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Abstract. Let f1 and f2 be rational maps with Julia sets J1 and J2, and let
Ψ : J1 → P1 be any continuous map such that Ψ◦f1 = f2 ◦Ψ on J1. We show
that if Ψ is C-differentiable, with nonvanishing derivative, at some repelling
periodic point z1 ∈ J1, then Ψ admits an analytic extension to P1 \ E1, where
E1 is the exceptional set of f1. Moreover, this extension is a semiconjugacy.
This generalizes a result of Julia [J].

Furthermore, if E1 = ∅ then the extended map Ψ is rational, and in this
situation Ψ(J1) = J2 and Ψ−1(J2) = J1, provided that Ψ is not constant. On
the other hand, if E1 6= ∅ then the extended map may be transcendental: for
example, when f1 is a power map (conjugate to z 7→ z±d) or a Chebyshev map
(conjugate to ±Qd with Qd(z + z−1) = zd + z−d), and when f2 is an integral
Lattès example (a quotient of the multiplication by an integer on a torus).
Eremenko [E] proved that these are the only such examples. We present a new
proof.

Introduction

Let f be a rational map of degree 2 or more. It is well-known that if the Julia
set J contains a smooth free arc then J is itself a real-analytic arc or Jordan curve.
Moreover, in this situation f is semiconjugate to a Blaschke product, and J lies on
a round circle or a straight line: in fact,

f ◦ Ψ = Ψ ◦B

where B is a Blaschke product and where Ψ is either a Möbius transformation or
a quadratic rational map which sends D and P1 \ D conformally onto P1 \ J . The
proof is carried out in two stages: one begins by promoting the given local property
to the entire Julia set, and concludes by deducing the global description of the map
itself. For details, see Chapter 5 of [S].

Our results here are in the same spirit, and our arguments follow a similar outline.
The crucial local hypothesis concerns the differentiability, suitably interpreted, of a
map whose domain may have empty interior. Consider any map h : Z → P1 where
Z ⊂ P1, and let ζ ∈ Z be any accumulation point. If ζ 6= ∞ 6= h(ζ) then we say
that h is C-differentiable at ζ if

lim
z→ζ

h(z) − h(ζ)

z − ζ

exists. Note the existence of a nonzero finite limit is unaffected by precomposition
or postcomposition by local analytic isomorphisms, and in particular by Möbius
transformations. Thus, it makes sense to speak of C-differentiability with nonvan-
ishing derivative even when ζ or h(ζ) is the point at infinity.

In what follows, we use the term analytic in the sense of Riemann surface theory.
As the relevant Riemann surfaces will all be open subsets of P1 our usage of this
term is identical with the classical usage of meromorphic.
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Theorem 1. Let f1 and f2 be rational maps of degrees ≥ 2 with Julia sets J1 and

J2, and let Ψ : J1 → P1 be continuous with Ψ ◦ f1 = f2 ◦ Ψ on J1. Suppose further

that Ψ is C-differentiable, with nonvanishing derivative, at some repelling periodic

point z1 ∈ J1. Then Ψ admits an analytic extension to P1 \ E1, where E1 is the

exceptional set of f1. Moreover, the extended map Ψ is a semiconjugacy: that is,

Ψ ◦ f1 = f2 ◦ Ψ on P1 \ E1.

Here we recall that the exceptional set of any rational map consists of at most
two points, and that any nonempty exceptional set is a superattracting cycle.

The proof of Theorem 1 begins with a preliminary step where we show that the
assumption on Ψ implies the existence of an analytic extension to a neighborhood
of z1. We then promote this local property to successively more global versions:
specifically, we first show that Ψ admits an analytic extension to a neighborhood
of J1, and then argue that Ψ admits a global analytic extension, at least to P1 \ E1.

In [J], Julia studied the equation Ψ ◦ f1 = f2 ◦ Ψ under the assumption that Ψ
is defined and holomorphic in a neighborhood of a repelling point z1 ∈ J1. He first
proved that Ψ has a maximal analytic extension defined on a Riemann surface Σ1

which in general is not a subset of P1. Then, he proved that if Σ1 is a subset of P1,
then P1 \ E1 ⊂ Σ1 and he gave examples where Σ1 = P1 \ E1 (see the discussion of
power maps, Chebyshev maps and Lattès examples below). Finally, he proved that
if f1 is a Blaschke product and Ψ has an analytic extension to a neighborhood of
J1, then it has a analytic extension to P1 \ E1. Our theorem 1 asserts that one can
get rid of the assumption that f1 is a Blaschke product and consider an arbitrary
rational map f1.

The possibility of an extension to P1 is discussed in Theorem 2 below. This
complementary result makes use of the following terminology, which is discussed in
more detail in Section 5 and [M2]:

A power map of degree d ≥ 2 is a rational map analytically conjugate to z 7→ z±d.

A Chebyshev map of degree d ≥ 2 is a rational map analytically conjugate to
±Qd where Qd is the Chebyshev polynomial of degree d defined by

Qd

(
z +

1

z

)
= zd +

1

zd
.

A Lattès example is a rational map f : P1 → P1 of degree ≥ 2 such that there
exists a commutative diagram

C/Λ = T
L

//

��

T = C/Λ

π

��

T /Gn ' P1
f

// P1 ' T /Gn

where

• Λ is a discrete additive subgroup of rank 2 of the complex numbers C,
• T = C/Λ is the quotient torus,
• Gn is the group of n-th roots of unity acting on T by rotation around a

base point, with n equal to either 2, 3, 4 or 6,
• T /Gn is the quotient space isomorphic to P1,
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• L : T → T is an affine map which commutes with the action of Gn.

If the affine map L is of the form z 7→ az + b with a ∈ Z, then we refer to f as an
integral Lattès example.

Theorem 2. Let f1 and f2 be rational maps of degrees ≥ 2, and let Ψ : P1\E1 → P1

be analytic with Ψ ◦ f1 = f2 ◦ Ψ on P1 \ E1. Suppose that Ψ does not extend to a

rational map P1 → P1, so that in particular E1 6= ∅. Then f1 is either a power map

or a Chebyshev map, and f2 is an integral Lattès example.

More precisely, there are discrete subgroups Γ ⊂ Σ ⊂ Isom(C) and an affine

map L : C → C with derivative a ∈ Z \ {−1, 0, 1} such that the following diagram

commutes

C
L

//

��

C

��

C/Γ ' P1 \ E1
f1

//

Ψ

��

P1 \ E1 ' C/Γ

Ψ

��

C/Σ ' P1
f2

// P1 ' C/Σ.

Here Isom(C) denotes the group of orientation-preserving Euclidean isometries
of C, that is, maps of the form z 7→ az+b with |a| = 1. In Section 5, we will discuss
which discrete subgroups Γ ⊂ Σ ⊂ Isom(C) and which affine maps L can occur.

Taken together, Theorems 1 and 2, along with well-known properties of rational
semiconjugacies, have the following consequence, which is perhaps slightly surpris-
ing given the apparently local nature of the assumptions.

Corollary 1. Let f1 and f2 be rational maps of degrees ≥ 2 with Julia sets J1

and J2, and let Ψ : J1 → J2 be a continuous surjection which semiconjugates the

restriction f1 to the restriction of f2. Assume further that Ψ admits an analytic

extension to a neighborhood of some point z1 ∈ J1. Then Ψ extends to a rational

semiconjugacy from f1 to f2. Moreover, if Ψ : J1 → J2 is a homeomorphism then

Ψ extends to a Möbius conjugacy.

