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Abstract. We consider the one-dimensional generalized forest fire process: at each site of
Z, seeds and matches fall according to i.i.d. stationary renewal processes. When a seed falls
on an empty site, a tree grows immediately. When a match falls on an occupied site, a fire
starts and destroys immediately the corresponding connected component of occupied sites.
Under some quite reasonable assumptions on the renewal processes, we show that when
matches become less and less frequent, the process converges, with a correct normalization,
to a limit forest fire model. According to the nature of the renewal processes governing
seeds, there are four possible limit forest fire models. The four limit processes can be
perfectly simulated. This study generalizes consequently previous results of [14] where
seeds and matches were assumed to fall according to Poisson processes.
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Part 1

Introduction



1. Introduction

Consider a graph G = (S,A), S being the set of vertices and A the set of edges. Introduce
the space of configurations E = {0, 1}S. For η ∈ E, we say that η(i) = 0 if the site i ∈ S
is vacant and η(i) = 1 if i is occupied by a tree. Two sites are neighbors if there is an edge
between them. We call forests the connected components of occupied sites. For i ∈ S and
η ∈ E, we denote by C(η, i) the forest around i in the configuration η (with C(η, i) = ∅ if
η(i) = 0). We consider the following (vague) rules:

• vacant sites become occupied (a seed falls and a tree immediately grows) at rate 1;

• occupied sites take fire (a match falls) at rate λ > 0;

• fires propagate to neighbors (inside the forest) at rate π > 0.

Such a model was introduced by Henley [36] and Drossel and Schwabl [27] as a toy model
for forest fire propagation and as an example of a simple model intended to clarify the concept
of self-organized criticality.

The order of magnitude of the rate of growth is much smaller than the propagation rate,
π $ 1. We will focus here on the limit case where the propagation is instantaneous: when a
tree takes fire, the whole forest (to which it belongs) is destroyed immediately. The model is
thus:

• vacant sites become occupied (a seed falls and a tree immediately grows) at rate 1;

• matches fall on occupied sites at rate λ and then burn instantaneously the corresponding
forest.

The features of the model depend on the geometry of the graph; we only consider in this
paper the case S = Z (with its natural set of edges). They also depend on the laws of the
processes governing seeds and matches; the standard case is when these are Poisson processes
so that the forest fire process is Markov. We deal here with the most general (stationary)
case; Poisson processes are replaced by stationary renewal processes.

Our main preoccupation is the behavior of this model in the asymptotic of rare seeds,
namely when λ→ 0. We present four possible limit processes (depending on the tail properties
of the law of the stationary processes governing seeds) arising when we suitably rescale space
and accelerate time while letting λ → 0. This is a considerable generalization of the results
obtained in [14].

This introduction consists of six subsections.

(i) In Subsection 1.1, we briefly recall the concept of self-organized criticality and recall a
certain number of models supposed to enjoy self-organized critical properties.

(ii) We present in Subsection 1.2 a quick history of the forest-fire process, its other possible
interpretations and its links with other models.

(iii) Subsection 1.3 explains the importance of the geometry of the underlying graph G
and the links of the forest-fire model with percolation.

(iv) In Subsection 1.4, we recall what has been done for the (Markov) forest-fire process
on Z from a rigorous mathematical point of view.

(v) Subsection 1.5 is devoted to a brief exposition of the main ideas of the present paper.
(vi) Finally, we give the plan of the paper in Subsection 1.6.
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1.1. Self-organized criticality. One of the successes of statistical mechanics is to ex-
plain how local interactions generate macroscopic effects through simple models on lattices.
Among the most striking phenomena are those observed around so-called critical values of
the parameters of such models, such as scale-free patterns, power laws, conformal invariance,
critical exponents or universality.

1.1.1. Paradigm. The study of self-organized critical systems has become rather popular
in physics since the end of the 80’s. These are simple models supposed to clarify temporal
and spatial randomness observed in a variety of natural phenomena showing long range cor-
relations, like sand piles, avalanches, earthquakes, stock market crashes, forest fires, shapes of
mountains, clouds, etc. It is remarkable that such phenomena reminiscent of critical behavior
arise so frequently in nature where nobody is here to finely tune the parameters to critical
values.

An idea proposed in 1987 by Bak-Tang-Wiesenfeld [5] to tackle this contradiction is,
roughly, that of systems growing toward a critical state and relaxing through catastrophic
events: avalanches, crashes, fires, etc. If the catastrophic events become more and more
probable when approaching the critical state, the system spontaneously reaches an equilibrium
close to the critical state. This idea was developed in [5] through the study of the archetypical
sand pile model.

This paradigm was used to investigate various phenomena, from physics to sociology
through biology, epidemiology or economics. The pertinence of the conclusions are not always
convincing. Discussion to decide if whether or not there is self-organized criticality in nature
or in one or another model, or even to decide what self-organized criticality should exactly be,
is beyond our purpose. Anyhow let us summarize the usual features of these models:

• local dynamics but with possibly very long range effects (at high speed) through a simple
mechanism;

• macroscopic states with scaling invariance properties, a priori related to the critical
state of a well-known system;

• long range spatial correlations and power laws for natural observables at fixed times;

• presence of 1/f or 1/fα-noise in the temporal fluctuations of natural observables. We
are not experts on this topic, but it seems to be one of the main motivation of self-organized
critical systems. It is the subject of the original article of Bak-Tang-Wiesenfield [5] and of
considerably many physical papers.

One of the specificities of these models is that the interaction is formally non local; it is
local in general, but may, when close to the critical region —whatever this means— have long
range effects. This, together with a lack of monotonicity, yields mathematical difficulties that
justify a careful treatment.

To understand, explain or illustrate these phenomena, a multitude of models have been
proposed to explore various mechanisms that would produce these effects. Simple models,
non necessarily realistic, are nice for they try to catch the underlying mechanisms. They have
often been treated numerically, in the spirit of Bak-Tang-Wiesenfield [5]. Forest fire models are
among them and still need a mathematical rigorous study. Sand pile models, while somehow
more complicated, have been more studied.

1.1.2. Sand pile models. Let us explain in a few words what a sand pile model is. First,
we assume that we have a definition of what a stable sand pile is. Sand grains fall at random
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on sites. When a grain falls, if the new pile is unstable, it is immediately re-organized to
become stable, through (possibly many) successive elementary steps. Such events are called
avalanches. This model was introduced by Bak-Tang-Wiesenfeld [5] and studied by Dhar
[24]. Since, there has been a huge amount of results and we will not try to be exhaustive;
for surveys see for instance Holroyd-Levine-Meszaros-Peres-Propp-Wilson [38], Goles-Latapy-
Magnien-Morvan-Phan [33] or Redig [56].

Let us give a slightly more precise description of the so-called Abelian sand pile model.
The state of the system is described by η ∈ ZS , representing local slopes of the sand pile. For
instance, when S = Z, think that η(i) = h(i+1)−h(i) where h(i) is the height of the sand pile
on the site i. A dynamic is defined on ZS using a matrix ∆ indexed by S × S, called toppling
matrix. It has positive entries on the diagonal (think of ∆i,i = γ constant), negative entries
when i, j ∈ S are neighbors and null entries elsewhere. It is dissipative if ∆i,i+

∑

j !=i∆i,j < 0.

Then define the toppling of a site i as the mapping Ti : ZS → ZS defined by

Ti(η)(j) = η(j)−∆i,j ∀ j ∈ S if η(i) > ∆i,i;

Ti(η) = η otherwise.

Toppling at i consists, whenever the slope is too big at i, of spreading grains on neighboring
sites (possibly in a non conservative way). A pile is stable if for all i ∈ S, η(i) ≤ ∆i,i (then, no
toppling has any effect). Observe that successive topplings at different sites commute (which
explains the term Abelian).

Now consider the situation where sand grains fall at random, on each site, at rate 1. Each
time a grain falls, immediately topple (possibly many times) until stability is reached. Some
dissipativity assumptions guarantee that this is always possible.

At first glance, arrival of a new sand grain on a site has only a local effect: a non trivial
toppling at i may occur. But there can be a chain reaction creating an avalanche. And indeed,
the action may, in general, have a long range effect.

These systems have a nice underlying group structure that depends on the size and ge-
ometry of the underlying lattice, see e.g. Le Borgne-Rossin [44] for such an algebraic point of
view. The thermodynamic limits of the sand-pile models have been investigated. In particular,
existence and uniqueness of a stationary measure have been proved. See for instance Maes-
Redig-Saada [47] when S = Z and Járai [41] when S = Zd. Some features of self-organized
criticality have been observed for d > 1, at least numerically, in the physical literature, see
e.g. Lübeck-Usadel [46]. For instance, they have studied the sizes of avalanches (number of
topplings necessary to stabilize after a grain has been added). A scaling limit was obtained
recently by Dürre [30].

1.1.3. Other models. The Abelian sand pile seems to be the most popular sand pile model.
However it has a lot of variants: Zhang sand pile model (see Zhang [65], Pietronero-Tartaglia-
Zhang [51]), Oslo model (see Christensen-Corral-Frette-Feder-Jossang [19], Amaral-Lauristsen
[4]), Oslo rice pile model (see Brylawski [17]), chip firing game (see Tardos [62]), etc.

Moreover, various different models have been introduced and studied with the eyes of
self-organized criticality. There is of course the forest fire model that we are going to dis-
cuss in this paper. Let us mention briefly some other models: rotor-router model (intro-
duced by Priezzhev-Dhar-Dhar-Krishnamurthy [52] under the name Eulerian walkers model),
loop-erased random walks (Majumdar [48]), diffusion/aggregationmodels (Cafiero-Pietronero-
Vespignani [18]), Scheidegger’s model of river basin (Scheidegger [57]), models describing
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earthquakes (Olami-Feder-Christensen [50]) or crashes in stock markets (Staufer-Sornette
[61, 59]), etc.

As we already mentioned those systems have often been subjected to numerical experi-
mentations and studies. Of course this is a difficult task and it has sometimes been misleading:
long range effects need huge simulations, the interpretation of which is not always meaningful.

For surveys on self-organized criticality, see Bak-Tang-Wiesenfeld [6], Dhar [25], Jensen
[42] and the references therein.

1.2. Forest fire models. Here we consider the classical forest fire model on G = (S,A).
Recall that on each site of S, seeds are falling at rate 1 and matches are falling at rate λ,
according to some Poisson processes. A seed falling on a vacant site makes it immediately
occupied, and a match falling on an occupied site makes instantaneously vacant the whole
corresponding occupied connected component. Thus the forest fire process is Markov (at least
if one is able to prove that it exists and is unique).

1.2.1. History and numerical studies. The forest fire model was introduced independently
by Henley [36] and Drossel-Schwabl [27]. In the literature, it is generally referred to as the
Drossel-Schwabl forest fire model. In their original paper, they consider the case where S is a
cube in Zd. They are interested in scaling laws and critical exponents for this model. Orders
of magnitude of relevant quantities are derived by analytical computations using essentially
mean field considerations. The results are confirmed by computer simulations. In Drossel-
Clar-Schwabl [26], the asymptotic behavior of the density of vacant sites in the limit λ→ 0 is
obtained when S = Z (using heuristic arguments, see Subsubsection 1.4.3 below). After this
work, numerous numerical or semi-analytical studies have been produced. Among others, let
us mention Henecker-Peschel [39] and Pruessner-Jensen [53]. Numerical studies were handled
again by Grassberger [34], who computes, when S = Z2, the density of occupied sites, the
fractal dimension of fires and the distribution of the fire sizes, in the limit λ→ 0.

The first rigorous probabilistic treatment of this model is the paper by van den Berg and
Járai [9]. They give a rigorous description of the asymptotic density of vacant sites in the
limit λ→ 0 for the forest fire process on Z. To our knowledge, all the rigorous results about
the forest fire process concern the case where seeds and matches fall according to Poisson
processes. See Dürre [28, 29, 30] (existence and uniqueness of the process on Zd with λ > 0
fixed), van den Berg-Brouwer [7] (behavior of the process near the critical time in dimension
2, as λ → 0) and Brouwer-Pennanen [16] (estimates on the cluster size distribution in the
asymptotic λ → 0, in dimension 1). See also the papers by the authors [13] (study of the
invariant distribution when λ = 1 in dimension 1) and [14] (scaling limit of the one dimensional
forest fire process in the asymptotic λ→ 0). We will discuss all these results more specifically
in this introduction.

1.2.2. Real forest fires. Real forest fires in nature are also a subject of preoccupation and
of study from different point of views. In particular there are various statistical studies of
sizes (and sometimes shapes) of real forest fires in different regions (see for instance Holmes-
Hugget-Westerling [37]). One of the recurrent observations is that the distributions of those
fires have heavy tails (power laws) and pleasant scale invariance properties. Another one is the
tentative description of the (fractal) geometry of fires (see for instance Mangiavillano [49]).
For references, connection with real life and practical interest of these studies, see Cui-Perera
[22]. A few studies relate the dynamics of real fires in a given region with theoretical models.
One natural task was to compare real data and numerical experiments done with the toy
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models we have. On this aspect, let us mention the recent (and encouraging) works by Zinck-
Grimm-Johst [66, 67]. Other studies focus on the propagation of the fire itself, but this is not
our main preoccupation here since we have assumed that the propagation is instantaneous.

A direction of study suggested by works on real forest fires is to consider fires in in-
homogeneous, for instance random, media. To our knowledge, this aspect has not yet been
investigated. Another one, that we address here, is to consider the non Markov case: seeds
and matches may not (and actually should not) fall according to Poisson processes.

1.2.3. Other interpretations and variations. The forest fire model has a very simple (and
natural) dynamic. It may accept a variety of interpretations. And various modifications
can make it fit the description of other phenomena. Indeed, we initially thought of it as a
simplification of the avalanche process: snow flakes fall on each site, a snow flake falling on a
vacant site makes it occupied, and a snow flake falling on an occupied site makes vacant the
whole connected component of occupied sites (such an event being called avalanche). This is
nothing but the forest fire process with λ = 1, see [13]. More generally, the forest fire process
may be used to model phenomena involving geometric relations and a common behavior on
connected components; natural examples arise e.g. in epidemiology (change fire by virus).
From these points of view, some natural modifications could be explored such as making the
growth process have effect only on sites which are neighbors of occupied sites (in the spirit
of the so-called contact process). Such variants should be dominated by the standard contact
process and by the forest fire process and may enjoy interesting features.

In a different spirit, a directed version of the forest fire model has been studied as a toy
model for neural networks. Roughly, the idea is to think of growth as activation and of fire as
signal emission. The signal is transmitted along the (directed) connected component which is
at the same time deactivated. The difference is that the underlying graph is a directed graph
(usually a tree) and that the signal is (instantaneously) sent according to the directed edge
(instead of all the connected component). Let us mention the work of van den Berg-Brouwer
[7], which include remarks about this model, and the work of van den Berg-Tóth [10].

1.2.4. Coagulation/Fragmentation. A slight change of point of view about the forest fire
model makes explicit a parallel with a class of coagulation/fragmentation processes. Assume
e.g. that S = Z. Say that each edge (i, i+1) has mass 1, and that two neighbor edges (i−1, i)
and (i, i+1) are connected (or belong to the same particle) if η(i) = 1. Then each time a seed
falls on a vacant site, this glues two particles (preserving the total mass). And each time a
match falls on a site (say, belonging to a forest containing k ≥ 1 sites), this breaks a particle
of mass k + 1 into k + 1 particles with mass 1.

We used this remark in [13] to study the evolution of the sizes of particles when neglect-
ing correlation, using a deterministic coagulation-fragmentation equation. Of course, similar
considerations can be handled on any graph G.

1.2.5. Recent results for related models in dimension 1. Let us mention two recent results
about one-dimensional forest fire processes with a somehow different flavor.

In [64], Volkov considers a version of the forest fire process on N where ignition occurs
only at 0. He studies the weak limit of the distribution of the (suitably normalized) delay
between to fires involving n, as n→∞.

In [12], Bertoin considers a modified version of Knuth’s parking model where random fires
burn connected components of cars. On a circle of size n, cars arrive at each site at rate 1.
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When a car arrives, it occupies the first vacant site (turning clockwise). Molotov cocktails fall
on each site at rate n−α where 0 < α < 1 is fixed. Bertoin studies the asymptotic behavior of
the saturation time as n→∞ and observes a phase transition at α = 2/3.

1.2.6. Specific difficulties. As we already mentioned, one of the difficulties with forest fire
models (and with self-organized critical systems in general) is that the interaction is not local.
The process, whenever it is Markov, is not Feller and some classical results fail. In dimension
one, this difficulty does not yield real problems for the questions of existence and uniqueness
of the process. This is essentially due to the fact that obviously, the sizes of the forests
always remain finite (even when λ is very small). This difficulty is more important in higher
dimensions, because in the absence of fires, clusters would become infinite in finite time (due
to the fact that in dimension d ≥ 2, percolation occurs). Fires prevent us from the existence
of infinite clusters. But these arbitrarily huge clusters burning make difficult the control of
the range of interactions. This difficulty also makes the usual proof of existence of stationary
measures using compactness arguments fail (because indeed there is a lack of continuity).

The lack of monotonicity of these models, although not fundamental, makes the use of
standard intuitions and techniques impossible. Monotonicity allows one to compare the pro-
cesses started from two different ordered initial configurations (coupled in a suitable way).
Monotonicity cannot hold here, because a configuration with more trees will burn sooner.

1.3. Geometry of the lattice. The geometry of the underlying lattice is crucial in
statistical mechanics. Recall for instance that phase transition for the Ising model on Zd

appears only for d ≥ 2 (see Velenik [63]). For the forest fire models, the influence of the
geometry clearly comes through the behavior of the lattice with respect to percolation. This
geometrical influence was already striking in numerical studies. See Grimmett [35] for a very
complete book on percolation.

1.3.1. Growth without fires/Percolation. Consider a graph G = (S,A). For all 0 ≤ p ≤ 1
consider an i.i.d. family {η(i), i ∈ S} of Bernoulli random variables with parameter p (a
percolation trial with probability p). It is well known that there is 0 ≤ pc ≤ 1, depending
on the graph, such that for all p < pc, there are a.s. no infinite connected components of
occupied sites, while for p > pc, there is at least one infinite connected component with
probability 1. The real number pc is called percolation threshold of G. It is rather natural to
consider (dynamical) percolation processes on G, that are couplings of percolation trials for all
0 ≤ p ≤ 1. For instance, consider a family {Ti, i ∈ S} of i.i.d. random variables on R+ with
exponential distribution with parameter 1. Put ηt(i) = 0 if t < Ti and ηt(i) = 1 if t ≥ Ti.
Then for all t > 0, {ηt(i), i ∈ S} is a percolation trial with probability P (Ti ≤ t) = 1 − e−t.
Thus an infinite cluster appears at time tc defined by 1− e−tc = pc.

It clearly appears that the percolation threshold plays a crucial role in understanding the
behavior of the forest fire process on a given lattice. The simple observation is that the growth
process, i.e. without fires (λ = 0), is exactly a percolation process on the lattice. For λ small,
and a fortiori for λ → 0 its study is a necessary preliminary. For instance, one aspect is the
formation of infinite clusters (although in general those clusters will never appear since, taking
fires into account, they must burn before they become infinite). Recall that the percolation

threshold is 1 in dimension 1. It is 0 < p(d)c < 1 on Zd and once there is an infinite cluster, there
is a unique one. While, for instance on a d-regular tree, just after the percolation threshold,
there are infinitely many infinite clusters: these situations are rather different and should yield
different behaviors for the corresponding forest fire processes. Observe that though, for all
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λ > 0, the forest fire process is easy to define for small times, things turn out to be more
complicated when we reach the critical time tc. Even in dimension 1 the separate study of the
percolation process makes sense as we shall see further, Subsection 1.4.4.

1.3.2. Modified percolation models. It has also been fruitful to study modified (for in-
stance dynamical) versions of percolation processes. Models like frozen percolation (Aldous [3],
see also Brouwer [15]), invasion-percolation (see for instance Damron-Sapozhnikov-Vágvölgyi
[23]), or self-destructive percolation (see van den Berg-Brouwer [7] and more recently van den
Berg-Brouwer-Vágvölgyi [8]) are closely related to the forest fire processes. Let us focus one
moment on this last example since it has direct implications on forest fire processes.

A typical configuration for the self-destructive percolation model on Z2 with parameter
(p, δ) is generated in three steps: first generate a configuration for the ordinary percolation
model with parameter p. Next, make all sites in the infinite occupied cluster vacant. Finally,
make occupied each vacant site with probability δ. Let θ(p, δ) be the probability that 0
belongs, in the final configuration, to an infinite occupied cluster. In a recent paper [8], van
den Berg, Brouwer and Vágvölgyi prove that this function is continuous outside of a set of
the form {(pc, δ) : δ < δ0}. It is conjectured that this function has a discontinuity, roughly
meaning that there is δ > 0 such that for any p > pc, the model with parameter (p, δ) is
sub-critical (there a.s. is no infinite cluster).

In [7], van den Berg and Brouwer have proved that assumption of a strongly related
conjecture yields a result for a 2-dimensional forest fire process after the critical time: there
is t > tc such that for all m ≥ 1,

lim inf
λ→0

lim inf
n→∞

Pr

[

a tree in [[−m,m]]2 burns before t
in the forest fire process on Sn = [[−n, n]]2

]

≤
1

2
.

1.3.3. Thermodynamic limit. The forest-fire process on a finite graph is a finite state space
continuous time Markov chain (if matches and seeds fall according to Poisson processes). Ex-
istence and uniqueness of the process thus come for free. Existence of an invariant measure as
well. A basic argument also yields uniqueness of the invariant measure (because the configu-
ration with all sites vacant is recurrent). Hence interesting phenomena may arise only when
we let the size of the lattice tend to infinity.

When S = Z, it is not very expensive to go directly to the limit: the process is naturally
uniquely defined on Z. This is easily seen through a graphical construction of the process (see
[14]), see also Proposition 2.4 below.

In dimension d > 1 the situation is more delicate. On Zd (and actually on any graph with
bounded vertex degree) existence has been proved recently by Dürre [28]. He also proved
uniqueness, but in two steps: firstly, in [29], he shows that, for λ > 0 large enough (the bound
is related to the percolation threshold), the forest-fire process is unique. Only very recently
the same author, in [30], tackled the same question on a graph with bounded vertex degree
and for all λ > 0. This is a much more subtle task. To prove this result he has to introduce
the so-called blur processes, to show that the influence of matches falling far away from 0 is
negligible.

1.3.4. Mean field model. The mean field case is slightly different. Indeed, one has to adopt
the dual point of view (on edges). Furthermore, the process cannot be defined directly on an
infinite lattice since we consider the complete graph. The point of view developed by Ráth
and Tóth in [55] is based on the Erdös-Rényi construction [31]. For all n ≥ 1, let Sn be
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a set (of vertices) with |Sn| = n, and consider the complete graph Gn = (Sn, An). Start
initially with all edges vacant. Then edges appear independently at rate 1/n. Matches fall at
rate λn on each site and destroy instantaneously the whole corresponding occupied connected
component. We consider the asymptotic n → ∞. The various regimes (see Ráth-Tóth [55])
are quite illuminating.

• (I) If λn << 1/n, then fires are (asymptotically) negligible. Thus we have the same
asymptotics as in the Erdös-Réyni model: a giant component appears after some time Tgel

(the critical time in this formalism).

• (II) If λn + λ/n, then a giant component appears, but is destroyed after some time.
Only the giant component may burn: there are no matches enough to burn finite size forests.

• (III) If 1/n << λn << 1, there are not enough fires to burn finite size forests, but too
many to let any infinite forest appear. Hence no giant component appears.

• (IV) If λn + λ, then matches may kill finite forests, so that of course, no giant component
emerges.

To formalize these statements rigorously, Ráth-Tóth [55] consider the cluster size distri-
butions: νn,k(t) is the number of vertices belonging to a connected component of size k at
time t divided by n. Consider also the concentrations cn,k(t) := νn,k(t)/k. As n → ∞, the
limit concentrations (ck(t))k≥1 should satisfy a system of differential equations closely related
to Smoluchowski’s coagulation equations with multiplicative kernel and mono-disperse initial
condition:











c1(0) = 1, ck(0) = 0, k ≥ 2,

d

dt
ck(t) =

1

2

k−1
∑

i=1

i(k − i)ci(t)ck−i(t)− kck(t)
∞
∑

i=1

ici(t), k ≥ 1.

Such equations, discussed in details in Aldous [2], have been introduced by Smoluchowski [58]
in 1916. These equations are subjected to a phase transition known as gelation: some mass is
lost at some positive finite instant Tgel, due to the emergence of a giant particle. For t > Tgel,
we have to decide what to do with the giant particle. It can e.g. interact with finite particles
(Flory’s equation) or be removed from the system (Smoluchowski’s equation). See Aldous [1]
and [32] for such considerations.

In the regime (I), the limit equations are the Flory equations: a giant particle appears
at time Tgel and then coexists with other particles (finite particles do coalesce with the giant
particle). In the regime (II), the limit equations are closer to the Smoluchowski equations:
a giant particle appears at time Tgel (the same one as previously) but once it is giant, it is
replaced by particles with mass 1 (in a conservative way). In the regimes (III) and (IV), some
other modifications of the Smoluchowski equations appear.

The most interesting results obtained by Ráth-Tóth in [55] are that in the regime (III),
the modified Smoluchowski coagulation system has a unique solution which is the classical
one for all t < Tgel and has a particular (critical-like) form for t > Tgel, and (cn,k(t))t≥0,k≥1

converges to this unique solution as n → ∞. This shows that the complete graph exhibits
self-organized criticality in the sense that beyond Tgel, it remains critical forever: no giant
component appears but, after Tgel, the size-distribution is, in some sense, critical.
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1.3.5. Stationary measures. The existence of invariant measures for the forest-fire process
in Zd (with any λ > 0 fixed) has been proved by Stahl [60]. For the case of Z the situation is
simpler, see the next subsection.

1.4. Forest fire on Z. Let us review in details known results about the forest fire pro-
cesses in dimension 1. We still focus on the usual case where seeds and matches fall according
to i.i.d. Poisson processes, with respective rates 1 and λ > 0. We denote ηλt ∈ {0, 1}Z the
configuration at time t and, for i ∈ Z, C(ηλt , i) is the connected component of occupied sites
around i. Observe that (possible) infinite clusters in the initial configuration would immedi-
ately disappear.

From the point of view of self-organized criticality, the interesting regime is the asymptotic
behavior of the forest-fire process as λ→ 0: then fires are very rare, but concern huge occupied
components.

1.4.1. Stationary measures. Existence of a stationary measure does not immediately fol-
low from standard compactness arguments since the process is not Feller. However, in [16],
Brouwer and Pennanen prove the existence of a stationary measure for all fixed λ > 0. In [13],
we proved the uniqueness of this invariant distribution, as well as the exponential convergence
to equilibrium in the special case where λ = 1. We also proved that the invariant distribution
is (spatially) exponentially mixing and can be graphically constructed. The methods in [13]
should be easily extended to the case where λ ≥ 1 (and actually to λ > 1− ε0 for some rather
small ε0 > 0) but our proof completely breaks down for small values of λ > 0.

1.4.2. Asymptotic density. Van den Berg and Járai study in [9] the asymptotic density of
vacant sites in the limit λ → 0. Their result states that there are two constants 0 < c < C
such that for any initial configuration, for any λ > 0 small enough, for t large enough (of order
log(1/λ)),

c

log(1/λ)
≤ Pr

(

ηλt (0) = 0
)

≤
C

log(1/λ)
.

