at a com-
mon root of a primitive hyperbolic component.

components and c is the root of a primitive hyperbolic component of M (as in Figure 3).
Otherwise, c is the root of a satellite hyperbolic component of M (as in Figure 6).

Rc(14/31)

Rc(28/31)

Rc(7/31)

Rc(19/31)

Rc(25/31)

Rc(28/31)

Rc(27/31)

Figure 4. Filled-in Julia set Kc for the landing point c := γM(28/31)
illustrated in Figure 3, showing the orbit of the dynamical ray Rc(28/31)
on the left, and on the right showing that the rays Rc(28/31) and Rc(27/31)
land at the same root point.

The parameter ray RM(0) lands at 1/4 and this is the only ray landing at 1/4.

III. Let us now assume that c ∈ C − {1/4} is the root of a hyperbolic component of
M , that is fc has a parabolic cycle. Then there are exactly two parameter rays RM(θ)
and RM(η) landing at c. We say that θ and η are companion angles. Both θ and η are
periodic under τ with the same period. The hyperbolic component is primitive if and
only if the orbits of θ and η under τ are distinct. Otherwise, the orbits are equal.
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The dynamical rays Rc(θ) and Rc(η) land at a common point x1 := γc(θ) = γc(η). This
point x1 is the point of the parabolic cycle whose immediate basin contains the critical
value c. The dynamical rays Rc(θ) and Rc(η) are adjacent to the Fatou component
containing c. The curve Rc(θ) ∪ Rc(η) ∪ {x1} is a Jordan arc that cuts the plane in two
connected components. One component, denoted V0, contains the dynamical ray Rc(0)
and all the points of the parabolic cycle, except x1. The other component, denoted V1,
contains the critical value c.

Since V1 contains the critical value, its preimage U? := f−1c (V1) is connected and contains
the critical point 0. It is bounded by the dynamical rays Rc(θ/2), Rc(η/2), Rc

(
(θ+ 1)/2

)
and Rc

(
(η + 1)/2

)
. Two of those dynamical rays land at the point x0 of the parabolic

cycle whose immediate basin contains the critical point 0. The two other dynamical rays
land at −x0. Since V0 does not contain the critical value, its preimage has two connected
components. One component, denoted U0, contains the dynamical ray Rc(0). The other
component is denoted U1 (see Figure 5).

U1

Rc(η)

Rc(θ)

Rc(
η+1
2

)
x1

Rc(
θ+1
2

)x0

−x0

Rc(0)

U0

U?Rc(
θ
2
)

Rc(
η
2
)

Figure 5. The regions for c = γM(θ)

Lemma 4.3. Let θ ∈ T be a periodic angle of period n which is maximal within its orbit.
Then, γM(θ) is the root point of a hyperbolic component, which is

• of satellite type if θ = .11 . . . 10 =
2n − 2

2n − 1
with n ≥ 2,

• a primitive hyperbolic component in all other cases.

Proof. If θ = 0, then γM(0) = 1/4 is the root of a hyperbolic component. So, without loss
of generality, we may assume that θ 6= 0. Let n ≥ 2 be the period of θ under τ , let η be
the companion angle of θ and let U0 and U1 and U? be defined as above (see Figure 5).

Since θ is maximal in its orbit, τ ◦(n−1)(θ) = θ/2 (see Lemma 4.2). So, Rc(θ/2) lands
on x0. One of the two rays Rc(η/2) and Rc

(
(η+ 1)/2

)
lands on x0. Since U? is connected
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and contains dynamical rays with angles in between η/2 and θ/2 and dynamical rays with
angles in between (η+ 1)/2 and (θ+ 1)/2, the ray landing on x0 has to be Rc

(
(η+ 1)/2

)
.

It follows that (η + 1)/2 is in the orbit of η under τ .