Remark. Note that it is easy to give examples of transcendental semiconjugacies
from degree 1 rational maps to higher degree rational maps, namely maximally
continued inverse linearizing maps associated to repelling cycles and maximally
continued inverse repelling Fatou coordinates associated to parabolic cycles.

Remark. After submitting our manuscript, we were informed by the referee that
Theorem 2 was earlier shown by Eremenko [E]. We note that our argument differs
significantly from Eremenko’s. His proof involves the lamellarity (invariance under
the flow of a suitable vector field) of the equilibrium measure introduced by Brolin,
Lyubich and Freire-Lopès-Mañé. Our proof uses techniques available at Julia’s
time. More specifically, we estimate the number of points in lateral orbits for a
careful choice of compositions of f2 and inverse branches of f2. We show that if
f1 is not a power map or a Chebyshev map or if f2 is not a Lattès example, then
for a generic point z ∈ P1, the number of points in f−n

2 (z) grows faster than dn

for any integer d. This contradicts the fact that this number is at most Dn where
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D is the degree of the rational map f2. The connection with Eremenko’s proof
presumably lies in the fact that preimages of points equidistribute with respect to
the equilibrium measure.

1. Extension to a neighborhood of the repelling point

Henceforth, we work under the assumptions of Theorem 1: that is, we assume
that Ψ : J1 → P1 is continuous and C-differentiable, with nonvanishing derivative,
at a repelling periodic point z1 ∈ J1. Note that if z1 is fixed by the iterate f◦p

1

then z2 = Ψ(z1) is fixed by the iterate f◦p
2 . Since the passage to iterates does not

affect the Julia set or the exceptional set, we may assume without loss of generality
that fi fixes zi for i = 1, 2. Moreover, since the property of C-differentiability
with nonvanishing derivative is preserved under locally invertible analytic change
of variable, we may further assume that z1 = 0 = z2.

After these preliminary reductions, we have Ψ(z) = cz+ o(z) as z → 0, for some
c ∈ C∗. Moreover, since

c · f ′
1(0) + o(1) =

Ψ(f1(z))

z
=
f2(Ψ(z))

z
= f ′

2(0) · c+ o(1)

and since c 6= 0, the two maps fi have the same multiplier at 0. Let λ be this
common multiplier, let φi : Ui → C be normalized local linearizing maps, so that

φi ◦ fi(z) = λφi(z) and φ′i(0) = 1 for i = 1, 2, and set Ψ̃ = φ2 ◦ Ψ ◦ φ−1
1 . Then

Ψ̃(z) = cz+ o(z) as z ∈ φ1(U1 ∩ J1) tends to 0, and moreover Ψ̃(z/λ) = Ψ̃(z)/λ for
every z ∈ φ1(J1 ∩ U1). Furthermore, if z ∈ φ1(U1 ∩ J1) then zn = z/λn also lies in
φ1(U1 ∩ J1) for any positive integer n, and clearly

Ψ̃(zn)

zn
=

Ψ̃(z/λn)

z/λn
=

Ψ̃(z)

z
.

As n → ∞, we have zn → 0 and Ψ̃(zn)/zn → c, whence Ψ̃(z) = cz for every

z ∈ φ1(U1 ∩ J1). In particular, Ψ̃ extends analytically to a neighborhood of 0, so

the same is true for Ψ = φ−1
2 ◦ Ψ̃ ◦ φ1. We summarize this discussion as follows:

Lemma 1. Let f1 and f2 be rational maps of degrees ≥ 2 with Julia sets J1 and

J2, and let Ψ : J1 → P1 be continuous with Ψ ◦ f1 = f2 ◦ Ψ on J1. Suppose further

that Ψ is C-differentiable, with nonvanishing derivative, at some repelling periodic

point z1 ∈ J1. Then Ψ admits an analytic extension to a neighborhood of z1.

2. Extension to a neighborhood of the Julia set

We now show that Ψ extends analytically to a neighborhood of J1.

Lemma 2. The set of all points z ∈ J1 such that Ψ admits an analytic extension

to a neighborhood of z is forward invariant under f1.

Proof. Assume that Ψ extends analytically to a neighborhood of z ∈ J1 and
set w = Ψ(z). Let V be an open disk containing w, and let U be the connected
component of f−1

1 (V ) containing z. By assumption, if V is sufficiently small then
Ψ extends analytically to U . Moreover, in this situation the restriction f1 : U → V
is a branched cover, unramified except possibly at z. Consequently, there is a cyclic

group of analytic isomorphisms σ : U → U , all fixing z, such that for ζ, ζ̂ ∈ U we
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have f1(ζ) = f1(ζ̂) if and only if ζ̂ = σ(ζ) for some such σ. Furthermore, since
Ψ(f1(z)) = f2(Ψ(z)) for all z ∈ J1, it follows that f1 = f1 ◦ σ on U , whence

f2 ◦ Ψ = Ψ ◦ f1 = Ψ ◦ f1 ◦ σ = f2 ◦ Ψ ◦ σ

on the infinite set U ∩ J1. By uniqueness of analytic continuation, it follows that
f2 ◦ Ψ = f2 ◦ Ψ ◦ σ on U , whence f2 ◦ Ψ : U → P1 descends to a map which is
continuous on V and analytic on V \ {w}, whence analytic on all of V , and which
extends the given map Ψ. �

Now let W be a neighborhood of z1 ∈ J1 on which Ψ extends analytically. By
Montel’s Theorem, we have f◦n

1 (W ∩ J1) = J1 for some positive integer n. Conse-
quently, it follows from Lemma 2 that Ψ extends analytically to a neighborhood of
any given point in J1. To obtain the desired extension to a neighborhood of J1 we
apply the following well-known fact; we thank Lasse Rempe for helping to simplify
our original argument.

Lemma 3. Let Ψ : J → P1 be a map from a closed set J ⊆ P1, and suppose that

for each z ∈ J the map Ψ extends analytically to some neighborhood of z. Then Ψ
extends analytically to a neighborhood of J .

Proof. If J = P1 then Ψ is already analytic on all of P1 and there is nothing
further to show. Composing with a Möbius transformation if necessary, we may
therefore assume that J is a compact set in C.

For x ∈ C and r > 0, we denote by Dx(r) the open Euclidean disk with center x
and radius r. By assumption, for each x ∈ J there exists rx > 0 such that Ψ admits
an analytic extension Ψx defined on the disk Ux = Dx(rx). Consider the subdisks
Vx = Dx(1

3rx). Note that if Vx ∩ Vy 6= ∅ then |x− y| < 1
3rx + 1

3ry ≤ 2
3 max(rx, ry),

whence if rx ≤ ry then Vx ⊆ Uy. Moreover, in this situation it follows by uniqueness
of analytic continuation that if J ∩Vx contains an accumulation point then Ψx and
Ψy have the same restriction to Vx, whence the restrictions Ψx|Vx

and Ψy|Vy
agree

on Vx ∩ Vy .