This is coherent with the intuition that the rarer fires are, the more space is occupied by trees
(although because of the lack of monotonicity, this is not straightforward). We mentioned that
such result was stated in Drossel-Clar-Schwabl [26]. But the proof in [26] is not rigorous: it
is based on the ansatz that the cluster sizes were following a cutoff power law, for cluster-sizes
up to some sλmax defined by sλmax log s

λ
max = 1/λ, i.e.

sλmax +
1

λ log(1/λ)
.

In [9], van den Berg and Járai also show that the cluster sizes cannot follow the predicted
power law.

1.4.3. Sizes of clusters, first results. In [16], Brouwer and Pennanen show that this last

ansatz holds true up to s1/3max. More specifically, they show that there are constants 0 < c < C
such that for all 0 < λ < 1 and all stationary measures µλ (invariant by translation) of the
forest fire model on Z with parameter λ, for all x < (sλmax)

1/3,

c

(1 + x) log (1/λ)
≤ µλ (|C(η, 0)| = x) ≤

C

(1 + x) log (1/λ)
.

Observe that this estimate is valid for relatively small clusters that will not be seen after
rescaling (microscopic clusters).
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1.4.4. Kingman’s Process. We detail a classical construction related to the Smoluchowski
equation with constant kernel which is quite close to our point of view. Most ideas and
references for proofs can be found in Aldous [2]. Let us consider the following percolation
process on Z. Starting from the vacant configuration, we let appear trees at each site at some
rate r(t), that allows us to control the speed of the process. Say that each edge (i, i + 1) has
mass 1 (see Subsubsection 1.2.4). Let a seed fall on each site i at some random time Ti with
P (Ti > t) = 2/(t + 2) independently (this corresponds to the rate r(t) = 1/(t + 2), because

then exp(−
∫ t
0 r(s)ds) = 2/(t + 2)). Call D(t, i) the particle containing the edge (i, i + 1) at

time t (say that two neighbor edges (j − 1, j) and (j, j + 1) are glued if ηt(j) = 1). At time t,
the particle containing a given edge (e.g. (0, 1)) has mass m with probability

ρm(t) = m

(

2

2 + t

)2 ( t

2 + t

)m−1

and hence the concentration of clusters with mass m per unit length is nothing but

cm(t) =

(

2

2 + t

)2 ( t

2 + t

)m−1

.

We recognize the solution to Smoluchowski’s equation with constant coagulation kernel and
mono-disperse initial condition, see Aldous [2].

Now consider a standard construction of the so-called Kingman coalescent process. Take
independent exponential random variables {ξk, k ≥ 2} of rates

(2
k

)

. Since E[
∑∞

k=2 ξk] = 2, we
can define random times 0 < · · · < τ3 < τ2 < τ1 < ∞ by τi =

∑∞
k=i+1 ξk. Take {Ui, i ≥ 1}

independent random variables uniformly distributed on (0, 1). For each i draw a vertical
segment from (Ui, τi) to (Ui, 0). At time t this construction splits (0, 1) into i intervals, where
τi < t < τi−1. Write X(t) for the list of the lengths of these subintervals. This is a version
of the stochastic coalescent called Kingman’s coalescent. Observe that we also could have put
the marks {(Ui, τi), i ≥ 1} using a Poisson measure on [0, 1]×R+ with a well-chosen intensity
measure.

Straightforward computations show that Kingman’s coalescent is a limit of the previously
defined percolation process in the following sense: consider the list of (distinct) normalized
clusters λD(t/λ, ,x/λ-) when x runs along [0, 1] (cutoff the boundary clusters at 0 and 1)
at time t. When λ → 0, it converges to X(t) in law (in an appropriate topology). This
construction shows how the growth process behaves in the large scales. In some sense we have
identified {0, . . . ,nλ} ⊂ Z with [0, 1] ⊂ R (here nλ = 1/λ) and obtained a limiting process for
the rescaled percolation process.

We stress the fact that the convergence holds globally only for the specific speed r(t) =
1/(t+2) of the percolation process. This fact is related to the self-similarity of the percolation
(coalescent) process. In particular, for a constant rate (exponential times for seeds), there
is no hope for such a convergence to Kingman’s coalescent: after normalization, the size of
clusters at time t is of order λ1−t and converges to 0 or ∞ according to whether t < 1 or
t > 1. Conversely, if the rate of growth has a polynomial decay, there is a hope to have a limit
process.

1.4.5. Asymptotic regime: relevant space/time scales. As already mentioned, we are in-
terested in the behavior of the system in the large space and time scales in the limit λ → 0.
Hence the first difficulty is to decide what the relevant scales are. Let us recall the heuristic
developed in [14]. We need a time scale for which tree clusters see about one fire per unit of
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time. But for λ very small, clusters will be very large just before they burn. We thus also
have to rescale space, in order that just before burning, clusters have a size of order 1.

Consider the cluster C(ηλt , 0) around the site 0 (for example) at time t. For λ > 0 very
small and for t not too large, one might neglect fires and consider only the growth process; it
follows that |C(ηλt , 0)| + et for t not too large (because since seeds fall according to Poisson
processes with rate 1, each site is vacant at time t with probability e−t). Then the cluster
C(ηλt , 0) burns at rate λ|C(ηλt , 0)| + λet, so that we decide to accelerate time by a factor
aλ := log(1/λ). By this way, λ|C(ηλaλ

, 0)| + 1.

Now we rescale space in such a way that during a time interval of order aλ, something like
one match falls per unit of (space) length. Since matches fall at rate λ on each site, our space
scale has to be of order nλ := 1/(λaλ): this means that we will identify {0, . . . ,nλ} ⊂ Z with
[0, 1] ⊂ R. Observe that there holds nλ + sλmax, where sλmax was introduced in Subsubsection
1.4.2.

Consider now the time/space rescaled cluster around 0

Dλ
t (0) =

1

nλ
C(ηλaλt, 0).

The same difficulty as in Subsubsection 1.4.4 appears: neglecting fires (which is roughly valid
for small values of t), we see that

|Dλ
t (0)| + n−1

λ eaλt = λ1−t log(1/λ),

which goes to 0 for t < 1 and to ∞ for t ≥ 1. For t ≥ 1, we hope that fires will be in effect,
which will limit the size of clusters. But for t < 1, |Dλ

t (0)| will indeed tend to 0. This means
that we have lost some information. To describe the limit process, we have to keep in mind
more information and thus introduce another quantity (a sort of degree of smallness) which
measures the order of magnitude of the microscopic clusters, that is clusters that we can not
see at macroscopic scales (of which the sizes are much smaller than nλ).

1.4.6. Limit processes. We have proved in [14] that in the asymptotic of rare matches, the
forest fire process converges, under the previously described normalization, to some limit forest
fire process. We described precisely the dynamics of this limit process and have shown that
it is unique, that it can be built by using a graphical construction and thus can be perfectly
simulated. Using the limit process, we have also estimated the size of clusters. Very roughly,
we have proved that in a very weak sense, for λ small enough and for t large enough (of order
log(1/λ)), the cluster-size distribution resembles

Pr
[

C(ηλt , 0) = x
]

+
a

(x+ 1) log(1/λ)
11{x<<nλ} +

be−x/nλ

nλ
,

where a, b are two positive constants. Very roughly, we are able to replace the condition
x < (sλmax)

1/3 of [16] by the condition x < (sλmax)
1−ε for any ε ∈ (0, 1) (but our result is

weaker, in the sense that it holds when integrated in x, and we have to take the limit λ→ 0).
This means that there are two types of clusters: microscopic clusters, described by a power-
like law and macroscopic clusters, described by an exponential-like law. This shows a phase
transition around the critical size nλ.

1.4.7. No self-organized criticality. From the qualitative point of view the conclusion is
rather different from that of Ráth and Tóth [55] (presented in Subsubsection 1.3.4). Here,
the (asymptotic) cluster-size distribution does not exhibit self-organized criticality features.
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We proved the presence of a power law, but this power law describes clusters which are much
smaller than the critical size. Large clusters (clusters near the critical size) have a law with
fast decay.

1.5. Main ideas of the present paper. From the modelling point of view, the Pois-
son assumption is quite reasonnable for ignitions, but clearly not well justified for recoveries
(seeds). Thus it seems interesting to study what happens when seeds and matches are driven
by other renewal processes. The goal of this paper is to extend the previous study [14] de-
scribed above to a more general class of renewal processes. We assume that the renewal
processes are stationary for simplicity, but this can be more or less justified by the fact that
it is the only way that time 0 does not play a special role.

We thus consider the case where seeds (respectively matches) fall on each site of Z inde-
pendently, according to some stationary renewal processes, with stationary delay distributed
according to some law νS (respectively νλM ). This means that for any time t ≥ 0 and on any
site i ∈ Z, the time we have to wait for the next seed is a νS-distributed random variable. We
have an assumption saying that as λ→ 0, matches are rarer and rarer. We also assume that
νS has a bounded support or a tail with fast or regular or slow variations. We prove that,
after re-scaling, the corresponding forest fire process converges, as λ → 0, to a limit process.
And we show that there are four classes of limit processes, according to the fact that

• νS has a bounded support (HS(BS)),

• νS has a tail with fast decay (HS(∞)),

• νS has a tail with polynomial decay (HS(β)),

• νS has a tail with logarithmic decay (HS(0)).

As we will see, the limit forest fire process built in [14] is quite universal: it describes
the asymptotics of a large class (roughly exponential decay for νS) of forest fire processes.
A similar limit process arises when νS has bounded support. But some quite different limit
processes arise when νS has a heavy tail. We also develop the necessary tools to study the
cluster size distributions. Let us mention at once that there is indeed presence of a critical size
under (HS(BS)) and (HS(∞)) but not under (HS(β)) or (HS(0)). In the latter situation,
there are only macroscopic clusters. This is related to Subsubsection 1.4.4.

It is striking that in [14] we made repeated use of the Markov property of Poisson processes
while it turns out the result still holds without this assumption (and with no significant
increase of the complexity). Indeed, proofs remain essentially elementary except maybe from
the combinatorial and computational point of view.

From the qualitative point of view, the main novelty is the rise of a new class of pro-
cesses (those corresponding to polynomial tails), reminiscent of the Kingman coalescent (with
deaths). But for this case as for the others, the conclusion is that, as expected, self-organized
criticality features do not show up for this model in dimension 1.

Let us finally insist on the fact that surprisingly (in view of the complexity and length
of the proofs), our assumptions are really light. Consider e.g. the case where νS has an
unbounded support and a fast decay, which means (for us) that for any t > 0,

lim
x→∞

νS((x,∞))

νS((tx,∞))
= t∞,
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where t∞ = 0 if t < 1, 1∞ = 1, and t∞ = ∞ if t > 1. We do not need the least additional
condition.

1.6. Plan of the paper. Part 2 is devoted to a complete exposition of our results. We
start in Section 2 with notation and with the definitions of the objects under study, and we
state our assumptions. In Section 3, we explain the heuristic scales and the relevant quan-
tities (rescaled macroscopic clusters and measure of microscopic clusters). Then we describe
precisely our results in Sections 4 (case with fast decay), 5 (case with bounded support), 6
(case with polynomial decay) and 7 (case with logarithmic decay). We conclude this part with
a quick discussion about our modeling choices and with a short list of open problems and
perspectives. Part 3 (Sections 10 to 20) contains all the proofs. In part 4 we handle a few
numerical simulations to illustrate our results. Finally, Part 5 contains an appendix about
regularly varying functions and coupling.



Part 2

Notation and results



2. Definitions, notation and assumptions

2.1. Stationary Renewal processes. We first fix notation about stationary renewal
processes. We refer to Cocozza-Thivent [20] for a book on renewal processes.

Definition 2.1. For µ a probability measure on (0,∞) with finite expectation mµ,
set νµ(dt) = m−1

µ µ((t,∞))dt, which is also a probability measure on (0,∞). Let T1 be a νµ-
distributed random variable and let (Xk)k≥1 be a sequence of i.i.d. random variables with law
µ, independent of T1. Set Tk+1 = Tk +Xk for all k ≥ 1 and Nt =

∑

k≥1 11{Tk≤t} for all t ≥ 0.
We say that (Nt)t≥0 is a stationary renewal process with parameter µ, or a SR(µ)-process in
short.

It is well-known, see e.g. [20, Corollaire 6.19 p 169], that for (Nt)t≥0 a SR(µ)-process in
the sense of Definition 2.1, the law of TNt+1 − t (i.e. the time we have to wait for the next
mark at time t) is νµ for all t ≥ 0. Another possible definition is the following.

Definition 2.2. For µ a probability measure on (0,∞) with finite expectation mµ,
set νµ(dt) = m−1

µ µ((t,∞))dt and ζµ(dt) = m−1
µ tµ(dt), which are also probability measures on

(0,∞). Consider a collection of random variables (Xi)i∈Z\{0} with law µ. Consider also X0

with law ζµ and U uniformly distributed on [0, 1]. Assume that all these random variables are
independent. Define T0 = −(1− U)X0, T1 = UX0 and then, for n ≥ 1, Tn+1 = Tn +Xn and
T−n = T−(n−1) −X−n. Then we say that (Tn)n∈Z is a SR(µ)-process.

If (Tn)n∈Z is a SR(µ)-process in the sense of Definition 2.2 and if one considers the
associated counting process Nt =

∑

n≥1 11{Tn≤t}, it is indeed a SR(µ)-process in the sense of
Definition 2.1. This can be checked immediately: it suffices to observe that the law of T1 is
νµ.

If we have a SR(µ)-process (Nt)t≥0 as in Definition 2.1 and if we denote by (Tn)n≥1 its
successive instants of jump, one can easily build (Tn)n≤0 in such a way that (Tn)n∈Z is a
SR(µ)-process as in Definition 2.2.

For (Tn)n∈Z a SR(µ)-process as in Definition 2.2, for any t ∈ R, the random sets ∪n∈Z{Tn},
∪n∈Z{−Tn} and ∪n∈Z{Tn+ t} have the same law. Thus if we introduce nt such that Tnt + t <
0 < Tnt+1 + t, the process (Tnt+n + t)n∈Z is a SR(µ)-process. By the same way, the process
(−T1−n)n∈Z is a SR(µ)-process.

2.2. The discrete model. Next, we introduce the forest fire model. For a, b ∈ Z with
a ≤ b, we set [[a, b]] = {a, . . . , b} ⊂ Z. For η ∈ {0, 1}Z and i ∈ Z, we define the occupied
connected component around i as

C(η, i) =

{

∅ if η(i) = 0,
[[l(η, i), r(η, i)]] if η(i) = 1,

where l(η, i) = sup{k < i : η(k) = 0}+ 1 and r(η, i) = inf{k > i : η(k) = 0}− 1.

Definition 2.3. Let µS and µM be two laws on (0,∞) with finite expectations. For
each i ∈ Z, we consider a SR(µS)-process (NS

t (i))t≥0 and a SR(µM )-process (NM
t (i))t≥0, all

these processes being independent. A {0, 1}-valued process (ηt(i))i∈Z,t≥0 such that (ηt(i))t≥0

is a.s. càdlàg for all i ∈ Z is said to be a FF (µS , µM )-process if a.s., for all t ≥ 0, all i ∈ Z,

ηt(i) =

∫ t

0
11{ηs−(i)=0}dN

S
s (i)−

∑

j∈Z

∫ t

0
11{j∈C(ηs−,i)}dN

M
s (j).
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Formally, we say that ηt(i) = 0 if there is no tree at site i at time t and ηt(i) = 1 else.
Thus the forest fire process starts from an empty initial configuration, seeds fall according to
i.i.d. SR(µS)-processes and matches fall according to i.i.d. SR(µM )-processes. When a seed
falls on an empty site, a tree appears immediately. When a match falls on an occupied site,
it burns immediately the corresponding connected component of occupied sites. Seeds falling
on occupied sites and matches falling on vacant sites have no effect.

Assume for a moment that the support of µS is unbounded (thus so is that of νµS ). Then
the FF (µS , µM )-process can be shown to exist and to be unique (for almost every realization
of (NS

t (i), N
M
t (i))i∈Z,t≥0), by using a genuine graphical construction. Indeed, to build the

process until a given time T > 0, it suffices to work between sites i which are vacant until time
T (because NS

T (i) = 0). Interaction cannot cross such sites. Since such sites are a.s. infinitely
many (because Pr(NS

T (i) = 0) = νµS ((T,∞)) > 0 by assumption), this allows us to handle a
graphical construction. This is illustrated by Figure 1. See Liggett [45] for many examples of
graphical constructions.

We will also study the more complicated case where µS has a bounded support and this
will lead to the following general result.

Proposition 2.4. Let µS and µM be two laws on (0,∞) with some finite expectations.
For each i ∈ Z, we consider a SR(µS)-process (NS

t (i))t≥0 and a SR(µM )-process (NM
t (i))t≥0,

all these processes being independent. Almost surely, there exists a unique FF (µS , µM )-
process.

This proposition is proved in Section 10.

2.3. Assumptions. We now state the assumptions we will impose on the laws µS and
µM . First, we want to express the fact that matches are less and less frequent. To do so, we
consider a family of laws µλM , for λ ∈ (0, 1], as follows.

6

t=T

t=0

?

?
?
?
?

?

?
?
?
?
?
?
?

−6 −5 −4 −3 −2 −1 5431 720

?

Figure 1. Graphical construction of the FF (µS , µM )-process.
Matches are represented as bullets and seeds as squares. On the sites −5 and 6, no seed fall during
[0, T ], so that these sites remain vacant until T . One can thus clearly deduce the values of the process
in [[−5, 6]] during [0, T ] using only the bullets and squares inside [[−5, 6]].
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(HM ): For each λ ∈ (0, 1], µλM is the image measure of µ1
M by the map t 0→ t/λ and

the probability measure µ1
M on (0,∞) satisfies

∫∞
0 tµ1

M (dt) = 1. We set

νλM (dt) = νµλ
M
(dt) = λµλM ((t,∞))dt = λµ1

M ((λt,∞))dt.

The idea we have in mind is that we slow down matches: for (NM
t )t≥0 a SR(µ1

M )-process,
(NM

λt )t≥0 is a SR(µλM )-process.

Assume that
∫∞
0 tµ1

M (dt) = κ ∈ (0,∞). Then µ̃λM = µκλM satisfies (HM ). We thus may of
course assume that κ = 1 without loss of generality.

Next, we put some conditions about µS .

(HS): The probability measure µS on (0,∞) has a finite mean mS =
∫∞
0 tµS(dt).

We set
νS(dt) = νµS (dt) = m−1

S µS((t,∞))dt.

Either µS has a bounded support or µS has an unbounded support and

∀ t > 0, lim
x→∞

νS((x,∞))

νS((tx,∞))
∈ [0,∞) ∪ {∞} exists.

Surprisingly, we will consider these assumptions in full generality: no supplementary tech-
nical condition is needed. In the whole paper, we admit the following convention:

t∞ =







0 if t ∈ (0, 1)
1 if t = 1
∞ if t ∈ (1,∞).

As proved in Lemma 22.1, (HS) implies either

(HS(BS)): The probability measure µS on (0,∞) has a bounded support. We
denote by mS the expectation of µS and define TS = max supp µS and νS(dt) =
m−1

S µS((t,∞))dt. Observe that supp νS = [0, TS].

or, for some β ∈ [0,∞) ∪ {∞},

(HS(β)): The probability measure µS on (0,∞) has an unbounded support, a finite
mean mS and for νS(dt) = m−1

S µS((t,∞))dt,

∀ t > 0, lim
x→∞

νS((x,∞))

νS((tx,∞))
= tβ .

We finally introduce the following notation.

Notation 2.5. (i) Assume (HS(β)) for some β ∈ [0,∞). We denote by φS the inverse
function of t 0→ t/νS((t,∞)). Note that φS : (0,∞) 0→ (0,∞) is an increasing continuous
bijection.

(ii) Assume (HS(∞)). We denote by φS the inverse function of t 0→ t/νS((t,∞)) and
by ψS the inverse function of t 0→ νS((0, t)). The functions φS : (0,∞) 0→ (0,∞) and ψS :
(0, 1) 0→ (0,∞) are increasing bijections.

(iii) Assume (HS(BS)). We denote by ψS the inverse function of t 0→ νS((0, t)). The
function ψS : (0, 1) 0→ (0, TS) is an increasing continuous bijection.
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2.4. Examples. Concerning (HM ), the situation is clear. The Poisson case studied in
[14] corresponds to µ1

M (dt) = e−t11{t>0}dt, whence µλM (dt) = νλM (dt) = λe−λt11{t>0}dt. We
study here a much more general case. However, this is not the main point of the paper, since
it will not generate some very interesting behaviors. Concerning (HS), we present here four
classes of examples, that will lead to different behaviors.

Example 1. If µS = δTS , whence νS(dt) = T−1
S 11[0,TS](t)dt, then (HS(BS)) holds and

ψS(z) = TSz.

Example 2. Assume that µS((t,∞))
∞
∼ e−tα for some α > 0, so that νS((t,∞))

∞
∼

ct1−αe−tα . Then (HS(∞)) holds. Furthermore, φS(z)
∞
∼ (log z)1/α and ψS(z)

1
∼ [log(1/(1 −

z))]1/α.

Example 3. Assume that µS((t,∞))
∞
∼ t−1−β for some β > 0, whence νS((t,∞))

∞
∼ ct−β .

Then (HS(β)) holds and φS(z)
∞
∼ (cz)1/(β+1).

Example 4. If µS((t,∞))
∞
∼ t−1(log t)−1−γ for some γ > 0, then νS((t,∞))

∞
∼ c(log t)−γ ,

so that (HS(0)) is satisfied and φS(z)
∞
∼ cz(log z)−γ .

The Poisson case treated in [14], which corresponds to the case where µS((t,∞)) = e−t =
νS((t,∞)), is thus included in Example 2. Example 1 might seem slightly strange from the
modelling point of view, but it can happen e.g. if seeds are thrown by a machine.

Observe that (HS) is not very restrictive, since it is satisfied by all reasonable laws.
Anyway, our results (not only the proofs) clearly break down without such an assumption.

It is not so easy to build a law µS not meeting (HS), because the function t 0→ νS((t,∞))
is automatically quite smooth (Lipschitz continuous, decreasing and convex). One can how-
ever verify that (HS) is not holding for µS(dt) = 11{t>0}[20 − 3 cos log(1 + t) + sin log(1 +
t)]/[9(1+ t)3)]dt, for which νS((t,∞)) = [10+sin log(1+ t)]/[10(1+ t)]. One easily checks that
νS((x,∞))/νS((xeπ/2,∞)) has no limit as x→∞, choosing e.g. the sequences xn = e2nπ and
xn = e2nπ+π/2.

2.5. Notation. In the whole paper, we denote, for I ⊂ Z, by |I| = #I the number of
elements in I. For I = [[a, b]] = {a, . . . , b} ⊂ Z and α > 0, we will set αI := [αa,αb] ⊂ R. For
α > 0, we of course take the convention that α∅ = ∅.

For J = [a, b] an interval of R, |J | = b− a stands for the length of J and for α > 0, we set
αJ = [αa,αb].

For x ∈ R, ,x- stands for the integer part of x.

We denote by I = {[a, b], a ≤ b} the set of all closed finite intervals of R. For two intervals
[a, b] and [c, d], we set

δ([a, b], [c, d]) = |a− c|+ |b− d|, δ([a, b], ∅) = |b− a|.

For two functions I, J : [0, T ] 0→ I ∪ {∅}, we set

δT (I, J) =

∫ T

0
δ(It, Jt)dt.
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For (x, I), (y, J) in D([0, T ],R+ × I ∪ {∅}), the set of càdlàg functions from [0, T ] into
R+ × I ∪ {∅}, we define

dT ((x, I), (y, J)) = sup
t∈[0,T ]

|x(t)− y(t)|+ δT (I, J).

3. Heuristic scales and relevant quantities

For µS , µλM satisfying (HS) and (HM ), we consider the FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z.
We look for some time scale for which tree clusters see about one fire per unit of time. But for
λ very small, clusters will be very large just before they burn. We thus also have to rescale
space.

Time scale. For λ > 0 very small and for t not too large, one might neglect fires, so that
roughly, each site is vacant with probability νS((t,∞)). Indeed, the time we have to wait for
the first seed follows, on each site, the law νS . Thus C(ηλt , 0) + [[−X,Y ]], where X,Y are
geometric random variables with parameter νS((t,∞)). Consequently, for t not too large,

|C(ηλt , 0)| + 1/νS((t,∞)).

Under (HS(BS)), |C(ηλt , 0)| becomes infinite at time TS , so there is no really need to
accelerate time: we are sure that |C(ηλt , 0)| will be involved in a fire before TS . We will
accelerate time by a factor TS (in some sense, this allows us to assume that TS = 1).

Next we assume (HS(β)) for some β ∈ [0,∞) ∪ {∞}. We observe that thanks to (HM ),

νλM ((t,∞)) + 1−λ
∫ t
0 µ

1
M ((λs,∞))ds + 1−λt. Hence the probability that at least one match

falls in the cluster C(ηλ, 0) during [0, t] is roughly similar, under (HM ), to

1−
(

νλM ((t,∞))
)|C(ηλ

t ,0)| + λt|C(ηλt , 0)| + λt/νS((t,∞)).

We decide to accelerate time by a factor aλ, where aλ solves λaλ = νS((aλ,∞)). By this way,
the probability that a match falls in C(ηλ, 0) during [0, aλ] should tend to some nontrivial
value.

To summarize, we have set, recalling Notation 2.5 for the definition of φS ,

{

under (HS(BS)), aλ = TS,
under (HS(β)) with β ∈ [0,∞) ∪ {∞}, aλ = φS(1/λ), which solves λaλ = νS((aλ,∞)).

(3.1)

Under (HS(β)) for some β ∈ [0,∞) ∪ {∞}, one easily checks that

lim
λ→0

aλ =∞ and thus lim
λ→0

λaλ = lim
λ→0

νS((aλ,∞)) = 0.

Space scale. Now we rescale space in such a way that during a time interval with length of
order aλ, something like one fire starts per unit of (space) length. Since on each site, the proba-
bility that (at least) one match falls during [0, aλ] equals νM ((0, aλ)) = λ

∫ aλ

0 µ1
M ((λt,∞))dt +

λaλ, our space scale has to be of order

nλ = ,1/(λaλ)-.(3.2)

This means that we will identify [[0,nλ]] ⊂ Z with [0, 1] ⊂ R. We always have limλ→0 nλ =∞.

Rescaled clusters. We thus set, for λ ∈ (0, 1), t ≥ 0 and x ∈ R, recalling Subsection 2.5,

Dλ
t (x) :=

1

nλ
C(ηλaλt, ,nλx-) ⊂ R.(3.3)
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Using the computation handled in paragraph Time scale, we see that roughly, when neglecting
fires,

|Dλ
t (x)| +

1

nλνS((aλt,∞))
+

λaλ
νS((aλt,∞))

.

Under (HS(β)) for some β ∈ [0,∞) ∪ {∞}, one gets

|Dλ
t (x)| +

νS((aλ,∞))

νS((aλt,∞))
+ tβ .

Under (HS(BS)), we obtain roughly (assume that t 2= 1)

|Dλ
t (x)| + t∞.

Indeed, νS((aλt,∞)) = νS((TSt,∞)) does not depend on λ and is positive if and only if t < 1.

Case β ∈ [0,∞). In this case, everything is fine: for all times of order aλt, the good space
scale is indeed nλ. Thus we will describe the FF (µS , µλM )-process through (Dλ

t (x))x∈R,t≥0.