Since θ/2 < θ < (θ + 1)/2 and since Rc(θ) avoids U?, we have θ ≤ (η + 1)/2. On
the one hand, if θ < (η + 1)/2, then the orbit of θ under τ does not contain (η + 1)/2
since otherwise θ would not be maximal in its orbit. In that case, the orbits of θ and
η are disjoint and γM(θ) is the root of a primitive hyperbolic component. On the other
hand, if θ = (η + 1)/2, then the rays Rc(θ) and Rc

(
(η + 1)/2

)
are equal. In that case,

their landing point is the same, so x0 = x1 = fc(x0) is a fixed point of fc. The rays
landing at this fixed point are permuted cyclically. The dynamical rays Rc(θ) and Rc(η)
are consecutive among the rays landing at x0, η < (η + 1)/2 = θ and Rc(θ) is mapped to
Rc(2θ) = Rc(η). It follows that each dynamical ray landing at x0 is mapped to the one
which is once further clockwise. Consequently, the kneading sequence of θ is 1 . . . 1? and
according to Lemma 4.2, the binary expansion of θ is .1 . . . 10. See Figure 8. �

RM (30/31)

M

RM (30/31)

Figure 6. We have 30/31 = .11110 and the parameter ray RM(30/31)
lands on the boundary of the main cardioid.

4.3. Outside the Mandelbrot set. The projection πc : Xn → C is a ramified covering.
According to Proposition 3.1, the critical points are the points (c, z) ∈ Xn such that
f ◦nc (z) = z and (f ◦nc )′(z) = 1. So, the critical values are precisely the roots of the
polynomial ∆n ∈ Z[c] which is the discriminant of Pn ∈ Z[z]. Those critical values are
contained in the Mandelbrot set since a parabolic cycle for fc attracts the critical point
of fc.

The open set
W := C−

(
M ∪RM(0)

)
is simply connected. It avoids the critical values of the ramified covering πc : Xn → C.
Let Wn ⊂ Xn be the preimage of W by πc : Xn → C. It follows from the previous
comment that πc : Wn → W is a (unramified) cover, which is trivial since W is simply
connected: each connected component of Wn maps isomorphically to W by πc.
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Note that each connected component of Xn is unbounded (because Xn is an affine
curve), and so, intersects Wn. Thus, in order to prove that Xn is connected, it is enough
to prove that the closure W n of Wn in Xn is connected. We shall say that two components
of Wn are adjacent if they have a common boundary point in Xn.

4.4. Labeling components of Wn. Here, we explain how the components of Wn may
be labelled dynamically.

A parameter c ∈ W belongs to a parameter ray RM(θ) with θ 6= 0 not necessarily
periodic. The dynamical rays Rc(θ/2) and Rc

(
(θ + 1)/2

)
bifurcate on the critical point.

The Jordan curve Rc(θ/2) ∪ Rc

(
(θ + 1)/2

)
∪ {0} separates the complex plane in two

connected components. We denote by U0 the component containing the dynamical ray
Rc(0) and by U1 the other component (see Figure 7).

U1

Rc(
θ+1
2

)

Rc(0)

U0

Rc(
θ
2
)

0

Figure 7. The regions U0 and U1 for a parameter c belonging to the ray
RM(θ), with θ = 28/31.

The orbit of a point z ∈ Kc has an itinerary with respect to this partition. In other

words, to each z ∈ Kc, we can associate a sequence ιc(z) ∈ {0, 1}N whose j-th term is

equal to 0 if f
◦(j−1)
c (z) ∈ U0 and is equal to 1 if f

◦(j−1)
c (z) ∈ U1. A point z ∈ Kc is periodic

for fc if and only if the itinerary ιc(z) is periodic for the shift with the same period. The

map ιc : Kc → {0, 1}N is a bijection.

Let us define ιn : Wn → {0, 1}N by

ιn(c, z) := ιc(z).

As c varies in W , the periodic points of fc, the dynamical ray Rc(0) and the Jordan
curve Rc(θ/2) ∪ Rc

(
(θ + 1)/2

)
∪ {0} move continuously. As a consequence, the map

ιn : Wn → {0, 1}N is locally constant, whence constant on each connected component
of Wn. So, each connected component V of Wn may be labelled by the itinerary ιn(V ).
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Since ιc : Kc → {0, 1}N is injective, distinct components have distinct labels. Since

ιc : Kc → {0, 1}N is surjective, each periodic itinerary of period n is the label of a
component of Wn. It follows that the number of connected components of Wn is equal to

the number of n-periodic sequences in {0, 1}N.

4.5. Turning around critical points. We now exhibit connected components of Wn

which have common boundary points. The following statement is one of the key results
in [LS].