As J ⊂
⋃

x∈J Vx, it follows by compactness that J ⊂
⋃N

j=1 Vxj
for some x1, . . . , xN

in J . We may assume without loss of generality that for some n < N , the inter-
section J ∩ Vxj

contains an accumulation point precisely for 1 ≤ j ≤ n. Since the

open set W =
⋃n

j=1 Vxj
contains every accumulation point of J , the complement

I = J \W consists of finitely many isolated points of J . It follows from the ob-
servations above that if 1 ≤ j, k ≤ n then Ψxj|Vxj

and Ψxk|Vxk
agree on Vxj

∩ Vxk
,

whence the maps Ψxj|Vxj
for 1 ≤ j ≤ n are all restrictions of some analytic map

defined on W , and the map so obtained agrees with Ψ on J \ I. Finally, for the
finitely many points y ∈ I, let Wy 3 y be pairwise disjoint open disks which are
also disjoint from W . The map just obtained now extends trivially to an analytic

extension of Ψ defined on the open neighborhood Ŵ = W ∪
⋃

y∈I Wy of J .

3. Extension to the complement of the exceptional set

Up to now we have shown that Ψ extends analytically to a neighborhood W of
J1. Here we obtain the desired analytic extension to P1 \ E1. Note that since J1

is compact, the neighborhood W contains all but finitely many Fatou components.
To treat the remaining components we will make use of the following:
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Lemma 4. Let f1 : Ω → Ω̃ be a proper analytic map between open sets Ω, Ω̃ ⊆ P1.

Let Ψ : Ω → P1 and f2 : Ψ(Ω) → P1 be analytic, let Ψ̃ : U → P1 be analytic, where

U 6= ∅ is open in Ω̃, and assume that Ψ̃ ◦ f1 = f2 ◦ Ψ on f−1
1 (U). Then Ψ̃ extends

analytically to Ω̃.

Proof. We claim that for any point w ∈ Ω̃, the value of f2 ◦Ψ(z) is independent of
the choice of preimage z ∈ f−1

1 (w). Note that since f1 is an open map, the points
w for which this is true form a relatively closed set. Consequently, it suffices to
verify the claim on a dense subset of Ω̃. Since f1 has only countably many critical
points, there are only countably many critical values, so the points which are not
critical values are dense in Ω̃: indeed, since f1 : Ω → Ω̃ is proper, the critical values
are discrete in Ω̃. Thus, we may assume without loss of generality that w is not a
critical value.

Fix a point u ∈ U which is not a critical value, and let γ be a path in Ω̃ which
connects u to w, and which avoids the set of critical values; note that by the
discreteness of critical values, such a path always exists. Now Ψ̃ is defined near u,
and moreover we have Ψ̃ = Ψ̃ ◦ f1 ◦ g = f2 ◦ Ψ ◦ g for any analytic germ g which
is locally inverse to f1 near u. Since f1 : Ω → Ω̃ is proper, and since there are no
critical values on γ, the germ g admits a unique analytic continuation along that
path, leading to an analytic germ h defined near w. It follows that the analytic
continuation of Ψ̃ along γ is the germ f2 ◦ Ψ ◦ h. Moreover, the resulting germ is
independent of the choice of γ: indeed, the analytic continuation of g along any
closed path which is based at u, and which avoids the critical values, is also locally
inverse to f1, whence the result of the corresponding continuation of the germ of Ψ̃
at u is the same germ Ψ̃.

It follows that the prescription w 7→ f2(Ψ(z)), where z ∈ Ω is any preimage of

w, gives a well-defined map ψ̃ : Ω̃ → P1. Moreover, since f1 is an open map, it
follows that ψ̃ is continuous. Furthermore, by construction ψ̃ is analytic away from
the set of critical values, and since the latter constitute a discrete set, it follows by
continuity that these are removable singularities, whence ψ̃ is analytic on Ω̃. Since
ψ̃ and Ψ̃ agree on U , the map ψ̃ is the desired analytic continuation of Ψ̃ to Ω̃. �

Proposition 1. Let f1 and f2 be rational maps of degrees ≥ 2 with Julia sets J1

and J2. Let Ψ : J1 → P1 be continuous with Ψ ◦ f1 = f2 ◦ Ψ on J1, and assume

that Ψ admits an analytic extension to a neighborhood of J1. Then Ψ admits an

analytic extension to P1 \ E1, where E1 is the exceptional set of f1.

Proof. Assume that Ψ : W → P1 is analytic on the open neighborhood W ⊃ J1.
Note that without loss of generality, we may choose W so that every connected
component of W intersects J1. Consequently, if the restriction Ψ|∂Ω extends ana-
lytically to a Fatou component Ω, then Ψ itself so extends. In view of Lemma 4 and
the fact that W must intersect every Fatou component, if Ψ extends analytically to
a Fatou component Ω then Ψ further extends to the image component f1(Ω). If Ω
is not totally invariant under f1 then the backward orbit of Ω consists of infinitely
many Fatou components, and all but finitely many lie in the given neighborhood
where Ψ is already analytic. It follows that Ψ extends analytically to every such
component Ω.

Suppose now that Ω is totally invariant under f1. Such a component is nec-
essarily a (super)attracting or parabolic basin, with associated fixed point ζ. In
thissituation we apply a similar argument to an appropriate collection of nested
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open subets of Ω. Let Uk = Ω \ f−k
1 (D), where D ⊂ Ω is an open disk chosen as

follows. In the (super)attracting case, we take any D 3 ζ which is small enough
that f1(D) lies compactly in D; in the parabolic case, we take D to be an attracting
petal, so here ζ ∈ ∂D. By construction, the restriction of f1 maps Uk+1 properly
to Uk, and Uk+1 ⊂ Uk, for every integer k ≥ 0. Moreover, if k is sufficiently large
then Uk ⊂ W , whence Ψ is analytic on such Uk, and furthermore Ψ semiconju-
gates f1 to f2 on Uk+1. Starting from the restriction of Ψ to such a set Uk, and
applying Lemma 4 inductively, we deduce that the restriction Ψ|∂Ω admits succes-
sive analytic extensions to the sets Uj with j < k, each such extension giving a

semiconjugacy on Uj+1. In particular, Ψ|∂Ω extends to an analytic map on Ω \D.

Furthermore, since Ω \D is connected with boundary containing ∂Ω, replacing D
by a smaller disk yields a further analytic extension. Thus, shrinking D to ζ, we
obtain an analytic extension of Ψ|∂Ω to Ω \ {ζ} whence, as above, it follows that Ψ
extends analytically to Ω \ {ζ}, giving a semiconjugacy on Ω \ {ζ}.

In the parabolic case we have ζ ∈ ∂Ω, so there is nothing left to show. If
ζ 6∈ E1 then there exists a preimage ξ 6= ζ, and ξ ∈ Ω by total invariance. If D
is sufficiently small then the component B 3 ξ of f−1

1 (D) is contained in Ω \ {ζ}.
Since Ψ◦f1 = f2◦Ψ on B\{ξ}, it follows from Lemma 4 that Ψ extends analytically
to Ω.

4. Rational semiconjugacies between rational maps

Here we review certain well-known properties of rational semiconjugacies, and
then deduce Corollary 1 from Theorems 1 and 2.