Case β ∈ {∞, BS}. Then we have a difficulty as in [14]: the previous estimate (neglecting
fires) suggests that for all x ∈ R, for t < 1, |Dλ

t (x)| → 0 and for t > 1, |Dλ
t (x)| → ∞. For

t > 1, fires might be in effect and we hope that this will make finite the possible limit of
|Dλ

t (x)|. But fires can only reduce the size of clusters, so that for t < 1, the limit of |Dλ
t (x)|

will really be 0.

Since we would like to have an idea of the sizes of microscopic clusters, we have to keep
some information about the degree of smallness of microscopic clusters. We adopt a different
strategy than in [14], which is more adapted to the case where β = BS and which leads us to
a slightly more direct proof (even in the Poisson case). We consider a function mλ : (0, 1] 0→ N

satisfying
{

limλ→0 mλ =∞, limλ→0(mλ/nλ) = 0, λ 0→mλ is non-increasing
and additionally, under (HS(∞)), ∀z ∈ [0, 1), limλ→0 mλνS((aλz,∞)) =∞.

(3.4)

Such a function exists: under (HS(∞)), see Lemma 22.2 and under (HS(BS)), choose for
example mλ = ,

√

1/λ-.

Of course, there is no uniqueness of mλ, but that does not matter: the only thing we
need is that the scale mλ is smaller than the macroscopic scale nλ + 1/νS((aλ,∞)) and larger
than all the microscopic scales 1/νS((aλz,∞)) (for all z ∈ (0, 1)). Since only these scales will
appear to be relevant, any choice of such a function mλ will be suitable.

We introduce, for λ > 0, x ∈ R, t > 0, recall Subsection 2.5 and that by Notation 2.5, ψs

is the inverse of t 0→ νS((0, t)),














Kλ
t (x) :=

∣

∣

{

i ∈ [[,nλx- −mλ, ,nλx-+mλ]] : ηλaλt(i) = 1
}∣

∣

2mλ + 1
∈ [0, 1],

Zλ
t (x) :=

ψS(Kλ
t (x))

aλ
∧ 1 ∈ [0, 1].

(3.5)

Observe that Kλ
t (x) stands for the local density of occupied sites around ,nλx- at time aλt.

This density is local because mλ << nλ. We hope that for t < 1, neglecting fires, Kλ
t (x) +

νS((0, aλt)), whence Zλ
t (x) + t.

The quantity Zλ
t (x) has no physical interpretation. We use it to transform the local

density Kλ
t (x) (which depends on t in a complicated way involving νS) in a quantity of which
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the behavior does not depend too much on νS (at least for t < 1 and neglecting fires). This
will allow us to describe the limit process in an unified way (not depending on νS).

For all λ > 0 small enough (we need that 2mλ+1 < nλ), we have Zλ
t (x) = 1 if and only if

Kλ
t (x) = 1, i.e. if and only if all the sites are occupied around ,nλx-. Indeed, under (HS(BS)),

Zλ
t (x) = 1 implies that ψS(Kλ

t (x)) = TS, so that Kλ
t (x) = νS((0, TS)) = 1. Under (HS(∞)),

Zλ
t (x) = 1 implies that ψS(Kλ

t (x)) ≥ aλ, so that Kλ
t (x) ≥ νS((0, aλ)) = 1 − νS((aλ,∞)) =

1− λaλ ≥ 1− 1/nλ, whence Kλ
t (x) = 1. This last assertion comes from the facts that Kλ

t (x)
takes its values in {k/(2mλ + 1) : k ∈ {0, . . . , 2mλ + 1} and that 2mλ + 1 < nλ.

Since the scale mλ is larger than all the microscopic scales, Zλ
t (x) = 1 will imply, roughly,

that the cluster containing ,nλx- is macroscopic, i.e. has a length of order nλ.

We will study the FF (µS , µλM )-process through (Dλ
t (x), Z

λ
t (x))x∈R,t≥0. The main idea is

that for λ > 0 very small:

• if Zλ
t (x) = z ∈ (0, 1), then |Dλ

t (x)| + 0 and the (rescaled) cluster containing x is
microscopic (in the sense that the non-rescaled cluster is small when compared to nλ), but
we control the local density of occupied sites around x, which resembles νS((0, aλz)). Observe
that this density tends to 1 as λ → 0 for all z ∈ (0, 1) under (HS(∞)), while it remains
bounded as λ→ 0 for all z ∈ (0, 1) under (HS(BS)).

• if Zλ
t (x) = 1 and Dλ

t (x) = [a, b], then the (rescaled) cluster containing x is macroscopic
and has a length equal to b− a, or |C(ηλaλt, ,nλx-)| + (b− a)nλ in the original scales.

Summary. Assume (HS(β)) for some β ∈ [0,∞) ∪ {∞, BS}.

• We accelerate time by the factor aλ, defined by λaλ = νS((λaλ,∞)) if β ∈ [0,∞)∪{∞}
and by aλ = TS if β = BS.

• Our space scale is nλ = ,1/(λaλ)-.

• If β ∈ [0,∞), we will only study the rescaled clusters (Dλ
t (x))t≥0,x∈R, see (3.3).

• If β ∈ {∞, BS}, we will study the rescaled clusters (Dλ
t (x))t≥0,x∈R, as well as the local

densities of occupied sites (Zλ
t (x))t≥0,x∈R, see (3.4-3.5).

4. Main result in the case β =∞

4.1. Definition of the limit process. We describe the limit process in the case where
β = ∞. It is exactly the same process as in the Poisson case studied in [14]. We con-
sider a Poisson measure πM (dt, dx) on [0,∞)× R, with intensity measure dtdx, whose marks
correspond to matches.

Before stating a precise definition, let us describe briefly the limit process. Initially, all the
sites are vacant. Matches fall according to πM . All the zones remain microscopic (meaning
roughly that vacant sites are dense in R) until time 1. When a match falls at some time
t ∈ (0, 1) at some place x ∈ R, it destroys a microscopic zone, that will be filled again after
a delay t (at time 2t). Hence there is a barrier at x during (t, 2t). At time 1, all the sites
become occupied, except sites where there is an active barrier. Hence if a fire falls, just after
time 1, it destroys a macroscopic zone, delimited by some active barriers. Such a destroyed
macroscopic zone will need a delay 1 to be completely filled again. During this delay, matches
produce again some barriers. And so on. See Figure 2 below for an illustration.

The precise definition of the limit process is as follows.
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Definition 4.1. A process (Zt(x), Dt(x), Ht(x))t≥0,x∈R with values in R+ × I × R+

such that a.s., for all x ∈ R, (Zt(x), Ht(x))t≥0 is càdlàg, is said to be a LFF (∞)-process if
a.s., for all t ≥ 0, all x ∈ R,















Zt(x) =

∫ t

0
11{Zs(x)<1}ds−

∫ t

0

∫

R

11{Zs−(x)=1,y∈Ds−(x)}πM (ds, dy),

Ht(x) =

∫ t

0
Zs−(x)11{Zs−(x)<1}πM (ds× {x})−

∫ t

0
11{Hs(x)>0}ds,

(4.1)

where Dt(x) = [Lt(x), Rt(x)], with

Lt(x) = sup{y ≤ x : Zt(y) < 1 or Ht(y) > 0},

Rt(x) = inf{y ≥ x : Zt(y) < 1 or Ht(y) > 0}

and where Dt−(x) is defined in the same way.

4.2. Formal dynamics. Let us explain the dynamics of this process. We consider T > 0
fixed and set AT = {x ∈ R : πM ([0, T ]× {x}) > 0}. For each t ≥ 0, x ∈ R, Dt(x) stands for
the occupied cluster containing x. We call this cluster is microscopic if Dt(x) = {x}. We have
Dt(x) = Dt(y) for all y ∈ Dt(x).

1. Initial condition. We have Z0(x) = H0(x) = 0 and D0(x) = {x} for all x ∈ R.

2. Occupation of vacant zones. We consider here x ∈ R \ AT . Then we have Ht(x) = 0
for all t ∈ [0, T ]. When Zt(x) < 1, then Dt(x) = {x} and Zt(x) stands for the local density
of occupied sites around x (or rather for a suitable function of this local density). Then Zt(x)
grows linearly until it reaches 1, as described by the first term on the RHS of the first equation
in (4.1). When Zt(x) = 1, the cluster containing x is macroscopic and is described by Dt(x).

3. Microscopic fires. Here we assume that x ∈ AT and that the corresponding mark
of πM happens at some time t where Zt−(x) < 1. In such a case, the cluster containing x
is microscopic. Then we set Ht(x) = Zt−(x), as described by the first term on the RHS of
the second equation of (4.1) and we leave unchanged the value of Zt(x). We then let Ht(x)
decrease linearly until it reaches 0, see the second term on the RHS of the second equation in
(4.1). At all times where Ht(x) > 0, the site x acts like a barrier (see Point 5. below).

4. Macroscopic fires. Here we assume that x ∈ AT and that the corresponding mark
of πM happens at some time t where Zt−(x) = 1. This means that the cluster containing
x is macroscopic and thus this mark destroys the whole component Dt−(x), that is for all
y ∈ Dt−(x), we set Dt(y) = {y}, Zt(y) = 0. This is described by the second term on the RHS
of the first equation in (4.1).

5. Clusters. Finally the definition of the clusters (Dt(x))x∈R becomes more clear: these
clusters are delimited by zones with local density smaller than 1 (i.e. Zt(y) < 1) or by sites
where a microscopic fire has (recently) started (i.e. Ht(y) > 0).

For A > 0, we call (ZA
t (x), DA

t (x), H
A
t (x))t≥0,x∈[−A,A] the finite box version of the

LFF (∞)-process: it has the same dynamics as the true LFF (∞)-process, but we restrict
the space of tree positions to x ∈ [−A,A]. See Section 19 for a more precise definition. On
Figure 2, a typical path of this finite box LFF (∞)-process is discussed. See also Algorithm
15.3 (with the function FS(z, v) = z) below.
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4.3. Well-posedness. The existence and uniqueness of the LFF (∞)-process has been
proved in [14, Theorem 3]. We will provide here a simpler proof, which also works for the
case where β = BS.
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Figure 2. LFF (∞)-process in a finite box.

The marks of πM (matches) are represented as •’s. The filled zones represent zones in which ZA
t (x) = 1

and HA
t (x) = 0, that is macroscopic clusters. The plain vertical segments represent the sites where

HA
t (x) > 0. In the rest of the space, we always have ZA

t (x) < 1. Until time 1, all the clusters are
microscopic. The 8 first matches fall in that zone. Thus at each of these marks, a process HA starts
and its life-time equals the instant where it has started. For example the segment above (t1, x1) ends
at time 2t1: we draw a dotted segment from (0, x1) to (t1, x1) and then a plain vertical segment
above (t1, x1) with the same length. At time 1, all the clusters where there has been no mark become
macroscopic and merge together. But this is limited by vertical segments. Here we have at time 1
the clusters [−A, x6], [x6, x4], [x4, x8], [x8, x5], [x5, x7] and [x7, A]. The segment above (t4, x4) ends
at time 2t4 and thus at this time the clusters [x6, x4] and [x4, x8] merge into [x6, x8]. The 9-th mark
falls in the (macroscopic) zone [x6, x8] and thus destroys it immediately. This zone [x6, x8] will become
macroscopic again only at time t9 + 1. A process HA starts at x12 at time t12: we draw a dotted
segment from (t9, x12) to (t12, x12) and then a plain vertical segment above (t12, x12) with the same
length (ZA

t12−
(x12) = t12 − t9 because ZA

t9
(x12) has been set to 0). The segment [x8, x7] has been

destroyed at time t10 and thus will remain microscopic until t10 + 1. As a consequence, the only
macroscopic clusters at time t9 +1 are [−A, x12], [x12, x8] and [x7, A]. Then the zone [x8, x7] becomes
macroscopic (but there have been marks at x13, x14), so that at time t10 + 1, we get the macroscopic
clusters [−A, x12], [x12, x14], [x14, x13] and [x13, A]. These clusters merge by pairs, at times 2t12 − t9,
2t13 − t10 and 2t14 − t10, etc.
Here we have 0 ∈ (x11, x15) and thus ZA

t (0) = t for t ∈ [0, 1], ZA
t (0) = 1 for t ∈ [1, t10), then

ZA
t (0) = t − t10 for t ∈ [t10, t10 + 1), then ZA

t (0) = 1 for t ∈ [t10 + 1, t15),. . .We also see that
DA

t (0) = {0} for t ∈ [0, 1), DA
t (0) = [x8, x5] for t ∈ [1, 2t5), DA

t (0) = [x8, x7] for t ∈ [2t5, t10),
DA

t (0) = {0} for t ∈ [t10, t10 + 1), DA
t (0) = [x12, x14] for t ∈ [t10 + 1, 2t12 − t9), DA

t (0) = [−A, x14]
for t ∈ [2t12 − t9, 2t14 − t10), ... Of course, HA

t (0) = 0 for all t ≥ 0, but for example HA
t (x11) = 0 for

t ∈ [0, t11), HA
t (x11) = 2t11−t10−t for t ∈ [t11, 2t11−t10) and then HA

t (x11) = 0 for t ∈ [2t11−t10,∞).
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Theorem 4.2. For any Poisson measure πM (dt, dx) on [0,∞) × R with intensity
measure dtdx, there a.s. exists a unique LFF (∞)-process. Furthermore, it can be constructed
graphically and its restriction to any finite box [0, T ]× [−n, n] can be perfectly simulated.

The LFF (∞)-process (Zt(x), Dt(x), Ht(x))t≥0,x∈R is furthermore Markov, since it solves
a well-posed time homogeneous Poisson-driven S.D.E.

4.4. The convergence result. Recall Subsection 2.5.

Theorem 4.3. Assume (HM ) and (HS(∞)). Recall that aλ, nλ and mλ were defined
in (3.1)-(3.2)-(3.4). Consider, for each λ ∈ (0, 1], the process (Zλ

t (x), D
λ
t (x))t≥0,x∈R asso-

ciated with the FF (µS , µλM )-process, see Definition 2.3, (3.3) and (3.5). Consider also the
LFF (∞)-process (Zt(x), Dt(x), Ht(x))t≥0,x∈R.

(a) For any T > 0, any finite subset {x1, . . . , xp} ⊂ R, (Zλ
t (xi), Dλ

t (xi))t∈[0,T ],i=1,...,p

goes in law to (Zt(xi), Dt(xi))t∈[0,T ],i=1,...,p, in D([0, T ],R× I ∪ {∅})p, as λ tends to 0. Here
D([0,∞),R× I ∪ {∅}) is endowed with the distance dT .

(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⊂ [0,∞)×R, with tk 2= 1 for k = 1, . . . , p,
(Zλ

ti(xi), Dλ
ti(xi))i=1,...,p goes in law to (Zti(xi), Dti(xi))i=1,...,p in (R×I∪{∅})p. Here I∪{∅}

is endowed with δ.
(c) Recall Notation 2.5-(ii). For all t > 0,

(

ψS

(

1− 1/|C(ηλaλt, 0)|
)

aλ
11{|C(ηλ

aλt,0)|≥1}

)

∧ 1

goes in law to Zt(0) as λ→ 0.

Point (c) will allow us to check some estimates on the cluster-size distribution. Since we
deal with finite-dimensional marginals in space, it is quite clear that the process H does not
appear in the limit, since for each x ∈ R, a.s., for all t ≥ 0, Ht(x) = 0. (Of course, it is false
that a.s., for all x ∈ R, all t ≥ 0, Ht(x) = 0).

We cannot guarantee the convergence in law of Dλ
t (0) to Dt(0) at time t = 1. This is due

to the fact that when neglecting fires, the probability that a macroscopic zone is completely
occupied at time aλt, tends to 1 if t > 1, but to a nontrivial value if t = 1.

For example, in the absence of fires, a zone with length nλ is completely occupied at time
aλt with probability νS((0, aλt))nλ + exp(−nλνS((aλt,∞))), which tends to 1 if t > 1 and to
1/e if t = 1.

We believe that this is really not important and we decided to keep this definition of the
LFF (∞)-process despite this light defect.

4.5. Heuristic arguments. Let us explain here roughly the reasons why Theorem 4.3
holds true. We consider, for λ > 0 very small, a FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z and the
associated processes (Zλ

t (x), D
λ
t (x))t≥0,x∈R.

0. Matches. The times and positions at which matches fall will tend, in our scales, to the
marks of a Poisson measure with intensity measure 1. A hint for this is the following. Consider
e.g. the domain [0, T ]× [0, 1], which corresponds to [0, aλT ] × [[0,nλ]]. The probability that
two matches fall on the same site during [0, aλT ] is very small. Thus the number of matches
falling in [0, aλT ]× [[0,nλ]] has approximately a Binomial distribution with parameters nλ and
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νM ([0, aλT ]). Since

nλν
λ
M ([0, aλT ]) +

1

λaλ

[

∫ aλT

0
λµ1

M ((λaλt,∞))dt

]

→ T

as λ → 0, the asymptotic number of matches falling in [0, T ] × [0, 1] should have a Poisson
distribution with parameter T .

1. Initial condition. For all x ∈ R, (Zλ
0 (x), D

λ
0 (x)) = (0, ∅) + (0, {x}) (recall that

ψS(0) = 0).

2. Occupation of vacant zones. Assume that a zone [a, b] becomes completely vacant at
some time t (because it has been destroyed by a fire).

(i) For s ∈ [0, 1) and if no fire starts on [a, b] during [t, t + s], we have Dλ
t+s(x) + [x ±

1/(nλνS(aλs,∞))] + {x} and Zλ
t+s(x) + s for all x ∈ [a, b].

Indeed, Dλ
t+s(x) + [x − X/nλ, x + Y/nλ], where X and Y are approximately geometric

random variables with parameter νS((aλs,∞)). (Recall that for any t ≥ 0 and for any site,
νS is the law of the time we have to wait until the next seed falls). Thus Dλ

t+s(x) + [x ±
1/(nλνS((aλs,∞))] + {x} due to (HS(∞)), since νS((aλs,∞)) >> νS((aλ,∞)) + 1/nλ. For
the same reasons, Kλ

t+s(x) + νS((0, aλs)), whence Zλ
t+s(x) + s.

(ii) If no fire starts on [a, b] during [t, t+1], then Zλ
t+1(x) + 1 and all the sites in [a, b] are

occupied (with very high probability) just after time t+ 1.

Indeed, we have (b − a)nλ sites and each of them is occupied at time t + 1 + ε with
approximate probability νS((0, aλ(1+ ε)]), so that all of them are occupied with approximate
probability (νS((0, aλ(1 + ε))))(b−a)nλ + exp(−(b− a)νS((aλ(1 + ε),∞))/νS((aλ,∞))), which
tends to 1 as λ→ 0 for any ε > 0 by (HS(∞)).

3. Microscopic fires. Assume that a fire starts at some place x at some time t, with
Zλ
t−(x) = z ∈ (0, 1). Then the possible clusters on the left and right of x cannot be connected

during (approximately) [t, t+ z], but can be connected after (approximately) t+ z.

Indeed, the match falls in a zone with approximate density νS((0, aλz)), so that it should
destroy a zone A of approximate length 1/νS((aλz,∞)) << nλ. The probability that a fire
starts again in A after t is very small. Thus the probability that A is completely occupied at
time t + s is approximately (νS((0, aλs]))1/νS((aλz,∞)) + exp (−νS((aλs,∞))/νS((aλz,∞))).
When λ→ 0, this quantity tends to 0 if s < z and to 1 if s > z thanks to (HS(∞)).

4. Macroscopic fires. Assume now that a fire starts at some place x, at some time t and
that Zλ

t−(x) + 1, so that Dλ
t−(x) is macroscopic (that is its length is of order 1 in our scales,

or of order nλ in the original process). This will thus make vacant the zone Dλ
t−(x). Such a

(macroscopic) zone needs a time of order 1 to be completely occupied, see Point 2.

5. Clusters. For t ≥ 0, x ∈ R, the cluster Dλ
t (x) resembles [x±1/(nλνS((aλz,∞)))] + {x}

if Zλ
t (x) = z ∈ (0, 1). We then say that x is microscopic. Macroscopic clusters are delimited

either by microscopic zones, or by sites where there has been recently a microscopic fire.

Even if the above arguments are (hopefully) quite convincing, the rigorous proof is long
and tedious. The main idea is that even if each isolated event is easily treated (for example,
the fact that a vacant macroscopic zone needs a delay 1 to be completely filled again relies on
an immediate computation; estimating the delay needed to fill again the zone destroyed by a
microscopic fire is not difficult, etc.), it is quite hard to follow the process during an arbitrary
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large time interval. Indeed, we have to check that the small errors due to one such event do
not become large errors after some time. For example, if a macroscopic zone is not filled at
time 1, but slightly after (say at time t0 > 1), this could reduce consequently the impact of
a match falling in this zone between 1 and t0, etc. The main ideas of the proof are however
quite simple and really rely on the above heuristic arguments.

4.6. Cluster-size distribution. We will deduce from Theorem 4.3 the following esti-
mates on the cluster-size distribution.

Corollary 4.4. Assume (HM ) and (HS(∞)). Recall that aλ and nλ were defined in
(3.1) and (3.2). Let (Zt(x), Dt(x), Ht(x))t≥0,x∈R be a LFF (∞)-process. For each λ ∈ (0, 1],
let (ηλt (i))t≥0,i∈Z be a FF (µS , µλM )-process.

(i) For some 0 < c1 < c2, for all t ≥ 5/2, all 0 < a < b < 1,

lim
λ→0

Pr
(

|C(ηλaλt, 0)| ∈ [1/νS((aλa,∞)), 1/νS((aλb,∞))]
)

=Pr (Zt(0) ∈ [a, b]) ∈ [c1(b − a), c2(b− a)].

(ii) For some 0 < c1 < c2 and 0 < κ1 < κ2, for all t ≥ 3/2, all B > 0,

lim
λ→0

Pr
(

|C(ηλaλt, 0)| ≥ Bnλ

)

= Pr (|Dt(0)| ≥ B) ∈ [c1e
−κ2B, c2e

−κ1B].

This results shows that there is a phase transition around the critical size nλ: the cluster-
size distribution changes of shape at nλ.

Consider the case of Example 2, where µS((t,∞))
∞
∼ e−tα . Then aλ ∼ (log(1/λ))1/α and

nλ ∼ 1/[λ(log(1/λ))1/α]. Very roughly, Corollary 4.4 proves that when λ → 0, the law of
|C(ηλ, 0)|, for large times, resembles

[log(1 + x)]1/α−1

(1 + x)[log(1/λ)]1/α
11{x∈[0,nλ]}dx+ (1/nλ)e

−x/nλ11{x≥0}dx.

The first term corresponds approximately to the law of 1/νS((aλU,∞)), for U uniformly
distributed on [0, 1] and the second term is an exponential law with mean nλ.

The main idea is that two types of clusters are present: macroscopic clusters, of which the
size is of order nλ ∼ λ−1[log(1/λ)]−1/α, with an exponential-like distribution; and microscopic
clusters, of which the size is smaller than nλ, with a law with shape log(1 + x)1/α−1/(1 + x).

5. Main result in the case β = BS

This case is slightly more complicated than the case β =∞. The limit process is essentially
the same, except that the height of the barriers (vertical segments in Figure 2) are more
random.

5.1. Law of the heights of the barriers. Start at time 0 with all sites vacant. Let
u ∈ (0, 1). Assume that a match falls at site 0 at time TSu and neglect all other fires. Call
Θu the time needed for the destroyed zone to be completely regenerated and θu the law of
Θu/TS. Clearly, θu is supported by [0, 1]. We will show in Lemma 18.1 below that θu can be
defined as follows.

Definition 5.1. Assume (HS(BS)). For t, s ∈ [0,∞), we denote by

gS(t, s) = Pr[NS
TSt > 0, NS

TS(t+s) > NS
TSt],
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where (NS
t )t≥0 is a SR(µS)-process. For u ∈ (0, 1), we consider the probability measure θu on

[0, 1] defined by

∀ h ∈ [0, 1], θu([0, h]) = νS((TSu, TS)) +

(

νS((TSu, TS))

1− gS(u, h)

)2

gS(u, h).

Finally, we consider a function FS : [0, 1]× [0, 1] 0→ [0, 1] such that for each u ∈ [0, 1] and for
V a uniformly distributed random variable on [0, 1], the law of FS(u, V ) is θu. We can choose
FS in such a way that for each u ∈ [0, 1], v 0→ FS(u, v) is nondecreasing.

Let u ∈ [0, 1] be fixed. Since µS([0, TS]) = 1, there holds gS(u, 1) = νS([0, TSu]), whence
θu([0, 1]) = 1. To check that h 0→ θu([0, h]) is nondecreasing, it suffices to observe that
h 0→ g(u, h) is nondecreasing. Notice that θu({0}) = νS((TSu, TS)): this corresponds to the
situation where nothing has been destroyed because the match has fallen on an empty site.
For FS(u, .), one can e.g. use the generalized inverse function of θu([0, .]).

5.2. Definition of the limit process. Let πM (dt, dx) be a Poisson measure on [0,∞)×
R with intensity measure dtdx, whose marks correspond to matches. We also consider an i.i.d.
sequence (Vk)k≥1 of uniformly distributed random variables on [0, 1], independent of πM . If
πM (dt, dx) =

∑

k≥1 δ(Tk,Xk), we (abusively) write πM (dt, dx, dv) =
∑

k≥1 δ(Tk,Xk,Vk). Observe
that πM (dt, dx, dv) is a Poisson measure on [0,∞)×R× [0, 1] with intensity measure dtdxdv.

Definition 5.2. A process (Zt(x), Dt(x), Ht(x))t≥0,x∈R with values in R+ × I × R+

such that a.s., for all x ∈ R, (Zt(x), Ht(x))t≥0 is càdlàg, is said to be a LFF (BS)-process if
a.s., for all t ≥ 0, all x ∈ R,















Zt(x) =

∫ t

0
11{Zs(x)<1}ds−

∫ t

0

∫

R

11{Zs−(x)=1,y∈Ds−(x)}πM (ds, dy),

Ht(x) =

∫ t

0

∫ 1

0
FS(Zs−(x), v)11{Zs−(x)<1}πM (ds× {x}× dv)−

∫ t

0
11{Hs(x)>0}ds,

(5.1)

where Dt(x) = [Lt(x), Rt(x)], with

Lt(x) = sup{y ≤ x : Zt(y) < 1 or Ht(y) > 0},

Rt(x) = inf{y ≥ x : Zt(y) < 1 or Ht(y) > 0}

and where Dt−(x) is defined in the same way.

The difference with the LFF (∞)-process is that when a match falls at (t, x) with Zt−(x) <
1, we choose Ht(x) according to the law θZt−(x), instead of simply setting Ht(x) = Zt−(x).

5.3. Formal dynamics. Let us explain the dynamics of this process. We consider T > 0
fixed and set AT = {x ∈ R : πM ([0, T ]× {x}) > 0}. For each t ≥ 0, x ∈ R, Dt(x) stands for
the occupied cluster containing x. We call this cluster is microscopic if Dt(x) = {x}. We have
Dt(x) = Dt(y) for all y ∈ Dt(x).

