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Parabolic bifurcations in complex dimension 1
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Parabolic basins

f (z) = z − zk+1 +O(zk+1), k ≥ 1.
B = {z ∈ C : f ◦n(z) −→

̸=
0}.

k = 1 k = 3
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Geometric limits

f (z) = z + z2 +O(z3) has a parabolic basin B.
Lσ : B → C is the Lavaurs map with phase σ ∈ C.
fε(z) = f (z) + ε2.

Theorem (Lavaurs)

Assume N ∋ Tn → +∞ and C∗ ∋ εn → 0 satisfy Tn − π

εn
→ σ.

Then, f ◦Tn
εn → Lσ locally uniformly in B.
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Dynamical enrichment
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Parabolic renormalization
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Hausdorff dimension and Lebesgue measure
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Hausdorff dimension

Theorem (Shishikura)

H-dim(∂M) = 2.

Moreover, for any open set U which intersects ∂M,
H-dim(∂M ∩ U) = 2.
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Lebesgue measure (area)
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Parabolic and near-parabolic renormalization
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Positive area

Theorem (B-Chéritat)
There exist quadratic polynomials which have a Julia set of
positive area.

The strategy is due to Douady.
Examples are of the form Pα(z) = e2πiαz + z2 with α ∈ SN ,
where SN is the set of bounded type irrational numbers
whose continued fraction has entries at least N.
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Peturbed Siegel disks

Proposition (B-Chéritat)

There exists N such that as α′ ∈ SN → α ∈ SN , we have

∂
(
PC(Pα′),∆α

)
→ 0.
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Enrichments in parameter spaces
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Parameter spaces : e2πi/qz/(1 + az + z2), a ∈ C
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Résidu itératif

g(z) =
e2πip/qz

1 − az + z2 with a ∈ C.

If g(z) ∼
formally

e2πip/qz ·
(
1 + zνq + αz2νq) then

résit(g) :=
νq + 1

2
− α.

Rp/q(a) :=

{
résit(g) if ν = 1
∞ if ν = 2.

Examples.

R0/1(a) =
1
a2 , R1/2(a) =

a2 + 2
4

R1/4(a) =
ia6 + (15 − 2i)a4 − (6 + 32i)a2 − 6

2(a2 − i)2 .
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Résidu itératif

p/q = 0/1

p/q = 1/4 p/q = 1/10
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Résidu itératif

Theorem (B-Ecalle-Epstein)

If q ≥ 2 then Rp/q : C → Ĉ is a rational function of degree
2q − 2. Every pole of Rp/q is double: there is a pole at infinity
and the poles in C correspond to maps such that ν = 2.

Theorem (B-Ecalle-Epstein)

There is a meromorphic transcendental function R : C∗ → Ĉ,
such that (

1
q

)2

R1/q → R.

The function R has an essential singularity at 0, a double pole
at infinity and infinitely many poles accumulating 0.
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Résidu itératif

R is a meromorphic function of b = 1/a2.

Theorem (Work in progress with Petersen)

The poles of R are double poles. In the b-plane, the poles of R
are contained in the vertical strip

{
0 < Re(b) < 1/2

}
. They

form a sequence (bn) with the asymptotic behavior

bn = −n
i

2π
+

1
4
+

i
4π

+ o(1).
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Parabolic bifurcation with ν ≥ 2
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Real-time trajectories of polynomial vector fields

−z3∂/∂z

−z(z − 0.3)(z + 0.3 − 0.2i)∂/∂z − z2(z − 0.3 − 0.3i)∂/∂z
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Parameter spaces : e2πi/qz + az2 + z3, a ∈ C

Alex Kapiamba and Runze Zhang are studying parabolic
enrichments for cubic polynomials.
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Parabolic bifurcations at infinity
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Quadratic rational maps with a critical point of period 2

fa(z) =
a

z + z2 with a ∈ C∖ {0}.
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Quadratic rational maps with a critical point of period 2

Caroline Davis and Alex Kapiamba are studying parabolic
bifurcations for rescaling limits at infinity in Pern(0).
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Parabolic bifurcations in complex dimension 2
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Semi-parabolic bifurcations in complex dimension 2
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Semi-parabolic bifurcation in complex dimension 2
Fa,ε(x , y) =

(
(1 + a)x − ay + x2 + ε2, x + ε2).