Lemma 5. Let f1 and f2 be rational maps with Julia sets J1 and J2, and let Ψ be

a rational map with Ψ ◦ f1 = f2 ◦ Ψ. If Ψ is not constant then f1 and f2 have the

same degree, and if this degree is 2 or more then Ψ(J1) = J2 and Ψ−1(J2) = J1.

Proof. To see that the degrees of f1 and f2 are equal, observe that

degΨ · degf1 = deg(Ψ ◦ f1) = deg(f2 ◦ Ψ) = degf2 · degΨ

and note that degΨ 6= 0 since Ψ is not constant. Assuming now that the common
degree is at least 2, we first show that Ψ(J1) ⊆ J2, whence J1 ⊆ Ψ−1(J2), and then
show conversely that Ψ−1(J2) ⊆ J1, whence J2 ⊆ Ψ(J1).

Recall that if f1 fixes z1 then f2 fixes z2 = Ψ(z1). Moreover, it follows from the
chain-rule that λ2 = λδ

1, where λi are the corresponding multipliers and where δ is
the local degree of Ψ at z1; thus, Ψ sends repelling fixed points of f1 to repelling
fixed points of f2. Applying this observation to iterates, we deduce more generally
that Ψ sends repelling periodic points of f1 to repelling periodic points of f2. Since
the Julia sets J1 and J2 are the closures of the corresponding sets of repelling
periodic points, it follows that Ψ(J1) ⊆ J2.

Conversely, let w be periodic for f2 and let z be any point in the preimage
Ψ−1(z). Note that such a point z need not be periodic for f1; however, since the
forward orbit of z under f1 lies in the Ψ-preimage of the forward orbit of w by
f2, such a point z is at least preperiodic. Considering multipliers as above, we
deduce that z eventually maps to a repelling periodic cycle. Applying the density
of repelling periodic points once again, we conclude that Ψ−1(J2) ⊆ J1. �

Note that the same considerations show that a rational semiconjugacy sends
attracting periodic points to attracting periodic points of f2. In fact, with a bit more
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care it may be shown that parabolic, indifferently linearizable, and indifferently
nonlinearizable periodic points are sent to periodic points of the same character.

Proof of Corollary 1. It follows from Theorem 1 that Ψ admits an analytic
extension to a semiconjugacy defined on P1 \ E1, and we claim that this extension
is in fact rational. Indeed, if Ψ has an essential singularity then it follows from
Theorem 2 that E1 6= ∅, whence J1 is nowhere dense, and moreover that J2 = P1.
On the other hand, since Ψ is a nonconstant analytic map, the image Ψ(J1) must be
a meagre subset of P1, whence J2 = Ψ(J1) 6= P1 for a contradiction. Thus, Ψ must
be a rational semiconjugacy, whence Ψ−1(J2) = J1 by Lemma 5. Consequently, if
Ψ restricts to a homeomorphism between J1 and J2 then every z ∈ J2 has a unique
preimage under Ψ. Since J2 is infinite, it follows that Ψ has degree 1, whence Ψ is
a Möbius transformation. �

5. Some transcendental semiconjugacies between rational maps

Following Milnor [M2], we will say that that a rational map of degree d ≥ 2 is
a power map if it is analytically conjugate to either pd : z 7→ zd or p−d : z 7→ z−d.
The power maps are the rational maps f whose exceptional set Ef contains two
points which are either fixed (when it is conjugate to pd) or exchanged (when it is
conjugate to p−d). The restriction of a power map f to P1 \ Ef is a covering map
of degree d. The Julia set of p±d is the unit circle.

A rational map of degree d ≥ 2 will be called a Chebyshev map if it is conjugate
to ±Qd where Qd is the degree d Chebyshev polynomial, defined by the equation

Qd

(
z +

1

z

)
= zd +

1

zd
.

For example

Q2(z) = z2 − 2, Q3(z) = z3 − 3z and Q4(z) = z4 − 4z2 + 2.

The Julia set of ±Qd is the segment [−2, 2]. The postcritical set of ±Qd consists of
the three points {−2, 2,∞}. If d is even, −Qd is conjugate to Qd by −Id. However,
when d is odd, Qd fixes the postcritical set whereas −Qd permutes the 2 points of
the postcritical set, and hence cannot be conjugate to Qd.

The following construction due to Lattès [L] is well-known (see also [M2] for a
detailed discussion on Lattès examples). If Λ is a discrete group of translations of
rank 2, then the quotient surface C/Λ is a torus T . Moreover, if Gn is the group
of n-th roots of unity acting on T by rotation around a base point with n equal to
either 2, 3, 4 or 6, then the quotient surface T /Gn is a Riemann surface isomorphic
to P1. If L : C/Λ → C/Λ is an affine map z 7→ az + b which commutes with
the action of Gn, then there is an induced rational map L/Gn : T /Gn → T /Gn

from the quotient surface to itself. This rational map has degree |a|2, its Julia
set is T /Gn and its postcritical set is the set of critical values for the projection
T → T /Gn.

A rational map of degree D ≥ 2 is said to be a Lattès example if it is conformally
conjugate to a map of the form L/Gn : T /Gn → T /Gn. We say that f is an
integral Lattès example if D = d2 with d ≥ 2 an integer and L(z) = az + b with
a = ±d. By definition, for such a map f there is a discrete subgroup Σ ⊂ Isom(C)
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and an affine map L : z 7→ az + b such that the following diagram commutes:

C
L

//

��

C

��

C/Σ ' P1
f

// P1 ' C/Σ.

The subgroup Λ ⊂ Σ of translations is a normal subgroup of rank 2, Σ is an
extension of Λ of degree n, and Σ/Λ ' Gn acts on the torus T = C/Λ by rotation
around a base point.

Note that if Γ1 ⊂ Λ is a subgroup of rank 1 then the projection C → C/Σ factors
as C → C/Γ1 → C/Σ. If f is an integral Lattès example, so that L(z) = az + b
with a ∈ Z \ {−1, 0, 1}, then have the following commutative diagram:

C
L

//

��

C

��

C∗ ' C/Γ1
f1

//

Ψ1

��

C/Γ1 ' C∗

Ψ1

��

P1 ' C/Σ
f

// C/Σ ' P1

where f1 is a power map analytically conjugate to z 7→ za. This construction shows
the existence of transcendental semiconjugacies between power maps and integral
Lattès examples.

Note that the subgroup Λ of Σ has index n. If n is even, necessarily 2, 4 or 6,
then Γ1 is an index 2 subgroup of some Γ2 ⊂ Σ. The projection C → C/Σ factors
as C → C/Γ2 → C/Σ. In this situation, if f is an integral Lattès example, so that
L(z) = az+b with a ∈ Z\{−1, 0, 1}, then have the following commutative diagram:

C
L

//

��

C

��

C ' C/Γ2
f2

//

Ψ2

��

C/Γ2 ' C

Ψ2

��

P1 ' C/Σ
f

// C/Σ ' P1

where f2 is a Chebyshev map. If Gn acts on C/Λ by rotation around a fixed point
of L, then f2 is conjugate to Qd with d = |a|. This is always the case when a is
odd. Otherwise, f2 is conjugate to −Qd. This construction shows the existence
of transcendental semiconjugacies between Chebyshev maps and integral Lattès
examples for which Λ has even index in the extension Σ.