1. Initial condition. We have Z0(x) = H0(x) = 0 and D0(x) = {x} for all x ∈ R.

2. Occupation of vacant zones. We consider here x ∈ R \ AT . Then we have Ht(x) = 0
for all t ∈ [0, T ]. When Zt(x) < 1, then Dt(x) = {x} and Zt(x) stands for the local density of
occupied sites around x (or rather for a suitable function of this density) Then Zt(x) grows
linearly until it reaches 1, as described by the first term on the RHS of the first equation in
(5.1). When Zt(x) = 1, the cluster containing x is macroscopic and is described by Dt(x).
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3. Microscopic fires. Here we assume that x ∈ AT and that the corresponding mark of
πM happens at some time t where Zt−(x) < 1. In such a case, the cluster containing x is
microscopic. Then we set Ht(x) = FS(Zt−(x), V ), for some uniformly distributed V on [0, 1]
as described by the first term on the RHS of the second equation of (5.1). We then let Ht(x)
decrease linearly until it reaches 0, see the second term on the RHS of the second equation in
(5.1). At all times where Hs(x) > 0, the site x acts like a barrier (see Point 5. below). All
this means that at x, there is a barrier during [t, t+Ht(x)), where Ht(x) is chosen at random,
according to the law θZt−(x).

4. Macroscopic fires. Here we assume that x ∈ AT and that the corresponding mark
of πM happens at some time t where Zt−(x) = 1. This means that the cluster containing
x is macroscopic and thus this mark destroys the whole component Dt−(x), that is for all
y ∈ Dt−(x), we set Dt(y) = {y}, Zt(y) = 0. This is described by the second term on the RHS
of the first equation in (5.1).

5. Clusters. Finally the clusters (Dt(x))x∈R are delimited by zones with density smaller
than 1 (i.e. Zt(y) < 1) or by sites where a microscopic fire has (recently) started (i.e. Ht(y) >
0).

A typical path of a finite-box version (ZA
t (x), DA

t (x), H
A
t (x))t≥0,x∈[−A,A] of the LFF (BS)-

process is discussed on Figure 3. It is very similar to Figure 2: the only difference is that each
time there is a bullet falling at some (t, x) in a white zone, the height of the segment above
(t, x) is chosen at random, according to the law θZt−(x). And Zt−(x) equals the time passed
since x was involved in a macroscopic fire (the case LFF (∞) corresponds to the law θz = δz).
See also Algorithm 15.3 below.

5.4. Well-posedness. We will prove the following result.

Theorem 5.3. For any Poisson measure πM (dt, dx, dv) on [0,∞) × R × [0, 1] with
intensity measure dtdxdv (and for πM (dt, dx) =

∫

v∈[0,1] πM (dt, dx, dv)), there a.s. exists a

unique LFF (BS)-process. Furthermore, it can be constructed graphically and its restriction
to any finite box [0, T ]× [−n, n] can be perfectly simulated.

The LFF (BS)-process (Zt(x), Dt(x), Ht(x))t≥0,x∈R is furthermore Markov, since it solves
a well-posed time homogeneous Poisson-driven S.D.E.

5.5. The convergence result. We are now in a position to state the main result of this
section. Recall Subsection 2.5.

Theorem 5.4. Assume (HM ) and (HS(BS)). Recall that aλ = TS, nλ = ,1/(λTS)-
and let mλ satisfy (3.4). Consider, for each λ ∈ (0, 1], the process (Dλ

t (x), Z
λ
t (x))t≥0,x∈R

associated with the FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z, see Definition 2.3, (3.3) and (3.5).
Consider also the LFF (BS)-process (Zt(x), Dt(x), Ht(x))t≥0,x∈R.

(a) For any T > 0, any finite subset {x1, . . . , xp} ⊂ R, (Zλ
t (xi), Dλ

t (xi))t∈[0,T ],i=1,...,p

goes in law to (Zt(xi), Dt(xi))t∈[0,T ],i=1,...,p, in D([0, T ],R× I ∪ {∅})p, as λ tends to 0. Here
D([0,∞),R× I ∪ {∅}) is endowed with the distance dT .

(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⊂ [0,∞)×R, (Zλ
ti(xi), Dλ

ti(xi))i=1,...,p goes
in law to (Zti(xi), Dti(xi))i=1,...,p in (R× I ∪ {∅})p. Here I ∪ {∅} is endowed with δ.

(c) For any t ≥ 0, any k ∈ N,

lim
λ→0

Pr
[

|C(ηλTSt, 0)| = k
]

= E [qk(Zt(0))] ,
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where, for z ∈ [0, 1],
{

q0(z) = νS((zTS, TS)),
qk(z) = k[νS((zTS, TS))]2[νS((0, zTS))]k if k ≥ 1.

(5.2)

Here we have no problem with t = 1: for the discrete process (in the absence of fires), all
the sites are occupied at time TS (which corresponds to time 1 after normalization). Point (c)
will be useful to prove some estimates about the cluster-size distribution. Observe that for
z ∈ (0, 1), qk(z) is the probability that the cluster around 0 has the size k at time TSz, in the
absence of fires, if seeds fall according to i.i.d. SR(µS)-processes.

5.6. Heuristic arguments. Let us explain roughly the reasons why Theorem 5.4 holds
true. We consider a FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z and the corresponding processes
(Zλ

t (x), D
λ
t (x))t≥0,x∈R. We assume below that λ is very small.

0. Matches. As in the case β = ∞, the times and positions at which matches fall will
tend, in our scales, to the marks of a Poisson measure with intensity measure 1.

1. Initial condition. We have, for all x ∈ R, (Zλ
0 (x), D

λ
0 (x)) = (0, ∅) + (0, {x}).

2. Occupation of vacant zones. Assume that a zone [a, b] becomes completely vacant at
some time t (because it has been destroyed by a fire).
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Figure 3. LFF (BS)-process in a finite box.

The marks of πM (matches) are represented as •’s. The filled zones represent zones in which ZA
t (x) = 1

and HA
t (x) = 0, that is macroscopic clusters. The plain vertical segments represent the sites where

HA
t (x) > 0. In the rest of the space, we always have ZA

t (x) < 1.



5. MAIN RESULT IN THE CASE β = BS 35

(i) For s ∈ [0, 1) and if no fire starts on [a, b] during [t, t + s] (or [TSt, TS(t + s)] in
the original scales) the density of vacant sites in [a, b] at time t + s should clearly resemble
νS((0, TSs)). Hence for x ∈ [a, b], Zλ

t (x) + ψS(νS((0, TSs))) = s and Dλ
t+s(x) + {x}.

(ii) If no fire starts on [a, b] during [t, t+1] (or [TSt, TS(t+1)] in the original scales), then
all the sites of [a, b] become occupied at time t+ 1 (recall that νS((0, TS]) = 1).

3. Microscopic fires. Assume that a fire starts at some place x at some time t, with
Zλ
t−(x) = z ∈ (0, 1). Then the possible clusters on the left and right of x cannot be connected

during (approximately) [t, t + ΘzTS], but can be connected after (approximately) t + ΘzTS ,
where Θz follows approximately the law θz. Indeed, θz is designed for that: consider a zone
where the density of occupied sites is z and assume that the sites are exchangeable in this
zone. Pick at random a cluster in this zone. The law of its size depends on z. Then θz is the
law of the time needed for a seed to fall on each sites of this cluster (divided by TS).

4. Macroscopic fires. Assume now that a fire starts at some place x, at some time t and
that Zλ

t−(x) + 1, so that Dλ
t−(x) is macroscopic (that is its length is of order 1 in our scales,

or of order nλ in the original process). This will thus make vacant the zone Dλ
t−(x). Such a

(macroscopic) zone needs a time of order 1 to be completely occupied, see Point 2.

5. Clusters. For t ≥ 0, x ∈ R, there are some vacant sites in the neighborhood of x if
Zλ
t (x) < 1 (then we say that x is microscopic), or if there has been (recently) a microscopic

fire at x (see Point 3). Now macroscopic clusters are delimited either by microscopic zones,
or by sites where there has been recently a microscopic fire.

To transform these heuristic arguments into a rigorous proof, we have essentially the same
difficulties as when β =∞ (see Subsection 4.5): each isolated event is easily treated, but it is
quite hard to put everything together.

5.7. Cluster-size distribution. We will deduce from Theorem 5.4 the following esti-
mates on the cluster-size distribution.

Corollary 5.5. Assume (HM ) and (HS(BS)). Recall that aλ and nλ were defined in
(3.1) and (3.2). Let (Zt(x), Dt(x), Ht(x))t≥0,x∈R be a LFF (BS)-process. For each λ ∈ (0, 1],
let (ηλt (i))t≥0,i∈Z be a FF (µS , µλM )-process.

(i) For some 0 < c1 < c2, for all t ≥ 5/2, all k ∈ {0, 1, . . .},

lim
λ→0

Pr
(

|C(ηλTSt, 0)| = k
)

∈ [c1qk, c2qk],

where q0 =
∫ 1
0 νS((TSz, TS))dz and qk = k

∫ 1
0 [νS((TSz, TS))]2[νS((0, TSz))]kdz for k ≥ 1.

(ii) For some 0 < c1 < c2 and 0 < κ1 < κ2, for all t ≥ 3/2, all B > 0,

lim
λ→0

Pr
(

|C(ηλTSt, 0)| ≥ Bnλ

)

= Pr (|Dt(0)| ≥ B) ∈ [c1e
−κ2B, c2e

−κ1B].

Consider the case of Example 1, where µS = δ1, TS = 1 and νS(dt) = 11[0,1](t)dt. Then
nλ ∼ 1/λ and one can check that q0 = 1/2 and qk = 2k/[(k + 1)(k + 2)(k + 3)] for k ≥ 1.

Corollary 5.5 shows the presence of two regimes: for λ > 0 very small, there are some
finite (uniformly in λ) clusters, as described in Point (i) and some clusters of order 1/λ, as
described in Point (ii). Roughly, for λ > 0 very small, the cluster-size distribution resembles,
for large times,

∑

k≥0

qkδk(dx) + λe
−λx11{x≥0}dx.
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6. Main results when β ∈ (0,∞)

6.1. Definition of the limit process. Surprisingly, the limit process in this case is
more natural than in the previous cases, in the sense that there are only macroscopic clusters
and thus no microscopic fires: heavy tails can sometimes produce natural objects. This is due
to the fact that for β < ∞, the scale space nλ is correct for all times. We describe the limit
forest fire process by a graphical construction. The limit forest fire process (Yt(x))x∈R,t≥1 will
take its values in {0, 1}. In some sense, Yt(x) = 0 means that there is no tree at x at time t.

For (Y (x))x∈R with values in {0, 1}, we define the occupied component around x ∈ R as

C(Y, x) := [l(Y, x), r(Y, x)](6.1)

where l(Y, x) = sup{y ≤ x : Y (y) = 0} and r(Y, x) = inf{y ≥ x : Y (y) = 0}. If Y (x) = 0,
this implies C(Y, x) = {x}.

We consider a Poisson measure πM (dt, dx) on [0,∞) × R with intensity measure dtdx,
whose marks correspond to matches. We also introduce a Poisson measure πS(dt, dx, dl) on
[0,∞)×R× [0,∞), independent of πM , with intensity measure dtdxβ(β+1)l−β−2dl. Roughly,
when πS has mark (τ, X, L), this means that no seed fall on X during [τ − L, τ ]. In all the
other zones, seeds fall continuously.

Before handling the precise construction of the limit process, let us say roughly what
happens. Matches fall according to πM . Draw a vertical dotted segment at X between τ − L
and τ for each mark (τ, X, L) of πS . Start from time 0. All the sites become immediately
occupied, except sites for which there is a dotted vertical segment crossing t = 0. These sites
remain vacant until the height of these segments. Thus we overwrite in plain the parts of
these segments above zero. When there is a fire at some time t0, it destroys a zone delimited
by some active plain segments. But all the sites in this zone are immediately occupied again,
except those for which there is a dotted vertical segment crossing t = t0. Such sites will
remain vacant until the height of these segments, so that we overwrite in plain the parts of
these segments above t0. And so on. Of course, plain segments represent vacant sites. See
Figure 4 for an illustration.

We now handle the rigorous construction on a fixed time interval [0, T ].

First, we set Y 0
t (x) = 11{πS({(s,x,l) : s>t,s−l<0})=0} for all t ∈ [0, T ], all x ∈ R. Observe

that for all x ∈ R, t 0→ Y 0
t (x) is non-decreasing on [0, T ]. Since

∫∞
0

∫∞
0 11{s>T,s−l<0}β(β +

1)l−β−2dlds > 0, one can clearly find an unbounded family {χi}i∈Z ⊂ R such that for all
t ∈ [0, T ], all i ∈ Z, Y 0

t (χi) = 0. We take the convention that for all i ∈ Z, χi ≤ χi+1,
χ0 ≤ 0 < χ1, limi→−∞ χi = −∞ and limi→∞ χi =∞.

We now handle the construction on each box [0, T ]× [χi,χi+1] separately. Let thus i be
fixed. The Poisson measure πM has a.s. a finite number ni of marks (ρi1,α

i
1), . . . , (ρ

i
ni
,αi

ni
) in

[0, T ]× [χi,χi+1], ordered in such a way that 0 < ρi1 < · · · < ρini
.

We consider the occupied cluster Ii1 = C(Y 0
ρi1−

,αi
1) (which is included in [χi,χi+1] by

construction). For (t, x) ∈ [0, T ] × [χi,χi+1], we set Y 1
t (x) = 11{πS({(s,x,l) : s>t,s−l<ρi1})=0} if

(t, x) ∈ [ρi1, T ]× Ii1 and Y 1
t (x) = Y 0

t (x) else.

Assume that for some k = 2, . . . , ni, (Y
k−1
t (x))t∈[0,T ],x∈[χi,χi+1] has been built and consider

the occupied cluster Iik = C(Y k−1
ρik−

,αi
k) (which is still included in [χi,χi+1]). For (t, x) ∈ [0, T ]×
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[χi,χi+1], we define Y k
t (x) by setting Y k

t (x) = 11{πS({(s,x,l) : s>t,s−l<ρik})=0} if (t, x) ∈ [ρik, T ]×I
i
k

and Y k
t (x) = Y k−1

t (x) else.

We finally set Yt(x) = Y ni
t (x) for all t ∈ [0, T ], all x ∈ [χi,χi+1]. Doing this for each i,

this defines a process (Yt(x))t∈[0,T ],x∈R.

A typical path of the LFF (β)-process is drawn and discussed on Figure 4, from which
the following remark is clear.

t=0

t=T

χ χ 10

t=

t=

t=

ρ

ρ

ρ

0

0

0

3

2

1

Figure 4. LFF (β)-process with β ∈ (0,∞).
The plain segments represent vacant sites and the occupied clusters are delimited by these segments.
The marks of πM (matches) are represented as •’s.
Step 0. First, we draw on the whole space [0,∞)×R all the •’s and we draw a vertical dotted segment
from (τ − L,X) to (τ, X) when πS has a mark at (τ, X,L). Of course, such segments are infinitely
many so that it is not possible to draw all of them on a figure.
Step 1. For each of these dotted segments that encounter the axis t = 0, we overwrite in plain its part
above t = 0. Then we denote by χ0 and χ1 the first places on the left and right of 0 such that plain
segments go beyond T . At this stage, we have built (Y 0

t (x))t∈[0,T ],x∈R.

Step 3. At time ρ01, we consider the component I01 (between plain segments) where the match • falls.
Then, for each dotted segment (lying in I01 ) that encounters the axis t = ρ01, we overwrite in plain its
part above t = ρ01. At this stage, we have built (Y 1

t (x))t∈[0,T ],x∈[χ0,χ1].

Step 3. At time ρ02, we consider the component I02 (between plain segments) where the match • falls.
Then, for each dotted segment (lying in I02 ) that encounters the axis t = ρ02, we overwrite in plain its
part above t = ρ02. We have built (Y 2

t (x))t∈[0,T ],x∈[χ0,χ1].
And so on...
Remark. If we draw a vertical dotted segment from (τ − L,X) to (τ, X) when πS has a mark at
(τ, X, L) only if L > δ, and if δ > 0 is smaller than min{ρ01, ρ

0
2 − ρ01, ρ

0
3 − ρ02}, then we get the exact

values of Yt(x) for all x ∈ [χ0,χ1] and all t ∈ [0, T ] \ ([0, δ] ∪ [ρ01, ρ
0
1 + δ] ∪ [ρ02, ρ

0
2 + δ] ∪ [ρ03, ρ

0
3 + δ]).
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Remark 6.1. (i) If we build the process using some larger final time T ′ > T , this
does not change the values of the process on [0, T ]× R. Thus the process can be extended to
[0,∞)× R.

(ii) For δ > 0, denote by πδS the restriction of πS to [0,∞) × R × [δ,∞). The sequence

(χi)i∈Z clearly depends only on πTS . Then for each i ∈ Z, we denote by T i,T
M = {t ∈ [0, T ] :

πM ({t}×[χi,χi+1]) > 0)∪{0} and by δi,T = infs,t∈T i,T
M ,s!=t |t−s|. Then for all δ ∈ (0, δi,T ∧T ),

all x ∈ [χi,χi+1] and all t ∈ [0, T ]\∪s∈T i,T
M

[s, s+δ], the value of Yt(x) depends only on πM ,πδS .

Observe that for all t ≥ 0, {Yt = 0} is countable and for all t > 0 such that πM ({t}×R) = 0,
{Yt = 0} is discrete (it has no accumulation point).

Proposition 6.2. Let πM ,πS be two independent Poisson measures on [0,∞) × R

and [0,∞) × R × [0,∞) with intensity measures dtdx and dtdxβ(β + 1)l−β−2dl. There a.s.
exists a unique LFF (β)-process (Yt(x))t≥0,x∈R. It can be simulated exactly on any finite box
[0, T ]× [−n, n]. For each t ≥ 0 and x ∈ R, we set Dt(x) = C(Yt, x), recall (6.1).

This proposition is obvious from the previous construction. Of course, we can build
exactly the process on any finite box, but we cannot draw it exactly: when a match falls in
some occupied cluster I at some time t, the set {x ∈ I : Yt(x) = 0} is dense in I (but
{x ∈ I : Yt+ε(x) = 0} is finite for all small ε > 0).

Note that it would have been more natural to set Yt(x) = 0 for all x ∈ I when a match
falls in some occupied cluster I at some time t. However, since then I becomes occupied
almost everywhere immediately after t, the present definition (which only implies that {x ∈
I : Yt(x) = 0} is dense in I) is simpler for mathematical purpose.

6.2. On the Markov property. The LFF (β)-process (Yt(x))t≥0 is clearly not Markov,
in particular because the heights of the barriers are not exponentially distributed. The aim of
this subsection is to build a Markov process that contains more information than (Yt(x))t≥0.

Let the Poisson measures πM and πS be given. Write πS =
∑

k≥1 δ(tk,xk,lk) and introduce

π1S =
∑

k≥1 δ(tk−lk,xk,lk)11{tk−lk>0} and π0S =
∑

k≥1 δ(tk,xk,lk)11{tk−lk<0}. Observe that π0S and

π1S are independent. Furthermore, π1S has a mark (τ, X, L) if and only if there is a dotted
vertical segment from (τ, X) to (τ + L,X) (with τ > 0) and π0S has a mark (τ, X, L) if and
only if there is a dotted vertical segment from (τ −L,X) to (τ, X) (with τ −L < 0 < τ). One
can easily check that π1S is a Poisson measure on [0,∞)× R× (0,∞) with intensity measure
dtdxβ(β + 1)l−β−2dl. We set, for x ∈ R,

Γ0(x) =

∫ ∞

0

∫ ∞

0
sπ0S(ds× {x}× dl),

which represents the height above 0 of the dotted (or plain) vertical segment at x that crosses
the axis t = 0, with of course Γ0(x) = 0 if there is no such dotted segment. We then introduce,
for x ∈ R and t ≥ 0,

Γt(x) = Γ0(x) +

∫ t

0

∫ ∞

0
max{l− Γs−(x), 0}π

1
S(ds× {x}× dl)−

∫ t

0
11{Γs(x)>0}ds,

which represents the height above t of the dotted (or plain) vertical segment at x that crosses
the horizontal axis with ordinate t, with Γt(x) = 0 if there is no such dotted segment. Indeed,
Γt(x) clearly decreases linearly when it is positive, and jumps from Γs−(x) to max{Γs−(x), l}
when π1S has a mark at (s, x, l). Using the fact that a.s., for all x ∈ R, there is at most one
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dotted segment at x, it is possible to replace max{l − Γs−(x), 0} by l. Finally, we define, for
x ∈ R and t ≥ 0,







Ht(x) = Γ0(x) +

∫ t

0

∫

R

11
{y∈

◦

C(Ys−,x)}
Γs−(x)πM (ds, dy)−

∫ t

0
11{Hs(x)>0}ds,

Yt(x) = 11{Ht(x)=0},

where
◦
C (Ys−, x) stands for the interior of C(Ys−, x). Then Ht(x) is the height above t of the

plain segment at x that crosses the horizontal axis with ordinate t (with Ht(x) = 0 if there is
no such plain segment), and thus (Yt(x))t≥0 is the LFF (β)-process. Indeed, since we overwrite
in plain all the dotted segments that cross the axis t = 0, we clearly have H0(x) = Γ0(x).
Then Ht(x) decreases linearly when it is positive, and jumps to Γs−(x) when x is involved in
a fire at some time s (whence necessarily Hs−(x) = 0): recall that we then overwrite in plain
the dotted segment at x that crosses the horizontal axis with ordinate s, of which the height
above s it given by Γs−(x).

The process (Γt(x), Ht(x), Yt(x))t≥0,x∈R is Markov, since it solves a well-posed homoge-
neous Poisson-driven S.D.E.

6.3. The convergence result. We now state our main result in the case β ∈ (0,∞).
We use Subsection 2.5.

Theorem 6.3. Assume (HM ) and (HS(β)) for some β ∈ (0,∞). Consider, for each
λ ∈ (0, 1], the process (Dλ

t (x))t≥0,x∈R associated with the FF (µS , µλM )-process, see Definition
2.3 and (3.3). Consider also a LFF (β)-process (Yt(x))t≥0,x∈R and set Dt(x) = C(Yt, x) for
all t ≥ 0, all x ∈ R as in Proposition 6.2.

(a) For any T > 0, any finite subset {x1, . . . , xp} ⊂ R, (Dλ
t (xi))t∈[0,T ],i=1,...,p goes in law

to (Dt(xi))t∈[0,T ],i=1,...,p in D([0, T ], I)p, as λ→ 0. Here D([0, T ], I) is endowed with δT .
(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⊂ (0,∞)×R, (Dλ

ti(xi))i=1,...,p goes in law
to (Dti(xi))i=1,...,p in Ip, I being endowed with δ.

6.4. Heuristic arguments. We assume below that λ > 0 is very small.

0. Matches. Exactly as in the case β = ∞, we hope that matches will fall, in our scales,
according to a Poisson measure with intensity 1 (in mean, 1 match per unit of time per unit
of space, which corresponds to 1 match per nλ sites during [0, aλ] in the original scales).

1. Occupation of vacant zones. Consider a zone [a, b] (or [[,anλ-, ,bnλ-]] in the original
scales). At time 0, this zone is completely empty. In this zone, each site will be empty at time t
if no seed has fallen during [0, t] (or [0, aλt] in the original scale). This occurs with probability
νS((aλt,∞)). Thus in the absence of fires, the number of empty sites in [a, b] at time t follows
a binomial distribution with parameters (b−a)nλ and νS((aλt,∞)). Recalling (3.1), (3.2) and
(HS(β)), we see that (b− a)nλνS((aλt,∞)) + (b− a)νS((aλt,∞))/νS((aλ,∞))→ (b− a)t−β .
Hence the number of empty sites in [a, b] at time t follows approximately a Poisson law with
parameter (b − a)t−β (when neglecting fires).

The link with the LFF (β)-process is simple: for any a < b and any t > 0, the random
variable πS({(s, x, l) : x ∈ [a, b], s > t, s − l < 0)}) follows a Poisson law with parameter
∫∞
t ds

∫ b
a dx

∫∞
s β(β + 1)l−β−2dl = (b− a)t−β .

2. Fires. Now when a match falls at some place, this destroys the whole occupied cluster.
The destroyed cluster is then treated as in Point 1.
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The rigorous proof is, as usual, not so easy. The first step is to find a suitable coupling
between the seed processes (NS

t (i))t≥0 and the Poisson measure πS describing times/places
where seeds do not fall in the limit process. Next, we have to find a (necessarily complicated)
event on which the normalized discrete process resembles the limit process and to show that
this event occurs with high probability. For example, this event has to guarantee us that for
sites on which seeds fall continuously in the limit process, seeds fall sufficiently often in the
discrete process. We also need that a small error in the time/place where a fire starts (or
where a seed falls) does not produce large errors after some time, etc.

6.5. Cluster-size distribution. We aim here to estimate the law of the occupied cluster
around 0. No phase transition occurs here.

Corollary 6.4. Let β ∈ (0,∞). Assume (HM ) and (HS(β)). Recall that aλ and
nλ were defined in (3.1) and (3.2). Consider the LFF (β)-process (Yt(x))t≥0,x∈R and the
associated (Dt(x))t≥0,x∈R. For each λ ∈ (0, 1], let (ηλt (i))t≥0,i∈Z be a FF (µS , µλM )-process.
There are constants 0 < c1 < c2 and 0 < κ1 < κ2 such that for all t ≥ 1 and all B > 0,

lim
λ→0

Pr
[

|C(ηλaλt, 0)| ≥ Bnλ

]

= Pr [|Dt(0)| ≥ B] ∈ [c1e
−κ2B, c2e

−κ1B].

7. Main results when β = 0

7.1. Definition of the limit process. In this case, the limiting process is trivial: we
consider a Poisson measure πS on R with intensity measure dx and we put, for all t ≥ 0, all
x ∈ R,

Yt(x) = 11{πS(x)=0}.

Denote by {χi}i∈Z the marks of πS with the convention that · · · < χ−1 < χ0 < 0 < χ1 < χ2 <
. . . . Then for all t ≥ 0, all i ∈ Z, recalling (6.1), C(Yt, x) = [χi,χi+1] for all x ∈ (χi,χi+1)
and C(Yt,χi) = {χi}. Matches fall according to a Poisson measure πM (dt, dx) on [0,∞)× R

with intensity measure dtdx.

The LFF (0)-process (Yt(x))t≥0,x∈R is obviously Markov and the following statement is
trivial.

Proposition 7.1. Let πS be a Poisson measure on R with intensity measure dx.
There a.s. exists a unique LFF (0)-process (Yt(x))t≥0,x∈R. It can be simulated exactly on any
finite box [0, T ]× [−n, n]. For each t ≥ 0 and x ∈ R, we will denote by Dt(x) = C(Yt, x) the
occupied cluster around x (see (6.1)).

Of course, fires do not appear in the construction. Hence it is not necessary to introduce
πM . However, it allows us to keep in mind that fires do occur. But these fires generate empty
zones that are immediately regenerated. The main idea is that in our scales: on the great
majority of sites, seeds fall almost continuously for all times; but there are rare sites where
the first seed will never fall. Hence when there is a fire, this always concerns a zone where
seeds fall continuously, so that one does not observe the fire at the limit. A typical path of
the LFF (0)-process is commented on Figure 5.

7.2. The convergence result. We now state our last main result, using Subsection 2.5.

Theorem 7.2. Assume (HM ) and (HS(0)). Consider, for each λ ∈ (0, 1], the process
(Dλ

t (x))t≥0,x∈R associated to the FF (µS , µλM )-process, see Definition 2.3 and (3.3). Consider
also the LFF (0)-process (Yt(x))t≥0,x∈R and the associated (Dt(x))t≥0,x∈R.
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(a) For any T > 0, any finite subset {x1, . . . , xp} ⊂ R, (Dλ
t (xi))t∈[0,T ],i=1,...,p goes in law

to (Dt(xi))t∈[0,T ],i=1,...,p in D([0, T ], I)p as λ→ 0. Here D([0,∞), I) is endowed with δT .
(b) For any finite subset {(t1, x1), . . . , (tp, xp)} ⊂ (0,∞)×R, (Dλ

ti(xi))i=1,...,p goes in law
to (Dti(xi))i=1,...,p in Ip, I being endowed with δ.

