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Parabolic bifurcations in complex dimension 1
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Parabolic basins

@ f(2)=z—ZKt1 + O(ZK), k > 1.
@ B={zeC: f°”(z)?0}.

k=1 k=3
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Geometric limits

@ f(2) = z+ 2% + O(2%) has a parabolic basin 3.
@ L, : B — Cis the Lavaurs map with phase ¢ € C.
@ f.(2) =f(z2) + <2

Theorem (Lavaurs)

AssumeN > T, — +o00 and C* 5 e, — 0 satisfy T, — g — 0.
n
Then, foTn — L, locally uniformly in B.
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Dynamical enrichment




Parabolic renormalization

Parabolic Renormalization December 12, 2008
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Figure 2: Perturbation of parabolic fixed point: before (left) and after (right)
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Hausdorff dimension and Lebesgue measure
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Hausdorff dimension

Theorem (Shishikura)

H-dim(oM) = 2.

Moreover, for any open set U which intersects OM,
H-dim(oM N U) = 2.
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Lebesgue measure (area)

228 MITSUHIRO SHISHIKURA

As for the area (the 2-dimensional Lebesgue measure), it is conjectured
that &M and J. (for any c) have area zero. There are partial results: the set of
parameters in M for which P, are not infinitely renormalizable has area zero
[Sh1]. If P, has no irrationally indifferent periodic point and is not infinitely
renormalizable, then the Julia set J. has area zero [Ly2| and [Shi].
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Parabolic and near-parabolic renormalization

The renormalization for parabolic fixed points and their
perturbation

Hiroyuki Inou and Mitsuhiro Shishikura

Dedicated to the memory of Adrien Douady

Abstract

For holomorphic maps of one variable with a parabolic fixed point, the parabolic renor-
malization Ry is defined in terms of Fatou coordinates and horn maps. A class F; of such
maps is proposed so that it is invariant under Ry, which acts as a uniform contraction with
respect to a certain metric. The near-parabolic renormalization R is also defined for the
perturbation of these maps, and it amounts to taking a first return map on a certain funda-
mental region. It is also shown that R is hyperbolic on the space of maps whose multiplier
is sufficiently close to 1 . These results will help us to analyze the behavior of orbits of near
the fixed points, especially irrationally indifferent ones. Buff and Chéritat [BC| used our
result as one of main tools in their construction of a quadratic polynomial with Julia set of
positive Lebesgue measure.
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Positive area

Theorem (B-Chéritat)

There exist quadratic polynomials which have a Julia set of
positive area.

@ The strategy is due to Douady.

@ Examples are of the form P, (z) = ™%z + z? with o € S,
where Sy is the set of bounded type irrational numbers
whose continued fraction has entries at least N.
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Peturbed Siegel disks

Proposition (B-Chéritat)

There exists N such that as o/ € Sy — a € Sy, we have

d(PC(Pw),An) — 0.
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Enrichments in parameter spaces
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Parameter spaces : e>™/9z/(1 + az + z?),ac C
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Résidu itératif

e2mp/q 7 .
@ g(2) = " with a € C.
o Ifg(z) ~ €*P/9z.(1+2"9+ az?"9) then
formally
. vq+1
résit(g) := - a.
2
résit(g) if v =1
® Forala) = {oo ity = 2.
Examples.
1 & +2
Ry/1(a) = 2 Ri,2(a) = 7]
ia® + (15 — 2i)a* — (6 + 32i)a® — 6
Ry/4(a) = ( )7 ) :

2(a% —1)?
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Résidu itératif

/ /
N
p/q=0/1
) o
w:’u/ P *
o &£ ’ ’
o o0 -
p/q=1/4 p/q=1/10
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Résidu itératif
Theorem (B-Ecalle-Epstein)

Ifq>2thenRy/q:C — C is a rational function of degree
2g — 2. Every pole of Ry, is double: there is a pole at infinity
and the poles in C correspond to maps such that v = 2.

Theorem (B-Ecalle-Epstein)

There is a meromorphic transcendental function R : C* — C,

such that )
1

The function R has an essential singularity at 0, a double pole
at infinity and infinitely many poles accumulating 0.
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Résidu itératif

@ R is a meromorphic function of b = 1/2°.