Note that if Ψ is a semiconjugacy between two rational maps f and g, then
Ψ ◦ f◦k is another such semiconjugacy, for any positive integer k. This observation
relates to the above discussion as follows.

If Γ1 ⊂ Γ′
1 are rank 1 subgroups of Λ, then Γ′

1/Γ1 ' Z/kZ for some positive
integer k. The following commutative diagram shows that the semiconjugacy Ψ1
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associated to Γ1 may be viewed as Ψ′
1 ◦ f

◦k
1 , where Ψ′

1 is the semiconjugacy asso-
ciated to Γ′

1:

C
L

//

��

C

��

C/Γ1
f1

//

f◦k
1

��

C/Γ1

f◦k
1

��

C/Γ′
1 ' C/Γ1

f1

//

Ψ′

1

��

C/Γ1 ' C/Γ′
1

Ψ′

1

��

C/Σ
f

// C/Σ

Similarly, if Σ contains an involution and if Γ2 ⊂ Γ′
2 ⊂ Σ are subgroups such that Γ1

has index 2 in Γ2 and Γ′
1 has index 2 in Γ′

2, then the semiconjugacy Ψ2 associated
to Γ2 may be viewed as Ψ′

2 ◦ f
◦k
2 , where Ψ′

2 is the semiconjugacy associated to Γ′
2.

We now present a list of the semiconjugacies which may be obtained through
admissible choices of Γ ⊂ Σ ⊂ Isom(C). In the following section, we will show that
up to conjugacies with Möbius transformations, these are the only transcendental
semiconjugacies between rational maps of degrees ≥ 2.

For each Lattès example f : P1 → P1 there is an associated “ramification index”
function r : P1 → N which may be characterized as the unique function satisfying
the identity

r
(
f(z)

)
= degf (z) · r(z)

for which r(z) = 1 outside the postcritical set (see [DH] or [M2] for example). If
f : P1 → P1 is conformally conjugate to the quotient map L/Gn : T /Gn → T /Gn

and if z corresponds to Θ(τ0) with τ0 ∈ T and Θ : T → T /Gn ' P1 the projection,
then r(z) = degΘ(τ0). The possible collections of ramification indices are

• {2, 2, 2, 2} if n = 2,
• {3, 3, 3} if n = 3,
• {2, 4, 4} if n = 4 and
• {2, 3, 6} if n = 6.

We organize the integral Lattès examples in four classes according to which group of
n-th roots of unity acts on the torus T = C/Λ, equivalently on the set of ramification
indices. We subdivide each class according to whether the derivative a of the affine
map L is even or odd. If a is odd and n = 2 or n = 4, we may further distinguish
the cases in which Gn does, or does not, act on T = C/Λ by rotation around a
fixed point of L : T → T . Finally, in each case, we may describe the postcritical
dynamics of f in terms of the ramification indices: for example, 2 7→ 6 means that
a point with ramification index 2 is mapped to a point with ramification index 6.
In all cases besides {3, 3, 3}, replacing L by −L yields the same Lattès example.
We obtain the following tables.
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ramification Gn acts on T by rotation Gn does not act on T by rotation
indices around a fixed point of L around a fixed point of L

{2, 2, 2, 2}
a even

2

2

2

2

No Lattès example

{2, 2, 2, 2}
a odd

2 2

2 2

2 2

2 2

{3, 3, 3}
a = 0 mod 3

3

3
3

No Lattès example

{3, 3, 3}
a = 1 mod 3

3 3

3

3

3

3

{3, 3, 3}
a = 2 mod 3

3 3

3

No Lattès Example

{2, 4, 4}
a even

4

2
4

No Lattès example

{2, 4, 4}
a odd

4 4

2

4 4

2

{2, 3, 6}
a = 0 mod 6

2

3
6

No Lattès example

{2, 3, 6}
a = 1 mod 6
a = 5 mod 6

2 6

3

No Lattès example

{2, 3, 6}
a = 2 mod 6
a = 4 mod 6

2 6

3

No Lattès example

{2, 3, 6}
a = 3 mod 6

3 6

2

No Lattès example
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We use the notation d = |a|. Recall that when a is even, Qd is conjugate to −Qd

and the dynamics in the postcritical set is

2 2
.

When a is odd we need to distinguish two cases: for Qd, the dynamics in the
postcritical set of Qd is

2 2

and for −Qd, the dynamics in the postcritical set of −Qd is

2 2
.

In the following table, we list the power and Chebyshev maps which are semi-
conjugate to the various Lattès examples.

ramification Gn acts on T by rotation Gn does not act on T by rotation
indices around a fixed point of L around a fixed point of L

{2, 2, 2, 2} pd, p−d, Qd pd, p−d, −Qd

{3, 3, 3}
a > 0

pd pd

{3, 3, 3}
a < 0

p−d p−d

{2,4,4} pd, p−d, Qd pd, p−d, −Qd

{2,3,6} pd, p−d, Qd No Lattès example

6. Transcendental semiconjugacies

For the remainder of this paper, we work under the assumptions of Theorem 2:
that is, we assume that Ψ : P1 \ E1 → P1 is a transcendental semiconjugacy from
f1 to f2. In particular, the exceptional set E1 is nonempty, and at least one point
in E1 is an essential singularity of Ψ. We will first consider the case where f1 is a
polynomial and Ψ has an essential singularity at infinity. We will then deduce the
general case.

Henceforth we write p for f1 and F for f2. We let d be the degree of p and D
the degree of F . We denote by Kp the filled-in Julia set of p, and by JF the Julia
set of F . Consider the Green’s function Gp associated to p, namely

Gp(z) = lim
n→∞

1

dn
log+ |p◦n(z)|.
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Recall that if η is greater than

ηp = sup
p′(c)=0

G(c)

then the corresponding equipotential

{z ∈ C : Gp(z) = η}

is a Jordan curve: indeed, the normalized Böttcher coordinate botp extends an-
alytically and univalently to the set Ωp where Gp exceeds ηp, and there we have
Gp = log |botp|.

Let Hp be the right half-plane

Hp := {z ∈ C : Re(z) > ηp}

and define Φ : Hp → P1 by

Φ := Ψ ◦ bot−1
p ◦ exp .

The map bot−1
p ◦ exp : Hp → Ωp is a universal covering. For all z ∈ Hp,

Φ(z + 2iπ) = Φ(z) and Φ(d · z) = F
(
Φ(z)

)
.

In particular, for any integer k, we have the following equality:

F ◦k
(
Φ(z)

)
= F ◦k

(
Φ(z + 2iπd−k)

)
.

Proposition 2. Assume that z1 ∈ Hp and z2 ∈ Hp are not critical points of Φ.

Then there exists an affine map A : z 7→ az + b which sends z1 to z2 and such that

Φ ◦A = Φ in a neighborhood of z1.

Proof. Since Φ is locally univalent at z1 and z2, there exist a neighborhood U of
Φ(z1) = Φ(z2), and neighborhoods U1 3 z1 and U2 3 z2, such that the restrictions
Φ : U1 → U and Φ : U2 → U are homeomorphisms. We wish to show that that the
homeomorphism

A := (Φ|U2
)−1 ◦ (Φ|U1

) : U1 → U2

is an affine map.
Consider the following vector fields defined on U :

X1 := (Φ|U1
)∗

1

2iπ

d

dz
and X2 := (Φ|U2

)∗
1

2iπ

d

dz
.