Proposition 4.4. Let ε1 . . . εn−1? be the kneading sequence of an angle θ ∈ T−{0} which
is periodic of period n. If γM(θ) is the root of a primitive hyperbolic component and if one
follows continuously the periodic points of period n of fc as c makes a small turn around
γM(θ), then the periodic points with itineraries ε1 . . . εn−10 and ε1 . . . εn−11 get exchanged.

Proof. Set c0 := γM(θ). Since c0 is the root of a primitive hyperbolic component, the
periodic point x1 := γc0(θ) has period n and multiplier 1. According to Theorem 3.1 Case
2 (see also [DH, Exposé XIV, Proposition 3]), Xn is smooth at (c0, x1), the projection to
the first coordinate has degree 2 and the projection to the second coordinate has degree
1. So, in a neighborhood of (c0, x1) in C2, Xn can be written as{

(c0 + δ2, x(δ)), (c0 + δ2, x(−δ))
}

where x : (C, 0) → (C, x1) is a holomorphic germ with x′(0) 6= 0. In particular, as c
moves away from c0, the periodic point x1 of fc0 splits into a pair of nearby periodic
points x(±

√
c− c0) for fc, that get exchanged when c makes a small turn around c0.

So, it is enough to show that for c ∈ C −M close to c0, those two periodic points have
itineraries ε1 . . . εn−10 and ε1 . . . εn−11.

Let us denote by V0(c0), V1(c0), U0(c0), U1(c0) and U?(c0) the open sets V0, V1, U0, U1

and U? defined in Section 4.2 part III (for c0 = c). For j ≥ 0, set xj := f ◦jc0 (x0) and
observe that for j ∈ [1, n− 1], we have xj ∈ Uεj(c0).

For c ∈ RM(θ), consider the following compact subsets of the Riemann sphere C∪{∞}:
R(c) := Rc(θ) ∪ {c,∞} and S(c) := Rc(θ/2) ∪Rc

(
(θ + 1)/2

)
∪ {0,∞}.

Denote by U0(c) the component of C − S(c) containing Rc(0) and by U1(c) the other
component. From any sequence cj ∈ RM(θ) converging to c0, we can extract a subsequence
so that R(cj) and S(cj) converge respectively, for the Hausdorff topology on compact
subsets of C ∪ {∞}, to connected compact sets R and S. Since S(c) = f−1c

(
R(c)

)
, we

have S = f−1c0 (R). According to [PR, Sections 2 and 3], R ∩ (C − Kc0) = Rc0(θ), the
intersection of R with the boundary of Kc0 is reduced to {x1}, and the intersection of R
with the interior of Kc0 is contained in the immediate basin of x1, whence in V1(c0). It
follows that as c ∈ RM(θ) tends to c0, any Hausdorff accumulation value of the family
of compact sets R(c) is contained in V 1(c0) and so, any accumulation value of the family
of compact sets S(c) is contained in U?(c0). In other words, any compact subset of
C − U?(c0) is contained in C − S(c) for c ∈ RM(θ) close enough to c0. More precisely,
every compact subset of U0(c0) is contained in a connected compact set L ⊂ U0(c0) whose
interior intersects Rc0(0); for c ∈ RM(θ) close enough to c0, L intersects Rc(0) and is
contained in C−S(c), whence in U0(c). As a consequence, every compact subset of U0(c0)
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is contained in U0(c) for c ∈ RM(θ) close enough to c0. Similarly, every compact subset
of U1(c0) is contained in U1(c) for c ∈ RM(θ) close enough to c0.

Fix j ∈ [1, n− 1] and let Dj be a sufficiently small disk around xj so that

Dj ⊂ Uεj(c0) ⊂ C− U?(c0).

According to the previous discussion, if c ∈ RM(θ) is close enough to c0, we have

f ◦(j−1)c

(
x(±
√
c− c0)

)
⊂ Dj ⊂ Uεj(c).

So, the itineraries of x(±
√
c− c0) are of the form ε1 . . . εn−1ε± with ε± ∈ {0, 1} and

ε+ 6= ε− (each itinerary corresponds to a unique point in Kc). The result follows. �

Corollary 4.5. Let ε1 . . . εn−1? be the kneading sequence of an angle θ ∈ T − {0} which
is periodic of period n. If γM(θ) is the root of a primitive hyperbolic component, then, the
components of Wn with labels ε1 . . . εn−10 and ε1 . . . εn−11 are adjacent.