Theorem (Work in progress with Petersen)

The poles of R are double poles. In the b-plane, the poles of R
are contained in the vertical strip {0 < Re(b) < 1/2}. They
form a sequence (b,) with the asymptotic behavior

L1
L+*+L+O(1).

bn=—-n5-+7+ 2,
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FIGURE 8.
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Parameter spaces : ¢™/9z + az® + z%,ac C

@ Alex Kapiamba and Runze Zhang are studying parabolic
enrichments for cubic polynomials.
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Parabolic bifurcations at infinity
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Quadratic rational maps with a critical point of period 2

o f,(2) = ?‘322 with a € C ~. {0}.
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Quadratic rational maps with a critical point of period 2

@ Caroline Davis and Alex Kapiamba are studying parabolic
bifurcations for rescaling limits at infinity in Per(0).
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Parabolic bifurcations in complex dimension 2
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bolic bifurcations in complex dimensio

Semi-parabolic Bifurcations in Complex Dimension Two

Eric Bedford'-2, John Smillie’, Tetsuo Ueda*
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Abstract: Parabolic bifurcations in one complex dimension demonstrate a wide variety
of interesting dynamical phenomena. In this paper we consider the bifurcations of a
holomorphic diffeomorphism in two complex dimensions with a semi-parabolic, semi-
attracting fixed point.
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ported by JSPS KAKENHI Grant Number 21540176. We thank M. Shishikura for his generous advice and
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2003, and they wish to thank Kyoto University for its continued hospitality. We also wish to thank H. Inou
and X. Buff. Finally we would like to thank the referees for their careful reading of this paper and their many
helpful comments.
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Semi-parabolic bifurcation in complex dimension 2

@ Fa.(x,y)= ((1 +a)x—ay+x2+52,x+52).

Theorem (Bedford-Smillie-Ueda)
The map ¢ — K™ (Fa.) is discontinuous.

Semi-parabolic Bifurcations in Complex Dimension Two 5

Fig. 1. The discontinuity of the map € > K¥(Fy,¢) illustrated by showing complex linear slices in C2 for
two nearby paramelter values. Fy ¢ is given by Eq. (1.3) witha = 3; € = 0 (lefi), a = .3, ¢ = .05 (right)
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Wandering domains in complex dimension 2

Theorem (Astorg-B-Dujardin-Peters-Raissy)

If a < 1 is sufficiently close to 1, the skew product P : C? — C?
defined by

2
P(w,z) = <W— W2,z+22+a23+7;W>

has a wandering Fatou component.

@ The strategy is due to Lyubich.
@ The map is a skew product.
@ P(0,z) = (0,z 4+ z% + az®) has a parabolic fixed point.
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Wandering domains in complex dimension 2

@ If a < 1 is sulfficiently close to 1, the (phase o = 0) Lavaurs
map L : B — C has an attracting fixed point.
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Wandering domains in complex dimension 2
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Spiralling domains for germs tangent to the identity

Theorem (work in progress with Raissy)
The polynomial endomorphisms

X X y? ) ( x(x —y) >
F _ + +a , aeR~A{0
a<y> (y) <X2 y(x—y) ~ 10
have infinitely many spiralling domains contained in distinct
Fatou components.

@ homogeneous vector fields in C2,
o affine (or similarity) surfaces.
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The dynamics of F, for a= 0.1
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The dynamics of F, for a= 0.1
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The dynamics of F, for a= 0.1
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Germs tangent to the identity

Assumptions:
@ Vis a homogeneous vector field of degree k on C?:

|7 = Uax + Vay

with U and V homogeneous polynomials of degree k + 1;

o
¢ :=xV—-yU

vanishes on k + 2 characteristic directions, counting

multiplicities;
°

F(x) = x + V(x) + O(|| x||*"2).
Observation :

@ Near 0, orbits of F shadow real-time trajectories of V.
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Dynamics of homogeneous vector fields

@ A trajectory for v is a solution of the differential equation
y=Vor.

@ Complex-time trajectories are Riemann surfaces which
cover CP' minus the characteristic directions.

Proposition (Abate-Tovena)

We may equip CP' with the structure of an affine surface Sy so
that the projection to Sy of real-time trajectories of v are
geodesics.
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Affine surfaces and geodesics

Definition (Affine surface)

An affine surface S is a Riemann surface whose change of
charts are affine maps z — Az + p with A € C \ {0} and p € C.

