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Abstract.

1. Contexte

We have a substitution σ on an alphabet A, |A| = d. Let M be its
matrix. We assume it is diagonalizable and it has an eigenvalue 1. We
denote (λ1, . . . , λd) and (e1, . . . , ed) the eigenvalues and (normalized)
eigenvectors. We shall sometimes denote ` = e1 (because we think of
the Lebesgue measure) and m for that associated to the eigenvalue 1.
We construct partitions (tilings) of the real line. First, we have a par-
tition made of intervals labelled by the alphabet and such that the
length of the interval labelled a is `(a). We assume they are ordered
according to a fixed point of the substitution. Naturally, we can re-
place each of these intervals by a tiling in smaller (rescaled by λ−1

1 )
labelled intervals, the interval labelled a being replaced by a sequence
of intervals chosen according to σ(a). We can repeat this operation.
At each level we have a partition (Markov partition) of the real line.
We call his order the number of time we did the operation. An interval
of the level N partition is called a N -cylinder or a cylinder of order
N . It has a labell. We sometimes denote CN(a) for such a cylinder
(but of course it has many copies in the tiling). To make things non
ambiguous, we also should choose an origin. I do not give more details
since this is just a naive way to describe the unstable manifold in the
symbolic flow. We should be able to make explicit the connection or
to formulate all this in the more formal language of the symbolic flow;
this language is recalled in appendix.
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2. Integration par la distrbution qui nous interesse

Let m be the eigenvector corresponding to the eigenvalue 1 of M . For
all n ≥ 1 we define a piecewise density ρn measurable with respect to
the Markov partition of order n of the line. We set ρn(s) = λn1m(a)
if s belongs to a cylinder (of order n) labelled a. We denote mn the
”measure” mn(ds) = ρn(s)ds. The goal is to compute

mn(ϕ) =

∫
R
ϕ(s)ρn(s)ds

for some smooth enough ϕ with compact support and try to give a
meaning to the limit when n tends to ∞. Indeed, ρn is unbounded;
furthermore, here, its ”primitive” is not bounded. Although we will be
able to integrate a reasonable class of function.

Figure 1. Here we consider the substitution a →
ac, b → acbbc, c → acbc. This is the stepped line made
naively, after 3, 4, 5 and 7 iterations. It should give an
idea of the shape and asymptotic behavior of rn.

We define rn(s) =
∫ s

0
ρn(s)ds and RN(s) =

∫ s
0
rn(s)ds. Let the cylinder

CN have label a. We observe that RN
n (a) =

∫
CN rn(s)ds−

∫
CN rN(s)ds

depends only on N , n ≥ N and on the label a of the N -cylinder CN .
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Indeed, the value of rn at the begining of a cylinder CN is constant
for n ≥ N . We denote RN

n this vector. Immediate analysis of the self
similar properties of rn shows that it satisfies, for n ≥ N + 1 :

(2.1) RN
n = MRN+1

n ,

(recall that each cylinder decomposes CN(a) = ∪b∈σ(a)C
N+1(b)), and,

for all n ≥ N

(2.2) RN+1
n+1 = λ−1

1 RN
n

Lemma 1.
RN
n+1 −RN

n = λ−n1 Mn−N∆

where, if σ(a) = a1 · · · , aK,

∆(a) = λ−1

(
K∑
i=1

i−1∑
j=1

m(aj)`(ai)

)
+ λ−1

1

K∑
i=1

m(ai)`(ai)/2

Proof. We claim that R0
1 = R0

0 + ∆. We observe that, on C0 with label
a, r0 is affine with slope m(a). Assume that r0 is 0 at the orgin of the
cylider. Then, its integral on C0 is m(a)`(a)/2. At the next step r0 is
replaced by a piecewise affine map r1 with the same value at the origin
(and at the end). To compute R0

1, we decompose the cylinder C0(a)
into cylinders of type C1(b) with b ∈ σ(a). On such a cylinder C1(b),
the integral is equal to the area of the rectangle of height the value of r1

at the origin of the cylinder and length `(b) + the area of the triangle
λ−1

1 m(b)`(b). The value of r1 at the origin of the cylinder is given by
the measure m of the union of cylinders whose label form the prefix of
σ(a) before the occurence of b, i.e.