If

X1 = ξ1(z)
d

dz
and X2 = ξ2(z)

d

dz
then

[X1, X2] =
(
ξ1(z)ξ

′
2(z) − ξ′1(z)ξ2(z)

) d

dz
.

The above commutator vanishes if and only if X1 and X2 are equal up to multipli-
cation by a constant, in which case the derivative of A is constant. Thus, A is an
affine map if and only if X1 and X2 commute.

Given any open set V compactly contained in U , if ε is sufficiently small, the
flows φ1(t, z) of X1 and φ2(t, z) of X2 are defined on [−ε, ε] × V and the maps

exp(tX1) : z 7→ φ1(t, z) and exp(tX2) : z 7→ φ2(t, z)

are univalent on V .
Given univalent maps f : U → C and g : U → C, we will denote by 〈f, g〉 the

map g−1 ◦ f−1 ◦ g ◦ f where defined.
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Lemma 6. Assume that f and g are analytic in [−ε, ε] × V for some ε > 0 and

some open set V ⊂ C, with

fs(z) := f(s, z) = z + s · ξ1(z) + o(s), and gt(z) := g(t, z) = z + t · ξ2(z) + o(t)

for some holomorphic vector fields ξ1(z)
d
dz and ξ2(z)

d
dz . Then

〈fs, gt〉 (z) = z + st · ξ3(z) + o(st)

where ξ3(z)
d
dz = [ξ1(z)

d
dz , ξ2(z)

d
dz ].

Proof. Note that 〈fs, gt〉 − Id depends analytically on s and t and identically
vanishes when s = 0 or t = 0. Thus,

〈fs, gt〉 (z) = z + st · ξ3(z) + o(st)

for some holomorphic vector field ξ3. We have

gt ◦ fs(z) = z + s · ξ1(z) + t · ξ2(z) + st · ξ′2(z)ξ1(z) + o(s) + o(t),

f−1
s ◦ gt ◦ fs(z) = z + s · ξ1(z) + t · ξ2(z) + st · ξ′2(z)ξ1(z)

−s · ξ1(s) − st · ξ′1(z)ξ2(z) + o(s) + o(t)

= z + t · ξ2(z) + st · ξ′2(z)ξ1(z) − st · ξ′1(z)ξ2(z) + o(s) + o(t)

〈fs, gt〉 (z) = z + t · ξ2(z) + st · ξ′2(z)ξ1(z) − st · ξ′1(z)ξ2(z)

−tξ2(z) + o(s) + o(t)

= z + st ·
(
ξ1(z)ξ

′
2(z) − ξ′1(z)ξ2(z)

)
+ o(s) + o(t).

It follows that

st ·
(
ξ1(z)ξ

′
2(z) − ξ′1(z)ξ2(z)

)
− st · ξ3 = o(s) + o(t)

whence ξ3(z)
d
dz = [ξ1(z)

d
dz , ξ2(z)

d
dz ]. �

Given i1, . . . , in ∈ {1, 2}, if ε is sufficiently small, the map ψ defined by

ψ(t1, . . . , tn, z) :=
〈〈

〈exp(t1Xi1), exp(t2Xi2)〉 , . . .
〉
, exp(tnXin

)
〉
(z)

is defined and analytic on [−ε, ε]n × V . It follows from the previous lemma and by
induction on n that

ψ(t1, . . . , tn, z) = z + t1t2 · · · tn · υn(z) + o(t1t2 · · · tn)

where

υn(z)
d

dz
=

[[
[Xi1 , Xi2 ], . . .

]
, Xin

]
= Yn.

We will denote by ψt the map z 7→ ψ(t, . . . , t, z). If t is sufficiently small, then
ψt is analytic and univalent on V . Moreover, we have

ψt(z) = z + tn · υn(z) + o(tn).

Lemma 7. If Yn does not identically vanish on U , then there exist c > 0 and

z0 ∈ U such that for all sufficiently small t, the orbit of z0 under forward iteration

of ψt contains at least c/tn points.

Proof. Choose a point z0 which is not a zero of Yn and work in a local coordinate
around z0 in which Yn = d

dz . If r > 0 and ε > 0 are sufficiently small, then for all
t ∈ [−ε, ε] the map ψt is defined and univalent on D(z0, r), with

∣∣∣ψt(z) − z − tn
∣∣∣ ≤

1

2
tn.
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Since the image of any point z ∈ D(z0, r) lies strictly to the right of z, the orbit of
z0 consists of distinct points. Moreover, it follows by induction that for j ≤ 2r

3tn we
have

ψ◦j
t (z0) ∈ D(z0 + jtn, jtn/2) ⊆ D(z0, r)

whence we may take c = 2r/3. �

Lemma 8. If k is sufficiently large then F ◦k ◦ ψd−k = F ◦k on V .

Proof. We claim that if W is compactly contained in U then for all sufficiently
large k we have F ◦k ◦ φj(±d−k, z) = F ◦k(z) for j = 1, 2 and any z ∈W . Indeed, if
Φ(z1) = z = Φ(z2) where z1 ∈ U1 and z2 ∈ U2, then we have

F ◦k ◦ Φ(zj ± 2iπd−k) = F ◦k ◦ Φ(zj) = F ◦k(z)

for j = 1, 2 and every positive integer k, so if k is large enough that φj(±d−k, z) is
defined, then we have

F ◦k ◦ φj(±d
−k, z) = F ◦k ◦ Φ(zj ± 2iπd−k) = F ◦k(z).

The assertion now follows by a straightforward induction on the size of the relevant
commutator. �

Consequently, if Yn does not identically vanish on U , then for large enough k we
may find c ·dkn distinct points having the same image by F ◦k, whence c ·dkn ≤ Dk,
and thus

dn ≤ D and n ≤
logD

log d
.

Lemma 9. If the vector fields X1 and X2 do not commute, then for every integer

n ≥ 2 there exist i1, . . . , in ∈ {1, 2} such that

Yn :=
[[

[Xi1 , Xi2 ], . . .
]
, Xin

]

does not identically vanish on U .

Proof. We will prove that we can find such a commutator by induction on n.
The property holds for n = 2 by assumption that X1 and X2 do not commute.
Let us assume that Yn has already been produced. Now Yn cannot commute with
both X1 and X2, since otherwise we would have Yn = ciXi for some ci 6= 0, in
which case X1 and X2 would commute. If Yn does not commute with X1 we choose
Yn+1 = [Yn, X1], and otherwise we choose Yn+1 = [Yn, X2]. �

We thereby deduce that X1 and X2 commute, whence A is an affine map. This
completes the proof of the proposition.

Proposition 3. The map Φ : Hp → P1 admits an analytic extension Φ̂ : C → P1.

Moreover, Φ̂(z1) = Φ̂(z2) if and only if there is an isometry A : C → C sending z1
to z2 such that Φ̂ ◦A = Φ̂.

