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ON THE INVARIANT DISTRIBUTION OF A ONE-DIMENSIONAL
AVALANCHE PROCESS

BY XAVIER BRESSAUD AND NICOLAS FOURNIER

Aix-Marseille Universités and Université Paris-Est

We consider an interacting particle system (ηt )t≥0 with values in {0,1}Z,
in which each vacant site becomes occupied with rate 1, while each con-
nected component of occupied sites become vacant with rate equal to its size.
We show that such a process admits a unique invariant distribution, which
is exponentially mixing and can be perfectly simulated. We also prove that
for any initial condition, the avalanche process tends to equilibrium exponen-
tially fast, as time increases to infinity. Finally, we consider a related mean-
field coagulation–fragmentation model, we compute its invariant distribution
and we show numerically that it is very close to that of the interacting particle
system.

1. Notation and main results. Consider an independent family N =
((Nt(i))t≥0)i∈Z of Poisson processes with rate 1. In the whole paper, such a family
will be called an IFPP.

Assume that on each site i ∈ Z, snow flakes are falling according to the process
(Nt(i))t≥0. When a flake falls on a vacant site of Z, this site becomes occupied.
When a flake falls on an occupied site i ∈ Z, an avalanche starts: the whole con-
nected component of occupied sites around i becomes vacant.

We denote by (ηt (i))t≥0,i∈Z the process defined, for t ≥ 0 and i ∈ Z, by
ηt (i) = 1 [resp. ηt (i) = 0] if the site i is occupied (resp. vacant) at time t .

To avoid infinite rates of interaction, we will restrict our study to the case where
the initial condition η0 lies in the following space:

E :=
{
η ∈ {0,1}Z : lim inf

i→−∞ η(i) = lim inf
i→+∞ η(i) = 0

}
.(1.1)

A state η belongs to E if and only if it has no infinite connected component of
occupied sites. This condition is not really restrictive: Easy considerations show
that even if η0 ∈ {0,1}Z\E, ηt ∈ E for all t > 0. This comes from the fact that
infinite connected components of occupied sites have an infinite death rate.

It is standard and easy to show, using for example a graphical construction, that
for any initial condition η0 ∈ E, for almost any IFPP N , the process (ηt )t≥0 exists,
is unique, and takes its values in E. It is actually a deterministic function of η0 and
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(N(i))i∈Z. We call this process the η0-avalanche process or the (η0,N)-avalanche
process when this precision is needed. See [15] for many examples of graphical
constructions.

Furthermore, the process (ηt )t≥0 is a strong Markov process, and its infini-
tesimal generator A is defined, for η ∈ E and � :E �→ R sufficiently regular
[e.g., �(η) depending only on a finite number of coordinates of η] by

A�(η) = ∑
i∈Z

[�(ai(η)) − �(η)],(1.2)

where ai(η) ∈ E is defined in the following way:

• if η(i) = 0, then [ai(η)](i) = 1 and [ai(η)](k) = η(k) for all k �= i;
• if η(i) = 1, set lη(i) = sup{k ≤ i :η(k) = 0} + 1, rη(i) = inf{k ≥ i :η(k) = 0} −

1, and put [ai(η)](k) = 0 for k ∈ [lη(i), rη(i)] and [ai(η)](k) = η(k) for all k /∈
[lη(i), rη(i)].

Our main result in this paper concerns the invariant distribution of the avalanche
process.

For A ⊂ Z and � ∈ P (E), we denote by �A = � ◦p−1
A ∈ P ({0,1}A) its restric-

tion to A, where pA :E �→ {0,1}A is the canonical projection.
For two probability measures μ, ν on a measurable space (F,F ), we denote by

|μ − ν|TV = supG∈F |μ(G) − ν(G)| the total variation between μ and ν.

THEOREM 1.1. (a) The avalanche process admits an unique invariant distri-
bution � ∈ P (E).

(b) The exponential trend to equilibrium holds in the following sense. For
ϕ ∈ E, denote by �

ϕ
t the law of the ϕ-avalanche process at time t . There exist

some constants C > 0, α > 0 such that for all t ≥ 0, all l ≥ 0,

sup
ϕ∈E

∣∣(�ϕ
t )[−l,l] − �[−l,l]

∣∣
TV ≤ C(1 + l)e−αt .(1.3)

(c) For l ≥ 0, there exists an explicit and perfect simulation algorithm for a
�[−l,l]-distributed random variable (η0(i))i∈[−l,l].

(d) The invariant distribution � is exponentially mixing in the following sense:
one may find some constants C > 0, 0 < q < 1, such that for any k ∈ Z, n ∈ Z+,∣∣�(−∞,k]∪[k+n,∞) − �(−∞,k] ⊗ �[k+n,∞)

∣∣
TV ≤ Cqn.(1.4)

Let us comment on these results. First, the system is very stable, in the sense
that no large clusters of occupied sites may appear. Indeed, large clusters have a
large death rate. Clearly, the existence of invariant distributions should easily fol-
low from such an argument. Of course, uniqueness of the invariant distribution and
trend to equilibrium are not surprising, but much more work is required, especially
to give a rate of convergence. The perfect simulation algorithm we give is quite
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complicated, but gives in some sense, an explicit expression of the invariant distri-
bution �. Finally, point (d) explains that at equilibrium, for two sites i and j , the
dependance between η(i) and η(j) decreases exponentially fast with |i − j |. Such
a result is also quite natural, but the proof is quite complicated.

At the end of the 80s, the so-called self-organized critical (SOC) systems be-
came rather popular. They are simple models supposed to enlighten temporal and
spatial randomness observed in a variety of natural phenomena showing long range
correlations, like sand piles, avalanches, earthquakes, stock market crashes, forest
fire, shape of mountains, of clouds and so forth. Very roughly, the key idea (present
in Bak–Tang–Wiesenfeld [2] about sand piles) is that of systems growing toward
a critical state and relaxing through catastrophic events (avalanches, crashes, fire,
etc.); if the catastrophic events become more and more probable when approach-
ing the critical state, the system spontaneously reaches an equilibrium close to the
critical state.

SOC systems commonly share other features such as long range correlations,
power laws for the amplitude of catastrophic events, spatial fractality of observed
patterns, lack of a typical scale, and so forth. The most classical model is the so-
called sand pile model introduced in 1987 in [2], but a lot of variants or related
models have been proposed and studied more or less rigorously, describing earth-
quakes (Olami–Feder–Christensen [16]) or forest fire (Henley [13]; Drossel and
Schwabl [8]) to mention a few. For surveys on the subject, see [7] or [3], for in-
stance.

Initially, our process was thought as a very rough simplification of a sand pile
model. In sand piles, geometric rules describe the structure of a stable sand pile.
Sand grains fall on a given pile; if the new pile is unstable, it is reorganized to
become stable, through (possibly many successive) elementary steps; such events
are called avalanches. If the pile lives on a bounded domain, grains falling out of
the domain disappear; if the model is realistic, one can imagine that the number
of grains in the pile and the shape of the pile reaches an equilibrium. Frequency
and amplitude of avalanches at equilibrium are related to the number of grains that
disappear. In our much simpler model, a grain falling on an occupied site yields
an avalanche involving all grains in the connected component (that immediately
disappear). It does not pretend to be a good physical description of a sand pile:
The purpose is more to catch what is really important in SOC systems.

This simplification is pertinent in that it can also be viewed as a particular case
of a maybe more natural simplification of forest fire models. Roughly, the forest
fire model can be described as follows: On a lattice, trees are born (sites become
occupied) at a certain rate, say 1; at each tree, a fire may start at some rate, say
λ > 0: the site becomes vacant and fire propagates to neighboring trees (occupied
sites) at a given speed (see [8] for a precise description). Taking an infinite prop-
agation speed means that the whole connected component (of sites occupied by
trees) containing the ignited tree burns at once (one may think of lightning). Our
model corresponds to the case λ = 1, infinite propagation speed and a lattice equal
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to Z. From the point of view of SOC systems, the interesting phenomenon is in the
asymptotic regime λ → 0. Indeed, fires are less frequent, but when they occur, de-
stroyed clusters may be huge. These models have been subject to a lot of numerical
and heuristic studies (see [12] for references), but there are few rigorous results.
Even existence and uniqueness of the (time-dependent) process for a multidimen-
sional lattice and given λ has been proved only recently [9, 10]. Limiting rescaling
when λ → 0 has been studied numerically [8, 12] but attempts to give a rigorous
basis, even in dimension 1, are more recent [4–6]. Still our model had not received
a complete rigorous treatment, and as far as we understand, even if the results are
not surprising they are now quite complete and the approach we propose may be
extended.

Consider the model in which birth flakes follow Poisson processes with rate 1,
while killing flakes follow Poisson processes with rate λ > 0. We believe that our
result could be extended without difficulty to the case where λ ≥ 1 (so that the
clusters are not very large). In the case where λ < 1, the method we use probably
breaks down.

The paper is organized as follows. In Section 2, we show that the avalanche
process can be coupled with (and compared to) a very simple system of indepen-
dent particles which we call a Bernoulli process. The invariant distribution of this
particle system is an infinite product of Bernoulli distributions.

In Section 3, we show how to build the invariant distribution of the avalanche
process from a stationary Bernoulli process on an a.s. finite time interval, provided
some cluster (concerning essentially the Bernoulli process) is a.s. finite.

We obtain some large-deviation type upperbounds for the width and height of
this cluster in Section 4.

This allows us to conclude the proof in Section 5: The invariant distribution
exists and can be perfectly simulated. We can estimate the decay of correlations
in the invariant distribution of the avalanche process, using the upperbound of the
width of the previously cited cluster. The coupling also shows, in some sense, the
uniqueness of the invariant distribution and the trend to equilibrium. The rate of
return to equilibrium is obtained as a corollary of the upperbound of the height of
the cluster.