∑i−1
j=1m(aj). See Figure 2. This

proves the claim.
To conclude we use repeatedly (2.1) and (2.2). �

Remark 2. It is important to notice that ∆ may very well be non
zero. For instance, I imagine we could prove a result like : given a
substitution satisfying our assumptions, we can modify the order of
the letters in the images of letters (leaving unchanged the matrix) in
such way that ∆ has all components strictly positive. It should be
enough to put first the letters having the greater projection on the
eigenspace.

We use the eigen decomposition of M :

Mn∆ =
d∑

k=1

λnkΠk(∆).

where the Πk are the projections on the eigendirections ek ; write
Πk(∆) = πk(∆)ek.
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Figure 2. Here we consider the substitution a →
ac, b → acbbc, c → acbc. Its matrix is M . Main eigen-
value is 2 +

√
3 with eigenvector (1, 2 +

√
3, 1 +

√
3) and

the eigenvalue 1 has eigenvector (1,−1, 0). The picture
shows the difference between R1

1(b) and R1
2(b). Since a,

b and c appear in σ(b), one can also see R0
1(a), R0

1(b),
and R0

1(c).

Lemma 3.

RN
n =

(
(n−N)π1(∆) +m`+

d∑
k=2

1−
(
λkλ

−1
1

)n+1

1− λkλ−1
1

πk(∆)

)
λ−N1
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Proof. It follows from Lemma 1 that

RN
n =

n∑
p=N+1

λ−p1 Mp−N∆

=
n∑

p=N+1

λ−p1

d∑
k=1

λp−Nk Πk(∆)

= λ−N1

n∑
p=N+1

Π1(∆) +
d∑

k=2

λ−Nk

n∑
p=N+1

(λkλ
−1
1 )−pΠk(∆)(2.3)

= λ−N1 (n−N)Π1(∆) +
d∑

k=2

λ−Nk

n∑
p=N+1

(λkλ
−1
1 )−pΠk(∆)

=

(
(n−N)Π1(∆) +

d∑
k=2

1−
(
λkλ

−1
1

)n+1

1− λkλ−1
1

Πk(∆)

)
λ−N1

�

Next, we try to integrate with respect to mn a chapeau map which is
piecewise affine. It appears that the main term disappears due to a
compensation between increasing and decreasing pieces. (

∫
R ϕ
′ = 0)

and we can consider the limit.

Proposition 4. Let ϕ(s) =
∑L

`=1 11C`
(s)(α`s + β`) be a continuous,

piecewise affine, map with constant slope on cylinders of order N and
compact support. Then, if for all 1 ≤ ` ≤ L, a` is the label of cylinder
C`,

lim
n→∞

∫
ϕρn = λ−N1

L∑
`=1

α`R∞(a`),

where

R∞ = m`+
d∑

k=2

πk(∆)

1− λkλ−1
1

ek.

Proof. We integrate by parts :∫
R
ϕ(s)ρn(s)ds =

L∑
`=1

α`

∫
C`

rn(s)ds.

Hence,

mN
n (ϕ) := RN

n (ϕ′) :=

∫
R
ϕ(s)(ρn(s)− ρN(s))ds =

L∑
`=1

α`R
N
n (a`)
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So,

mN
n (ϕ) =

L∑
`=1

α`

(
(n−N)Π1(∆)(a`) +

d∑
k=2

1−
(
λkλ

−1
1

)n+1

1− λkλ−1
1

Πk(∆)(a`)

)
λ−N1

Recalling that π1(∆) is proportional to ` = e1, we compute

L∑
`=1

α`(n−N)Π1(∆)(a`)λ
−N
1 = (n−N)π1(∆)

(
L∑
`=1

α``(a`)λ
−N
1

)