Proof. Since Ψ has an essential singularity at infinity, there are at most two values
which are omitted near infinity. Since Φ has isolated critical points in Hp, the set of
critical values is countable. Thus, we may find a point w ∈ P1 which is not a critical
value of Φ, and points z1, z2 ∈ Hp with Re(z2) > Re(z1) and Φ(z1) = w = Φ(z2).
In view of Proposition 2, there exists an affine map A : C → C sending z1 to z2
such that Φ ◦A = Φ in a neighborhood of z1.
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Note that V = A−1(Hp) ∩ Hp is nonempty, since it contains z1, and also con-
nected: indeed, V is either a sector (if a /∈ R−) or a strip (if a ∈ R−). Since
Φ ◦A = Φ near z1, it follows by uniqueness of analytic continuation that Φ ◦A = Φ
on V . There are various cases to consider:

• If A is a translation then, since Re(z2) > Re(z1), the orbit of any point in
C under forward iteration of A eventually lies in Hp. Thus, Φ extends to
C by the formula Φ(z) = Φ ◦A◦n(z), where n is chosen sufficiently large so
that A◦n(z) ∈ Hp.

• If A = az + b with a 6= 1 then A has a fixed point α = b
1−a .

(1) If α ∈ Hp then α ∈ V , whence Φ ◦ A = Φ in a neighborhood of α.
Exchanging z1 and z2 and replacing A by A−1 if necessary, we may
assume without loss of generality that |a| ≤ 1, so that V contains the
forward orbit under A of any point sufficiently close to α. Since Φ
is not constant, such an orbit is necessarily finite, whence a is a root
of unity and A is a rational rotation. Consequently, the orbit of any
point in C must intersect Hp, whence Φ extends to C by the formula
Φ(z) = Φ ◦A◦n(z), where n is chosen so that A◦n(z) ∈ Hp.

(2) If a < 0 then the fixed point α lies in the segment [z1, z2] ⊂ Hp. It
follows from (1) that a = −1, whence Φ extends to C.

(3) If α /∈ Hp and a > 0 then since Re(z2) > Re(z1) we must have a > 1,
so A(Hp) ⊆ Hp whence V = Hp, and thus Φ ◦A = Φ on Hp. It follows
that Φ takes the same value at z and the points

A−k
(
Ak(z) + 2iπ) = z +

2iπ

ak

for positive integers k. Since these points acculumate in Hp, and since
Φ is not constant, this case cannot occur.

(4) If α /∈ Hp and a 6∈ R then we may replace z2 by z2 + 2iπk and A by
Ak = A+ 2iπk, so that the fixed point becomes

αk =
b+ 2iπk

1 − a
.

If a 6∈ R is and −k · Im(a) is sufficiently large, then αk ∈ Hp. It follows
from (1) that Φ extends to C, and that A is a rational rotation.

We denote by Φ̂ the analytic extension of Φ to C. If Φ̂(z1) = w = Φ̂(z2) then, by

construction of Φ̂, for j = 1, 2 there exist isometries Aj such that z′j = Aj(zj) ∈ Hp

and such that Φ̂ ◦Aj = Φ̂. Now if there is an isometry A : C → C sending z′1 to z′2
such that Φ ◦A = Φ, then the isometry A−1

2 ◦A ◦A1 sends z1 to z2, and

Φ̂ ◦A−1
2 ◦A ◦A1 = Φ ◦A ◦A1 = Φ ◦A1 = Φ̂

near z1, whence everywhere. Thus, we may assume without loss of generality that
z1 and z2 belong to Hp.

In any neighborhood of w, we may find a point w∗ which is not a critical value
of Φ and which has a preimage z∗1 ∈ Hp near z1 and a preimage z∗2 ∈ Hp near
z2. Moreover, if w∗ is sufficiently close to w then we may arrange that z1 is the
preimage of w closest to z∗1 , and that z2 is the preimage of w closest to z∗2 . Since
neither z∗1 nor z∗2 are critical points of Φ, there exists an isometry A sending z∗1 to
z∗2 such that Φ ◦A = Φ. This isometry permutes the the preimages of w, and sends
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the one closest to z∗1 to the one closest to z∗2 . Thus, we have A(z1) = z2, whence A
is the required isometry.

Let Σ be the group of isometries A : C → C such that Φ ◦ A = Φ. Each such
isometry acts as a permutation of Φ−1(w), for any w ∈ P1; note that if such a set
is nonempty it is necessarily infinite, as Φ commutes with translation by 2iπ. Since
the preimage of any point w ∈ P1 is a discrete set, and since any point z ∈ C is
fixed by only finitely elements of Σ, it follows that Σ is a discrete group. We denote
by π : C → C/Σ the canonical projection from C to the orbifold C/Σ.

Since for any points z1 and z2 such that Φ(z1) = Φ(z2) there exists A ∈ Σ

sending z1 to z2, it follows that Φ̂ : C → P1 induces an injective map ι : C/Σ → P1

such that the following diagram commutes:

C

π

��

Φ̂

""E

E

E

E

E

E

E

E

E

C/Σ ι
// P1.

Moreover, since Φ(d · z) = F
(
Φ(z)

)
on Hp, we also have the following commutative

diagram:

C
z 7→d·z

//

ι◦π

��

C

ι◦π

��

C/Σ ' P1
F

// P1 ' C/Σ.

Proposition 4. The rational map F is a Lattès example of degree D = d2 induced

by multiplication by d on a torus.

Proof. We have seen that Σ is a discrete group of isometries of C. Let Λ ⊆ Σ be
the subgroup consisting of translations. Note that Λ contains the translation by
2iπ. We claim that Λ has rank 2. Indeed, if Σ were of rank 1 then

• Either σ would be generated by z 7→ z+ 2iπ, and each point w ∈ P1 would
have at most one preimage by Φ modulo 2iπ,

• Or σ would be generated by z 7→ z + 2iπ and some order 2 rotation, and
each point w ∈ P1 would have at most two preimages by Φ modulo 2iπ.

However, using Picard’s theorem we have seen that there are points w ∈ P1 whose
preimages under Φ have arbitrarily large real parts.

Since Σ has rank 2, it follows that C/Λ is a torus T . One may show (see [M2]
for example) that G = Σ/Λ is a cyclic group of order n ∈ {2, 3, 4, 6}, which acts on
T by rotation around a base point. Multiplication by d in C induces an affine map
L : T → T which commutes with the action of G. Moreover, there is an analytic
map Θ : T → P1, necessarily of finite degree, such that the following diagram
commutes:

T
L

//

Θ
��

T

Θ
��

T /G ' P1
F

// P1 ' T /G.
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It follows that F is a Lattès example. Since F is induced by multiplication by d on
the torus T , the degree of F is D = d2.

Proposition 5. The polynomial p is conjugate to either z 7→ zd or to ±Qd. More-

over, if p is conjugate to ±Qd then n 6= 3.

Proof. We may assume without loss of generality that p is not conjugate to a
power map, whence Ψ is defined on C, and every point z ∈ C has infinite backward
orbit under p.

Consider the ramification function rF : P1 → N associated to the Lattès map F .
Recall that rF takes the value 1 outside of the postcritical set, and that

rF
(
F (w)

)
= degF (w) · rF (w)

for every w ∈ P1. These properties determine rF uniquely (for details, see [DH],
[M] or [M2]). Note further that

rF
(
Φ̂(z)

)
= degΦ̂(w)

for every z ∈ C. Now consider the consider the function rp : C → Q given by

rp(z) =
rF

(
Ψ(z)

)

degΨ(z)
.