We finally introduce a related coagulation–fragmentation mean-field model in
Section 6: Assuming that the correlations between the sizes of connected compo-
nents of occupied sites are negligible, we write down an infinite system of ordi-
nary differential equations satisfied by the concentrations of clusters with size k,
for k ≥ 1: each pair of clusters coalesce at constant rate, while each cluster with
size k breaks into clusters with size 1 at rate k. The equilibrium state of the system
of O.D.E.s can be computed almost explicitly. Numerical experiments show that
this model is an excellent approximation of the avalanche process, at least from a
global point of view.
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2. The coupling with a Bernoulli process. The starting point of our results is
that we may deduce a realization of the (possible) equilibrium � of the avalanche
process from that of a much simpler process, which we now describe.

Consider as before an IFPP N , and an initial state ζ0 ∈ {0,1}Z. Assume that the
snowflakes are falling on each site i according to N(i), but that the avalanche is
restricted to the site i: if i was vacant, it becomes occupied as before, but if it was
occupied, it becomes vacant, letting its neighbors enjoy their own life. Denote, for
each i ∈ Z, each t ≥ 0, by ζt (i) = 1 [resp. ζt (i) = 0] if the site i is occupied (resp.
vacant) at time t .

The process (ζt )t≥0 is obviously well defined, unique and explicit: for i ∈ Z,
t ≥ 0, ζt (i) = ζ0(i) [resp. ζt (i) = 1 − ζ0(i)] if Nt(i) is even (resp. odd). In other
words,

ζt (i) = 1
2

[
1 − (−1)ζ0(i)+Nt(i)

]
.(2.1)

We call it the ζ0-Bernoulli process [or if necessary the (ζ0,N)-Bernoulli
process].

Let us now describe its trend to equilibrium.

LEMMA 2.1. Let � = ⊗
i∈Z(1

2δ0 + 1
2δ1) be the infinite product of Bernoulli

laws with parameter 1/2. For ζ0 ∈ {0,1}Z, denote by �
ζ0
t the law of the

ζ0-Bernoulli process at time t . Then for all l ≥ 0, all t ≥ 0,

sup
ζ0∈{0,1}Z

∣∣(�ζ0
t )[−l,l] − �[−l,l]

∣∣
TV ≤ (2l + 1)e−2t .(2.2)

As a consequence, � is the only invariant distribution of the Bernoulli process.

PROOF. Let thus ζ0 ∈ {0,1}Z be fixed and (ζt )t≥0 be the (ζ0,N)-Bernoulli
process, for some given IFPP N . First of all, observe that for any t ≥ 0, any i ∈ Z,
using the explicit expression of ζt (i) leads us to

Pr[ζt (i) = 0] = 1{ζ0(i)=0} Pr[Nt(i) is even] + 1{ζ0(i)=1} Pr[Nt(i) is odd]
(2.3)

= 1
2

[
1{ζ0(i)=0}(1 + e−2t ) + 1{ζ0(i)=1}(1 − e−2t )

]
.

This implies that |Pr[ζt (i) = 0] − 1
2 | ≤ e−2t /2. By the same way, |Pr[ζt (i) =

1] − 1
2 | ≤ e−2t /2, so that we get |(�ζ0

t ){i} − �{i}|TV ≤ e−2t . The result follows
since [−l, l] contains 2l + 1 sites and since the coordinates of (ζt (i))i∈[−l,l] are
independent. �

Next, we explain how to reverse time in the stationary Bernoulli process. This
will be useful to build from the past the invariant distribution of the avalanche
process.
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LEMMA 2.2. Let ζ0 be a {0,1}Z-valued random variable with law �. Con-
sider N an IFPP, and let (ζt )t≥0 be the (stationary) (ζ0,N)-Bernoulli process.

Consider the process (ζ̃t )t∈(−∞,0] defined by ζ̃t = ζ(−t)− for all t ≤ 0. Then
this is again a (stationary) Bernoulli process, in the sense that for any T ≤ 0, the
process (ζ̃t )t∈[T ,0] is a (ζ̃T ,NT )-Bernoulli process with ζ̃T independent of NT ,
with ζ̃T ∼ �, and where the IFPP NT on [T ,0] is defined by NT

t (i) = N(−T )−(i)−
N(−t)−(i) for t ∈ [T ,0] and i ∈ Z.

The proof is standard and left to the reader. We will also need later the following
monotonicity result about the Bernoulli process.

LEMMA 2.3. Consider N and V two independent IFPPs. Let ζ 1
0 , ζ 2

0 ∈ {0,1}Z.
Consider the (ζ 1

0 ,N)-Bernoulli process (ζ 1
t )t≥0.

There exists M an IFPP such that, denoting by (ζ 2
t )t≥0 the (ζ 2

0 ,M)-Bernoulli
process, a.s., for all t ≥ 0, all i ∈ Z:

(i) Mt(i) = ∫ t
0 1{ζ 1

s−(i)=ζ 2
s−(i)} dNs(i) + ∫ t

0 1{ζ 1
s−(i) �=ζ 2

s−(i)} dVs(i);

(ii) if γi := inf{t ≥ 0 : ζ 1
t (i) = ζ 2

t (i)}, Pr[γi ≥ t] ≤ e−2t and (Mγi+t −
Mγi

)t≥0 = (Nγi+t − Nγi
)t≥0;

(iii) if ζ 1
t (i) = ζ 2

t (i), then ζ 1
t+s(i) = ζ 2

t+s(i) for all s ≥ 0;
(iv) if ζ 1

0 (i) ≤ ζ 2
0 (i), then ζ 1

t (i) ≤ ζ 2
t (i) a.s. for all t ≥ 0.

We will say that (ζ 1
t , ζ 2

t )t≥0 are the (ζ 1
0 , ζ 2

0 ,N,V )-coupled Bernoulli processes.

Of course, the more natural coupling consisting of building the two Bernoulli
processes with the same IFPP would not preserve order as time evolves. The cou-
pling we use here consists of choosing the same Poisson process N(i) for both
processes when ζ 1

0 (i) = ζ 2
0 (i), so that they will appear or die simultaneously, and

will remain equal for all times. But if 0 = ζ 1
0 (i) < ζ 2

0 (i) = 1 [resp. 0 = ζ 2
0 (i) <

ζ 1
0 (i) = 1], we use first independent Poisson processes: ζ 2

t (i) dies using Vt(i),
while ζ 1

t (i) appears following Nt(i): after this first jump, they become equal, and
we then use the same Poisson process Nt(i), and they remain equal for all times.
We leave the rigorous proof to the reader.

We now describe the coupling between the avalanche and Bernoulli processes.

PROPOSITION 2.4. Consider N and V two independent IFPPs. Let η0 ∈ E

and ζ0 ∈ {0,1}Z. Assume that for all i ∈ Z, η0(i) ≤ ζ0(i). Consider the (ζ0,N)-
Bernoulli process (ζt )t≥0.

There exists M an IFPP such that, denoting by (ηt )t≥0 the (η0,M)-avalanche
process, a.s., for all t ≥ 0, all i ∈ Z:

(i) ηt (i) ≤ ζt (i);
(ii) Mt(i) = ∫ t

0 1{ηs−(i)=ζs−(i)} dNs(i) + ∫ t
0 1{ηs−(i)<ζs−(i)} dVs(i).
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We will say that (ζt , ηt )t≥0 is the (ζ0, η0,N,V )-coupled Bernoulli–avalanche
process.

Again here, building the Bernoulli and avalanche processes with the same IFPP
would not preserve the order.

PROOF OF PROPOSITION 2.4. The coupling is the following. For each i ∈ Z,
at time t ≥ 0, we use:

(a) the same IFPP Nt(i) to make appear a flake in η and ζ if ηt−(i) =
ζt−(i) = 0;

(b) the same IFPP Nt(i) to make die the flake at i (in ζ ) or the whole connected
component of flakes around i (in η) if ηt−(i) = ζt−(i) = 1;

(c) the IFPP Nt(i) to make die the flake at i (in ζ ) and the independent IFPP
Vt(i) to make appear a flake (in η) if 0 = ηt−(i) < ζt−(i) = 1.

This construction guarantees that for all t ≥ 0, all i ∈ Z, ηt (i) ≤ ζt (i). �

This coupling is illustrated by Figure 1, and can be represented graphically in
the following way.

GRAPHICAL CONSTRUCTION 2.5. (a) Initially, each site of Z is occupied or
not according to ζ0 or η0. We draw black (resp. grey) segments to represent the
marks of N (resp. V ) above each site of Z.

(b) Next, we deduce the Bernoulli process ζ :
When an occupied site encounters a black mark, it becomes vacant;
when a vacant site encounters a black mark, it becomes occupied.
(The Bernoulli process is not concerned with the grey marks.)
(c) Finally, we deduce the avalanche process η:

when an occupied site, say i, encounters a black mark, this makes become va-
cant the whole connected component of occupied sites around i;

when a vacant site (say the site i, at time t) encounters a black mark, it becomes
occupied (and so does it in the process ζ ) if and only if the Bernoulli process
satisfies ζt−(i) = 0;

when a vacant site (say the site i, at time t), encounters a grey mark, then it
becomes occupied if and only if ζt−(i) = 1.

This graphical construction is possible because η0 ∈ E, which guarantees that
for any T > 0, there are a.s. infinitely many sites i for which η0(i) = NT (i) =
VT (i) = 0, and since such sites cut the interactions.

An immediate consequence of Proposition 2.4 is the following, which we will
use later.
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FIG. 1. Coupled avalanche and Bernoulli processes. The Bernoulli (resp. avalanche) process is
represented in black on the right (resp. in grey on the left) of each site. Initially, the Bernoulli (resp.
avalanche) process is occupied on the sites 1,2,3,4,5 (resp. 1,2,3,4), and vacant on the sites 0,6
(resp. 0,5,6). The Bernoulli process is easily constructed from the black marks: each time a site
encounters a black mark, its state changes. Next, we have to build the avalanche process. The sites 2
and 4 are not affected by the first grey marks, since they are occupied. On the contrary, 5 becomes
occupied when it encounters its first grey mark, since it is vacant and the Bernoulli process is oc-
cupied (at this time on this site). Next, the site 2 encounters a black mark, which kills him and its
whole connected component of occupied sites, that is 1,2,3,4,5. Next, the (vacant) site 5 encounters
a black mark, but it does not become occupied because the Bernoulli process is occupied. Next, the
site 3 encounters a grey mark: since it is vacant and the Bernoulli process is occupied, it becomes
occupied. But it is killed again by the site 4, which becomes vacant because it encounters a black
mark. And so on. . . .