Proof. According to the previous proposition, the closures of those components both con-
tain the point (c0, x1) with c0 := γM(θ) and x1 := γc0(θ). �

Proposition 4.6. Let θ = 1 − 1

2n − 1
= .1 . . . 10 be periodic of period n ≥ 2. If one

follows continuously the periodic points of period n of fc as c makes a small turn around
γM(θ), then the periodic points in the cycle of ι−1c (1 . . . 10) get permuted cyclically.

Proof. Set c0 := γM(θ). As mentioned earlier, all the dynamical rays Rc0

(
τ ◦j(θ)

)
land

on a common fixed point x0. This fixed point is parabolic and each ray landing at x0
is mapped to the one which is once further clockwise (see Figure 8). It follows that the
multiplier of fc0 at x0 is ω := e−2πi/n.

Rc(4θ)

U?(c0)

Rc(θ)

Rc(2θ)

Rc(2n−1θ)

U2
1

U3
1

Rc(23θ)

U0(c0)

Un−1
1

−x0

x0
U1
1=V1(c0)

Figure 8. For c0 := γM(.11110), the dynamical rays Rc0

(
τ ◦j(θ)

)
land on

a common fixed point x0.
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According to Theorem 3.1 Case 3, Xn is smooth at (c0, x0), the projection to the first
coordinate has local degree n and the projection to the second coordinate has local degree
1. It follows that in a neighborhood of (c0, x0) in C2, Xn can be written as{

(c0 + δn, x(δ)), (c0 + δn, x(ωδ)), . . . , (c0 + δn, x(ωn−1δ))
}

where x : (C, 0)→ (C, x0) is a holomorphic germ satisfying x′(0) 6= 0. In addition,

fc0+δn
(
x(δ)

)
= x(ωδ).

So, for c close to c0, the set x{ n
√
c− c0)} is a cycle of period n of fc, and when c makes a

small turn around c0, the periodic points in the cycle x{ n
√
c− c0)} get permuted cyclically.

So, it is enough to show that for c ∈ C −M close enough to c0, the point ι−1c (1 . . . 10)
belongs to x{ n

√
c− c0}.

Equivalently, we must show that there is a sequence cj ∈ C−M converging to c0, such
that the sequence of periodic point yj = ι−1cj (1 . . . 10) converges to x0. Let cj ∈ RM(θ)
converge to c0. As in the previous proof, consider the following compact subsets of the
Riemann sphere C ∪ {∞}:

R(cj) := Rcj(θ) ∪ {cj,∞} and S(cj) := Rcj(θ/2) ∪Rcj

(
(θ + 1)/2

)
∪ {0,∞}.

Denote by U0(cj) the component of C− S(cj) containing Rcj(0) and by U1(cj) the other
component. Without loss of generality, extracting a subsequence if necessary, we may
assume that the sequence yj converges to a point y, and that the sequence R(cj) and
S(cj) have Hausdorff limits R and S. Passing to the limit on f ◦ncj (yj) = yj, we see that

f ◦nc0 (y) = y, and so, y is periodic for fc0 with period dividing n. In particular, it is
contained in the boundary of Kc0 . We must show that y = {x0}.

It follows from [PR, Sections 2 and 3] that R ∩ (C−Kc0) = Rc0(θ), the intersection of
R with the boundary of Kc0 is reduced to {x0} and the intersection of R with the interior
of Kc0 is contained in the immediate basin of x0. We cannot quite conclude that L is

contained in U?(c0), but rather that it is contained in U?(c0) ∪
◦
Kc0 . As in the previous

proof, it follows that the Hausdorff limit of U1(cj) is contained in U?(c0) ∪ U1(c0) ∪
◦
Kc0 .

Since ιcj(yj) = 1 . . . 10, we know that yj, fcj(yj), . . . , f
◦(n−2)
cj (yj) belong to U1(cj). So the

points y, fc0(y), . . . , f
◦(n−2)
c0 (y) belong to U?(c0)∪U1(c0)∪

◦
Kc0 . Since y is in the boundary

of Kc0 , we deduce that y, fc0(y), . . . , f
◦(n−2)
c0 (y) belong to U?(c0) ∪ U1(c0).