7.3. Heuristic arguments. The only difference with the case β ∈ (0,∞) is the follow-
ing. In some sense, for each site i, in our scales, either seeds fall continuously on i, or the first
seed never falls on i. A first hint for this is the following.

Consider a zone [a, b]. At time 0, this zone is completely vacant. Fix T > 0. Then in
the absence of fires, the number of vacant sites in [a, b] at time T (or in [[,anλ-, ,bnλ-]] at
time aλT in the original scales) follows a binomial distribution with parameters (b − a)nλ

and νS((aλT,∞)). Observe now that for any value of T > 0, using (HS(0)), (3.1) and (3.2),
(b−a)nλνS((aλT,∞)) + (b−a)νS((aλT,∞))/νS((aλ,∞))→ (b−a). Hence the number of sites
that are still vacant at time T follows approximately a Poisson distribution with parameter
(b − a). Since this parameter does not decrease with T , this means that in our scales, sites
are either immediately occupied or vacant forever.

Here the rigorous proof is rather simple, but it still needs some care. We have essentially
the same difficulties as in the case where β ∈ (0,∞) (see Subsection 6.4), but they are more
easily treated.

7.4. Cluster-size distribution. Since the LFF (0)-process is very simple, we obtain of
course some more precise information on the asymptotic cluster-size distribution.

t=0

0−1 χχχ χ 21

Figure 5. LFF (0)-process.

The marks of πM (matches) are represented as •’s. We draw a plain vertical segment above each mark
of πS . For all times, the occupied clusters are delimited by these vertical segments. In some sense, fires
have an instantaneous effect, represented as dotted horizontal segments, that we decided to neglect for
obvious practical reasons.
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Remark 7.3. Assume (HM ) and (HS(0)). For each λ ∈ (0, 1], let a FF (µS , µλM )-
process (ηλt (i))t≥0,i∈Z be given, see Definition 2.3. Consider the LFF (0)-process (Yt(x))t≥0,x∈R

and the associated (Dt(x))t≥0,x∈R. Then for t > 0, B > 0,

lim
λ→0

Pr
[

|C(ηλaλt, 0)| ≥ Bnλ

]

= Pr [|Dt(0)| ≥ B] =

∫ ∞

B
xe−xdx = (B + 1)e−B.

No proof is needed here: xe−x11{x>0} is just the density of |Dt(0)| = χ1 − χ0. The
convergence in law of |C(ηλaλt, 0)|/nλ = |Dλ

t (0)| to |Dt(0)| follows from Theorem 7.2.

8. On some other modelling choices

For µ a probability law on (0,∞), we say that Nt =
∑

n≥1 11{X1+···+Xn≤t} is a natural
renewal process with parameter µ, or a NR(µ)-process in short, if the random variables Xi

are i.i.d. with law µ. When extending the traditional forest fire model (where all the renewal
processes are Poisson), we had to make some choices.

1. Matches can fall according to i.i.d. (i) SR(µλM )-processes, (ii) NR(µλM )-processes.

2. Seeds can fall according to i.i.d. (i) SR(µS)-processes, (ii) NR(µS)-processes.

3. When a fire destroys an occupied component [[a, b]], we can (i) keep the i.i.d. renewal
processes governing seeds as they are, (ii) forget everything and make start some new i.i.d.
renewal processes governing seeds in the zone [[a, b]].

Recall that when dealing with Poisson processes, choosing (i) or (ii) in Points 1, 2, 3 does
not change the law of the FF (µS , µλM )-process.

From the point of view of modelling, it seemed more natural to choose (i) in Points 1 and
2: this is the only way that time 0 does not play a special role. We also decided to choose
(i) in Point 3, because its seems more close to applications. Let us discuss briefly what could
happen with other choices.

First, for matches (Point 1), choosing (i) does not play a fundamental role. Indeed, in
our scales, only 0 or 1 match can fall on each site. Thus our results should extend, without
difficulty, to the choice 1-(ii), replacing (HM ) by the assumption µλM ((0, t)) + λt as λ →
0 (together with some additional regularity conditions if we want a strong coupling as in
Proposition 11.1).

Next, we believe that in Point 2, our results should still hold if choosing (ii) when β =∞.
In the case where µS has a bounded support, one would have to assume some regularity on µS

(the case µS = δ1 is trivial) and to modify the dynamics of the LFF (BS)-process (the law θu
should also depend on time). Our study would completely break down when β ∈ [0,∞). In the
latter case, the situation would be quite intricate and we are not able to predict scales (and, a
fortiori, to predict some limit process). Let us explain briefly the situation. If β =∞, then νS
and µS have a similar tail (see example 2). Thus the time and space scales we have considered
will fit both νS and µS . On the contrary, if β ∈ [0,∞), the tails of µS and νS are really
different. Consequently, if we accelerate time according to µS (in order that for a NR(µS)-
process, the cluster containing the site 0 burns before time 1 with a positive probability), then
this will be too slow for larger times (when a fire destroys a cluster (a, b), this zone (a, b) will
never regenerate).

Finally, in Point 3, we also believe that choosing (ii) would not change our results when
β = ∞ and not change too much the situation when µS has a bounded support. When
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β ∈ [0,∞), we expect that this would not change time/space scales, but we would have to
modify the limit processes. For example if β = 0, we expect that each time a fire burns a zone
(a, b), this zone would regenerate immediately, except in a random number of sites, that follows
a Poisson distribution with parameter (b − a). Next if β ∈ (0,∞), then when a fire burns a

zone (a, b) at some time t, we would have to pick another Poisson measure π(a,b),tS (ds, dx, dl)
on [t,∞)× (a, b)× (0,∞), independent of everything else and use this Poisson measure above
(a, b) instead of the original πS .

9. Open problems and perspectives

Of course, the main interesting problem is to find a scaling limit of the forest-fire process,
e.g. when seeds and matches fall according to Poisson processes, in dimension 2 or more. We
believe that the 2-dimensional limit process should enjoy self-organized criticality. However,
it is highly probable that our work, though quite complete in dimension 1, does not give the
least hint of what could happen in dimension 2. Indeed, all our study is based on the fact
that connectedness is very simple in dimension 1: a vacant site is sufficient to stop a fire. One
immediately get convinced that the situation is much more complicated in higher dimension.
A possible intermediary step, that we investigate, is to study the case where the underlying
lattice is a tree, in which connectedness is much simpler than in Z2.

A much easier problem, on which we also work, is to study (e.g. in the Poisson case)
the possible scaling limits of the forest-fire process, in dimension 1, when fires propagate at
finite speed. We then expect that several limit processes should arise: (i) if fires propagate
sufficiently fast, then we should recover the same limit process as when fires propagate at
infinite speed, (ii) when fires propagate at some precise speed (to be determined as a function of
λ), then we should find a modified limit process, in which the microscopic fires are unchanged,
but in which the macroscopic fires propagate at finite speed, (iii) when fires propagate slowly,
a quite different limit process should arise.

Other possible variants could be studied. First, one could consider the case where the
processes governing seeds are not independent. It should not be too difficult to get some
results (probably with the same scaling limits as in the present paper), under a suitable
ergodicity assumption. We could also study the case where seeds fall in a random media. For
example, choose (independently) for each site some parameter λi > 0 at random, and assume
that seeds fall on this site according to a Poisson process with rate λi. In the case where the
support of the law governing the λi’s is bounded from below, a scaling limit could reasonably
be found and should not differ much from the LFF (∞)-process. More subtle phenomena
could occur if there are some sites with arbitrarily small rate (on which seeds will fall very
rarely). And so on.

It also would be very interesting to study the existence and uniqueness of invariant prob-
ability measures for the four limit processes, as well as their convergence to equilibrium. The
case β = 0 is obvious, since the limit process LFF (0) is stationary. But the three other
cases seem quite intricate. Finite-box versions of these processes obviously converge in law
to a unique invariant probability measure. However, we have no idea of how to check that
correlations do not become longer and longer when time increases for the true limit processes.
Although this problem seems hard, it is probably less difficult to study invariant distributions
for the limit processes than for the original forest-fire processes.
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Finally, it might be possible (possibly using the ideas of the present paper), to give much
stronger versions of Corollaries 4.4, 5.5, 6.4 and Remark 7.3 concerning the asymptotics of the
cluster-size distribution. For example in the Poisson case (use Corollary 4.4 with µS((t,∞)) =
e−t), we deduce from our convergence result that the probability that the cluster containing
0 is of size x, in the original scales and for sufficiently large times, resembles

1

(1 + x)[log(1/λ)]
11{x∈[0,1/(λ log(1/λ))]} + λ log(1/λ)e

−xλ log(1/λ)11{x≥0}

in a very weak sense. It would be interesting to prove a stronger version of this claim.
For example, it was proved rigorously in Brouwer-Pennanen [16] that there are constants
0 < c < C such that for all 0 < λ < 1 and all stationary measures µλ (invariant by translation)
of the forest fire model on Z with parameter λ, for all x < (1/[λ log(1/λ)])1/3,

c

(1 + x) log (1/λ)
≤ µλ (|C(η, 0)| = x) ≤

C

(1 + x) log (1/λ)
.

Our result shows that at least a weakened version of such inequalities extends to much higher
values of x, possibly to all x < 1/[λ log2(1/λ)]. It would be very interesting to prove that
these inequalities really hold true for such values of x.
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Proofs



10. Graphical construction of the discrete process

The goal of this section is to prove Proposition 2.4 by using a graphical construction.

Proof of Proposition 2.4. Our aim is to prove that for any T > 0, a.s., the values of the
FF (µS , µM )-process (ηt(i))t∈[0,T ],i∈Z are uniquely determined by (NS

t (i), N
M
t (i))t≥0,i∈Z. Re-

call that νS(dx) = m−1
S µS((x,∞))dx and νM (dx) = m−1

M µM ((x,∞))dx, where mS and mM

are the expectations of µS and µM . We consider h0 > 0 such that νS([2h0,∞)) > 0 (if νS has
an unbounded support, any value of h0 is possible) and we put c0 = νS((2h0,∞))νM ((0, h0)) >
0. We also set K = ,T/h0-.

For n ∈ Z, we consider the event Ωn,T , on which the following conditions are satisfied:

(i) NS
h0
(n) = 0,

(ii) ∀ i ∈ [[1,K]], NS
(i+1)h0

(n+ i) = NS
(i−1)h0

(n+ i),

(iii) ∀ i ∈ [[1,K]], NM
ih0

(n+ i) > NM
(i−1)h0

(n+ i).

We first observe that for any n ∈ Z, using the stationarity of the renewal processes,

Pr[Ωn,T ] = νS((h0,∞))cK0 =: cT > 0.

Next we prove that necessarily,

Ωn,T ⊂ {∀t ∈ [0, T ], ∃i ∈ [[n, n+K]], ηt(i) = 0} .

This is not hard: (i) implies that ηt(n) = 0 for t ∈ [0, h0], since no seed falls on n during this
interval. Point (iii) implies that for i ∈ [[1,K]], a match falls on n+ i during ((i−1)h0, ih0] and
Point (ii) guarantees us that no seed falls on n+ i during ((i− 1)h0, (i+1)h0], whence the site
n + i is necessarily vacant during (at least) (ih0, (i + 1)h0]. Consequently, on Ωn,T , there is
always at least one vacant site in [[n, n+K]] during [0, h0]∪ (∪i=1,...,K(ih0, (i+1)h0]) ⊃ [0, T ]
(with our choice for K, we have (K + 1)h0 ≥ T ).

Hence conditionally on Ωn,T , during [0, T ], the fires starting on the right of n+K do not
affect the values of the forest fire process on the left of n; and the fires starting on the left of
n do not affect the values of the forest fire process on the right of n+K.

Since Pr[Ωn,T ] = cT > 0, we can find · · · < n−1 < n0 < 0 < n1 < n2 . . . such that
∩l∈ZΩnl,T is realized (use that Ωn,T is independent of Ωm,T if |m− n| > K).

We deduce that for any i ∈ Z, the values of (ηt(i))t∈[0,T ] are entirely determined by
the values of (NS

t (j), N
M
t (j))t∈[0,(K+1)h0] for a finite number of j’s, namely (at most) j ∈

[[nk, nl +K]], where k < l satisfy nk +K < i < nl.

We have shown that for any T > 0, (ηt(i))t≥0,i∈Z is entirely and uniquely defined by the
values of (NS

t (i), N
M
t (i))t∈[0,(K+1)h0],i∈Z. !

11. Convergence of matches

In this section, we consider any function λ 0→ aλ bounded from below and such that
nλ = ,1/(λaλ)- → ∞. For A > 0, we set Aλ = ,Anλ- and IλA = [[−Aλ, Aλ]]. For i ∈ Z, we set
iλ = [i/nλ, (i+ 1)/nλ). The following result will be used to prove our four main theorems.

Proposition 11.1. Assume (HM ). Let A > 0 and T > 0 be fixed. We can find, for
any λ ∈ (0, 1], a coupling between a Poisson measure πM (dt, dx) on [0,∞)× R with intensity
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measure dtdx and a family of i.i.d. SR(µλM )-processes (NM,λ
t (i))i∈Z,t≥0 such that for

ΩM
A,T (λ) :=

{

∀t ∈ [0, T ], ∀i ∈ IλA, ∆NM,λ
aλt (i) 2= 0 iff πM ({t}× iλ) 2= 0

}

,

limλ→0 Pr[ΩM
A,T (λ)] = 1.

This means that in our scales, with a high probability, the matches used in the discrete
processes can be prescribed by a Poisson measure, as in the limit processes.

Proof. We divide the proof into several steps. Observe that

Bλ := ∪i∈Iλ
A
iλ = [−Aλ/nλ, (Aλ + 1)/nλ)

(which is approximately [−A,A]). It of course suffices to build πM restricted to [0, T ] × Bλ

and the family (NM,λ
t (i)) for i ∈ IλA and t ∈ [0, aλT ].

Step 1. First, we observe that a possible way to build πM (restricted to [0, T ]× Bλ) is
the following:

(i) Consider a family of i.i.d. r.v. (Zλ
i )i∈Iλ

A
following a Poisson distribution with parameter

T |iλ| = T/nλ.

(ii) For each i with Zλ
i > 0, pick some i.i.d. r.v. (T i,λ

1 , X i,λ
1 ), . . . , (T i,λ

Zλ
i
, X i,λ

Zλ
i
) with uniform

law on [0, T ]× iλ (conditionally on Zλ
i ).

Set finally πM =
∑

i∈Iλ
A

∑Zλ
i

k=1 δ(T i,λ
k ,Xi,λ

k ).

Step 2. Next, we note it is possible to build the family (NM,λ
t (i))i∈Iλ

A,t∈[0,aλT ] as follows:

introduce qk(λ, T ) = Pr[NM,λ
aλT

(i) = k] and ζλ,Tk (dt1, . . . , dtk) the law of the k jump instants of

NM,λ(i) in [0, aλT ] conditionally on {NM,λ
aλT

(i) = k}.

(i) Consider a family of i.i.d. r.v. (Z̃λ
i )i∈Iλ

A
with law (qk(λ, T ))k≥0.

(ii) For each i with Z̃λ
i > 0, pick (T̃ i,λ

1 , . . . , T̃ i,λ

Z̃λ
i

) according to ζλ,T
Z̃λ

i

(dt1, . . . , dtZ̃λ
i
) (condi-

tionally on Z̃λ
i ).

Set finally NM,λ
t (i) =

∑Z̃λ
i

k=1 11{t≥T̃ i,λ
k } for t ∈ [0, aλT ], i ∈ IλA.

Step 3. We show in this step that for each i ∈ IλA, one can couple Zλ
i (as in Step 1-(i))

and Z̃λ
i (as in Step 2-(i)) in such a way that

Pr[Zλ
i = Z̃λ

i = 0] ≥ 1− λaλT (1 + εT (λ)) and Pr[Zλ
i = Z̃λ

i = 1] ≥ λaλT (1− εT (λ)),

where limλ→0 εT (λ) = 0. Below, the function εT may change from line to line.

It is classically possible (see Lemma 22.3-(i)) to build a coupling in such a way that

Pr[Zλ
i = Z̃λ

i = 0] ≥Pr[Zλ
i = 0] ∧ Pr[Z̃λ

i = 0],

Pr[Zλ
i = Z̃λ

i = 1] ≥Pr[Zλ
i = 1] ∧ Pr[Z̃λ

i = 1].
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We now use (HM ): recalling that
∫∞
0 µ1

M ((s,∞))ds = 1,

Pr[Z̃λ
i = 0] =νλM ((aλT,∞)) = λ

∫ ∞

aλT
µ1
M ((λs,∞))ds =

∫ ∞

λaλT
µ1
M ((u,∞))du

=1−

∫ λaλT

0
µ1
M ((u,∞))du ≥ 1− λaλT.

Since Pr[Zλ
i = 0] = e−T/nλ = e−T/*1/(λaλ)+ = 1 − λaλT (1 + εT (λ)), this concludes the proof

of the first lower-bound. Next, recalling Definition 2.1 and (HM ),

Pr[Z̃λ
i = 1] =

∫ aλT

0
µλM ((aλT − s,∞))νλM (ds)

=

∫ aλT

0
µ1
M ((λ(aλT − s),∞))λµ1

M ((λs,∞))ds

=

∫ λaλT

0
µ1
M ((λaλT − u,∞))µ1

M ((u,∞))du = λaλT (1− εT (λ)),

since λaλ → 0 as λ → 0. But now Pr[Zλ
i = 1] = (T/nλ)e−T/nλ = λaλT (1− εT (λ)), because

nλ = ,1/(λaλ)- and this concludes the step.

Step 4. We now check that for each i ∈ IλA, conditionally on {Zλ
i = Z̃λ

i = 1}, we can

couple T i,λ
1 and T̃ i,λ

1 (see Steps 1-(ii) and 2-(ii)) in such a way that for

rT (λ) = Pr
[

T i,λ
1 = T̃ i,λ

1 /aλ | Zλ
i = Z̃λ

i = 1
]

,

limλ→0 rT (λ) = 1. We first recall that T i,λ
1 is uniformly distributed on [0, T ] (conditionally on

{Zλ
i = 1}). We next remark that the conditional law of T̃ i,λ

1 knowing {Z̃λ
i = 1} (which we

called ζλ,T1 ) is nothing but

ζλ,T1 (dt) =
νλM (dt)µλM ((aλT − t,∞))11{t∈[0,aλT ]}

∫ aλT
0 µλM ((aλT − s,∞))νλM (ds)

=
µ1
M ((λ(aλT − t),∞))λµ1

M ((λt,∞))11{t∈[0,aλT ]}

λaλT (1− εT (λ))
dt,

where we used the same computations as in Step 3. Consequently, the conditional law of
T̃ i,λ
1 /aλ knowing {Z̃λ

i = 1} has a density gλ,T of the form

gλ,T (t) =
1 + εT (λ)

T
µ1
M ((λaλ(T − t),∞))µ1

M ((λaλt,∞))11{t∈[0,T ]}.

Observe that limλ→0 gλ,T (t) = T−111{t∈[0,T ]}, since λaλ → 0. Hence, classical arguments (see

Lemma 22.3-(ii)) show that conditionally on {Zλ
i = Z̃λ

i = 1}, we can couple T i,λ
1 and T̃ i,λ

1 in
such a way that

Pr
[

T i,λ
1 = T̃ i,λ

1 /aλ | Zλ
i = Z̃λ

i = 1
]

≥

∫ T

0
min

(

1

T
, gλ,T (t)

)

dt,

which tends to 1 as λ→ 0 by dominated convergence.

Step 5. We finally may build the complete coupling.

(i) For each i ∈ IλA, we consider some coupled random variables (Zλ
i , Z̃

λ
i ) as in Step 3.

(ii) For i ∈ IλA such that Zλ
i = Z̃λ

i = 0, there is nothing to do.
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(iii) For i ∈ IλA such that Zλ
i = Z̃λ

i = 1, couple T i,λ
1 and T̃ i,λ

1 as in Step 4 and pick X i,λ
1

uniformly in iλ.

(iv) If i ∈ IλA does not meet one of the two above conditions (ii) and (iii), then we build

(T i,λ
1 , X i,λ

1 ), . . . , (T i,λ
Zλ

i
, X i,λ

Zλ
i
) and T̃ i,λ

1 , . . . , T̃ i,λ

Z̃λ
i

in any way (e.g., follow the rules of Step 1-(ii)

and Step 2-(ii) independently).

(v) Set πM =
∑

i∈Iλ
A

∑Zλ
i

k=1 δ(T i,λ
k ,Xi,λ

k ) and NM,λ
t (i) =

∑Z̃λ
i

k=1 11{t≥T̃ i,λ
k } for i ∈ IλA, t ∈

[0, Taλ].

Step 6. Define the event

Ω̃M
A,T (λ) =

⋂

i∈Iλ
A

(

{Zλ
i = Z̃λ

i = 0} ∪ {Zλ
i = Z̃λ

i = 1, T i,λ
1 = T̃ i,λ

1 /aλ}
)

.

Then we have Ω̃M
A,T (λ) ⊂ Ω

M
A,T (λ) (where Ω

M
A,T (λ) was defined in the statement). Indeed, on

Ω̃M
A,T (λ), for any i ∈ IλA, t ∈ [0, T ], we have ∆NM,λ

aλt (i) 2= 0 iff (Z̃λ
i = 1 and aλt = T̃ i,λ

1 ) iff

(Zλ
i = 1 and t = T i,λ

1 ) iff πM ({t}× iλ) > 0.

Finally, using Steps 3 and 4 and that |IλA| = 2Aλ + 1,

Pr[ΩM
A,T (λ)] ≥

(

Pr[Zλ
0 = Z̃λ

0 = 0] + Pr
[

Zλ
0 = Z̃λ

0 = 1, T 0,λ
1 = T̃ 0,λ

1 /aλ
])2Aλ+1

≥
(

1− λaλT (1 + εT (λ)) + λaλT (1− εT (λ))rT (λ)
)2Aλ+1

.

Recall that limλ→0 εT (λ) = 0, that limλ→0 rT (λ) = 1 and that Aλ ≤ A/(λaλ). Hence for some
(other) function εT with limit 0 at 0,

Pr[ΩM
A,T (λ)] ≥ (1− λaλT εT (λ))

2A/(λaλ)+1 .

This last quantity tends to 1 as λ→ 0, which concludes the proof. !

12. Convergence proof when β ∈ (0,∞)

We split this section into three parts. First, we handle some preliminary computations
on SR(µS)-processes. Next, we show how to couple the set of times/locations where no seed
fall (in the discrete model) with the Poisson measure πS . Then we conclude the convergence
proof. In the whole section, we assume (HM ) and (HS(β)) for some β ∈ (0,∞). We recall that
aλ and nλ are defined in (3.1) and (3.2). For A > 0, we set Aλ = ,Anλ- and IλA = [[−Aλ, Aλ]].
For i ∈ Z, we set iλ = [i/nλ, (i+ 1)/nλ).

12.1. Preliminary computations. First, we will need the following estimate.

Lemma 12.1. For any l ∈ (0,∞) fixed, µS((aλl,∞)) ∼ mSβl−β−1λ as λ→ 0.

Proof. Recall that µS((t,∞))dt = mSνS(dt). For α > 0, one may write, using the
monotonicity of x 0→ µS((x,∞)),

µS((aλl,∞))

λ
≥

1

αλaλ

∫ aλ(l+α)

aλl
µS((x,∞))dx

=
mS

αλaλ
[νS((aλl,∞))− νS((aλ(l + α),∞))]

=
mS

α

[

νS((aλl,∞))

νS((aλ,∞))
−
νS((aλ(l + α),∞))

νS((aλ,∞))

]

.
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For the last equality, we used that by definition, νS((aλ,∞)) = λaλ. Due to (HS(β)), we
deduce that for any α > 0,

lim inf
λ→0

µS((aλl,∞))

λ
≥

mS

α

[

l−β − (l + α)−β
]

≥ mSβ(l + α)
−β−1.

One gets an upper bound by the same way: for any α ∈ (0, l),

lim sup
λ→0

µS((aλl,∞))

λ
≤ lim sup

λ→0

1

αλaλ

∫ aλl

aλ(l−α)
µS((x,∞))dx ≤ mSβ(l − α)

−β−1.

We have proved that for any α ∈ (0, l),

mSβ(l + α)
−β−1 ≤ lim inf

λ→0

µS((aλl,∞))

λ
≤ lim sup

λ→0

µS((aλl,∞))

λ
≤ mSβ(l − α)

−β−1.

Making α tend to 0 allows us to conclude. !

Next, we compute the asymptotic probability that on a given site, no seed fall during
some large time interval. By large, we mean with a length of order aλ.

Lemma 12.2. Let (Tn)n∈Z be a SR(µS)-process (see Subsection 2.1). For λ > 0, t ≥ 0
and l > 0, we set

Sλ
t (l) = #{n ∈ Z : Tn ∈ [0, aλt], Tn − Tn−1 ≥ aλl},

which represents the number of delays with length greater than aλl that end in [0, aλt].
(i) For t > 0 and l > 0 fixed, as λ→ 0, Pr

[

Sλ
t (l) = 1

]

∼ tλaλβl−β−1.
(ii) For t > 0 and l > 0 fixed, lim supλ→0(λaλ)

−2 Pr
[

Sλ
t (l) ≥ 2

]

<∞.
(iii) On the event {Sλ

t (l) = 1}, we put τ := Tn and L = Tn − Tn−1, where n is the
unique index such that Tn ∈ [0, t] and Tn − Tn−1 ≥ aλl. For all s ∈ [0, t], all x ∈ (l,∞),
limλ→0 Pr[τ/aλ ≤ s, L/aλ ≥ x | Sλ

t (l) = 1] = (s/t)(x/l)−β−1 .

Proof. Let us recall that the SR(µS)-process (Tn)n∈Z is built as follows: one considers
an i.i.d. sequence (Xi)i∈Z\{0} of µS-distributed r.v., X0 a xµS(dx)/mS-distributed r.v. and
U uniformly distributed on [0, 1]. Then we set T0 = −(1−U)X0, T1 = UX0 and for all n ≥ 1,
Tn+1 = Tn +Xn and T−n = T−n+1 −X−n. We also introduce, for λ > 0, l > 0 and 0 ≤ s ≤ t

Sλ
s,t(l) = #{n ∈ Z : Tn ∈ [aλs, aλt], Tn − Tn−1 ≥ aλl}.

Step 1. First assume that l ≥ t. Then by construction, Sλ
t (l) ∈ {0, 1} and {Sλ

t (l) = 1} =
{T1 ≤ aλt, T1 − T0 ≥ aλl} = {UX0 ≤ aλt, X0 ≥ aλl}. Hence

E[Sλ
t (l)] =Pr [UX0 ≤ aλt, X0 ≥ aλl]

=

∫ ∞

aλl

xµS(dx)

mS

∫ 1

0
du11{ux≤aλt}

=

∫ ∞

aλl

xµS(dx)

mS

aλt

x
=

aλt

mS
µS((aλl,∞)).

We used here that since l ≥ t, for x ≥ aλl, there holds aλt/x ≤ 1.

Step 2. We now show that for any l > 0, any t ≥ 0,

E[Sλ
t (l)] =

aλt

mS
µS((aλl,∞)).
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Consider n ≥ 1 such that t/n ≤ l and observe that Sλ
t (l) =

∑n−1
i=0 Sλ

it/n,(i+1)t/n(l). By

stationarity, we have E[Sλ
it/n,(i+1)t/n(l)] = E[Sλ

t/n(l)] for i = 0, . . . , n− 1, which is nothing but
aλt
nmS

µS((aλl,∞)) by Step 1. The conclusion follows by linearity of expectation.