COROLLARY 2.6. Let � be an invariant distribution of the avalanche process.
Recall that � is the invariant distribution of the Bernoulli process. Then � is sto-
chastically smaller than �. This implies that for any random variable ζ ∼ �, we
may find a random variable η ∼ � such that a.s., for all i ∈ Z, η(i) ≤ ζ(i).

PROOF. First, Supp � ⊂ E, since the rate of death for each site is bounded be-
low by 1. Consider η0 = ζ0 ∼ �. Using Proposition 2.4, consider a η0-avalanche
process and a ζ0-Bernoulli process such that a.s., for all t ≥ 0, i ∈ Z, ηt (i) ≤ ζt (i).
Of course, ηt ∼ � for all t , while ζt goes in law to � as t tends to infinity,
due to Lemma 2.1. We conclude that for any γ ∈ {0,1}Z, setting Fγ = {α ∈
{0,1}Z : ∀ i ∈ Z, α(i) ≥ γ (i)}, �(Fγ ) ≤ �(Fγ ). This says exactly that � is sto-
chastically smaller than �. �

3. Coupling the invariant distributions. Our aim in this section is to de-
scribe a way to build the invariant distribution of the avalanche process from that
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of the Bernoulli process, using the coupling introduced in Proposition 2.4. Our
method is based on the ideas of the famous Propp–Wilson algorithm [17], which
concerns Markov chains with finite state space. In the sequel, we will denote for
ζ ∈ {0,1}Z,

Eζ := {η ∈ E : ∀ i ∈ Z, η(i) ≤ ζ(i)}.(3.1)

PROPOSITION 3.1. Let V and N be two independent IFPPs, and ζ0 ∼ � (re-
call Lemma 2.1). Consider the (ζ0,N)-Bernoulli process (ζt )t≥0, and its time-
reversal (ζ̃t )t∈(−∞,0] built in Lemma 2.2.

For T ∈ (−∞,0] and ϕ ∈ EζT
, we denote by (ζ̃t , η

T ,ϕ
t )t∈[T ,0] the (ζ̃T , ϕ,NT ,

V T )-coupled Bernoulli–avalanche process with NT
t (i) = N(−T )−(i) − N(−t)−(i)

and V T
t (i) = V(−T )−(i) − V(−t)−(i) for t ∈ [T ,0] and i ∈ Z.

Observe that a.s., due to Proposition 2.4, for all S ≤ T ≤ t ≤ 0, all ϕ ∈ Eζ̃S
,

η
S,ϕ
T ∈ Eζ̃T

and η
S,ϕ
t = η

T,η
S,ϕ
T

t .(3.2)

Denote, for each i ∈ Z, by (here 0 ∈ E is the state with all sites vacant)

τi = sup{T ≤ 0 :∀ϕ ∈ Eζ̃T
, η

T ,ϕ
0 (i) = η

T,0
0 (i)}.(3.3)

Assume for a moment that a.s., for all i ∈ Z, τi > −∞. Notice that we have a.s.,
for all i ∈ Z, all s1 ≤ s2 < 0, all ϕ1 ∈ Eζ̃τi+s1

, ϕ2 ∈ Eζ̃τi+s2
,

η
τi+s1,ϕ1
0 (i) = η

τi+s2,ϕ2
0 (i).(3.4)

We thus may define η0(i) = η
τi+s,0
0 (i) (which does not depend on s < 0).

Then � := L(η0) is the unique invariant distribution of the avalanche process.

It seems that the Bernoulli process is almost not useful in this statement. How-
ever, it allows us to couple all the avalanche processes (with different initial con-
ditions) together. Furthermore, the behavior of τi will be studied through the
Bernoulli process. For example, notice that τi = 0 > −∞ if ζ0(i) = 0. Indeed,
due to Proposition 2.4, we know that for all T < 0, all ϕ ∈ Eζ̃T

, all s ∈ [T ,0],
η

T,ϕ
t (i) ≤ ζ̃t (i), which implies that if ζ̃0(i) = 0 [i.e. ζ0(i) = 0], then η

T,ϕ
0 (i) = 0.

Hence, τi = 0 and η0(i) = 0. When ζ0(i) = 1, it is much less clear that τi > −∞.

PROOF OF PROPOSITION 3.1. First, (3.2) and (3.4) are easily understood. We
now split the proof into two parts.

Step 1. Let us show that � = L(η0) is an invariant distribution for the avalanche
process. To this aim, call (η0

t )t≥0 the 0-avalanche process. Consider also a bounded
function � :E �→ R depending only on a finite number of coordinates, say
�(η) = �((η(k))|k|≤n) for some n ≥ 0. We will show that limT →+∞ E[�(η0

T )] =
E[�(η0)], which classically suffices to conclude.
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Consider now the processes coupled as in the statement. First, E[�(η0
T )] =

E[�(η
−T ,0
0 )] for all T ≥ 0. Next, on the set �n(T ) = {∀ |i| ≤ n, τi > −T },

�(η
−T ,0
0 ) = �(η0) a.s. Since Pr[�n(T )] increases to 1 as T increases to infin-

ity (because a.s., τ−n ∨· · ·∨ τn > −∞), we deduce that limT →+∞ E[�(η
−T ,0
0 )] =

E[�(η0)]. This concludes the second step.
Step 2. Consider another invariant distribution �′ of the avalanche process.

Let T ≥ 0, and consider using Lemma 2.6, a random variable ϕT ∼ �′ such
that ϕT ∈ EζT

a.s. Consider, as in step 1, a bounded function � :E �→ R depend-
ing only on a finite number of coordinates, say �(η) = �((η(k))|k|≤n) for some

n ≥ 0, and set �n(T ) = {∀ |i| ≤ n, τi > −T }. Then on �n(T ), �(η
T,ϕT

0 ) = �(η0).

On the other hand, η
T,ϕT

0 ∼ �′, since �′ is invariant. Using that Pr[�n(T )] in-
creases to 1 as T tends to ∞, we easily conclude that

∫
�d�′ = E[�(η0)]. Thus,

�′ = �. �

4. The contour process. Our aim in this section is to define and study a
process which will allow us to estimate τi , for i ∈ Z, and to bound the number
of sites involved in the construction of η0(i), in order to estimate the decay of
correlations.

The first idea is the following: Consider the occupied zone in Z × [0,∞) of the
Bernoulli process. Clearly, if this occupied zone has no infinite connected com-
ponents, then τi is finite a.s. for all i ∈ Z. Indeed, each site i would then a.s. be
encompassed by a vacant zone of the Bernoulli process, which implies that the
avalanche process is also vacant, and cuts the interaction in some sense, which
would allow us to build η0(i) from the stationary process, using the Graphical
construction 2.5.

But such a consideration would probably lead to a fat tail estimate of the distri-
bution of τi , because we are in a critical case (the proportion of space occupied by
the Bernoulli process is 1/2). A way to overcome this difficulty is to make use of
the grey marks (recall Figure 1), which also give us some information about η0(i).

Let us now define the left and right contour processes, keeping in mind the
coupling between stationary measures built in Proposition 3.1.

DEFINITION 4.1. Let ζ0 ∈ E, and N,V be two independent IFPPs. We con-
sider the (ζ0,N)-Bernoulli process (ζt )t≥0 and we introduce the filtration Gt =
σ {ζ0(i),Ns(i),Vs(i) : s ∈ [0, t], i ∈ Z}.

For i ∈ Z, we define the (ζ0,N,V )-right contour process (Ri
t )t≥0 around i, with

values in Z + 1
2 ∪ {∞} (see Figure 2 for an illustration) by

Ri
t = ∑

n≥0

Ri
T i

n
1{t∈[T i

n,T i
n+1)},(4.1)

where:
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FIG. 2. The contour processes (R0
t )t≥0 and (L0

t )t≥0 around 0. The process R0
t (resp. L0

t ) is repre-

sented in plain (resp. dashed) line. First, R0
0 = 0.5, since the first vacant site (of the Bernoulli process

at time 0) on the right of 0 is 1. By the same way, L0
0 = −1.5. Next, R0 encounters a grey mark on

its left, but since at this time ζt (−1) = 1, it does not jump. Then R0 encounters a black mark on its
right, so that it jumps to 2.5, that is, the left of 3, which is (at this time) the first vacant site on its
right. Next, it encounters a black mark on its left and jumps to 1.5, which is the right of 1, that is,
the first vacant site on its left, and so on. As we see on the picture, when it encounters its fourth grey
mark on its left, we have R0

t− = 3.5, and since ζt−(2) = 0, it jumps to 0.5, which is the right of 0,
that is, the first occupied site on the left of 2.

Initially, T i
0 = 0, Ri

0 = inf{k ≥ i : ζ0(k) = 0}− 1
2 . For n ≥ 0 (we use the notation

�xt = xt − xt−)

T i
n+1 = inf

{
t > T i

n :�Nt

(
Ri

T i
n
+ 1

2

)
(4.2)

+ �Nt

(
Ri

T i
n
− 1

2

) + �Vt

(
Ri

T i
n
− 1

2

)
> 0

}
.