Example : C is the complex plane with its canonical affine
structure.

Definition (Affine map)

A map between affine surfaces is an affine map if its expression
in affine charts is of the form z — Az + p.

Definition (Geodesic)

A curve 6 : | — S defined on an interval / C R is a geodesic if §
is the restriction of an affine map ¢ : U — S defined on an open
subset U C C.
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An example

@ The dilation plane C with underlying Riemann surface C,
whose affine charts are the restrictions of

exp(2) : C—C- {0}.

@@
@@«
@@

A family of parallel geodesics in C.




Non linearity

@ The non linearity of a holomorphic map ¢ : S — T with non
vanishing derivative is the 1-form N/, defined on S by

d /
N, :=d(log¢’) = e

/

e N, =0ifand only if ¢ is an affine map.
@ Ifp:8S— Tand vy : T — U are holomorphic maps, then

Nyop = Ny + ©*(Ny).
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Affine surface of a homogeneous vector field

@ vV = Udx + V9, is homogeneous of degree k.
@ ¢=xV-—-yU.

oz:CIP’19[x:y]n—>;e@.

= (55 - =)
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Affine surface of a homogeneous vector field

@ Singularities of v are characteristic directions.
@ Assume there is a simple pole and let p be the residue.

Proposition (Ecalle, Hakim)

If » has a simple pole and Re(p) > 1, there is a parabolic
domain on which orbits converge to 0 tangentially to the
characteristic direction.

T = = =
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Affine surface of a homogeneous vector field

@ Singularities of v are characteristic directions.
@ Assume there is a simple pole and let p be the residue.

\ S
s

Proposition (Rivi,Rong)

If v has a simple pole and Re(p) = 1, there is a parabolic
domain on which orbits converge to 0 spiralling around the
characteristic direction.

= = = =
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Closed geodesics

@ A geodesic ¢ : | — S is closed if there exists A\ € (0, +o0)
and ty < t in I such that

5(t;) =6(ty) and (1) = Mo(tp).

@ Such a geodesic is attracting if A € (0, 1).
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Spiralling domains associated to attracting geodesics

@ If an affine surface contains an attracting closed geodesic,
it contains an attracting dilation cylinder foliated by
attracting closed geodesic.

Proposition (work in progress with Raissy)

Assume F(x) = x + v(x) with v homogeneous. If S; contains
an attracting dilation cylinder C, then F has a spiralling domain
in which orbits converge to 0, spiralling towards an attracting
closed geodesic of C.

Assume a € R~ {0} and

V= (y2+ax(x —y))ox + (X2 + ay(x — y))dy.

Then, S; contains infinitely many non homotopic attracting
dilation cylinders.

X. Buff Parabolic bifurcations




Neutral geodesics

Theorem (work in progress with Raissy)

2

Kk+1
X\ _ (X y kok [ X
f(3)= () G ) raer ()
has infinitely many spiralling domains contained in distinct
Fatou components.

Iface <k+1, +oo>, the polynomial endomorphisms

@ Polygonal billiards.
@ k = 1: equilateral triangle
@ k = 3: pentagonal billiard.
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Polygonal billiards

Proposition (Valdez)

The real-time dynamics of yk+10, + x¥*+29, is controlled by the
billiard dynamics in a regular polygon with k + 2 sides.
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Polygonal billiards

Proposition (Valdez)

The real-time dynamics of yk+10, + x¥29, is controlled by the
billiard dynamics in a regular polygon with k + 2 sides.
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Pentagonal billiards
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Pentagonal billiards
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Hénon maps
X\ _ y
°H2<Y><X+y2>'

Can we describe the dynamics of H, near the origin in C2 ?
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n(;)- (2 )

{(x,y) e R?}




Hénon maps

@ Hs has small cycles.
@ Hs has Herman rings.

Does H, have small cycles?
Does H> have Herman rings?

X. Buff Parabolic bifurcations



Numerical experiments

@ Repelling parabolic curve:

®(z) = lim H§"< LI )

n—-zn-—z

° C:1B<1 1>,a: 1+land6:1 L

n—--o00

Y2 \3'3 2 C 2 C

There exists a constant v € R such that

C C
E ”on q)
n—>||+oo 2 (n—x’ n—y) (ax + By +7).

What can we deduce from such a result?
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Thank you for your attention

Happy birthday Mitsu