= (n−N)π1(∆)

∫
R
ϕ′(s)ds

= 0

Hence,

mN
n (ϕ) =

L∑
`=1

α`

d∑
k=2

1−
(
λkλ

−1
1

)n+1

1− λkλ−1
1

Πk(∆)(a`)λ
−N
1

or,

(2.4) mN
n (ϕ) = λ−N1

d∑
k=2

1−
(
λkλ

−1
1

)n+1

1− λkλ−1
1

πk(∆)
L∑
`=1

α`ek(a`)

Now, letting n tend to infinity,

lim
n→∞

mN
n (ϕ) = λ−N1

d∑
k=2

πk(∆)

1− λkλ−1
1

L∑
`=1

α`ek(a`)

or

lim
n→∞

mn(ϕ) = λ−N1 (
L∑
`=1

α`(m(a`)`(a`) +
d∑

k=2

πk(∆)

1− λkλ−1
1

ek(a`))

If we set,

R∞ = m`+
d∑

k=2

πk(∆)

1− λkλ−1
1

ek

then,

lim
n→∞

∫
ϕρn = λ−N1

L∑
`=1

α`R∞(a`)

�

Lemma 5. Let ϕ be C2 with compact support. Then limn→∞
∫
R ϕ(s)ρn(s)ds

exists.
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Proof. Let us write ϕ′(s) =
∑∞

N=1 α
(N)(s) where α(n) is measurable

with respect to the Markov partition of order N . It should be clear
that we can force ||α(N)||∞ ≤ ||ϕ′′||∞λ−N1 and

∫
R α

(N)ds = 0. We
integrate by parts and decompose along the cylinders of order N for
each N : ∫

R
ϕ(s)ρn(s)ds =

∫
R
ϕ′(s)rn(s)ds

=
∞∑
N=1

∫
R
α(N)(s)rn(s)ds

=
∞∑
N=1

LN∑
`=1

∫
CN

`

α(N)(s)rn(s)ds

=
∞∑
N=1

LN∑
`=1

α
(N)
`

∫
CN

`

rn(s)ds

Using a uniform convergence argument, we can interchange the limits
and use Proposition 4 in:

lim
n→∞

∫
R
ϕ(s)ρn(s)ds = lim

n→∞

∞∑
N=1

∫
R
α(N)(s)rn(s)ds

=
∞∑
N=1

R∞(α(N))

=
∞∑
N=1

λ−N+1
1

LN∑
`=1

α
(N)
` R∞(aN` )

with

|
LN∑
`=1

α
(N)
`

∫
CN

`

rn(s)ds| ≤ λ−N1 LN ||α(N)||∞||R∞||1

≤ λ−N1 λN1 |supp(ϕ)|λ−N1 ||ϕ′′||||R∞||1
≤ λ−N1 |supp(ϕ)|||ϕ′′||||R∞||1

�
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3. Appendix

Let A be a finite alphabet, let σ be a morphism of the free monoid A∗
and let Mσ denote its abelianization matrix. It is determined by the
images of letters in A. If no letter have empty image, then the action
of σ can be naturally extended to the (full) shift AZ. If the matrix
Mσ is primitive (we also say that the substitution is primitive), then
we denote Xσ ⊆ AZ the smallest σ-invariant subshift. We study here
the asymptotic behavior of ergodic sums for the minimal dynamical
system (Xσ, T ) in the (non-hyperbolic) case when the matrix Mσ has
an eigenvalue of modulus one (here T denotes the shift map). As we
shall see later these objects are to be related with holonomy flows of
Anosov and pseudo Anosov maps.