Step 3. We now check Point (ii). Let ρ1 = inf{Tn : n ∈ N, Tn − Tn−1 ≥ aλl, Tn > 0}
and ρ2 = inf{Tn : n ∈ N, Tn−Tn−1 ≥ aλl, Tn > ρ1}. Then Pr[Sλ

t (l) ≥ 2] = Pr[ρ2 ≤ aλt]. We
also observe that Pr[ρ1 ≤ aλt] = Pr[Sλ

t (l) ≥ 1] ≤ E[Sλ
t (l)] = aλtµS((aλl,∞))/mS. Denote by

ζλ,l the law of ρ1/aλ. Then a renewal argument shows that

Pr[Sλ
t (l) ≥ 2] =

∫ t

0
ζλ,l(dr)f(λ, l, t − r),

where

f(λ, l, s) = Pr[∃ n ≥ 1;Xn ≥ aλl;X1 + · · ·+Xn ≤ aλs].

We can rewrite this as (recall that T1 = UX0 ∼ νS)

f(λ, l, s) =Pr[∃ n ≥ 1;Xn ≥ aλl;UX0 +X1 + · · ·+Xn ≤ aλs+ UX0]

≤Pr[∃ n ≥ 0;Xn ≥ aλl;UX0 +X1 + · · ·+Xn ≤ aλ(s+ 1)] + Pr[UX0 ≥ aλ]

=Pr[Sλ
s+1(l) ≥ 1] + νS((aλ,∞))

=
aλ(s+ 1)

mS
µS((aλl,∞)) + λaλ

thanks to Step 2. As a conclusion,

Pr[Sλ
t (l) ≥ 2] ≤

(

aλ(t+ 1)

mS
µS((aλl,∞)) + λaλ

)
∫ t

0
ζλ,l(dr)

=

(

aλ(t+ 1)

mS
µS((aλl,∞)) + λaλ

)

Pr[ρ1 ≤ aλT ]

≤

(

aλ(t+ 1)

mS
µS((aλl,∞)) + λaλ

)

aλt

mS
µS((aλl,∞)).

Due to Lemma 12.1, this last term is equivalent to (λaλ)2[(t + 1)βl−β−1 + 1]tβl−β−1, from
which Point (ii) follows.

Step 4. Steps 2 and 3 imply Point (i). Indeed, we clearly have Pr[Sλ
t (l) = 1] ≤ E[Sλ

t (l)] =
aλt
mS

µS((aλl,∞)) ∼ tλaλβl−β−1 by Lemma 12.1. Next, using that Sλ
t (l) ≤ 1+ t/l by construc-

tion,

Pr[Sλ
t (l) = 1] =E[Sλ

t (l)11{Sλ
t (l)=1}] = E[Sλ

t (l)]− E[Sλ
t (l)11{Sλ

t (l)≥2}]

≥
aλt

mS
µS((aλl,∞))− (1 + t/l) Pr[Sλ

t (l) ≥ 2].

Point (ii) allows us to conclude easily.

Step 5. It remains to check (iii). We thus fix 0 ≤ s ≤ t and 0 < l < x. Then as λ→ 0,

Pr
[

τ/aλ < s, L/aλ > x | Sλ
t (l) = 1

]

=
Pr

[

Sλ
s (x) = 1

]

Pr
[

Sλ
t (l) = 1

] ∼
sλaλβx−β−1

tλaλβl−β−1
= (s/t)(x/l)−β−1

due to Point (i). !
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12.2. Coupling of seeds. We aim to couple the Poisson measure πS(dt, dx, dl) used
to define the LFF (β)-process with times/places where seeds do not fall in the FF (µS , µλM )-
process. We would like that roughly, πS({t} × iλ × {l}) = 1 if and only if no seed falls on
i during [aλ(t − l), aλt] (and if this is the maximal interval, that is seeds fall in i at times
aλ(t − l) and aλt). We have to consider the finite Poisson measure πS restricted to the set
{l > δ}, for some arbitrarily small δ > 0.

Proposition 12.3. Let A > 0, T > 0, α > 0 and δ > 0 be fixed. For any λ ∈ (0, 1], it
is possible to find a coupling between a Poisson measure πS(dt, dx, dl) on [0,∞)×R×[0,∞) with
intensity measure β(β + 1)l−β−2dtdxdl and an i.i.d. family of SR(µS)-processes (T̃ i

n)i∈Z,n∈Z

(recall Subsection 2.1) in such a way that for

Sλ
T (δ, i) = πS([0, T ]× iλ × [δ,∞)),

S̃λ
T (δ, i) = #

{

n ≥ 1 : T̃ i
n ∈ [0, aλT ], T̃

i
n − T̃ i

n−1 ≥ aλδ
}

,

setting

ΩS
A,T,δ,α(λ) :=

⋂

i∈Iλ
A

({

Sλ
T (δ, i) = S̃λ

T (δ, i) = 0
}

∪
{

Sλ
T (δ, i) = S̃λ

T (δ, i) = 1,

∣

∣

∣

∣

τλT (δ, i)−
τ̃λT (δ, i)

aλ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Lλ
T (δ, i)−

L̃λ
T (δ, i)

aλ

∣

∣

∣

∣

∣

< α
})

,

there holds

lim
λ→0

Pr(ΩS
A,T,δ,α(λ)) = 1.

On the event {Sλ
T (δ, i) = S̃λ

T (δ, i) = 1}, we have denoted by (τλT (δ, i), L
λ
T (δ, i)) the unique

element (t, l) ∈ [0, T ]× [δ,∞) such that πS({t}× iλ × {l}) = 1 and we have put τ̃λT (δ, i) = T̃ i
n

and L̃λ
T (δ, i) = T̃ i

n− T̃ i
n−1, where n ≥ 1 is the unique element of N such that T̃ i

n ∈ [0, aλT ] and

T̃ i
n − T̃ i

n−1 ≥ aλδ.

Proof. We fix T > 0, A > 0, δ > 0 and α > 0. We divide the proof into several steps.
Observe that Bλ := ∪i∈Iλ

A
iλ = [−Aλ/nλ, (Aλ + 1)/nλ) (which is approximately [−A,A]). It

of course suffices to build πS restricted to [0, T ] × Bλ × [δ,∞) (we abusively still denote by
πS this restriction) and the family (T̃ i

n) for i ∈ IλA and n ≥ 0 (with our notation, we have
T̃ i
0 ≤ 0 ≤ T̃ i

1).

Step 1. A possible way to build πS (restricted to [0, T ]× Bλ × [δ,∞)) is the following.

(i) Consider a family of i.i.d. r.v. (Sλ
T (δ, i))i∈Iλ

A
following a Poisson distribution with

parameter T |iλ|
∫∞
δ β(β + 1)l−β−2dl = βδ−β−1T/nλ.

(ii) For each i ∈ IλA with Sλ
T (δ, i) > 0, pick some i.i.d. r.v. {(T i,λ

k , X i,λ
k , Li,λ

k )}k=1,...,Sλ
T (δ,i)

with density 11{t∈[0,T ],x∈iλ,l>δ}(β + 1)nλδβ+1l−β−2/T .

Put πS =
∑

i∈Iλ
A

∑Sλ
T (δ,i)

k=1 δ(T i,λ
k ,Xi,λ

k ,Li,λ
k ).

Step 2. Next, we note it is possible to build the family (T̃ i
n)i∈Iλ

A,n≥0 as follows: denote

by qk(λ) = Pr[S̃λ
T (δ, i) = k] and by Λλ

k the law of (T̃ i
n)n≥0 conditionally on {S̃λ

T (δ, i) = k}.

(i) Consider a family of i.i.d. r.v. (S̃λ
T (δ, i))i∈Iλ

A
with law (qk(λ))k≥0.
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(ii) For each i ∈ IλA, pick (T̃ i
n)n≥0 according to Λλ

S̃λ
T (δ,i)

(conditionally on S̃λ
T (δ, i)).

Step 3. For each i, it is possible to couple Sλ
T (δ, i) and S̃λ

T (δ, i), distributed as in Step
1-(i) and Step 2-(i), in such a way that

Pr[Sλ
T (δ, i) = S̃λ

T (δ, i) = 0] ≥1− λaλβδ
−β−1T (1 + εT,δ(λ)),

Pr[Sλ
T (δ, i) = S̃λ

T (δ, i) = 1] ≥λaλβδ
−β−1T (1− εT,δ(λ)),

where limλ→0 εT,δ(λ) = 0. It is classically possible (see Lemma 22.3-(i)) to build a coupling
in such a way that

Pr[Sλ
T (δ, i) = S̃λ

T (δ, i) = 0] ≥ Pr(Sλ
T (δ, i) = 0) ∧ Pr(S̃λ

T (δ, i) = 0),

Pr[Sλ
T (δ, i) = S̃λ

T (δ, i) = 1] ≥ Pr(Sλ
T (δ, i) = 1) ∧ Pr(S̃λ

T (δ, i) = 1).

First, we infer from Lemma 12.2 that Pr(S̃λ
T (δ, i) = 0) ≥ 1 − λaλβδ−β−1T (1 + εT,δ(λ)) and

Pr(S̃λ
T (δ, i) = 1) ≥ λaλβδ−β−1T (1−εT,δ(λ)). Next, since Sλ

T (δ, i) follows a Poisson distribution

with parameter βδ−β−1T/nλ ∼ λaλβδ−β−1T , we have Pr(Sλ
T (δ, i) = 0) = e−βδ−β−1T/nλ ≥

1−λaλβδ−β−1T (1+εT,δ(λ)) and there holds Pr(Sλ
T (δ, i) = 1) = [βδ−β−1T/nλ]e−βδ−β−1T/nλ ≥

λaλβδ−β−1T (1− εT,δ(λ)). This concludes the step.

Step 4. We now check that for each i ∈ IλA, conditionally on {Sλ
T (δ, i) = S̃λ

T (δ, i) = 1},
we can couple (T i,λ

1 , Li,λ
1 , X i,λ,1) and (T̃ i

n)n≥0 in such a way that for (see the statement)

rT,δ,α(λ) = Pr

[

∣

∣

∣

∣

τλT (δ, i)−
τ̃λT (δ, i)

aλ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Lλ
T (δ, i)−

L̃λ
T (δ, i)

aλ

∣

∣

∣

∣

∣

< α

∣

∣

∣

∣

∣

Zλ
i = Z̃λ

i = 1

]

,

limλ→0 rT,δ,α(λ) = 1.

To this end, consider (T̃ i
n)n≥0 with law Λλ

1 (recall Step 2). Denote by pλδ,T (dt, dl) the law

of (τ̃λT (δ, i)/aλ, L̃
λ
T (δ, i)/aλ) (under Λ

λ
1 ). We know from Lemma 12.2-(iii) that pλδ,T (dt, dl) goes

weakly, as λ → 0, to pδ,T (dt, dl) := T−1(β + 1)δβ+1l−β−211{t∈[0,T ],l≥δ}dtdl. Indeed, observe
that pδ,T ([0, s]× [x,∞)) = (s/T )(x/δ)−β−1 for s ∈ [0, T ] and x > δ.

But pδ,T (dt, dl) is nothing but the law of (τλT (δ, i), L
λ
T (δ, i)) = (T i,λ

1 , Li,λ
1 ) conditionally on

{Sλ
T (δ, i) = 1} (recall Step 1-(ii)). We easily conclude: first, we couple (τ̃λT (δ, i)/aλ, L̃

λ
T (δ, i)/aλ)

and (τλT (δ, i), L
λ
T (δ, i)) in such a way that they are close to each other (with a distance smaller

than α) with high probability (tending to 1 when λ → 0), using Lemma 22.3-(iii). Then we
choose X i,λ

1 at random, uniformly in iλ, independently of everything else and finally, we pick
(T̃ i

n)n≥0 conditionally on {S̃λ
T (δ, i) = 1} and (τ̃λT (δ, i), L̃

λ
T (δ, i)).

Step 5. We finally may build the complete coupling.

(i) For each i ∈ IλA, consider some coupled r.v. (Sλ
T (δ, i), S̃

λ
T (δ, i)) as in Step 3.

(ii) For i ∈ IλA such that Sλ
T (δ, i) = S̃λ

T (δ, i) = 1, couple (T i,λ
1 , Li,λ

1 , X i,λ
1 ) and (T̃ i

n)n≥0 as
in Step 4.

(iii) For i ∈ IλA not meeting the above condition (ii), follow the rules of Step 1-(ii) to build

(T i,λ
k , X i,λ

k , Li,λ
k )1≤k≤Sλ

T (δ,i) and the rules of Step 2-(ii) to build {T̃ i
n}n≥0 (e.g. independently).

This defines {T̃ i
n}n≥0,i∈Iλ

A
and πS :=

∑

i∈Iλ
A

∑Sλ
T (δ,i)

k=1 δ(T i,λ
k ,Xi,λ

k ,Li,λ
k ).
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Step 6. With this coupling, using Steps 3 and 4 and that |IλA| = 2Aλ + 1,

Pr[ΩS
A,T,δ,α] ≥

(

Pr
[

Sλ
T (δ, i) = S̃λ

T (δ, i) = 0
]

+ Pr
[

Sλ
T (δ, i) = S̃λ

T (δ, i) = 1,

|τλT (δ, i)− τ̃
λ
T (δ, i)/aλ|+ Lλ

T (δ, i)− L̃λ
T (δ, i)/aλ| < α

])2Aλ+1

≥
(

1− λaλβδ
β−1T (1 + εT,δ(λ)) + λaλβδ

β−1T (1− εT,δ(λ))rT,δ,α(λ)
)2Aλ+1

.

Recall that limλ→0 εT,δ(λ) = 0, that limλ→0 rT,δ,α(λ) = 1 and that Aλ ≤ A/(λaλ). Hence for
some function εT,δ,α with limit 0 at 0,

Pr[ΩS
A,T,δ,α] ≥

(

1− λaλβδ
β−1T εT,δ,α(λ)

)2A/(λaλ)+1
.

This last quantity tends to 1 as λ→ 0, which concludes the proof. !

12.3. Convergence. We are now able to conclude. Intuitively, the situation is clear:
using Proposition 11.1, we couple the time/positions at which matches fall in the LFF (β)-
process with those of the FF (µS , µλM )-process; and using Proposition 12.3, we couple the
time/positions at which no seed fall in the LFF (β)-process with time/positions at which no
seed fall during a time interval of length of order aλ in the FF (µS , µλM )-process. Then we
only have to show carefully that this is sufficient to couple the FF (µS , µλM )-process and the
LFF (β)-process in such a way that they remain close to each other. But there are many
technical problems: our couplings concern only finite boxes [0, T ]× [−A,A], do not allow to
treat small time intervals with no seed falling, etc. We thus have to localize the processes in
space and time and to work on an event (with high probability) on which everything works
as desired.

Proof of Theorem 6.3. We fix T > 0, x1 < · · · < xp and t1, . . . , tp ∈ [0, T ]. We introduce
B > 0 such that −B < x1 < xp < B. We fix ε > 0 and a > 0. Our aim is to check that for
all λ > 0 small enough, there exists a coupling between a FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z

and a LFF (β)-process (Yt(x))t≥0,x∈R such that, recalling (3.3) and Proposition 6.2,

Pr

[

p
∑

k=1

δT (D
λ(xk), D(xk)) +

p
∑

k=1

δ(Dλ
tk(xk), Dtk(xk)) ≥ a

]

≤ ε.(12.1)

This will of course conclude the proof.

Step 1. Consider two independent Poisson measures πS(dt, dx, dl) with intensity measure
β(β + 1)l−β−2dtdxdl and πM (dt, dx) with intensity measure dtdx. Set, for A > B,

ΩS,1
A,T :={πS({(t, x, l) : x ∈ [B,A], t > T + 1, l > t+ 1}) > 0}

∩ {πS({(t, x, l) : x ∈ [−A,−B], t > T + 1, l > t+ 1}) > 0}.

A simple computation shows that

Pr[ΩS,1
A,T ] ≥ 1− 2 exp

(

−

∫ A

B
dx

∫ ∞

T+1
dt

∫ ∞

t+1
β(β + 1)l−β−2

)

,

so that we can choose A large enough in such a way that Pr[ΩS,1
A,T ] ≥ 1− ε/6. This will ensure

us that there are χg ∈ [−A,−B] and χd ∈ [A,B] with Yt(χg) = Yt(χd) = 0 for all t ∈ [0, T +1]
(recall Figure 4). This fixes the value of A for the whole proof.
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Next we consider T0 > T + 1 large enough, so that for

ΩS,2
A,T,T0

= {πS({(t, x, l) : t > T0, t− l < T + 1, x ∈ [−A,A]}) = 0} ,

Pr[ΩS,2
A,T,T0

] ≥ 1− ε/6. This is possible, because

Pr[ΩS,2
A,T,T0

] = exp

(

−

∫ A

−A
dx

∫ ∞

T0

dt

∫ ∞

t−(T+1)
β(β + 1)l−β−2dl

)

,

which clearly tends to 1 as T0 increases to infinity. This will ensure us that all the dotted
vertical segments in [−A,A] that intersect [0, T + 1] end before T0 (see Figure 4). This fixes
the value of T0 for the whole proof.

Next we call XM = {x ∈ [−A,A] : πM ([0, T ] × {x}) > 0} and TM = {t ∈ [0, T ] :
πM ({t} × [−A,A]) > 0} ∪ {0}. Classical results about Poisson measures allow us to choose
KM > 0 (large) and cM > 0 (small) in such a way that for

ΩM,1
KM ,cM

=
{

|TM | ≤ KM , min
t,s∈TM ,s!=t

|t− s| > cM , min
t∈TM ,k=1,...,p

|t− tk| > cM ,

min
x∈XM ,k=1,...,p

|x− xk| > cM
}

,

Pr
[

ΩM,1
KM ,cM

]

≥ 1− ε/6.

We can now fix δ > 0 for the whole proof, in such a way that

δ < cM/4 and δ < a/(8ApKM).

We use this δ to cutoff the Poisson measure πS (in order that it has only a finite number of
marks) without affecting the values of the LFF (β)-process in the zone under study.

Next, we consider the finite Poisson measure πA,δ,T0

S defined as the restriction of πS to the
set [0, T0]× [−A,A]× [δ,∞). We define X δ

S = {x ∈ [−A,A] : πS([0, T0]× {x}× [δ,∞)) > 0}
and

T δ
S =







⋃

(t,x,l)∈ supp π
A,δ,T0
S

{t, t− l}






∩ [0, T ].

Then for KS > 0 large enough and cS > 0 small enough, the event

ΩS,3
KS,cS,δ

=
{

|T δ
S | ≤ KS , min

t∈TM ,s∈T δ
S

|t− s| > cS , min
t∈T δ

S ,k=1,...,p
|t− tk| > cS ,

min
x,y∈X δ

S,x !=y
|x− y| > cS , min

x∈X δ
S,y∈XM

|x− y| > cS , min
x∈X δ

S,k=1,...,p
|x− xk| > cS

}

.

satisfies Pr[ΩS,3
KS ,cS,δ

] ≥ 1− ε/6.

Finally, we fix α > 0 in such a way that

α < cS/4, α < cM/4, α < 1/2 and α < a/(8Ap(2KS +KM )).

Step 2. Using Proposition 11.1, we know that for all λ > 0 small enough, it is possible
to couple a family of i.i.d. SR(µλM )-processes (NM,λ

t (i))t≥0,i∈Z with πM in such a way that

ΩM
A,T (λ) :=

{

∀t ∈ [0, T ], ∀i ∈ IλA, ∆NM,λ
aλt (i) 2= 0 iff πM ({t}× iλ) 2= 0

}
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satisfies Pr[ΩM
A,T (λ)] ≥ 1−ε/6. We infer from Proposition 12.3 that for all λ > 0 small enough,

it is possible to couple an i.i.d. family of SR(µS)-processes (T̃ i
n)i∈Z,n≥0 with πS in such a way

that for

Sλ
T0
(δ, i) = πS([0, T0]× {iλ}× [δ,∞)),

S̃λ
T0
(δ, i) = #

{

n ≥ 1 : T̃ i
n ∈ [0, aλT0], T̃

i
n − T̃ i

n−1 ≥ aλδ
}

,

setting

ΩS
A,T0,δ,α(λ) :=

⋂

i∈Iλ
A

({

Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) = 0

}

∪
{

Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) = 1,

∣

∣

∣

∣

τλ(δ, i)−
τ̃λ(δ, i)

aλ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Lλ(δ, i)−
L̃λ(δ, i)

aλ

∣

∣

∣

∣

∣

< α
})

,

Pr(ΩS
A,T0,δ,α

(λ)) ≥ 1 − ε/6. On the event {Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) = 1}, we have denoted by

(τλ(δ, i), Lλ(δ, i)) the unique element (t, l) ∈ [0, T0]× [δ,∞) such that πS({t} × iλ × {l}) = 1
and we have put τ̃λ(δ, i) = T̃ i

n and L̃λ(δ, i) = T̃ i
n − T̃ i

n−1, where n ≥ 1 is the unique element

of N such that T̃ i
n ∈ [0, aλT0] and T̃ i

n − T̃ i
n−1 ≥ aλδ. We put NS

t (i) =
∑

n≥1 11{T̃ i
n≥t} for all

i ∈ Z, all t ≥ 0, which is a family of i.i.d. SR(µS)-processes in the sense of Definition 2.1, see
Subsection 2.1.

Step 3. We work with the FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z built from (NS
t (i))t≥0,i∈Z

and (NM,λ
t (i))t≥0,i∈Z and the LFF (β)-process (Yt(x))t≥0,x∈R built from πS and πM , all these

processes being coupled as in Step 2. We consider the associated clusters (Dλ
t (x))t≥0,x∈R and

(Dt(x))t≥0,x∈R, see (3.3) and Proposition 6.2. We will work on the event

Ωλ = ΩS,1
A,T ∩ Ω

S,2
A,T,T0

∩ ΩM,1
KM ,cM

∩ΩS,3
KS ,cS,δ

∩ ΩM
A,T (λ) ∩ Ω

S
A,T0,δ,α(λ).

Thanks to the previous steps, we know that Pr[Ωλ] ≥ 1 − ε for all λ > 0 small enough. We
introduce

S = (∪t∈TM [t, t+ δ + α]) ∪ (∪t∈T δ
S
[t− α, t+ α]).

We will prove in the next steps that for λ > 0 small enough, on Ωλ, for all k = 1, . . . , p, for
all t ∈ [0, T ],

δ(Dλ
t (xk), Dt(xk)) ≤ 4/nλ + 2A11{t∈S},(12.2)

which will imply that
δT (D

λ(xk), D(xk)) ≤ 4T/nλ + 2A|S|.

This will conclude the proof. Indeed, on Ωλ, we know that t1, . . . , tp do not belong to S
(thanks to ΩS,3

KS ,cS,δ
and ΩM,1

KM ,cM
and since cS > α and cM > δ + α) and that the Lebesgue

measure of S is smaller than KMδ + (2KS +KM )α. Thus on Ωλ, since δ < a/(8ApKM) and
α < a/(8Ap(2KS +KM )),

p
∑

k=1

δT (D
λ(xk), D(xk)) +

p
∑

k=1

δ(Dλ
tk(xk), Dtk(xk))

≤p[2A(KMδ + (2KS +KM )α) + 4T/nλ + 4/nλ] ≤ a/2 + (4T + 4)p/nλ,

which is smaller than a for all λ > 0 small enough. This implies (12.1) for all λ > 0 small
enough.
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Step 4. Here we localize the processes, on the event Ωλ. Due to ΩS,1
A,T , we know that

πS has some marks (τg,χg, Lg) and (τd,χd, Ld) such that −A < χg < −B, B < χd < A,
τg > T + 1, τd > T + 1, Lg > τg + 1 and Ld > τd + 1. This implies, by definition of the
LFF (β)-process, that Yt(χg) = Yt(χd) = 0 for all t ∈ [0, T +1]. Consequently, for all t ∈ [0, T ]
and all x ∈ [χg,χd] ⊃ [−B,B], we have Dt(x) ⊂ [χg,χd].

Set now gλ = ,nλχg- and dλ = ,nλχd-. These are those sites of IλA ⊂ Z such that
χg ∈ (gλ)λ and χd ∈ (dλ)λ. We claim that on Ωλ, for all t ∈ [0, aλT ], ηλt (gλ) = η

λ
t (dλ) = 0.

Consequently on Ωλ, we clearly have C(ηλaλt, i) ⊂ [[gλ + 1, dλ − 1]] for all t ∈ [0, T ] and all
i ∈ [[gλ + 1, dλ − 1]].

Indeed, consider e.g. the case of dλ. Due to ΩS
A,T0,δ,α

(λ) and since Sλ
T0
(δ, dλ) > 0 (because

πS has the mark (τd,χd, Ld) that falls in [0, T0]× (dλ)λ× [δ,∞)), we deduce that Sλ
T0
(δ, dλ) =

S̃λ
T0
(δ, dλ) = 1 and that |τ̃λ(δ, dλ)/aλ− τd|+ |L̃λ(δ, dλ)/aλ−Ld| < α < 1. But no seed falls on

dλ, by definition, during (τ̃λ(δ, dλ)− L̃λ(δ, dλ), τ̃λ(δ, dλ)). This last interval contains [0, aλT ]:
since α < 1/2, τ̃λ(δ, dλ) ≥ aλ(τd − α) ≥ aλ(T + 1 − α) > aλT and τ̃λ(δ, dλ) − L̃λ(δ, dλ) ≤
aλ(τd − Ld + 2α) ≤ aλ(−1 + 2α) < 0. This proves that ηλt (dλ) = 0 for all t ∈ [0, aλT ].

Using furthermore ΩS,2
A,T,T0

(0), we deduce that on Ωλ, (Yt(x), Dt(x))t∈[0,T ],x∈[χg,χd] is com-
pletely determined by the values of πS and πM restricted to the boxes [0, T0]× [χg,χd]×(0,∞)
and [0, T ] × [χg,χd]. By the same way, (ηλt (i))t∈[0,aλT ],i∈[[gλ,dλ]] is completely determined by

(NS
t (i), N

M,λ
t (i))t∈[0,aλT ],i∈[[gλ,dλ]]. And we recall that [−B,B] ⊂ [χg,χd] ⊂ [−A,A].

Step 5. In this whole step, we work on Ωλ. We denote by (ρi,αi)i=1,...,n the marks of
πM in [0, T ] × [χg,χd], ordered chronologically (0 = ρ0 < ρ1 < · · · < ρn < T ). For each
k, we recall that in the FF (µS , µλM )-process, there is match falling at time aλρk on the site
,nλαk- (recall ΩM

A,T (λ) and that x ∈ iλ iff i = ,nλx-). Furthermore, these are the only fires
in [0, aλT ]× [[gλ, dλ]]. For k = 0, . . . , n, let us consider the properties

(Hk) : ∀ i ∈ [[gλ, dλ]], ηλaλρk(i) = inf
x∈iλ

Yρk(x);

(H∗
k ) : ∀ i ∈ [[gλ, dλ]], ∀ t ∈ [ρk, ρk+1) \ S, ηλaλt(i) = inf

x∈iλ
Yt(x).

We observe that (H0) holds: for any i ∈ Z, ηλ0 (i) = 0 and inf x∈iλ Y0(x) = 0 because the
set {x ∈ R : Y0(x) = 0} is a.s. dense in R. Indeed, recall that Y0(x) = 0 as soon as
πS({(t, x, l) : l > t}) > 0 and that

∫∞
0 dt

∫∞
t β(β + 1)l−β−2dl =∞.