Then:

(a) if �NT i
n+1

(Ri
T i

n
+ 1

2) > 0, then Ri

T i
n+1

= inf{k > Ri
T i

n
: ζT i

n+1
(k) = 0} − 1

2 ;

(b) if �NT i
n+1

(Ri
T i

n
− 1

2) > 0, then Ri

T i
n+1

= sup{k < Ri
T i

n
: ζT i

n+1
(k) = 1} + 1

2 ;

(c) if �VT i
n+1

(Ri
T i

n
− 1

2) > 0, then:

(i) if ζT i
n+1

(Ri
T i

n
− 3

2) = 1, Ri

T i
n+1

= Ri
T i

n
,

(ii) if ζT i
n+1

(Ri
T i

n
− 3

2) = 0, then Ri

T i
n+1

= sup{k < Ri
T i

n
: ζT i

n+1
(k) = 1} + 1

2 .

The left contour process (Li
t )t≥0 around i is defined symmetrically.
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Remark that the sequence (T i
n)n≥0 contains all the instants of jumps of (Ri

t )t≥0,
but it contains also fictitious jumps [case (c)(i)]. We explain how to build graphi-
cally these contour processes, as illustrated by Figure 2.

GRAPHICAL CONSTRUCTION 4.2. Draw above each site i ∈ Z the marks of
N in black and those of V in grey. Draw in black the Bernoulli process correspond-
ing to a given initial data ζ0.

A time 0, the right contour process R0
0 lies on the left of the first vacant site of

ζ0 on the right of 0 [e.g., if ζ0(0) = ζ0(1) = 1 and ζ0(2) = 0, then R0
0 = 1.5].

Next the dynamics of R0 are the following:

(a) each time it encounters a black mark on its right, it jumps to the left of the
first vacant site on its right;

(b) when it encounters a black mark on its left, it jumps to the right of the first
occupied site on its left;

(c) when it encounters a grey mark on its left (say that R0
t− = i + 0.5), and if

ζt−(i − 1) = 0, then it jumps to the right of the first occupied site on the left of
i − 1.

The process (L0
t )t≥0 follows the same dynamics, permuting the roles of left and

right.

We will see in the next section that it is possible to build η0 ∼ � (where � is the
invariant distribution of the avalanche process) in such a way that η0(i) depends
only on ζ0, N and V in the region delimited by Li

t and Ri
t until they first meet

(if they do). The main reason for this is the following property, which says that in
some sense, the contour processes encompass a given site i by a vacant zone of the
Bernoulli process.

LEMMA 4.3. We adopt the notations of Definition 4.1. A.s., for all t ≥ 0, all
i ∈ Z, ζt (R

i
t + 1

2) = ζt (L
i
t − 1

2) = 0.

PROOF. It is clear from the construction. �

Remark here that case (c)(i) in Definition 4.1 is considered to have this lemma.
Indeed, if we want the right contour process to have only vacant sites (of the
Bernoulli process) on its right, we can use grey marks to jump to the left only
when there is at least one vacant site on its strict left.

To study the decay of correlations, we have to estimate the width of the region,
while to study the rate of trend to equilibrium, we have to estimate its height.
The following estimates, central in our proof, will provide some bounds on these
quantities.



60 X. BRESSAUD AND N. FOURNIER

PROPOSITION 4.4. Let ζ0 ∼ �, let N,V be two independent IFPPs. Consider
the right and left (ζ0,N,V )-contour processes (R0

t )t≥0 and (L0
t )t≥0 around 0.

Consider the stopping time [for the filtration (Gt )t≥0]

ρ0 = inf{t ≥ 0 :R0
t < L0

t }(4.3)

and the random variable

�R0∞ = sup
t≥0

R0
t .(4.4)

(a) There exists β > 0, such that E[eβρ0] < ∞.
(b) There exists γ > 0, such that E[eγ �R0∞] < ∞.

The remainder of this section is devoted to the proof of these estimates. They
seem quite natural, since the process (R0

t )t≥0 is a sort of random walk with nega-
tive jump size expectation: two types of events allow (R0

t )t≥0 to jump to the left,
while only one type allows him to jump to the right. Furthermore, some symme-
try seems to hold between the jumps to the right (due to N ) and those to left due
to N . Thus, the result seems almost obvious, and intuitively very clear. However,
we have not found a simple proof. Of course, the main difficulty is that (R0

t )t≥0 is
not a continuous-time random walk: Its sizes of jumps are not independent. Thus,
quite a precise study has to be done. Our strategy consists of bounding from above
(R0

t )t≥0 by a continuous-time random walk with negative jump size expectation.
We first describe some immediate properties of the contour processes.

LEMMA 4.5. We adopt the notation of Definition 4.1. Let i ∈ Z be fixed.

(a) If ζ0 ∼ �, then the processes (i −Li
t )t≥0, (Ri

t − i)t≥0 and (R0
t )t≥0 have the

same law (but are far from being independent).
(b) If Ri

0 < ∞, then Ri
t < ∞ for all t ≥ 0 a.s.

(c) For j ≤ i, R
j
t ≤ Ri

t for all t ≥ 0 a.s. Furthermore, if R
j
t = Ri

t for some t ,

then a.s., R
j
t+s = Ri

t+s for all s ≥ 0.
(d) The counting processes

Z
1,i
t = ∑

n≥1

1{t≥T
1,i
n } := ∑

n≥1

1{t≥T i
n}1{�N

T i
n
(Ri

T i
n−1

+1/2)>0},

Z
2,i
t = ∑

n≥1

1{t≥T
2,i
n } := ∑

n≥1

1{t≥T i
n}1{�N

T i
n
(Ri

T i
n−1

−1/2)>0},(4.5)

Z
3,i
t = ∑

n≥1

1{t≥T
3,i
n } := ∑

n≥1

1{t≥T i
n}1{�V

T i
n
(Ri

T i
n−1

−1/2)>0},

are three independent Poisson processes with rate 1. They are (Gt )t≥0-adapted,
and independent of ζ0.
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Remark here that Z1,i counts the jumps to the right of Ri , while Z2,i counts its
jumps to the left due to N (black marks on Figure 2) and Z3,i counts its possible
jumps to the left due to V (grey marks on Figure 2).

PROOF OF LEMMA 4.5. Point (a) is obvious by symmetry and invariance by
translation. Point (b) follows from the fact that the Bernoulli a.s. process belongs
to E for all t > 0, even if it does not at time 0. Point (c) is clear from the construc-
tion. Point (d) follows from classical properties on Poisson processes. �

We carry on with a natural monotonicity property.

LEMMA 4.6. We consider three independent IFPPs N , V and W . Let also
ζ 1

0 , ζ 2
0 ∈ {0,1}Z satisfy, for all i ∈ Z, ζ 1

0 (i) ≤ ζ 2
0 (i). Then we build, recalling

Lemma 2.3, the (ζ 1
0 , ζ 2

0 ,N,W)-coupled Bernoulli process (ζ 1
t , ζ 2

t )t≥0. As stated in
Lemma 2.3, (ζ 1

t )t≥0 is the (ζ 1
0 ,N)-Bernoulli process, while (ζ 2

t )t≥0 is the (ζ 2
0 ,M)-

Bernoulli process for some IFPP M . We denote by (R
0,1
t )t≥0 [resp. (R

0,2
t )t≥0] the

(ζ 1
0 ,N,V ) [resp. (ζ 2

0 ,M,V )] right contour process around 0.

We will say that (R
0,1
t ,R

0,2
t )t≥0 are the (ζ 1

0 , ζ 2
0 ,N,W,V )-coupled right con-

tour processes around 0. We have a.s., for all t ≥ 0, R
0,1
t ≤ R

0,2
t .

PROOF. The proof is obvious from the definition of the contour process, since
we know from Lemma 2.3 that a.s., for all t ≥ 0, all i ∈ Z, ζ 1

t (i) ≤ ζ 2
t (i). �

We consider the following initial condition.

NOTATION 4.7. We say that a {0,1}Z-valued random variable ζ̃0 has the dis-
tribution � is if ζ̃0(i) = 1 for i ≤ 0, ζ̃0(1) = 0, and if (ζ̃0(i))i≥2 is a family of i.i.d.
Bernoulli random variables with parameter 1/2.

Let us now explain our strategy to bound the right contour process by a random
walk.

We will first upperbound the initial configuration ζ0 of the Bernoulli process by
a (possibly shifted) realization ζ̃0 of �, we thus upperbound our contour process
by the corresponding contour process R̃0.

Then we will wait for the first instant T̃
1,0
1 of jump of R̃0

t to the right; this yields
a total jump which we will call Y1 := R̃

T̃
1,0
1

− R̃0, and whose expectation will be

shown to be negative.
We will also observe that at T̃

1,0
1 , we may again bound the configuration of

the Bernoulli process by a realization ζ̃ 1
0 of � (shifted around R̃

T̃
1,0
1

) independent

of Y1.
This last renewal argument allows us to build, recursively, a random walk with

negative mean jump size, bounding from above our contour process.
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LEMMA 4.8. Let ζ̃0 ∼ �, and consider two independent IFPPs N,V .
Consider the (ζ̃0,N,V )-right contour process (R̃0

t )t≥0 around 0, observe that
R̃0

0 = 1/2, and denote by T̃
1,0
1 := inf{t > 0 :�R̃0

t > 0} the first instant where it
jumps to the right. We also consider (ζ̃t )t≥0 the (ζ̃0,N)-Bernoulli process. We set
Y1 = R̃0

T̃
1,0
1

− 1/2.

(i) Then E[Y1] < 0.
(ii) For all ε ∈ (0, ln 2), E[eεY1] < ∞.

Furthermore, then there exists ζ̃ 1
0 ∼ � such that

(iii) a.s., ζ̃
T̃

1,0
1

(R̃0
T̃

1,0
1

+ i − 1/2) ≤ ζ̃ 1
0 (i) for all i ∈ Z,

(iv) ζ̃ 1
0 is independent of H

T̃
1,0
1

, where Ht = σ {R̃0
s , s ≤ t}.