3.1. Vershik automorphisms and suspension flows. We refer to
Section 2, 3, 5 of [?] for details. Given an oriented graph Γ with m
vertices, let E(Γ) be the set of edges of Γ. For e ∈ E(Γ) we denote
I(e) its initial vertex and F (e) its terminal vertex. To the graph Γ we
assign a non-negative m×m non-negative matrix A(Γ) by the formula

A = A(Γ)i,j = ]{e ∈ E(Γ) : I(e) = i, F (e) = j}

We assume that A is a primitive matrix.
We define the Markov compactum:

Y = {y = y1 . . . yn · · · : yn ∈ E(Γ), F (yn+1) = I(yn)}

The shift on Y is denoted by S. Assume that there is an order on the
set of edges starting from a given vertex. This partial order extends
to a partial oder on Y : we write y < y′ if there exists l ∈ N such that
yl < y′l and yn = y′n for n > l. The Vershik automorphism T Y is the
map from Y to itself defined by

T Y y = min
y′>y

y′.

As A is primitive, there is a unique probability measure invariant under
T Y denoted by µY .
Generalizing classical ideas for IET and translation surfaces, a sus-
pension flow over (Y, T Y ) is defined as follow: Let H be the Perron-
Frobenius eigenvector of A normalized in a suitable way. ht is the
special flow over (Y, T Y ) with roof τ(y) = hI(y1). The phase space of
the flow is

Y (τ) = {(y, t) : y ∈ Y, 0 ≤ t < τ(y)}.
The measure µY induces a probability measure νΓ on Yτ .
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For each e ∈ E(Γ), the set

{(y, t) : y ∈ Y, y1 = e, 0 ≤ t < hI(y1)}

is called a rectangle in the sequel.
The space X = {x = . . . x−n . . . xn · · · : xn ∈ E(Γ), F (xn+1) = I(xn)} is
the natural extension of (Y, S). X and Y (τ) are canonically isomorphic
as measurable spaces. Thus, the flow ht can be defined on X and
satisfies the important relation:

(3.1) S ◦ ht = hexp(θ1t) ◦S

where exp(θ1) is the Perron-Frobenius eigenvalue of A.
We now connect these notations with the language of substitution
dynamical system. Consider the alphabet A = {1, . . . ,m} as the
set of vertices of Γ. For all a ∈ A, we denote σ(a) the sequence
{F (e) : I(e) = a} ordered with the partial order on {e : I(e) = a}.
The dynamical system (Xσ, T ) is a topological factor of the Vershik au-
tomorphism (Y, T Y ). The semi-conjugacy is given by the prefix-suffix
decomposition. Almost every u ∈ Xσ can be written in the form

u = · · ·σn(Pn) · · ·σ(P1)P0.a0S0σ(P1) · · ·σn(Pn) · · · ,

where, for all n ∈ N, σ(an+1) = PnanSn. Thus, it is clear that such
point correspond to the unique path in Y such that, for all n ≥ 0,
an = F (yn+1) (and = I(yn) for n > 0) and yn+1 has exactly |Pn|
predecessors in the partial order around I(yn+1). We recall that the
semi-conjugacy is not always a topological conjugacy because there
may be multiple writings but it is a measurable conjugacy.
When σ has constant length, the roof function of the suspension flow
is constant because t(1, . . . , 1) is an eigenvector for A.
We observe that roughly σ ≈ S−1 and that the matrix Mσ of the
substitution is Mσ = AT .

3.2. Ergodic means. Let ϕ ∈ C∞0 (R). We are interested in comput-
ing the limit in distribution when n tends to infinity of∫

R
ϕ(s exp (−θ1n))f ◦ hs(x)ds,

where x is chosen according to the invariant measure νΓ.
The first observation is that for all n ∈ Z, the law of x is the same as
the law of Sn(x) by S-invariance of the measure νΓ. Hence in law this
sequence of random variables is the same as∫

R
ϕ(s exp (−θ1n))f ◦ hs(S−n(x))ds.
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In view of (3.1), [A corriger]∫
R
ϕ(s)f ◦ hs(S−n(x))ds.

We choose a function f constant on rectangles (defined in Subsection
3.1). We are interested in the case when this function ”corresponds”
to the coordinates of an eigenvector associated with eigenvalue 1, i.e.
an invariant vector (ie f(σ(a)) = f(a) for every letter a).
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