We are going to prove that for k ∈ {0, . . . , n−1}, (Hk) implies (H∗
k ) and (Hk+1). Assume

thus that (Hk) holds for some k ∈ {0, . . . , n− 1}. We first prove that (H∗
k ) holds.

We recall that for all i ∈ [[gλ, dλ]], Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) is either 0 or 1. On {Sλ

T0
(δ, i) =

S̃λ
T0
(δ, i) = 1}, we have |τλ(δ, i)− τ̃λ(δ, i)/aλ| < α and |Lλ(δ, i)− L̃λ(δ, i)/aλ| < α. Recalling

furthermore ΩM,1
KM ,cM

and ΩS,3
KS ,cS,δ

, using that α < cM/4, we deduce that:

• either τλ(δ, i) and τ̃λ(δ, i)/aλ both belong to the same interval (ρq(i), ρq(i)+1) for some
q(i) ∈ {0, . . . , n− 1} or are both greater than ρn (then we say that q(i) = n);

• either τλ(δ, i) − Lλ(δ, i) and (τ̃λ(δ, i) − L̃λ(δ, i))/aλ both belong to the same interval
(ρq′(i), ρq′(i)+1) for some q′(i) ∈ {0, . . . , n− 1} or are both greater than ρn (then we adopt the
convention that q′(i) = n), or are both smaller than 0 (then we say that q′(i) = −1).
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We next observe that since δ < cM , the values of (Yt(x), Dt(x))t∈[0,T ]\∪s∈TM [s,s+δ],x∈[χg,χd]

depends on πS only through its restriction to [0, T0]× [χg,χd]× [δ,∞). Furthermore, for any
t ∈ [0, T ] \ ∪s∈TM [s, s+ δ] and any x ∈ [χg,χd], Dt(x) has its extremities in X δ

S . Have a look
at Figure 4 and use the fact that all the dotted segments with length smaller than δ cannot
concern two fires. See also Remark 6.1-(ii).

We now distinguish several situations to prove (H∗
k ). We use, in all the cases below, that

there are no fires in the time interval (ρk, ρk+1) in the LFF (β)-process in the box [χg,χd] and
no fire during (aλρk, aλρk+1) for the FF (µS , µλM )-process in the box [[gλ, dλ]], recall ΩM

A,T (λ).
Let i ∈ [[gλ, dλ]].

Case (a): ηλaλρk(i) = 1. Then by (Hk), infx∈iλ Yρk (x) = 1. An obvious monotonicity
argument shows that for all t ∈ (ρk, ρk+1), ηλaλt(i) = infx∈iλ Yt(x) = 1.

Case (b): ηλaλρk(i) = 0 and Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) = 0. Then infx∈iλ Yt(x) = 1 for all

t ∈ [ρk + δ, ρk+1), because in iλ, there is no dotted segment with length greater than δ that
intersect [0, T ] (see Figure 4). Next, S̃λ

T0
(δ, i) = 0 means that all the delays we wait for a

seed (on the site i during [0, aλT0]) are smaller than aλδ. Consequently, ηλaλt(i) = 1 for all
t ∈ [ρk + δ, ρk+1). Hence ηλaλt(i) = infx∈iλ Yt(x) = 1 for all t ∈ [ρk + δ, ρk+1) ⊃ (ρk, ρk+1) \ S.

Case (c): ηλaλρk(i) = 0 and Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) = 1 and q(i) < k. Then infx∈iλ Yt(x) = 1

for all t ∈ [ρk + δ, ρk+1), because the only dotted segment in iλ with length greater than δ
that intersects [0, T ] has ended before ρk (because q(i) < k). Next, the only delay (between
two seeds on i during [0, aλT ]) greater than aλδ is ended before aλρk (because q(i) < k),
so that ηλaλt(i) = 1 for all t ∈ [ρk + δ, ρk+1). Hence ηλaλt(i) = infx∈iλ Yt(x) = 1 for all
t ∈ [ρk + δ, ρk+1) ⊃ (ρk, ρk+1) \ S.

Case (d): ηλaλρk(i) = 0, Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) = 1 and q′(i) ≥ k. Then infx∈iλ Yt(x) = 1

for all t ∈ [ρk+δ, ρk+1). Indeed, the only dotted segment in iλ with length greater than δ that
intersects [0, T ] starts (strictly) after ρk (because q′(i) ≥ k). Next, the only delay (between two
seeds on i during [0, aλT ]) greater than aλδ will start strictly after aλρk (because q′(i) ≥ k),
so that ηλaλt(i) = 1 for all t ∈ [ρk + δ, ρk+1). Hence ηλaλt(i) = infx∈iλ Yt(x) = 1 for all
t ∈ [ρk + δ, ρk+1) ⊃ (ρk, ρk+1) \ S.

Case (e): ηλaλρk(i) = 0 and Sλ
T0
(δ, i) = S̃λ

T0
(δ, i) = 1 and q′(i) < k ≤ q(i). Then ηλaλt(i) =

0 for all t ∈ [ρk, (τ̃λ(δ, i)/aλ) ∧ ρk+1) and ηλaλt(i) = 1 for all t ∈ [(τ̃λ(δ, i)/aλ) ∧ ρk+1, ρk+1)

(because no seed fall on i during [τ̃λ(δ, i) − L̃λ(δ, i), τ̃λ(δ, i)) 7 ρk and a seed falls on i at
time τ̃λ(δ, i)). By (Hk), we also know that infx∈iλ Yρk(x) = 0. Calling (τλ(δ, i), x0, Lλ(δ, i))
the only mark of πS that falls in [0, T0]× iλ × [δ,∞), we claim that necessarily, Yρk(x0) = 0.
Indeed, all the other dotted segments in iλ that intersect [0, T ] have a length smaller than
δ < cM ≤ ρk − ρk−1. Thus if infx∈iλ Yρk−(x) = 0, necessarily, Yρk−(x0) = 0 and thus
Yρk(x0) = 0. If now infx∈iλ Yρk−(x) = 1, then iλ is connected at time time ρk−, whence the
fire at time ρk burns completely iλ (because infx∈iλ Yρk(x) = 0 by assumption), so that in
particular, Yρk (x0) = 0. Then we have to separate two situations.

• If τλ(δ, i) < ρk + δ, then we easily deduce that infx∈iλ Yt(x) = 1 for t ∈ [ρk + δ, ρk+1).
Recalling that ηλaλt(i) = 1 for all t ∈ [(τ̃λ(δ, i)/aλ) ∧ ρk+1, ρk+1) and that |τ̃λ(δ, i)/aλ −
τλ(δ, i)| < α, we easily conclude that ηλaλt(i) = 1 for t ∈ [ρk + α + δ, ρk+1). Thus ηλaλt(i) =
infx∈iλ Yt(x) for t ∈ [ρk + δ + α, ρk+1) ⊃ [ρk, ρk+1) \ S.
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• If now τλ(δ, i) ≥ ρk + δ, then we have, by construction, infx∈iλ Yt(x) = 0 for t ∈
[ρk, τλ(δ, i)∧ρk+1) and infx∈iλ Yt(x) = 1 for t ∈ [τλ(δ, i)∧ρk+1, ρk+1). Recalling the values of
ηλaλt(i) and that |τ̃λ(δ, i)/aλ − τλ(δ, i)| < α, one easily concludes that ηλaλt(i) = infx∈iλ Yt(x)
for t ∈ [ρk, ρk+1) \ S (because τλ(δ, i) ∈ T δ

S whence [τλ(δ, i)− α, τλ(δ, i) + α] ⊂ S).

We have proved (H∗
k ) and this implies that

∀ i ∈ [[gλ, dλ]], ηλaλρk+1−(i) = inf
x∈iλ

Yρk+1−(x).

It remains to prove (Hk+1).

Consider the ignited cluster [a, b] = Dρk+1−(αk+1) in the LFF (β)-process. Then the
ignited cluster in the FF (µS , µλM )-process at time aλρk+1 (due to a match falling on the
site ,nλαk+1-) is nothing but Iλk+1 := {i ∈ [[gλ, dλ]] : iλ ⊂ Dρk+1−(αk+1)}, at least if λ
is small enough (such that 1/nλ < cS). Indeed, we have ηλaλρk+1−(i) = infx∈iλ Yρk+1−(x) =

1 for all i such that iλ ⊂ Dρk+1−(αk+1) and (on the two boundary sites) ηλaλρk+1−(i) =
infx∈iλ Yρk+1−(x) = 0 for i such that iλ 2⊂ Dρk+1−(αk+1) with iλ∩Dρk+1−(αk+1) 2= ∅. And for
λ > 0 small enough (such that 1/nλ < cS), ,nλαk+1- ∈ Iλk+1 (because [a+ 1/nλ, b− 1/nλ] ⊂
Iλk+1 by the previous study, because Dρk+1−(αk+1) = [a, b] has its extremities a, b in X δ

S ,
because αk+1 ∈ XM and because the distance between X δ

S and XM is greater than cS , recall

ΩS,3
KS ,cS,δ

, so that actually, αk+1 ∈ [a+ cS , b− cS ]).

Then on the one hand, for all i ∈ [[gλ, dλ]], we have infx∈iλ Yρk+1
(x) = infx∈iλ Yρk+1−(x)

if iλ ∩ Dρk+1−(αk+1) = ∅ and infx∈iλ Yρk+1
(x) = 0 if iλ ∩ Dρk+1−(αk+1) 2= ∅: the first case

is obvious and the second one follows from the fact that a.s., πS({(t, x, l) : t ≥ ρk+1, x ∈
iλ ∩ Dρk+1−(αk+1), t − l < ρk+1}) = ∞ (but this concerns marks (t, x, l) with a very small
length l > 0).

On the other hand, for all i ∈ [[gλ, dλ]], we have ηλρk+1
(i) = ηλρk+1−(i) if i /∈ Iλk+1 and

ηλρk+1
(i) = 0 if i ∈ Iλk+1.

As a conclusion, for all i ∈ [[gλ, dλ]],

• if iλ ⊂ Dρk+1−(αk+1), i.e. if i ∈ Iλk+1, then we have seen that ηλaλρk+1
(i) = 0 =

infx∈iλ Yρk+1
(x);

• if iλ ∩ Dρk+1−(αk+1) = ∅ (hence i /∈ Iλk+1), then we have seen that ηλaλρk+1
(i) =

ηλaλρk+1−(i) = infx∈iλ Yρk+1−(x) = infx∈iλ Yρk+1
(x);

• if i /∈ Iλk+1 but iλ ∩Dρk+1−(αk+1) 2= ∅, then we have seen that infx∈iλ Yρk+1
(x) = 0 and

ηλaλρk+1
(i) = 0 because ηλaλρk+1−(i) = 0 (since then i lies at the boundary of Iλk+1).

Hence (Hk+1) holds.

Step 6. We finally can prove (12.2) on Ωλ and this will conclude the proof. First, we
know from Step 4 that for all t ∈ [0, T ], all k = 1, . . . , p, Dt(xk) ⊂ [χg,χd] ⊂ [−A,A] and that
C(ηλaλt, ,aλxk-) ⊂ [[gλ+1, dλ−1]] whence Dλ

t (xk) ⊂ [−A,A] (because (gλ+1)/nλ ≥ χg ≥ −A
and (dλ − 1)/nλ ≤ χd ≤ A). This obviously implies that δ(Dt(xk), Dλ

t (xk)) ≤ 2A.

Next, Step 5 implies that for all t ∈ [0, T ] \ S (or rather for all t ∈ [0, ρn) \ S, but the
extension is straightforward), for all i ∈ [[gλ, dλ]], ηλaλt(i) = infx∈iλ(Yt(x)). This implies that
for all t ∈ [0, T ] \ S, for all k = 1, . . . , p, δ(Dλ

t (xk), Dt(xk)) ≤ 4/nλ as desired.
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Indeed, assume thatDt(xk) = [a, b] ⊂ [χg,χd] for some t ∈ [0, T ]\S. Recall that a, b ∈ X δ
S .

We have Yt(y) = 1 for all y ∈ (a, b) and Yt(a) = Yt(b) = 0. Hence we deduce that ηλaλt(i) = 1
for all i ∈ [[,anλ-+1, ,bnλ-−1]] and that ηλaλt(,anλ-) = ηλaλt(,bnλ-) = 0. Next, we observe that
for λ > 0 small enough, ,anλ- < ,xknλ- < ,bnλ-. Indeed, on Ωλ, we have, since a, b ∈ X δ

S ,
|xk − a| > cS and |b − xk| > cS . We finally obtain C(ηλaλt, ,xknλ-) = [[,anλ-+ 1, ,bnλ- − 1]],
whence Dλ

t (xk) = [(,anλ-+ 1)/nλ, (,bnλ- − 1)/nλ]. Recalling that Dt(x) = [a, b], one easily
deduces that δ(Dλ

t (xk), Dt(xk)) ≤ 4/nλ. !

13. Cluster-size distribution when β ∈ (0,∞)

This section is entirely devoted to the

Proof of Corollary 6.4. We thus fix β ∈ (0,∞) and assume (HM ) and (HS(β)). For each
λ > 0, we consider a FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z. Let also (Yt(x))t≥0,x∈R be a LFF (β)-
process. We know from Theorem 6.3 that |C(ηλt , 0)|/nλ goes in law to |Dt(0)|, for any t > 0.
In Step 1 below, we will check that for t > 0, the law of |Dt(0)| does not charge points. Thus
for any B ≥ 0, t > 0, we will have limλ→0 Pr[|C(ηλt , 0)| ≥ nλB] = Pr[|Dt(0)| ≥ B]. In Steps
2 to 6, we will check that there are some constants 0 < c1 < c2 and 0 < κ1 < κ2 such that if
t > 1, for any B ≥ 2, Pr[|Dt(0)| > B] ∈ [c1e−κ2B, c2e−κ1B]. One immediately checks that this
implies Pr[|Dt(0)| > B] ∈ [c1e−2κ2e−κ2B, (c2 ∨ e2κ1)e−κ1B] for all t > 1, B > 0 and this will
conclude the proof.

Step 1. The goal of this step is to check that for any t > 0 fixed, the law of |Dt(0)| does
not charge points.

Consider the first mark (Td,χd, Ld) of πS on the right of 0 (χd > 0) such that [0, t] ⊂
[Td − Ld, Td]. Consider a similar mark (Tg,χg, Lg) of πS with χg < 0.

Then Ys(χg) = Ys(χd) = 0 for all s ∈ [0, t], so that fires falling outside [χg,χd] cannot
affect 0 during [0, t].

Next, denote by (TM , XM ) the instant/position of the last match falling before t in [χg,χd].
Then a.s., t−TM > 0, and Dt(0) is of the form [a, b], for some marks (Ta, a, La) and (Tb, b, Lb)
of πS satisfying χg ≤ a < 0 < b < χd, Ta − La < TM , Tb − Lb < TM , Ta > t and Tb > t.
There are a.s. a finite number of such marks (because a.s.,

∫∞
t ds

∫∞
s−TM

β(β + 1)l−β−2dl =

(t− tM )−β <∞), and their (spatial) positions clearly have densities, whence the result.

Step 2. For t > 1, a ∈ R, we consider the event Ωt,a defined as follows, see Figure 6:

(i) πM has exactly one mark (TM , XM ) in [t−1, t]× [a, a+1] and there holds (TM , XM ) ∈
[t− 2/3, t− 1/2]× [a+ 1/4, a+ 3/4];

(ii) πS has one mark (Tg, Xg, Lg) such that Tg−Lg < t− 1 < t < Tg and Xg ∈ [a, a+1/4]
and one mark (Td, Xd, Ld) such that Td − Ld < t − 1 < t < Td and Xd ∈ [a + 3/4, a + 1]
(recalling Figure 4, there are dotted vertical segments in [a, a + 1/4] and in [a + 3/4, a + 1]
that run across [t− 1, t]);

(iii) all the other marks (T,X,L) of πS with X ∈ [a, a+ 1] and [T − L, T ] ∩ [t− 1, t] 2= ∅
satisfy L < 1/4 (recalling Figure 4, all the other vertical dotted segments in [a, a + 1] that
intersect [t− 1, t] have a length smaller than 1/4).

Step 3. In this step, we prove that on Ωt,a, we have either Ys(Xg) = 0 for all s ∈ [t−1/2, t]
or Ys(Xd) = 0 for all s ∈ [t− 1/2, t]. We distinguish two situations.
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• First assume that [Xg, Xd] is connected at time TM− (that is YTM−(x) = 1 for all
x ∈ [Xg, Xd]). Since XM ∈ [Xg, Xd], the fire destroys the cluster and thus we deduce that
Ys(Xg) = 0 for all s ∈ [TM , Tg) ⊃ [t − 1/2, t] and that Ys(Xd) = 0 for all s ∈ [TM , Td) ⊃
[t− 1/2, t].

• Next assume that [Xg, Xd] ⊂ [a, a + 1] is not connected at time TM− (that is, there
is some x0 ∈ [Xg, Xd] such that YTM−(x0) = 0). Then we claim that either YTM−(Xg) = 0
(then Ys(Xg) = 0 for all s ∈ [TM , Tg) ⊃ [t− 1/2, t]) or YTM−(Xd) = 0 (then Ys(Xd) = 0 for all
s ∈ [TM , Td) ⊃ [t− 1/2, t]). Indeed, recall that all the dotted segments that intersect [t− 1, t]
in (Xg, Xd) have a length smaller than 1/4. Thus if [Xg, Xd] is disconnected at time TM−
due to a fire that started before t − 1, it can be only with x0 = Xg or x0 = Xd, whence the
conclusion. But if now [Xg, Xd] is disconnected at time TM− due to a fire that started at
some time τ ∈ [t − 1, TM) at some place χ /∈ [a, a + 1] (since there are no fires in [a, a + 1]
during [t− 1, TM)), this necessarily also concerns one of the extremities Xg or Xd of [Xg, Xd].
Thus in any case, we obtain either YTM−(Xg) = 0 or YTM−(Xd) = 0 as desired.

Step 4. Let us prove that p := Pr[Ωt,a] > 0. This value will obviously does not depend on
a ∈ R, t ≥ 1, by homogeneity in (s, x) of the Poisson measures πM (ds, dx) and πS(ds, dx, dl).

g(T ,X  )g

(T  ,X  )

(T − L ,X  )ggg
(T − L ,X  )

ddd

t−1

t−2/3

t−1/2

t

MM

(T ,X  )dd

a+1/4a a+3/4 a+1

Figure 6. The event Ωt,A.
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Define the zones

AM = (t− 2/3, t− 1/2)× (a+ 1/4, a+ 3/4),

BM = ((t− 1, t)× (a, a+ 1)) \AM ,

AS = {(s, x, l), x ∈ (a, a+ 1/4), s > t > t− 1 > s− l},

BS = {(s, x, l), x ∈ (a+ 3/4, a+ 1), s > t > t− 1 > s− l},

CS = {(s, x, l), x ∈ (a+ 1/4, a+ 3/4), s > t > t− 1 > s− l},

DS = {(s, x, l), x ∈ (a, a+ 1), [s− l, s] ∩ [t− 1, t] 2= ∅, l > 1/4} \ (AS ∪BS ∪ CS).

The zones AM and BM are disjoint and for ζM (ds, dx) = dsdx, ζM (AM ) = 1/12 and
ζM (BM ) = 11/12. The zones AS , BS , CS , DS are also disjoint and simple computations show
that, for ζS(ds, dx, dl) = β(β + 1)l−β−2dsdxdl, ζS(AS) = ζS(BS) = 1/4, ζS(CS) = 1/2 and
ζS(DS) = 4β(5β + 1) − 1. Consequently, recalling that πM and πS are independent Poisson
measures with intensity measures ζM and ζS ,

Pr[Ωt,a,δ] = Pr (πM (AM ) = 1,πM (BM ) = 0,πS(AS) = πS(BS) = 1,πS(CS) = πS(DS) = 0)

= ζ(AM )e−ζM (AM )e−ζM (BM )ζS(AS)e
−ζS(AS)ζS(BS)e

−ζS(BS)e−ζS(CS)e−ζS(DS)

= (1/12)e−1/12e−11/12(1/4)2e−1/2e−4β(5β+1)+1 =: p > 0.

Step 5. We clearly have, for any t ≥ 1, any B ≥ 2,

{|Dt(0)| ≥ B} ⊂ {∀ x ∈ [0, B/2], Yt(x) = 1} ∪ {∀ x ∈ [−B/2, 0], Yt(x) = 1},

whence Pr[|Dt(0)| ≥ B] ≤ 2Pr[∀ x ∈ [0, B/2], Yt(x) = 1] by symmetry. Furthermore, Step 3
implies that

{∀ x ∈ [0, B/2], Yt(x) = 1} ⊂ Ωc
t,0 ∩ Ω

c
t,1 ∩ · · · ∩ Ωc

t,*B/2−1+.

Using then Step 4 (and some obvious independence arguments), we get

Pr[|Dt(0)| ≥ B] ≤ 2(1− p)*B/2−1++1 ≤ 2(1− p)B/2−1.

Consequently, for all t ≥ 1, all B ≥ 2, Pr[|Dt(0)| ≥ B] ≤ c2e−κ1B, with c2 = 2/(1 − p) and
κ1 = −[log(1− p)]/2.

Step 6. Next, we consider the event Ω̃t,B on which:

(i) πM ([t− 1/2, t]× [0, B]) = 0;

(ii) all the marks (T,X,L) of πS with X ∈ [0, B] satisfy either T < t or T − L > t− 1/2)
(this means that there is no dotted vertical segment running across [t− 1/2, t] in [0, B]).

An easy computation as in Step 4 implies that

Pr[Ω̃t,B] = exp

(

−

∫ t

t−1/2

∫ B

0
dsdx−

∫ ∞

t
ds

∫ B

0
dx

∫ ∞

s−t+1/2
dlβ(β + 1)l−β−2

)

=exp
(

−B/2− 2βB
)

.

We claim that on Ωt,−1 ∩ Ω̃t,B ∩ Ωt,B, we have [0, B] ⊂ Dt(0), whence |Dt(0)| ≥ B.
Indeed, we know from Step 3 that there is χ0 ∈ [−1, 0] and χ1 ∈ [B,B + 1] such that
Ys(χ0) = Ys(χ1) = 0 for all s ∈ [t − 1/2, 1]. Thus the fires starting outside [χ0,χ1] do not
affect the zone [χ0,χ1] during [t − 1/2, t]. Furthermore, there are no fires starting in [χ0,χ1]
during [t− 1/2, t]. At last, since all the dotted segments in [0, B] intersecting {t} have started
after t− 1/2. We easily conclude that Yt(x) = 1 for all x ∈ [0, B].
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Using finally some obvious independence arguments, we get

Pr[|Dt(0)| ≥ B] ≥ Pr[Ωt,−1 ∩ Ω̃t,B ∩ Ωt,B] ≥ p2 exp
(

−B/2− 2βB
)

= c1e
−κ2B ,

with c1 = p2 and κ2 = 1/2 + 2β. !

14. Convergence proof when β = 0

This case is simpler than the case β ∈ (0,∞), but a little work is however needed. We also
divide the section into three parts: preliminaries, coupling of seeds and convergence proof.
In the whole section, we assume (HM ) and (HS(0)). We recall that aλ and nλ are defined
in (3.1) and (3.2). For A > 0, we set Aλ = ,Anλ- and IλA = [[−Aλ, Aλ]]. For i ∈ Z, we set
iλ = [i/nλ, (i+ 1)/nλ).

14.1. Preliminaries. The proof will use the following estimate.

Lemma 14.1. For any l ∈ (0,∞) fixed, we have limλ→0 λ−1µS((aλl,∞)) = 0.

Proof. Using the monotonicity of µS((x,∞)) and since µS((x,∞))dx = mSνS(dx),

µS((aλl,∞))

λ
≤

2

λaλl

∫ aλl

aλl/2
µS((x,∞))dx

=
2mS

λaλl
[νS((aλl/2,∞))− νS((aλl,∞))]

=
2mS

l
[νS((aλl/2,∞))/νS((aλ,∞))− νS((aλl,∞))/νS((aλ,∞))] .

For the last equality, we used that by definition, νS((aλ,∞)) = λaλ. Using (HS(0)), we easily
conclude. !

The following statement contains some crucial facts about accelerated SR(µS)-processes
under (HS(0)).

Lemma 14.2. Let (Tn)n≥1 be a SR(µS)-process (see Subsection 2.1). For λ > 0, t ≥ 0
and l > 0, we set

Rλ
t (l) = #{n ≥ 1 : Tn ∈ [0, aλt], Tn+1 − Tn ≥ aλl},

which represents the number of delays with length greater than aλl that start in [0, aλt].
(i) For any T > 0, Pr[T1 ≥ aλT ] = νS((aλT,∞)) ∼ λaλ as λ→ 0.
(ii) For any T > 0, any l > 0, E[Rλ

T (l)] = aλTµS((aλl,∞))/mS = o(λaλ) as λ→ 0.

Proof. Point (i) is immediate: νS is the law of T1 and since λaλ = νS((aλ,∞)) by defi-
nition, one has νS((aλT,∞)) = λaλνS((aλT,∞))/νS((aλ,∞)). One concludes using (HS(0)).
Point (ii) is slightly more delicate. First, we complete the SR(µS)-process (Tn)n≥1 in (Tn)n∈Z,
see Subsection 2.1. Then we observe that since T0 < 0 < T1,

Rλ
T (l) = #{n ∈ Z : Tn ∈ [0, aλT ], Tn+1 − Tn ≥ aλl}.
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Next, we set τn = aλT − T−n and we introduce n0 such that τn0
< 0 < τn0+1. We put

T̃n = τn0+n. Then (T̃n)n∈Z is also a SR(µS)-process (see Subsection 2.1). We have

Rλ
T (l) =#{n ∈ Z : aλT − Tn ∈ [0, aλT ], (aλT − Tn)− (aλT − Tn+1) ≥ aλl}

=#{n ∈ Z : T̃−n−n0
∈ [0, aλT ], T̃−n−n0

− T̃−n−1−n0
≥ aλl}

=#{n ∈ Z : T̃n ∈ [0, aλT ], T̃n − T̃n−1 ≥ aλT }

=#{n ≥ 1 : T̃n ∈ [0, aλT ], T̃n − T̃n−1 ≥ aλl} =: S̃λ
T (l).

We used that T̃0 < 0 < T̃1 by construction. But S̃λ
T (l) is the number of delays with length

greater than aλl that end in [0, aλT ], for the SR(µS)-process (T̃n)n∈Z. Thus exactly as in
the proof of Lemma 12.2 (Steps 1 and 2), we get E[S̃λ

T (l)] = m−1
S aλTµS((aλl,∞)), so that

E[Rλ
T (l)] = m−1

S aλTµS((aλl,∞)). Finally, Lemma 14.1 implies that E[Rλ
T (l)] = o(λaλ). !

14.2. Coupling of seeds. We aim here to couple the Poisson measure πS(dx) used to
build the LFF (0)-process with a family of SR(µS)-processes, in such a way that roughly:

• if πS(iλ) > 0, then the first seed never falls on i;

• if πS(iλ) = 0, then seeds fall almost continuously on i.

The precise statement is as follows.

Proposition 14.3. Let A > 0, T > 0, δ > 0 be fixed. For any λ ∈ (0, 1], it is possible
to find a coupling between a Poisson measure πS on R with intensity measure dx and a family
(NS

t (i))t≥0,i∈Z of SR(µS)-processes in such a way that for

ΩS
A,T,δ(λ) =

⋂

i∈Iλ
A

(

{

πS(iλ) = 0, inf
t∈[0,T−δ]

[NS
aλ(t+δ)(i)−NS

aλt(i)] > 0

}

∪
{

πS(iλ) = 1, NS
aλT (i) = 0

}

)

,

limλ→0 Pr[ΩS
A,T,δ(λ)] = 1.