PROOF. To simplify the notation, we omit the superscript 0 (which says
that we are dealing with the contour process around 0) in this proof. We con-
sider the three independent Poisson processes with rate 1 [see Lemma 4.5(d)]
Z̃1

t = Nt(R̃t− + 1/2), Z̃2
t = Nt(R̃t− − 1/2) and Z̃3

t = Vt(R̃t− − 1/2), and we de-
note by (T̃ 1

i )i≥1, (T̃ 2
i )i≥1, (T̃ 3

i )i≥1, respectively, their successive instants of jumps.

We also denote by Aj = ⋃
i≥1{T̃ j

i }, for j = 1,2,3. We set Z̃t = Z̃1
t + Z̃2

t + Z̃3
t ,

which is a Poisson process with rate 3, we denote by (T̃i)i≥1 its successive instants
of jumps, and we set A = ⋃

i≥1{T̃i} = A1 ∪ A2 ∪ A3. Finally, we also set for con-
venience T̃0 = T̃ 1

0 = T̃ 2
0 = T̃ 3

0 = 0. Recall that we want to study Y1 = R̃
T̃ 1

1
− 1/2.

Step 1. For n ≥ 1, the event �n = {T̃1 /∈ A1, . . . , T̃n−1 /∈ A1, T̃n ∈ A1} occurs
with probability pn := 2n−1

3n , since A1,A2,A3 are the sets of jumps of three in-
dependent Poisson processes with same rate. Notice also that on �n, T̃ 1

1 = T̃n,
and we may write Y1 = −∑n−1

i=1 Xi + Xn, where X1, . . . ,Xn are the successive
sizes of the (possibly fictitious) jumps of R̃ (at the instants T̃1 < · · · < T̃n), with
X1 ≥ 0, . . . ,Xn ≥ 0. We obtain

E[Y1] = ∑
n≥1

E[{−(X1 + · · · + Xn−1) + Xn}1�n].(4.6)

Step 2. Let us now bound from below E[Xi1�n], for 1 ≤ i ≤ n − 1. We denote
by Zi the number of vacant sites of the Bernoulli process on the strict left of
R̃

T̃i− − 1/2 at time Ti−. Then due to the definition of R̃, we know that:

(a) on F 2
i := {T̃i ∈ A2}, Xi = −�R̃

T̃i
= 1 + Zi ,

(b) on F 3
i := {T̃i ∈ A3}, Xi = −�R̃

T̃i
= (1 + Zi)1{Zi≥1}.

Observe that Pr[F 2
i |�n] = Pr[F 3

i |�n] = 1/2, and that F 2
i , F 3

i are independent of
(Zi, T̃i) conditionally on �n. These are standard properties of Poisson processes.
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Hence,

E[Xi1�n] = 1
2E

[
(1 + Zi)1�n + (1 + Zi)1{Zi≥1}1�n

]
= E[(1 + Zi)1�n] − 1

2 Pr[Zi = 0,�n](4.7)

= Pr[�n] + ∑
k≥1

Pr[Zi ≥ k,�n] − 1
2 Pr[Zi = 0,�n].

Let now k ≥ 1 be fixed. We have

Pr[Zi ≥ k,�n]
= Pr

(
ζ̃
T̃i−

(
R̃

T̃i− − 3
2

) = 0, . . . , ζ̃
T̃i−

(
R̃

T̃i− − 1
2 − k

) = 0,�n

)
(4.8)

= E

[
k∏

l=1

Pr
(
ζ̃
T̃i−

(
R̃

T̃i− − 1
2 − l

) = 0
∣∣�n, T̃i, T̃i−1

)
1�n

]
.

Indeed, recalling that on �n, R̃ has had only jumps to the left before T̃i , we easily
deduce that on �n, the values of the Bernoulli process at sites j ≤ R̃

T̃i− − 3
2 are

mutually independent conditionally on T̃i , T̃i−1.
Let us set ps := (1 − e−2s)/2 = Pr[Ns ∈ 2N + 1] for s ≥ 0 [for (Nt )t≥0 is a

standard Poisson process with rate 1].
Now for l ≥ 2, the site R̃

T̃i− − 1
2 − l was occupied at time 0, and its evolution

is obviously independent of (R̃t )t∈[0,T̃i )
, so that

Pr
(
ζ̃
T̃i−

(
R̃

T̃i− − 1
2 − l

) = 0
∣∣�n, T̃i, T̃i−1

) = p
T̃i

.(4.9)

Next, the same argument holds for l = 1 on the set {Xi−1 > 0}, which indicates
that the previous jump to the left was not fictitious. We have

Pr
(
ζ̃
T̃i−

(
R̃

T̃i− − 3
2

) = 0
∣∣�n, T̃i, T̃i−1,Xi−1 > 0

) = p
T̃i

.(4.10)

But on the event {Xi−1 = 0}, we know that ζ̃
T̃i−1

(R̃
T̃i− − 3

2) = 1. Hence, we get

Pr
(
ζ̃
T̃i−

(
R̃

T̃i− − 3
2

) = 0
∣∣�n, T̃i, T̃i−1,Xi−1 = 0

) = p
T̃i−T̃i−1

.(4.11)

Noting that p
T̃i

≥ p
T̃i−T̃i−1

, that {Xi−1 = 0} ⊂ {T̃i−1 ∈ A3}, we deduce that

Pr
(
ζ̃
T̃i−

(
R̃

T̃i− − 3
2

) = 0
∣∣�n, T̃i, T̃i−1

)
(4.12)

≥ 1{T̃i−1∈A2}pT̃i
+ 1{T̃i−1∈A3}pT̃i−T̃i−1

.

Gathering the estimates obtained for l ≥ 2 and l = 1, we obtain, for k ≥ 1,

Pr[Zi ≥ k,�n] ≥ E
[
1�np

k−1
T̃i

(
1{T̃i−1∈A2}pT̃i

+ 1{T̃i−1∈A3}pT̃i−T̃i−1

)]
.(4.13)
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Using finally classical properties of Poisson processes, we see that T̃i−1, T̃i are
independent of �n, {T̃i−1 ∈ A2}, {T̃i−1 ∈ A3} and that Pr[�n ∩ {T̃i−1 ∈ A2}] =
Pr[�n ∩ {T̃i−1 ∈ A3}] = Pr[�n]/2 = 2n−1/(2 × 3n), so that

Pr[Zi ≥ k,�n] ≥ 2n−1

2 × 3n
E[(p

T̃i
+ p

T̃i−T̃i−1
)pk−1

T̃i
].(4.14)

Next,

Pr[Zi = 0,�n] = Pr[�n] − Pr[Zi ≥ 1,�n]
(4.15)

≤ 2n−1

2 × 3n
E[2 − p

T̃i
− p

T̃i−T̃i−1
].

Thus, recalling (4.7), for any 1 ≤ i ≤ n − 1,

E[Xi1�n] ≥ 2n−1

3n
E

[
1 + p

T̃i
+ p

T̃i−T̃i−1

2 − 2p
T̃i

− 2 − p
T̃i

− p
T̃i−T̃i−1

4

]

≥ 2n−1

2 × 3n
E

[
1 + p

T̃i

1 − p
T̃i

+ p
T̃i−T̃i−1

1 − p
T̃i

+ 1

2
p

T̃i
+ 1

2
p

T̃i−T̃i−1

]
(4.16)

=: 2n−1

2 × 3n
(1 + Bi),

where the last equality stands for a definition.
Step 3. We now upperbound E[Xn1�n]. We denote by Zn the number of occu-

pied sites on the strict right of R̃
T̃n−, that is,

Zn = inf{j ≥ R̃
T̃n− + 3/2 : ζ̃

T̃n−(j) = 0} − R̃
T̃n− − 3/2.(4.17)

For k ≥ 1, we set Jk := R̃
T̃n− + k + 1

2 and ξk := ζ̃
T̃n−(Jk). By construction, we

have Xn = 1 + Zn on �n, and for k ≥ 1,

Pr[Zn ≥ k,�n] = Pr[ξ1 = 1, . . . , ξk = 1,�n].(4.18)

We now introduce the σ -field generated by the path of (R̃t )t∈[0,T̃ 1
1 )

, containing also

the fictitious jumps, that is, for ν defined by T̃ν = T̃ 1
1 (ν = n on �n),

H := σ(ν, T̃1, . . . , T̃ν,�R̃
T̃1

, . . . ,�R̃
T̃ν−1

).(4.19)

Observe that obviously, (Jk)k≥1 and �n are H -measurable.
We will show that conditionally on H , the sequence (ξk)k≥1 is a family of inde-

pendent random variables on �n, and that for each k ≥ 1, Pr[ξk = 1|H ,�n] ≤ 1/2.
Since �n belongs to H , for all n ≥ 1, we will deduce that

Pr[Zn ≥ k,�n] ≤ 1

2k
Pr[�n] = 1

2k

2n−1

3n
,(4.20)
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FIG. 3. Illustration of step 3 (and step 6). With this realization, we have R̃
T̃ 1

1 − = −6.5. We remark

that the only site which is occupied by the Bernoulli process when crossed by R̃ is J4 = −2: it is
crossed through a grey mark.

so that (since Xn = 1 + Zn on �n),

E[Xn1�n] = ∑
k≥1

Pr[1 + Zn ≥ k,�n] = ∑
k≥0

Pr[Zn ≥ k,�n] ≤ 2n

3n
.(4.21)

Let us thus check the announced properties of the sequence (ξk)k≥1. For each
k ≥ 1, let τk = 0 if Jk ≥ 2, and if Jk ≤ 1 let τk be the unique instant t ∈ [0, T̃ 1

1 )

such that Jk − 1 ∈ (R̃t , R̃t−). We refer to Figure 3 for an illustration. Roughly, τk

is the last instant before T̃ 1
1 where we get some information (from H ) about the

site Jk . Of course, (τk)k≥1 is H -measurable.
One can show that the family of random variables ζ̃τk

(Jk) is mutually indepen-
dent on �n conditionally on H , and that for each k ≥ 1, Pr[ζ̃τk

(Jk) = 1|H ,�n] ≤
1/2. This implies the announced properties, for two reasons:

(i) conditionally on H and �n, the evolution of the Bernoulli process at two
different sites Jk (on [τk, T̃

1
1 )) and Jl (on [τl, T̃

1
1 )) are independent, since they

concern independent Poisson processes;
(ii) for each k ≥ 1, Pr[ζ̃

T̃ 1
1 −(Jk) = 1|H ,�n] = Pr[ζ̃τk

(Jk) = 1|H ,�n](1 −
p

T̃ 1
1 −τk

) + Pr[ζ̃τk
(Jk) = 0|H ,�n]pT̃ 1

1 −τk
≤ 1/2. Indeed, recall that ps = (1 −

e−2s)/2 ≤ 1/2 stands for the probability that a standard Poisson process at time
s is odd, and that for a, b ∈ [0,1/2], a(1 − b) + (1 − a)b ≤ 1/2.
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Step 4. Gathering (4.6), (4.16) and (4.21), we get

E[Y1] = ∑
n≥1

{
E[Xn1�n] −

n−1∑
i=1

E[Xi1�n]
}

≤ ∑
n≥1

{
2n

3n
−

n−1∑
i=1

2n−1

2 × 3n
(1 + Bi)

}
= 2 − ∑

i≥1

2i−1

3i
(1 + Bi)(4.22)

≤ 1 − ∑
i≥1

2i−1

3i
Bi.