Theorem (Bedford-Smillie-Ueda)

The map ε 7→ K+(Fa,ε) is discontinuous.
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Wandering domains in complex dimension 2

Theorem (Astorg-B-Dujardin-Peters-Raissy)

If a < 1 is sufficiently close to 1, the skew product P : C2 → C2

defined by

P(w , z) =
(

w − w2, z + z2 + az3 +
π2

4
w
)

has a wandering Fatou component.

The strategy is due to Lyubich.
The map is a skew product.
P(0, z) = (0, z + z2 + az3) has a parabolic fixed point.
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Wandering domains in complex dimension 2

If a < 1 is sufficiently close to 1, the (phase σ = 0) Lavaurs
map L : B → C has an attracting fixed point.
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Wandering domains in complex dimension 2
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Spiralling domains for germs tangent to the identity

Theorem (work in progress with Raissy)
The polynomial endomorphisms

Fa

(
x
y

)
=

(
x
y

)
+

(
y2

x2

)
+ a

(
x(x − y)
y(x − y)

)
, a ∈ R∖ {0}

have infinitely many spiralling domains contained in distinct
Fatou components.

homogeneous vector fields in C2,
affine (or similarity) surfaces.
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The dynamics of Fa for a = 0.1
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The dynamics of Fa for a = 0.1
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The dynamics of Fa for a = 0.1
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The dynamics of Fa for a = 0.1
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The dynamics of Fa for a = 0.1
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Germs tangent to the identity

Assumptions:
v⃗ is a homogeneous vector field of degree k on C2:

v⃗ := U∂x + V∂y

with U and V homogeneous polynomials of degree k + 1;

Φ := xV − yU

vanishes on k + 2 characteristic directions, counting
multiplicities;

F (x) = x + v⃗(x) + O
(
∥x∥k+2).

Observation :
Near 0, orbits of F shadow real-time trajectories of v⃗ .
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Dynamics of homogeneous vector fields

A trajectory for v⃗ is a solution of the differential equation

γ̇ = v⃗ ◦ γ.

Complex-time trajectories are Riemann surfaces which
cover CP1 minus the characteristic directions.

Proposition (Abate-Tovena)

We may equip CP1 with the structure of an affine surface Sv⃗ so
that the projection to Sv⃗ of real-time trajectories of v⃗ are
geodesics.
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Affine surfaces and geodesics

Definition (Affine surface)
An affine surface S is a Riemann surface whose change of
charts are affine maps z 7→ λz + µ with λ ∈ C∖ {0} and µ ∈ C.

Example : C is the complex plane with its canonical affine
structure.

Definition (Affine map)
A map between affine surfaces is an affine map if its expression
in affine charts is of the form z 7→ λz + µ.

Definition (Geodesic)
A curve δ : I → S defined on an interval I ⊆ R is a geodesic if δ
is the restriction of an affine map φ : U → S defined on an open
subset U ⊆ C.
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An example

The dilation plane C̃ with underlying Riemann surface C,
whose affine charts are the restrictions of

exp(z) : C̃ → C ∖ {0}.

A family of parallel geodesics in C̃.
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Non linearity

The non linearity of a holomorphic map φ : S → T with non
vanishing derivative is the 1-form Nφ defined on S by

Nφ := d(logφ′) =
dφ′

φ′ .

Nφ = 0 if and only if φ is an affine map.
If φ : S → T and ψ : T → U are holomorphic maps, then

Nψ◦φ = Nφ + φ∗(Nψ).
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Affine surface of a homogeneous vector field

v⃗ = U∂x + V∂y is homogeneous of degree k .
Φ = xV − yU.

z : CP1 ∋ [x : y ] 7→ x
y
∈ Ĉ.

f (z) =
U(x , y)
V (x , y)

.

p(z) =
Φ(x , y)
yk+2 .