The dynamical rays landing at x0 divide U1(c0) in n − 1 connected components U j
1

labelled clockwise so that

V1(c0) = U1
1

fc0−→ U2
1

fc0−→ · · ·
fc0−→ Un−1

1

fc0−→ U?(c0) ∪ U0(c0).

The component U?(c0) maps with degree 2 to U1
1 = V1(c0) (see Figure 8).

Now, we claim that the orbit of y intersects U?(c0). Indeed, either y itself is in U?(c0),

or y is in U j
1 for some j ≥ 1. Then, f

◦(n−j)
c0 (y) ∈ U?(c0) ∪ U0(c0). Since it cannot be in

U0(c0), it belongs to U?(c0).

The map f ◦nc0 : U?(c0)→ C−U1(c0) is a proper map of degree 2 and U?(c0) ⊂ C−U1(c0).

Note that x0 ∈ U?(c0) is a multiple fixed point of f ◦nc0 and that there is an attracting petal
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contained in U?(c0). It follows from a version of the Lefschetz fixed point formula (see
[GM, Lemma 3.7]) that x0 is the only fixed point of f ◦nc0 contained in U?(c0).

As a consequence, the orbit of the periodic point y contains x0, and since x0 is a fixed
point, we have y = x0 as required. �

Corollary 4.7. The components of Wn whose labels contain a single 0 are adjacent.

Proof. Let θ := .1 . . . 10 and (c0, x0) := (γM(θ), γc0(θ)). By the above proposition every
component of Wn whose label is a shift of 1 . . . 10 contains (c0, x0) in its boundary. But
every n-periodic label containing a single 0 is indeed a shift of 1 . . . 10, the result follows.

�

4.6. Proof of Theorem 4.1. We will finally deduce that W n is connected. According to
Corollary 4.7, components of Wn whose label contain a single 0 have a common boundary
point. So, it is enough to show that a component of Wn whose label has at least two 0
has a common boundary point with a component of Wn whose label has one less 0.

The map F : C2 → C2 defined by

F (c, z) :=
(
c, fc(z)

)
restricts to an isomorphism F : Xn → Xn. It permutes the components of Wn as follows:
the label of F (C) is the shift of the label of C. In addition, two components C1 and C2

of Wn are adjacent if and only if F (C1) and F (C2) are adjacent.

Let C be a connected component of Wn whose label ι contains at least two 0. Let
ε1 . . . εn = σ◦k(ι) be maximal (in the lexicographic order) among the iterated shifts of ι.
Then, the angle θ := .ε1 . . . εn is maximal in its orbit. According to Lemma 4.2, εn = 0
and the kneading sequence ν(θ) is ε1 . . . εn−1?. According to Lemma 4.3, γM(θ) is the root
of a primitive hyperbolic component. According to Corollary 4.5, the component F ◦k(C)
which is labeled ε1 . . . εn−10 is adjacent to the component C ′ of Wn which is labeled
ε1 . . . εn−11. Then, F ◦(n−k)(C ′) is a component of Wn adjacent to F ◦(n−k)

(
F ◦k(C)

)
= C,

and its label contains one less 0 than the label of C.

This completes the proof of Theorem 4.1. �
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[Sc2] D. Schleicher, Internal addresses of the Mandelbrot set and Galois groups of polynomials,

arXiv:math/9411238v2, Feb. 2008.
[Si] J.H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Math. 241, Springer,

New York, 2007.

http://www.math.sunysb.edu/~jack/PREPRINTS/tsujii.ps
http://www.math.sunysb.edu/~jack/PREPRINTS/tsujii.ps

	1. Introduction
	2. Dynatomic polynomials
	3. Smoothness of the dynatomic curves
	3.1. Case 1 of Theorem 3.1
	3.2. Case 2 of Theorem 3.1
	3.3. Case 3 of Theorem 3.1

	4. Irreducibility of the dynatomic curves 
	4.1. Kneading sequences
	4.2. Filled-in Julia sets and the Mandelbrot set
	4.3. Outside the Mandelbrot set
	4.4. Labeling components of Wn
	4.5. Turning around critical points
	4.6. Proof of Theorem 4.1

	References