To conclude that E[Y1] < 0, we thus have to prove that I = ∑
i≥1

2i−1

3i Bi > 1. But
we may write I = I1 + I2 + I3/2 + I4/2, with

I1 := ∑
i≥1

2i−1

3i
E

[ p
T̃i

1 − p
T̃i

]
, I2 := ∑

i≥1

2i−1

3i
E

[p
T̃i−T̃i−1

1 − p
T̃i

]
,

(4.23)

I3 := ∑
i≥1

2i−1

3i
E[p

T̃i
], I4 := ∑

i≥1

2i−1

3i
E[p

T̃i−T̃i−1
].

Since T̃i − T̃i−1 is exponentially distributed with parameter 3 (for all i ≥ 1),

I4 = ∑
i≥1

2i−1

3i

∫ ∞
0

ds 3e−3s 1 − e−2s

2
= 3

2

(
1

3
− 1

5

)
= 1

5
.(4.24)

Next, since T̃i follows a �(i,3)-distribution,

I3 = ∑
i≥1

2i−1

3i

∫ ∞
0

ds
3i

(i − 1)!s
i−1e−3s 1 − e−2s

2

(4.25)

=
∫ ∞

0
ds e−s 1 − e−2s

2
= 1

3
,

and (using the substitution u = e−s )

I1 = ∑
i≥1

2i−1

3i

∫ ∞
0

ds
3i

(i − 1)!s
i−1e−3s 1 − e−2s

1 + e−2s

=
∫ ∞

0
ds e−s 1 − e−2s

1 + e−2s
(4.26)

=
∫ 1

0
du

1 − u2

1 + u2 = 2 arctan 1 − 1 = π

2
− 1.
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Finally, using the independence between T̃i−1 and T̃i − T̃i−1, we get

I2 = 1

3
E

[ p
T̃1

1 − p
T̃1

]

+ ∑
i≥2

2i−1

3i

∫ ∞
0

ds
3i−1

(i − 2)!s
i−2e−3s

∫ ∞
0

dt 3e−3t 1 − e−2t

1 + e−2s−2t

= 1

3

∫ ∞
0

ds 3e−3s 1 − e−2s

1 + e−2s
+

∫ ∞
0

ds

∫ ∞
0

dt 2e−se−3t 1 − e−2t

1 + e−2s−2t
(4.27)

=
∫ 1

0
du

u2(1 − u2)

1 + u2 + 2
∫ 1

0
du

∫ 1

0
dv v2 1 − v2

1 + u2v2

=
(

5

3
− π

2

)
+ 2

(
π

4
− 2

3

)
= 1

3
.

We finally get that I = π
2 − 1 + 1

3 + 1
6 + 1

10 = π
2 − 2

5 > 1. Thus, E[Y1] < 0.
Step 5. We still have to prove the exponential moment estimate. Using the same

notation as previously, we will just use that for each n ≥ 1, Y1 ≤ Xn = 1 + Zn

on �n. Recalling (4.20) and that
∑

n≥1 Pr[�n] = 1, we get, for any k ≥ 1

Pr[Y1 ≥ k] ≤ ∑
n≥1

Pr[Zn ≥ k − 1,�n] ≤ 1

2k−1 .(4.28)

We classically conclude that for ε ∈ (0, ln 2), E[eεY1] < ∞.
Step 6. We finally have to build ζ̃ 1

0 . First, note that obviously, ζ̃
T̃ 1

1
(i + R̃

T̃ 1
1

−
1/2) ≤ 1 = ζ̃ 1

0 (i) for i ≤ 0, while ζ̃
T̃ 1

1
(1 + R̃

T̃ 1
1

− 1/2) = 0 = ζ̃ 1
0 (1) due to

Lemma 4.3. Hence, we just have to build ζ̃ 1
0 (i) for i ≥ 2.

Using the same arguments as in step 3, one may check that conditionally on
H

T̃ 1
1

, the family (ζ̃
T̃ 1

1
(i + R̃

T̃ 1
1

− 1/2))i≥2 is independent, and that for all i ≥ 2,

Pr[ζ̃
T̃ 1

1
(i + R̃

T̃ 1
1

− 1/2) = 1|H
T̃ 1

1
] ≤ 1/2.(4.29)

It is then standard to build ζ̃ 1
0 . �

The following lemma shows a way to bound from above the right contour
process started with the initial condition ζ0 ∼ � by a continuous-time random
walk.

LEMMA 4.9. Let ζ0 ∼ �, let N,V be two independent IFPPs, and consider
the (ζ0,N,V )-right contour process (R0

t )t≥0 around 0. Then for k ≥ 0, Pr[R0
0 =

k − 1/2] = (1/2)k+1. Furthermore, we may find a Poisson process (Zt )t≥0 with
rate 1, a family of i.i.d. random variables (Yi)i≥1 distributed as Y1 (see Lemma 4.8)
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in such a way that R0
0 and ((Zt )t≥0, (Yi)i≥1) are independent, while a.s., for all

t ≥ 0,

R0
t ≤ R0

0 +
Zt∑
i=1

Yi.(4.30)

This lemma is easily deduced from the renewal argument stated in Lemma 4.8,
together with the comparison result established in Lemma 4.6. We finally conclude
the proof of the main estimates of this section.

PROOF OF PROPOSITION 4.4. We omit the superscript 0 for simplicity.
The proof is based on the use of Lemmas 4.9 and 4.8. We thus write, according
to (4.30), Rt ≤ R0 + SZt , with Sn = Y1 + · · · + Yn.

First of all, we deduce from Lemma 4.8(i)–(ii) that there exists γ ∈ (0, ln 2)

such that E[eγY1] < 1.
Since γ ∈ (0, ln 2), we also deduce from Lemma 4.9 that E[eγR0] < ∞.
Next, we recall that since (Zt )t≥0 is a Poisson process with rate 1, for all t ≥ 0,

Pr[Zt ≤ t/2] ≤ e−δt , where δ := (1 − ln 2)/2 > 0 (any δ > 0 would suffice for our
purposes).

We have �R∞ = supt≥0 Rt ≤ R0 + supn≥1 Sn. This implies that eγ �R∞ ≤
eγR0

∑
n≥1 eγSn . Thus, since E[eγY1] ∈ (0,1), and since Sn and R0 are indepen-

dent,

E[eγ �R∞] ≤ E[eγR0] ∑
n≥1

E[eγSn] ≤ C
∑
n≥1

E[eγY1]n < ∞.(4.31)

Next, we want to upperbound ρ. First, ρ ≤ inf{t ≥ 0 :Rt < 0 and Lt > 0}, so that
by symmetry, for any t ≥ 0,

Pr[ρ ≥ t] ≤ Pr[Rt > 0 or Lt < 0] ≤ 2 Pr[Rt > 0].(4.32)

But since Rt ≤ R0 + SZt ,

Pr[ρ ≥ t] ≤ 2 Pr[Rt > 0] ≤ 2 Pr[Zt ≤ t/2] + 2 Pr
[
R0 + sup

n>t/2
Sn > 0

]

≤ 2e−δt + 2E
[
eγ (R0+supn>t/2 Sn)] ≤ 2e−δt + 2E[eγR0] ∑

n>t/2

E[eγSn](4.33)

≤ 2e−δt + C
∑

n>t/2

E[eγY1]n ≤ 2e−δt + CE[eγY1]t/2 ≤ Ae−at

for some constants A > 0, a > 0. We classically conclude that for any β ∈ (0, a),
E[eβρ] < ∞. �
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5. Proof of Theorem 1.1. Our aim in this section is to conclude the proof of
our main result.

PROOF OF THEOREM 1.1. We divide the proof into several steps. Let us re-
call briefly the notation of Proposition 3.1 and Definition 4.1: We consider two
independent IFPPs N,V and ζ0 ∼ �. Let (ζt )t≥0 be the (ζ0,N)-Bernoulli process
(ζt )t≥0, and let (ζ̃t )t∈(−∞,0] be its time-reversal built in Lemma 2.2.

For T ∈ (−∞,0] and ϕ ∈ EζT
[recall (3.1)], we denote by (ζ̃t , η

T ,ϕ
t )t∈[T ,0] the

(ζ̃T , ϕ,NT ,V T )-coupled Bernoulli avalanche process with NT
t (i) = N(−T )−(i)−

N(−t)−(i) and V T
t (i) = V(−T )−(i)−V(−t)−(i) for t ∈ [T ,0] and i ∈ Z. Recall that

τi = sup{T ≤ 0 :∀ϕ ∈ EζT
, η

T,ϕ
0 (i) = η

T,0
0 (i)}.(5.1)

We then may put η0(i) := η
τi+s,0
0 (i) (for some s < 0, recall Proposition 3.1) pro-

vided τi > −∞. Recall also that by definition of τi , for all T < 0, all ϕ ∈ EζT
, we

have η
T,ϕ
0 (i) = η0(i) on the event {T < τi}.