Proposition
The non linearity of z : Sv⃗ → C is

ν :=

(
p′(z)
p(z)

− k
z − f (z)

)
dz.
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Affine surface of a homogeneous vector field
Singularities of ν are characteristic directions.
Assume there is a simple pole and let ρ be the residue.

Re(ρ) > 1 Re(ρ) < 1

Proposition (Écalle, Hakim)

If ν has a simple pole and Re(ρ) > 1, there is a parabolic
domain on which orbits converge to 0 tangentially to the
characteristic direction.
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Affine surface of a homogeneous vector field
Singularities of ν are characteristic directions.
Assume there is a simple pole and let ρ be the residue.

ρ = 1 − 2i ρ = 1 − 4i

Proposition (Rivi,Rong)

If ν has a simple pole and Re(ρ) = 1, there is a parabolic
domain on which orbits converge to 0 spiralling around the
characteristic direction.
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Closed geodesics
A geodesic δ : I → S is closed if there exists λ ∈ (0,+∞)
and t0 < t1 in I such that

δ(t1) = δ(t0) and δ̇(t1) = λδ̇(t0).

Such a geodesic is attracting if λ ∈ (0,1).
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Spiralling domains associated to attracting geodesics
If an affine surface contains an attracting closed geodesic,
it contains an attracting dilation cylinder foliated by
attracting closed geodesic.

Proposition (work in progress with Raissy)

Assume F (x) = x + v⃗(x) with v⃗ homogeneous. If Sv⃗ contains
an attracting dilation cylinder C, then F has a spiralling domain
in which orbits converge to 0, spiralling towards an attracting
closed geodesic of C.

Proposition

Assume a ∈ R∖ {0} and

v⃗ :=
(
y2 + ax(x − y)

)
∂x +

(
x2 + ay(x − y)

)
∂y .

Then, Sv⃗ contains infinitely many non homotopic attracting
dilation cylinders.
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Neutral geodesics

Theorem (work in progress with Raissy)

If a ∈
(

k + 1
2

,+∞
)

, the polynomial endomorphisms

Fa

(
x
y

)
=

(
x
y

)
+

(
yk+1

xk+1

)
+ axkyk

(
x
y

)
has infinitely many spiralling domains contained in distinct
Fatou components.

Polygonal billiards.
k = 1: equilateral triangle
k = 3: pentagonal billiard.

X. Buff Parabolic bifurcations



Polygonal billiards

Proposition (Valdez)

The real-time dynamics of yk+1∂x + xk+2∂y is controlled by the
billiard dynamics in a regular polygon with k + 2 sides.
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Polygonal billiards

Proposition (Valdez)

The real-time dynamics of yk+1∂x + xk+2∂y is controlled by the
billiard dynamics in a regular polygon with k + 2 sides.
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Pentagonal billiards
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Pentagonal billiards
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Pentagonal billiards
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Hénon maps

H2

(
x
y

)
=

(
y

x + y2

)
.

Question

Can we describe the dynamics of H2 near the origin in C2 ?
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Hénon maps

H3

(
x
y

)
=

(
y

x + y3

)
.

{
(x , y) ∈ R2} {

(x , y) ∈ (1 + i)R× (−1 + i)R
}
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Hénon maps

H3 has small cycles.
H3 has Herman rings.

Question
Does H2 have small cycles?

Question
Does H2 have Herman rings?
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Numerical experiments

Repelling parabolic curve:

Φ(z) = lim
n→+∞

H◦n
2

(
1

n − z
,

1
n − z

)
.

C =
1

3
√

2
B
(

1
3
,
1
3

)
, α =

1
2
+

1
C

and β =
1
2
− 1

C
.

Conjecture
There exists a constant γ ∈ R such that

lim
n→+∞

H◦n
2

(
C

n − x
,− C

n − y

)
= Φ(αx + βy + γ).

Question
What can we deduce from such a result?
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Thank you for your attention

Happy birthday Mitsu

X. Buff Parabolic bifurcations