Since F ◦ Ψ = Ψ ◦ p, we have

degF

(
Ψ(z)

)
·degΨ(z) · rp(z) = rF

(
F ◦Ψ(z)) = rF

(
Ψ◦p(z)

)
= degΨ

(
p(z)

)
· rp

(
p(z)

)

and

degF

(
Ψ(z)

)
· degΨ(z) = degΨ

(
p(z)

)
· degp(z)

whence

(1) rp
(
p(z)

)
= degp(z) · rp(z).

Note that if rp(z) 6= 1 then rF
(
Ψ(z)

)
6= 1 or degΨ(z) 6= 1. Thus, the points

where rp differs from 1 are either critical points of Ψ or preimages of the finitely
many points where rF differs from 1; note that any bounded region contains only
finitely many such points. Since any point z ∈ C has infinite backward orbit under
p, there exist backward orbit points where rp takes the value 1. It follows that rp
is an integer-valued function.

The map bot−1
p ◦exp is locally univalent near any z ∈ Hp, so if w = bot−1

p ◦exp(z)
then

rF
(
Ψ(z)

)
= rF

(
Φ(z)

)
= degΦ(z) = degΨ(w).

It follows that rp is identically 1 in the region where Gp exceeds ηp. Consequently,
the set S = {z ∈ C : rp(z) > 1} is finite. Note that S contains the postcritical
set Pp ⊂ C of p, by equation (1) and the fact that rp is integer-valued. Thus, p is
postcritically finite. Moreover, as the only way to have rp(z) = 1 and rp

(
p(z)

)
> 1

is for z to be a critical point of p, we in fact have S = Pp, and furthermore

p−1(Pp) = Pp ∪ Cp

where Cp ⊂ C denotes the the set of (finite) critical points of p. Applying the
Riemann-Hurwitz formula to p : C \ (Pp ∪ Cp) → C \ Pp, we deduce that

(2) 1 − card(Pp ∪ Cp) = d ·
(
1 − card(Pp)

)
.
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Since p has d − 1 critical points counting multiplicity, we have k ≤ d − 1 where k
is the number not counting multiplicity. Setting ` = card(Pp) ≥ 1, we deduce from
equation (2) that 1 − (` + m) ≤ d · (1 − `), whence (d − 1)(` − 1) ≤ m ≤ d − 1.
Thus, we must have ` ≤ 2.

If ` = 1, equation (2) implies that card(Pp ∪ Cp) = 1, whence p has only one
critical point, and this point is fixed by p. But then p is conjugate to z 7→ zd,
contrary to assumption. Thus, we must have ` = 2, whence equation (2) implies
that card(Pp∪Cp) = d+1. It follows that p has d−1 simple critical points, none of
which is postcritical. Conjugating with an affine map if necessary, we may assume
that Pp = {−2, 2}.

Let π : P1 → P1 be the degree 2 ramified covering given by

π(z) = z +
1

z
.

Note that π has critical points at −1 and 1, with images −2 and 2, and that
π : P1\{−1, 1} → P1\{−2, 2} is a covering map of degree 2. The map p◦π : P1 → P1

has simple critical points at all the preimages of +1 and −1, along with d−1 critical
points at 0 and d − 1 critical points at ∞. It follows that there exists a (unique)
lift p̃ fixing ∞ such that the following diagram commutes:

P1
p̃

//

π

��

P1

π

��

P1
p

// P1.

The degree d rational map p̃ : P1 → P1 has d− 1 critical points at the fixed point
∞, whence p̃ polynomial. Since the preimages of 0 by p̃ are preimages of ∞ by p◦π,
we deduce that p̃−1(0) = {0}, whence we must have p̃(z) = azd for some a ∈ C∗.
Finally, since π(p̃(1)) = p ◦ π(1) ∈ Pp = {−2, 2}, it follows that p̃(1) = ±1, whence
p̃(z) = ±zd. If p̃(z) = zd, then p = Qd, and otherwise p = −Qd.

To complete the proof of the proposition, note than if p is conjugate to ±Qd

then rp(±2) = 2, whence rF
(
Ψ(±2)

)
must be even. On the other hand, if n = 3

then rF takes the value 1 at all but three points where the value is 3 (see [M2]).

As a corollary of Propositions 4 and 5, we deduce that if f1 and f2 are rational
maps related by a transcendental semiconjugacy Ψ : P1 \E1 → P1, and if f1 fixes E1

pointwise, then f1 is a power map or a Chebyshev map and f2 is a Lattès example.
To complete the proof of Theorem 2, we must consider the case where f1 exchanges
the exceptional points: note that up to Möbius conjugacy we then have f1(z) = z−d

for some integer d ≥ 2.

Proposition 6. Let F be a rational map. If there exists a transcendental semi-

conjugacy Ψ : C∗ → P1 between the power map z 7→ z−d and F , then F is a Lattès

example induced by an affine map with derivative −d.
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Proof. Let p be the power map z 7→ z−d. Since Ψ is a transcendental semiconju-
gacy between p◦2 and F ◦2, we have the following commutative diagrams:

C
z 7→d2·z

//

exp

��

C

exp

��

C∗
p◦2

//

Ψ

��

C∗

Ψ

��

P1

F◦2

// P1

and

C

π

��

Ψ◦exp

""E

E

E

E

E

E

E

E

E

C/Σ ι
// P1.

Here Σ is a discrete group of isometries of C, the map π : C → C/Σ is the canonical
projection, and the map ι : C/Σ → P1 an isomorphism. Since exp : C → C

conjugates multiplication by −d to p and since Ψ semiconjugates p to F , we also
have the following commutative diagram:

C
z 7→−d·z

//

exp

��

C

exp

��

C∗
p

//

Ψ

��

C∗

Ψ

��

P1
F

// P1.

It follows that F is a Lattès example induced by an affine map with derivative −d.

Proposition 7. Let F be a Lattès example of type {3, 3, 3}.

• If there exists a transcendental semiconjugacy between z 7→ zd and F , then

F is not induced by an affine map with negative derivative.

• If there exists a transcendental semiconjugacy between z 7→ z−d and F , then

F is not induced by an affine map with positive derivative.

Proof. Let a be the derivative of an affine map inducing F . We claim that the
fixed point multipliers of F belong to the set {a, e2iπ/3a, e−2iπ/3a, a3}. Indeed,
if z ∈ P1 is a fixed point of F and τ ∈ C lies above z, then L(τ) also lies above
z. Thus, we must have σ ◦ L(τ) = τ for some isometry σ ∈ Σ. The derivative of
σ ◦L at τ necessarily belongs to the set {a, e2iπ/3a, e−2iπ/3a}. Now the projection
C → C/Σ semiconjugates σ ◦ L to F . If τ is not a critical point of the projection
then the multiplier of F at z is equal to the multiplier of σ ◦ L at τ . On the other
hand, if τ is a critical point of the projection, then the projection has local degree
3 at τ , whence the multiplier of F at z is a3.

Now if z 7→ zδ is semiconjugate to F , where δ = ±d, then |a| = d = |δ|.
Moreover, any fixed point z ∈ C∗ of the power map has multiplier δ. The image
under the semiconjugacy is a fixed point of F with multiplier δm, where m is the
local degree of the semiconjugacy at z. Consequently, we must have a = δ.
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