Next, we consider the (ζ0,N,V )-left and right contour processes (Li
t )t≥0 and

(Ri
t )t≥0 around i, for each i ∈ Z, and we adopt the notation

�Ri
t = sup

s∈[0,t]
Ri

s, Li
t = inf

s∈[0,t]L
i
s, ρi = inf{t ≥ 0 :Ri

t < Li
t }.(5.2)

Finally, for k < l ∈ Z ∪ {−∞,+∞} and t ∈ [0,∞], we consider the σ -field

Gk,l,t = σ {ζ0(j), Vs(j), Ns(j), s ∈ [0, t], k ≤ j ≤ l}.(5.3)

Step 1. We first show that a.s., −τi ≤ ρi a.s., and that η0(i) = �i(Z
i), for some

deterministic function �i , where

Zi := (
ζ0(j),Ns(j),Vs(j), j ∈ {Li

ρi − 1/2, . . . , �Ri
ρi + 1/2}, s ∈ [0, ρi]).(5.4)

The function �i cannot easily be made explicit, but it can be explained graphically
(or in an algorithm way).

It suffices to treat the case i = 0. We consider the region delimited by L0
t and

R0
t until they meet, that is, until t = ρ0. Consider an avalanche process starting at

some time T < −ρ0 with a given initial condition ϕ ∈ Eζ̃T
. We wish to rebuild its

value at time 0, thus time now goes down in Figure 2 (see also Figure 4).
Observe, having a look at Figure 2, that on the right and left of this region, the

Bernoulli process ζ̃t is vacant (see Lemma 4.3), so that due to our coupling, the
avalanche process is also vacant, since it is always smaller (see Proposition 2.4).
Hence, no interaction can go inside this region (from its left and right-hand sides),
since vacant sites cut the interaction: indeed, flakes falling outside this region can
not make die flakes inside the region.

Next, notice that the horizontal segments delimiting this region on the top side
contain sites of the following type:
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FIG. 4. Reconstruction of η0 (step 1). We explain here graphically how to obtain the values of η0(i)

for i ∈ {−2, . . . ,1}. The avalanche process is represented on the right of each site, in grey. We start
from the top of the region, that is at site 0. A flake appears here, so that 0 becomes occupied (inde-
pendently of its starting time T < −ρ0 and initial condition ϕ ∈ E

ζ̃T
). Next, a grey mark appears

at the site 3, which thus remains occupied (if it was already) or becomes occupied (if it was not), so
that in any case, the site 3 is occupied at this time. At the same time, the sites 1 and 2 are vacant,
since they are vacant for the Bernoulli process. Next, 1 and then −1 become occupied due to black
marks. But then the flake at 0 dies, and makes −1,0,1 become vacant, and so on. This way, we see
that the site −1 is finally vacant at time 0, while the site 0 is finally occupied. On the other hand,
it is immediate that −2 and 1 are vacant, since the avalanche process is smaller than the Bernoulli
process with our coupling. We could also see that η0(2) = 1 and η0(3) = 0 here, but it is not possible
to decide if η0(−3) = 1, because it could be killed by a flake dying at some site i ≤ −6.

(a) either vacant sites of the Bernoulli process, so that the avalanche process
is also vacant at this site at this time (since it is always smaller);

(b) or sites where the Bernoulli process becomes occupied because of a black
mark, so that the avalanche process also becomes occupied at this time (because
when the Bernoulli process is vacant, then the avalanche and Bernoulli processes
both become occupied when they encounter a black mark);

(c) or a grey mark (in the middle of an occupied zone of the Bernoulli process),
so that at this site and at this time, the avalanche process is (or becomes) occupied.

As a conclusion, the avalanche process is vacant on the left and right of the
region, and the value of the avalanche process on the top horizontal segments of
this region are determined, independently of its starting time T < −ρ0 and initial
condition ϕ ∈ Eζ̃T

. We thus may rebuild the avalanche process (η
T ,ϕ
t )t∈[ρ0,0], and

the obtained value η
T,ϕ
0 (0) does not depend on T < −ρ0 nor on ϕ ∈ Eζ̃T

. We thus

deduce that τ0 ≥ −ρ0 and that η0(0) = η
T,ϕ
0 (0). This value η0(0) clearly depends
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only on the values of N,V, ζ̃t in this region, and the fact that the Bernoulli process
is vacant on the outside boundary of this region. We thus can say that η0(0) is a
(deterministic) function of Z0.

Step 2. We also observe that for i ∈ Z, k ≤ i ≤ l, for T > 0,

�i(k, l, T ) := {ρi < T ,Li
T ≥ k + 1/2, �Ri

T ≤ l − 1/2} ∈ Gk,l,T(5.5)

and that Zi1{�i(k,l,T )} is Gk,l,T -measurable. This is clear from Figure 2.
Step 3. Next, we notice that point (a) (existence and uniqueness of an invari-

ant distribution � for the avalanche process) follows immediately from Proposi-
tion 3.1, provided we know that τi > −∞ a.s. for all i ∈ Z. But we know from
step 1 that τi ≥ −ρi . Lemma 4.5(a) implies that for all i ∈ Z, ρi and ρ0 are iden-
tically distributed. As a consequence, it suffices to show that ρ0 < ∞ a.s., which
follows from Proposition 4.4(a).

Hence, � = L(η0) is the unique invariant distribution of the avalanche process.
Step 4. Point (c) [existence of a perfect simulation algorithm for (η0(i))i=−l,...,l]

is also immediate. Let l ≥ 0 be fixed. Due to step 3, we know that η0 ∼ �, it thus
suffices to simulate (perfectly) (η0(j))j∈{−l,...,l}. This can be done by simulating
first Z−l , . . . ,Zl . This can be done due to step 2, which says that Zi depends on
ζ0, N , and V on an a.s. finite number of sites and on an a.s. finite time interval.
Next, it suffices to compute η0(i) = �i(Z

i) for all i ∈ {−l, . . . , l}, which can be
done following the rules explained in step 1; see also Figure 4.

Step 5. We now check the mixing property announced in point (d). Let thus
n ≥ 1 and k ∈ Z be fixed. We consider the events (here �x� stands for the integer
part of x ∈ R)

�1
n = {�Rk∞ ≤ k + �n/3� − 1/2} and

(5.6)
�2

n = {Lk+n∞ ≥ k + �2n/3� + 1/2}.
We deduce from Lemma 4.5(c) that on �1

n, �Ri∞ ≤ k + �n/3� − 1/2 for all
i ≤ k. We thus deduce from step 2 that the family (Zi1�1

n
)i≤k is G−∞,k+�n/3�,∞-

measurable. Hence, (η0(i)1�1
n
)i≤k is G−∞,k+�n/3�,∞-measurable. By the same

way, (η0(i)1�2
n
)i≥k+n is Gk+�2n/3�,∞,∞-measurable.

But of course, the two σ -fields G−∞,k+�n/3�,∞ and Gk+�2n/3�,∞,∞ are indepen-
dent. Hence, for any A ⊂ {0,1}(−∞,k], B ⊂ {0,1}[k+n,∞],

|Pr[(η0(i))i≤k ∈ A, (η0(i))i≥k+n ∈ B]
−Pr[(η0(i))i≤k ∈ A]Pr[(η0(i))i≥k+n ∈ B]|(5.7)

≤ Pr[(�1
n)

c] + Pr[(�2
n)

c],
so that ∣∣�(−∞,k]∪[k+n,∞) − �(−∞,k] ⊗ �[k+n,∞)

∣∣ ≤ Pr((�1
n)

c) + Pr((�2
n)

c).(5.8)
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Using Lemma 4.5(a), we deduce that Pr[(�1
n)

c] = Pr[�Rk∞ ≥ k + �n/3� + 1/2] =
Pr[�R0∞ ≥ �n/3�+1/2] and Pr[(�2

n)
c] = Pr[Lk+n∞ ≤ k+�2n/3�−1/2] = Pr[�R0∞ ≥

n − �2n/3� + 1/2] ≤ Pr[�R0∞ ≥ �n/3� + 1/2], since n − �2n/3� ≥ �n/3�. Using
finally Proposition 4.4(b), we obtain that for some constants γ > 0, C > 0,

Pr[(�1
n)

c] + Pr[(�2
n)

c] ≤ 2 Pr[�R0∞ ≥ �n/3� + 1/2]
(5.9)

≤ 2e−γ /2−γ �n/3�
E[eγ �R0∞] ≤ Ce−γ n/3.

We thus obtain (1.4), setting q = e−γ /3.
Step 6. Finally, it remains to study the trend to equilibrium. For ϕ ∈ E, t ≥ 0,

we denote by �
ϕ
t the law of the ϕ-avalanche process at time t . The main difficulty

here is to obtain the trend to equilibrium for any initial datum ϕ ∈ E. Indeed, if
the initial data was stochastically smaller than �, the result would follow from the
simulation by classical arguments since maxi∈{−l,...,l} ρi has exponential moments.
To overcome this difficulty, we must take advantage of the exponential trend to
equilibrium of the Bernoulli process following from Lemma 2.3. We give a sketch
of the way this argument can be formalized.

Let us construct from time −t a coupling of two Bernoulli processes, one with
initial condition ϕ the other one with initial condition � as is Lemma 2.3. Now,
in the spirit of Proposition 3.1, let us construct an avalanche process with initial
condition ϕ jointly with the first Bernoulli process and a second avalanche process
with initial condition � jointly with the second Bernoulli process. Observe that
if the region needed for reconstruction is included in [−l − n, l + n] × [−t/2,0]
and if the Bernoulli processes are equal on [−l − n, l + n] × [−t/2,0], then the
avalanche processes are equal at time 0 on [−l, l].

First, Lemma 2.3 ensures us that the Bernoulli processes are equal on [−l − n,

l +n]×[−t/2,0] with probability greater than 1− (2(l +n)+1)e−t . Next, Propo-
sition 4.4 ensures us that the region is included in [−l − n, l + n] × [−t/2,0] with
probability greater than 1 − B(e−γ n + (2l + 1)e−βt/2) for some constant B > 0.
As a consequence, or all t ≥ 0 and all l ≥ 0, all n ≥ 1,∣∣(�ϕ

t )[−l,l] − �[−l,l]
∣∣
TV

(5.10)
≤ A

(
2(l + n) + 1

)
e−t + B

(
e−γ n + (2l + 1)e−βt/2)

.

We conclude that (1.3) holds by putting n = �t�. �

6. A related mean-field model. This section, quite independent of the rest of
the paper, is devoted to the brief study of a mean-field coagulation–fragmentation
model related to the avalanche process.

To obtain a process which preserves the total mass, we will slightly change our
point of view: We assume that each edge of Z has a mass equal to 1.

Consider a possible state η ∈ E of the avalanche process. Two neighbor edges,
say (i − 1, i) and (i, i + 1), are said to belong to the same particle if η(i) = 1:
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the flake lying at i glues the two edges. For example, the edge (0,1) belongs to a
particle with mass 3 if η(−1) = η(2) = 0 and η(0) = η(1) = 1, if η(0) = η(3) = 0
and η(1) = η(2) = 1, or if η(−2) = η(1) = 0 and η(−1) = η(0) = 1. Similarly,
(0,1) belongs to a particle with mass 1 if and only if η(0) = η(1) = 0.

Then we consider, for η ∈ E and for k ∈ N, if it exists,

ck(η) = lim
n→∞

number of particles with mass k in [−n,n]
2n + 1

,(6.1)

which represents the average number of particles with mass k per unit of length.
Consider an avalanche process (ηt )t≥0. Assume for a moment that for each t ≥ 0,
the successive masses of particles in ηt are independent (which is intuitively far
from being exact). Then using the invariance by translation of the model, one
would have, for k ≥ 1, t ≥ 0,

ck(t) := ck(ηt ) = 1

k
Pr[(0,1) belongs to a particle with mass k in ηt ].(6.2)

The family (c(t))t≥0 = (ck(t))t≥0,k≥1 would also satisfy
∑

k≥1 kck(t) = 1 for all
t ≥ 0, and the following infinite system of differential equations:

d

dt
c1(t) = −2c1(t) + ∑

k≥1

(k − 1)kck(t),

(6.3)
d

dt
ck(t) = −2ck(t) − (k − 1)ck(t) + 1

m0(c(t))

k−1∑
i=1

ci(t)ck−i (t) (k ≥ 2),

where m0(c(t)) = ∑
k≥1 ck(t) is the average number of particles per unit of length.

Indeed, the first equation expresses that an isolated edge merges with its two neigh-
bors with rate 1, while each time a flake falls on a particle with mass k, which
happens at rate k − 1 (since a particle with mass k contains k edges and thus k − 1
sites), an avalanche occurs and k new particles with mass 1 appear. Next, the sec-
ond equation expresses that particles with mass k become larger at rate 2 (when a
flake falls on one of its two extremities), that particles with mass k disappear when
they are subject to an avalanche (which happens at rate k − 1), and that particles
with mass k do appear when a flake falls between a particle with mass i and a par-
ticle with mass k − i. This last event occurs at rate 1, proportionally to the number
(per unit of length) of pairs of neighbor particles with masses i and k − i, which is
exactly ci(t)ck−i (t)/m0(c(t)). We use the abusive independence assumption when
computing this last rate.

We refer to Aldous ([1], Construction 5) for very similar considerations, without
fragmentation, where the independence between neighbors really holds.

The system (6.3) can be seen as a coagulation–fragmentation equation with
constant coagulation rate K(i, j) = 2, with a splitting rate (from one particle with
mass k into k particles with mass 1) F(k;1, . . . ,1) = k − 1, the change of time
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1/m0(c(t)) lying in front of the coagulation term. Indeed, we could write, for
example, when k ≥ 2,

d

dt
ck(t) = − F(k;1, . . . ,1)ck(t)

+ 1

m0(c(t))

[
−ck(t)

∑
i≥1

K(k, i)ci(t)(6.4)

+
k−1∑
i=1

K(i, k − i)ci(t)ck−i (t)

]
.

The term in brackets on the second line is the right-hand side member of the
well-known Smoluchowski coagulation equation. See Aldous [1] and Laurençot–
Mischler [14] for reviews on these types of equation. No results about the trend
to equilibrium for such a model without detailed balance condition (here the co-
agulation is binary, which is not the case of fragmentation) seem to be avail-
able. See, however, Fournier–Mischler [11] for partial results about a coagulation–
fragmentation without balance condition in the case of binary fragmentation.

We aim here to compute the steady state of this mean-field model, and to show
numerically that it approximates closely the invariant distribution of the avalanche
process.

PROPOSITION 6.1. The system of equations (6.3) admits a unique steady state
c = (ck)k≥1, in the sense that: ck ≥ 0 for all k ≥ 1,

∑
k≥1 kck = 1, and, with

m0(c) = ∑
k≥1 ck ,

2c1 = ∑
k≥1

(k − 1)kck,

(6.5)

(k + 1)ck = 1

m0(c)

k−1∑
i=1

cick−i (k ≥ 2).

This steady state is given by ck = akg
k−12−k , where a1 = 1 and for k ≥ 2, ak =

1
k+1

∑k−1
i=1 ajak−j , while g > 0 is the unique solution of

∑
k≥1 ak(g/2)k = 1.

We also have c1 = 1/2,
∑

k≥1 k2ck = 2, and m0(c) = 1/g.

PROOF. Consider the sequence (ak)k≥1 defined in the statement. Remark that
for any x > 0, any g > 0, the sequence x1 = x, xk = g

k+1
∑k−1

i=1 xjxk−j is explicitly
given by xk = akx

kgk−1.
Thus, (ck)k≥1 is a steady state of (6.3) if and only if there exist x > 0 and g > 0

such that:

(i) ∀ k ≥ 1, ck = akx
kgk−1,
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(ii) g = 1/m0(c),
(iii)

∑
k≥1 kck = 1,

(iv) x = 1
2(

∑
k≥1 k2ck − 1).

Points (i) and (ii) imply that necessarily,
∑

k≥1 ak(xg)k = 1. Thus, q := xg is
clearly uniquely defined, and satisfies 0 < q < 1 (since a1 = 1 and a2 = 1/3 > 0).
Next, using (iii), we deduce that g = ∑

k≥1 kakq
k is also uniquely defined (and

finite, since q < 1 and since one easily checks recursively that ak ≤ 1 for all k ≥ 1).
Thus, x = q/g is also uniquely defined. This shows that there exists at most one
steady state. We next have to verify that these values for x and g imply point (iv).
Using the definition of (ak)k≥1, we obtain that on the one hand,

∑
k≥2

(k + 1)akq
k = ∑

k≥2

qk
k−1∑
j=1

ajak−j =
(∑

j≥1

ajq
j

)2

= 1,(6.6)

while on the other hand, since a1 = 1,∑
k≥2

(k + 1)akq
k = ∑

k≥1

kakq
k + ∑

k≥1

akq
k − 2q = g + 1 − 2q.(6.7)

We obtain by this way g = 2q , so that x = 1/2, and thus c1 = 1/2.
To conclude the proof, it suffices to check that

∑
k≥1 k2ck = 2 with the previous

values for x and g. But again, we obtain on the one hand that∑
k≥2

k(k + 1)akq
k = ∑

k≥1

k2akq
k + ∑

k≥1

kakq
k − 2q

(6.8)
= g

∑
k≥1

k2ck + g − 2q,

while on the other hand,

∑
k≥2

k(k + 1)akq
k = ∑

k≥2

kqk
k−1∑
j=1

ajak−j

= ∑
j≥1

ajq
j

∑
k≥j+1

kqk−j ak−j

(6.9)
= ∑

j≥1

ajq
j
∑
l≥1

(j + l)qlal

= 2

(∑
j≥1

ajq
j

)(∑
l≥1

lqlal

)
= 2g.

Hence, g
∑

k≥1 k2ck + g − 2q = 2g, so that
∑

k≥1 k2ck = 1 + 2q/g = 2. �

To conclude this section, let us give some numerical results.
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We obtain numerically, computing the values of a1, a2, . . . , a10000, and studying
the function z �→ ∑10000

k=1 ak(z/2)k , that g � 1.4458, with quite a good precision.
We deduce then from Proposition 6.1 that at equilibrium, the mean-field model
(6.3) satisfies

c1 = 0.5, c2 � 0.1204,

c3 � 0.04354, c4 � 0.01679,

c5 � 0.006574, c6 � 0.002582,∑
k≥1

ck � 0.6916,
∑
k≥1

k2ck = 2.

On the other hand, simulating 108 times the mass M of the particle containing
the edge (0,1) in the avalanche process η0 at equilibrium we obtain the following
Monte–Carlo approximations for ck(η0) := Pr[M = k]/k

c1(η0) � 0.499934, c2(η0) � 0.12312,

c3(η0) � 0.0422142, c4(η0) � 0.0161849,

c5(η0) � 0.00648257, c6(η0) � 0.00263739,∑
k≥1

ck(η0) � 0.692419,
∑
k≥1

k2ck(η0) � 1.99979.

It appears clearly that the two sets of values are very similar, even if numer-
ical computations indicate that no equality holds, except maybe concerning c1
and

∑
k k2ck . We have no explanation for this phenomenon. It might indicate that

correlations between the masses of successive clusters are nearly insignificant.
We have no proof that the mean-field model is the (very fast) limit, in some

asymptotic regime, of the avalanche process.

Acknowledgment. We are very grateful to the anonymous referee for his
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