Proof. We split the proof in several steps. As usual, it suffices to build πS on Bλ =
∪i∈Iλ

A
iλ + [−A,A] and to build NS

t (i) for t ∈ [0, aλT ] and i ∈ IλA.

Step 1. Denote by (NS
t )t≥0 a SR(µS)-process and by (Tn)n≥1 its jump instants. Recall

the notation of Lemma 14.2. Then we observe that {NS
aλT

= 0} = {T1 > aλT } and
{

inf
t∈[0,T−δ]

[NS
aλ(t+δ) −NS

aλt] > 0

}

= {T1 < aλδ, R
λ
T (δ) = 0}.

These two events are furthermore disjoint. By Lemma 14.2, we deduce that for some functions
εT (λ) and εT,δ(λ) tending to 0 when λ→ 0

Pr

[

inf
t∈[0,T−δ]

[NS
aλ(t+δ) −NS

aλt] > 0

]

≥ 1− Pr[T1 > aλδ]− E[Rλ
T (δ)] ≥ 1− λaλ(1 + εT,δ(λ))

and

pT (λ) := Pr[NS
aλT = 0] = Pr[T1 > aλT ] = λaλ(1 + εT (λ)).

Step 2. Next, we prove that it is possible to couple a family (Zλ
i )i∈Iλ

A
of i.i.d. Poisson-

distributed random variables with parameter |iλ| = 1/nλ and a family of (Z̃λ
i )i∈Iλ

A
of i.i.d.
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Bernoulli random variables with parameter pT (λ) (see Step 1) in such a way that for

Ω̃T,A(λ) = {∀i ∈ IλA, Z
λ
i = Z̃λ

i ∈ {0, 1}},

there holds limλ→0 Pr[Ω̃T,A(λ)] = 1. As usual, this follows from Lemma 22.3-(ii) and relies on
the straightforward computations (here the function εT changes from line to line)

Pr[Zλ
i = 0] ∧ Pr[Z̃λ

i = 0] = (e−1/nλ) ∧ (1− pT (λ)) ≥ 1− λaλ(1 + εT (λ)),

recall that nλ ∼ 1/(λaλ), and

Pr[Zλ
i = 1] ∧ Pr[Z̃λ

i = 1] = (e−1/nλ/nλ) ∧ pT (λ) ≥ λaλ(1− εT (λ))

from which

Pr[Ω̃T,A(λ)] ≥ [1− λaλ(1 + εT (λ)) + λaλ(1− εT (λ))]
|Iλ

A| ≥ [1− λaλεT (λ)]
|Iλ

A| .

This last quantity tends to 1 as λ→ 0, because |IλA| ∼ 2A/(λaλ).

Step 3. We finally build the complete coupling.

(a) Consider (Zλ
i , Z̃

λ
i )i∈Iλ

A
as in Step 2.

(b) For each i ∈ IλA such that Zλ
i > 0, pick some i.i.d. random variables (X i,λ

1 , . . . , X i,λ
Zλ

i
)

uniformly distributed in iλ. Then πS =
∑

i∈Iλ
A

∑Zλ
i

k=1 δXi,λ
k

is a Poisson measure with intensity

measure dx on Bλ = ∪i∈Iλ
A
iλ.

(c) For each i ∈ IλA such that Z̃λ
i = 1, set NS

aλT
(i) = 0. For each i ∈ IλA such that Z̃λ

i = 0,
pick (NS

t (i))t∈[0,aλT ] conditionally on NS
aλT

(i) 2= 0. This defines a family of i.i.d. SR(µS)

processes on [0, aλT ] (because Pr[Z̃λ
i = 1] = pT (λ) = Pr[NS

aλT
(i) = 0]).

Step 4. With this coupling, we have Ω̃T,A(λ) ∩ Ω̄S
A,T,δ(λ) ⊂ Ω

S
A,T,δ(λ), where

Ω̄S
A,T,δ(λ) =

⋂

i∈Iλ
A

(

inf
t∈[0,T−δ]

[NS
aλ(t+δ)(i)−NS

aλt(i)] > 0 or NS
aλT (i) = 0

)

.

It thus only remains to check that limλ→0 Pr[Ω̄S
A,T,δ(λ)] = 1. But using Step 1 and recalling

that |IλA| ∼ 2A/(λaλ), we get

Pr[Ω̄S
A,T,δ(λ)] ≥ [1− λaλ(1 + εT,δ(λ)) + λaλ(1 + εT (λ))]

|Iλ
A| ,

which tends to 1 as λ→ 0, as usual, since |IλA| ∼ 2A/(λaλ). !

14.3. Convergence. We may now prove the convergence result in the case β = 0.

Proof of Theorem 7.2. We fix T > 0, x1 < · · · < xp and t1, . . . , tp ∈ (0, T ]. We introduce
B > 0 such that −B < x1 < xp < B. We fix ε > 0 and a > 0. Our aim is to check that for
λ > 0 small enough, there exists a coupling between a FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z and
a LFF (0)-process (Yt(x))t≥0,x∈R such that, recalling (3.3) and Proposition 7.1, there holds

Pr

[

p
∑

k=1

δT (D
λ(xk), D(xk)) +

p
∑

k=1

δ(Dλ
tk(xk), Dtk(xk)) ≥ a

]

≤ ε.(14.1)

This will conclude the proof.
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Step 1. Consider two independent Poisson measures πS(dx) and πM (dt, dx) with intensity
measures dx and dtdx. First, we consider A > B large enough, in such a way that for

ΩS,1
A = {πS([−A,−B]) > 0,πS([B,A]) > 0},

there holds Pr
(

ΩS,1
A

)

≥ 1− ε/4. This fixes the value of A.

Next we call XS = {x ∈ [−A,A],πS({x}) > 0}, TM = {t ∈ [0, T ] : πM ({t} × [−A,A]) >
0} ∪ {0} and XM = {x ∈ [−A,A],πM ([0, T ] × {x}) > 0}. Classical results about Poisson
measures allow us to choose K > 0 (large) and c > 0 (small) in such a way that for

ΩK,c =
{

|TM |+ |XS | ≤ K, min
t∈TM ,k=1,...,p

|t− tk| > c, min
x,y∈XS∪XM ,x !=y

|x− y| > c,

min
x∈XS∪XM ,k=1,...,p

|x− xk| > c
}

,

there holds Pr [ΩK,c] ≥ 1− ε/4.

Step 2. Next, we know from Proposition 11.1 that for all λ > 0 small enough, it is
possible to couple a family of i.i.d. SR(µλM )-processes (NM,λ

t (i))t≥0,i∈Z} with πM in such a
way that for

ΩM
A,T (λ) :=

{

∀t ∈ [0, T ], ∀i ∈ IλA, ∆NM,λ
aλt (i) 2= 0 iff πM ({t}× iλ) 2= 0

}

,

there holds Pr[ΩM
A,T (λ)] ≥ 1− ε/4.

We now fix δ > 0 such that

δ < c/4 and δ < a/(4AKp).

Proposition 14.3 tells us how to couple, for all λ > 0 small enough, a family of i.i.d.
SR(µS)-processes (NS

t (i))t≥0,i∈Z with πS in such a way that for

ΩS
A,T,δ(λ) =

⋂

i∈Iλ
A

(

{

πS(iλ) = 0, inf
t∈[0,T−δ]

[NS
aλ(t+δ)(i)−NS

aλt(i)] > 0

}

∪
{

πS(iλ) = 1, NS
aλT (i) = 0

}

)

,

there holds Pr[ΩS
A,T,δ(λ)] ≥ 1− ε/4.

Step 3. We consider πM , πS , (NS
t (i))t≥0,i∈Z} and (NM,λ

t (i))t≥0,i∈Z} coupled as in Step
2. Then we build the corresponding FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z and the associated
rescaled clusters (Dλ

t (x))t≥0,x∈R, see (3.3) and we build the LFF (0)-process associated to πS
and the corresponding clusters (Dt(x))t≥0,x∈R. We will work on the event

Ωλ = ΩS,1
A ∩ ΩK,c ∩ Ω

M
A,T (λ) ∩Ω

S
A,T,δ(λ).

We know that for all λ > 0 small enough, Pr[Ωλ] ≥ 1− ε. We introduce

S = ∪t∈TM [t, t+ δ].

We will prove in the next step that on Ωλ, for all λ > 0 small enough, for all k ∈ {1, . . . , p},
for all t ∈ [0, T ] \ S,

δ(Dλ
t (xk), Dt(xk)) ≤ 4/nλ + 2A11{t∈S},(14.2)

which will imply that
δT (D

λ(xk), D(xk)) ≤ 4T/nλ + 2A|S|.
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This will conclude the proof, since for k = 1, . . . , p, tk /∈ S (recall ΩK,c and that δ < c) and
since the Lebesgue measure of S is smaller than Kδ (recall ΩK,c and that δ < c). Thus (14.2)
implies, since δ < a/(4AKp),

p
∑

k=1

δT (D
λ(xk), D(xk)) +

p
∑

k=1

δ(Dλ
tk(xk), Dtk(xk)) ≤p [4T/nλ + 2AKδ + 4/nλ]

≤a/2 + 4p(T + 1)/nλ,

which is smaller than a for all λ > 0 small enough. Thus (14.1) holds for all λ > 0 small
enough.

Step 4. It remains to check (14.2). In the whole step, we work on Ωλ. Let thus k ∈
{1, . . . , p} be fixed. Consider the first marks χg,χd of πS on the left and right of xk. Then by

definition, we have Dt(xk) = [χg,χd] for all t ∈ [0, T ]. By ΩS,1
A and since xk ∈ (−B,B), we

know that −A < χg < χd < A. Define gλ = ,nλχg- and dλ = ,nλχd-. Due to ΩS
A,T,δ(λ) and

since πS({χg}) = πS({χd}) = 1 and πS((χg,χd)) = 0 by construction, we know that

(i) NS
aλT

(gλ) = NS
aλT

(dλ) = 0 (because χg ∈ (gλ)λ and χd ∈ (dλ)λ),

(ii) for all i ∈ [[gλ+1, dλ−1]], inft∈[0,T−δ][N
S
aλ(t+δ)(i)−N

S
aλt(i)] > 0 (because iλ ⊂ (χg,χd)).

Observe now that for λ > 0 small enough (it suffices that 1/nλ < c), there holds gλ <
,xknλ- < dλ (use that χg,χd ∈ XS and that χg < xk < χd so that due to ΩK,c, χg + c < xk <
χd − c).

Point (i) implies that ηλaλt(gλ) = ηλaλt(dλ) = 0 for all t ∈ [0, aλT ]. Consequently, for all
t ∈ [0, T ], there holds C(ηλaλt, ,xknλ-) ⊂ [[gλ + 1, dλ − 1]]. This implies that Dλ

t (xk) ⊂ [(gλ +
1)/nλ, (dλ− 1)/nλ] ⊂ [χg,χd]. Recalling that Dt(xk) = [χg,χd] and that −A < χg < χd < A,
we deduce that δ(Dt(xk), Dλ

t (xk)) ≤ 2A for all t ∈ [0, T ].

Another consequence is that the matches falling outside [[gλ, dλ]] (and a fortiori outside
IλA) have no influence on ,xknλ- during [0, aλT ].

It only remains to check that for t ∈ [0, T ]\S, if λ > 0 is small enough, δ(Dt(xk), Dλ
t (xk)) ≤

4/nλ. We thus fix t ∈ [0, T ] \ S and consider t0 = max{s ∈ TM : s < t}. Then by definition
of S, t − t0 > δ. Consequently, point (ii) guarantees us that for all i ∈ [[gλ + 1, dλ − 1]],
NS

aλt − NS
aλt0 > 0: a seed falls on each of these sites during [aλt0, aλt]. Furthermore, there

are no matches falling on [[gλ + 1, dλ − 1]] during [aλt0, aλt], by definition of t0 and due to
ΩM

A,T (λ). Consequently, we have ηλaλt(i) = 1 for all i ∈ [[gλ + 1, dλ − 1]]. All this implies

that C(ηλaλt, ,xknλ-) = [[gλ + 1, dλ − 1]], whence Dλ
t (xk) = [(gλ + 1)/nλ, (dλ − 1)/nλ] =

[(,nλχg-+ 1)/nλ, (,nλχd- − 1)/nλ]. Recalling that Dt(xk) = [χg,χd], we easily conclude. !

15. Well-posedness of the limit process when β ∈ {∞, BS}

The aim of this section is to prove Theorems 4.2 and 5.3, and to localize the limit processes.
All the results below have already been proved in [14] for the LFF (∞)-process. We provide
here a consequently simpler proof, that allows us to treat simultaneously the cases β = BS
and β =∞.

Remark 15.1. Under (HS(∞)), we put θu = δu and FS(u, v) = u for all u ∈ [0, 1], all
v ∈ [0, 1]. Using this function FS, the LFF (BS)-process is nothing but the LFF (∞)-process.
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We consider a Poisson measure πM (dt, dx, dv) on [0,∞)×R× [0, 1] with intensity measure
dtdxdv and abusively write πM (dt, dx) =

∫

v∈[0,1] πM (dt, dx, dv), which is a Poisson measure

on [0,∞)× R with intensity measure dtdx.

Definition 15.2. Let β ∈ {∞, BS}. If β = ∞, consider FS as in Remark 15.1. If
β = BS, consider FS as in Definition 5.1. Let A > 0 be fixed. A R+ × I ×R+-valued process
(ZA

t (x), DA
t (x), H

A
t (x))t≥0,x∈[−A,A] such that a.s., for all x ∈ [−A,A], (ZA

t (x), HA
t (x))t≥0 is

càdlàg, is called a LFFA(β)-process if a.s., for all t ≥ 0, all x ∈ [−A,A],

ZA
t (x) =

∫ t

0
11{ZA

s (x)<1}ds−

∫ t

0

∫

[−A,A]
11{ZA

s−(x)=1,y∈DA
s−(x)}πM (ds, dy),

HA
t (x) =

∫ t

0

∫ 1

0
FS(Z

A
s−(x), v)11{ZA

s−(x)<1}πM (ds× {x}× dv)−

∫ t

0
11{HA

s (x)>0}ds,

where DA
t (x) = [LA

t (x), R
A
t (x)], with

{

LA
t (x) = (−A) ∨ sup{y ∈ [−A, x]; ZA

t (y) < 1 or HA
t (y) > 0}

RA
t (x) = A ∧ inf{y ∈ [x,A]; ZA

t (y) < 1 or HA
t (y) > 0}

(15.1)

and where DA
t−(x) is defined similarly.

Observe that for β ∈ {∞, BS}, for any A > 0, the LFFA(β)-process is obviously well and
uniquely defined and can be built as follows.

Algorithm 15.3. Consider the marks (Tk, Xk, Vk)k=1,...,n of πM in [0, T ]× [−A,A]×
[0, 1], ordered chronologically and set T0 = 0.

Step 0. Put ZA
0 (x) = HA

0 (x) = 0 and DA
0 (x) = {x} for all x ∈ [−A,A].

Assume that for some k ∈ {0, . . . , n− 1}, (ZA
t (x), DA

t (x), H
A
t (x))t∈[0,Tk],x∈[−A,A] has been

built.

Step k+1. Then for t ∈ (Tk, Tk+1) and x ∈ [−A,A], put ZA
t (x) = min(1, ZA

Tk
(x)+t−Tk),

set HA
t (x) = max(0, HA

Tk
(x) − t + Tk) and then define DA

t (x) as in (15.1). Finally, build
(ZA

Tk+1
(x), DA

Tk+1
(x), HA

Tk+1
(x)) as follows.

• If ZA
Tk+1−

(Xk+1) = 1, set HA
Tk+1

(x) = HA
Tk+1−

(x) for all x ∈ [−A,A] and consider

[a, b] := DA
Tk+1−

(Xk+1). Set ZA
Tk+1

(x) = 0 for all x ∈ (a, b) and ZA
Tk+1

(x) = ZA
Tk+1−

(x) for all

x ∈ [−A,A] \ [a, b]. Set finally ZA
Tk+1

(a) = 0 if ZA
Tk+1−

(a) = 1 and ZA
Tk+1

(a) = ZA
Tk+1−

(a) if

ZA
Tk+1−

(a) < 1 and ZA
Tk+1

(b) = 0 if ZA
Tk+1−

(b) = 1 and ZA
Tk+1

(b) = ZA
Tk+1−

(b) if ZA
Tk+1−

(b) < 1.

• If ZA
Tk+1−

(Xk+1) < 1, set HA
Tk+1

(Xk+1) = FS(ZA
Tk+1−

(Xk+1), Vk+1), put ZA
Tk+1

(Xk+1) =

ZA
Tk+1−

(Xk+1) and (ZA
Tk+1

(x), HA
Tk+1

(x)) = (ZA
Tk+1−

(x), HA
Tk+1−

(x)) for all x ∈ [−A,A] \
{Xk+1}.

• Using the values of (ZA
Tk+1

(x), HA
Tk+1

(x))x∈[−A,A], compute (DA
Tk+1

(x))x∈[−A,A] as in
(15.1).

We now state a refined version of Theorems 4.2 and 5.3.

Proposition 15.4. Let β ∈ {∞, BS}. Let πM be a Poisson measure on [0,∞)×R×
[0, 1] with intensity measure dtdxdv.

(i) There exists a unique LFF (β)-process (Zt(x), Dt(x), Ht(x))t≥0,x∈R.
(ii) It can be perfectly simulated on [0, T ]× [−n, n] for any T > 0, any n > 0.
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(iii) For A > 0, let (ZA
t (x), DA

t (x), H
A
t (x))t≥0,x∈[−A,A] be the unique LFFA(β)-process.

There holds

Pr
[

(Zt(x),Dt(x), Ht(x))t∈[0,T ],x∈[−A/2,A/2](15.2)

= (ZA
t (x), DA

t (x), H
A
t (x))t∈[0,T ],x∈[−A/2,A/2]

]

≥ 1− CT e
−αTA,

for some constants αT > 0 and CT > 0 not depending on A > 0.

To prove this result, we need a lower-bound of the length of the barriers.

Lemma 15.5. Let β ∈ {∞, BS}. If β = ∞, consider FS as in Remark 15.1. If
β = BS, consider FS as in Definition 5.1. There exists v0 ∈ [0, 1) such that for all z ∈ [3/4, 1),
all v ∈ [v0, 1], F (z, v) ≥ 1/2.

Proof. If β = ∞, the result is obvious with v0 = 0, since FS(z, v) = z ≥ 1/2 for
all z ∈ [1/2, 1], v ∈ [0, 1]. Consider now the case β = BS. First observe that gS(t, s) ≤
Pr[NS

TS(t+s) −NS
TSt > 0] = νS([0, TSs]). Hence for all z ∈ [3/4, 1),

θz([0, 1/2)) ≤ νS([3TS/4, TS]) +
νS([3TS/4, TS])2

νS([TS/2, TS])2
νS([0, TS/2])

≤ νS([0, TS/2] ∪ [3TS/4, TS]) =: v0 < 1,

since supp νS = [0, TS ]. We deduce that for z ∈ [3/4, 1],
∫ 1

0
dv11{FS(z,v)<1/2} = θz([0, 1/2)) ≤ v0.

Recalling that v 0→ FS(z, v) is nondecreasing, we deduce that FS(z, v) ≥ 1/2 for v ∈ [v0, 1]. !

Proof of Proposition 15.4. We split the proof into several steps. We work on [0, T ].

Step 1. We observe that for a mark (τ, X, V ) of πM with X ∈ [−A,A] and V ≥ v0 (see
Lemma 15.5), we have HA

t (X) > 0 or ZA
t (X) < 1 for all t ∈ [τ, τ + 1/4] (and the same result

applies to the LFF (β)-process if it exists).

Indeed, assume first that ZA
τ−(X) ∈ [0, 3/4). Then ZA

t (X) = ZA
τ−(X) + t − τ < 1 for

t ∈ [τ, τ + 1/4].

Assume next that ZA
τ−(X) ∈ [3/4, 1). Then Hτ (X) = FS(ZA

τ−(X), V ) ≥ 1/2 due to
Lemma 15.5, so that Ht(X) = Hτ (X)− t+ τ > 0 for t ∈ [τ, τ + 1/2) ⊃ [τ, τ + 1/4].

If finally ZA
τ−(X) = 1, then ZA

τ (X) = 0, whence ZA
t (X) = t − τ < 1 for t ∈ [τ, τ + 1) ⊃

[τ, τ + 1/4].

Step 2. For a ∈ R, we consider the event Ωa defined as follows: for {(Tk, Xk, Vk)}k=1,...,n

the marks of πM restricted to [0, T ]× [a, a + 1) × [v0, 1] ordered chronologically, for T0 = 0,
Tn+1 = T , we put Ωa = {maxi=0,...,n(Ti+1 − Ti) < 1/4}.

We immediately deduce from Step 1 that for any a ∈ R, any A > |a|+ 1,

Ωa ⊂
{

∀ t ∈ [0, T ], ∃ x ∈ (a, a+ 1), HA
t (x) > 0 or ZA

t (x) < 1
}

.

Thus on Ωa, clusters on the left of a cannot be connected to clusters on the right of a + 1
during [0, T ]. Hence matches falling at the right of a+ 1 (resp. on the left of a) do not affect
the zone (−∞, a) (resp. (a+ 1,∞)) during [0, T ].
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Step 3. Obviously, qT := Pr(Ωa) is positive and does not depend on a. Furthermore, Ωa

is independent of Ωb for all a, b ∈ Z with a 2= b. Hence there are a.s. infinitely many a ∈ Z

such that Ωa is realized.

Then it is routine to deduce the well-posedness of the LFF (β)-process. The perfect
simulation algorithm on a finite-box [0, T ]× [−n, n] is also easy: simulate πM on [0, T ]× [a1, a2]
in such a way that Ωa1

∩ Ωa2
is realized and that a1 + 1 < −n < n < a2. Then apply

the same rules as for the LFFA(β)-process. This will give the true LFF (β)-process inside
[a1 +1, a2] ⊃ [−n, n], because matches falling outside [a1, a2 +1] have no effect on the process
in the box [a1 + 1, a2] during [0, T ].

Finally, we can clearly bound from below the left hand side of (15.2) by

Pr
[(

∪a∈[−A,−A/2−1]∩ZΩa

)

∩
(

∪a∈[A/2,A−1]∩ZΩa

)]

≥ 1− 2Pr[Ωc
0]

*A+−*A/2+−2

≥ 1− 2(1− qT )
A/2−4,

whence (15.2) with CT = 2/(1− qT )4 and αT = − log(1− qT )/2. !

16. Localization of the discrete processes when β ∈ {∞, BS}

We recall that aλ, nλ and mλ are defined in (3.1), (3.2) and (3.4). For A > 0, we set
Aλ = ,Anλ- and IλA = [[−Aλ, Aλ]]. For i ∈ Z, we set iλ = [i/nλ, (i+ 1)/nλ).

For η ∈ {0, 1}I
λ
A and i ∈ IλA, we define the occupied connected component around i as

CA(η, i) =

{

∅ if η(i) = 0,
[[lA(η, i), rA(η, i)]] if η(i) = 1,

where lA(η, i) = (−Aλ) ∨ (sup{k < i : η(k) = 0}+ 1) and rA(η, i) = Aλ ∧ (inf{k > i : η(k) =
0}− 1).

Definition 16.1. Assume (HM ) and (HS(β)) with β ∈ {∞, BS}. Let λ ∈ (0, 1]
and A > 0 be fixed. For each i ∈ IλA, we consider a SR(µS)-process (NS

t (i))t≥0 and a

SR(µλM )-process (NM,λ
t (i))t≥0, all these processes being independent. Consider a {0, 1}-valued

process (ηλ,At (i))i∈Iλ
A,t≥0 such that a.s., for all i ∈ IλA, (ηλ,At (i))t≥0 is càdlàg. We say that

(ηλ,At (i))i∈Iλ
A,t≥0 is a FFA(µS , µλM )-process if a.s., for all i ∈ IλA, all t ≥ 0,

ηλ,At (i) =

∫ t

0
11{ηλ,A

s− (i)=0}dN
S
s (i)−

∑

j∈Iλ
A

∫ t

0
11{j∈CA(ηλ,A

s− ,i)}dN
M,λ
s (j)

For x ∈ [−A,A] and t ≥ 0, we introduce

Dλ,A
t (x) =

1

nλ
CA(η

λ,A
aλt , ,nλx-) ⊂ [−Aλ/nλ, Aλ/nλ] + [−A,A],(16.1)

Kλ,A
t (x) =

∣

∣

∣

{

i ∈ [[,nλx- −mλ, ,nλx-+mλ]] ∩ IλA : ηλ,Aaλt (x) = 1
}∣

∣

∣

∣

∣[[,nλx- −mλ, ,nλx-+mλ]] ∩ IλA
∣

∣

∈ [0, 1],

Zλ,A
t (x) =

ψS(K
λ,A
t (x))

aλ
∧ 1 ∈ [0, 1].(16.2)

We generalize [14, Proposition 11], with a consequently less intricate proof.
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Proposition 16.2. Assume (HM ) and (HS(β)), for some β ∈ {∞, BS}. Let T > 0
and λ ∈ (0, 1). For each i ∈ Z, we consider a SR(µS)-process (NS

t (i))t≥0 and a SR(µλM )-

process (NM,λ
t (i))t≥0, all these processes being independent. Let (ηλt (i))t≥0,i∈Z be the corre-

sponding FF (µS , µλM )-process, and for each A > 0, let (ηλ,At (i))t≥0,i∈Iλ
A
be the corresponding

FFA(µS , µλM )-process. Recall (3.3)-(3.5) and (16.1)-(16.2). There are some constants αT > 0
and CT > 0 such that for all A ≥ 1, all λ ∈ (0, 1] small enough,

Pr
[

(ηλt (i))t∈[0,aλT ],i∈Iλ
A/2

= (ηλ,At (i))t∈[0,aλT ],i∈Iλ
A/2

,

(Zλ
t (x), D

λ
t (x))t∈[0,T ],x∈[−A/2,A/2] = (Zλ,A

t (x), Dλ,A
t (x))t∈[0,T ],x∈[−A/2,A/2]

]

≥1− CT e
−αTA.

Proof in the case where β =∞. It of course suffices to prove the result for all A large enough
(we will assume that A > 8T ). We consider the true FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z. For
a ∈ R, we introduce

Jλ
a := [[,anλ-, ,(a+ 1)nλ- − 1]].

Step 1. We show here that for all a ∈ R, there exists an event Ωλ
a,0, depending only on

(NS
s (i), N

M,λ
s (i))i∈Jλ

a ,s∈[0,3aλ/4] such that

(i) on Ωλ
a,0, a.s., there is i ∈ Jλ

a such that ηλaλs(i) = 0 for all s ∈ [0, 3/4];

(ii) limλ→0 Pr[Ωλ
a,0] = 1.

This is very easy: consider simply Ωλ
a,0 = {∃ i ∈ Jλ

a , N
S
3aλ/4

(i) = 0}. Clearly, point

(i) is satisfied, since there is a site of Jλ
a on which no seed falls during [0, 3aλ/4]. Since

|Jλ
a | = nλ ∼ 1/(λaλ) = 1/νS((aλ,∞)), we deduce from (HS(∞)) that

Pr[Ωλ
a,0] =1− νS((0, 3aλ/4))

nλ = 1− (1− νS((3aλ/4,∞)))nλ

+1− e−νS((3aλ/4,∞))/νS((aλ,∞)) → 1

as λ→ 0, whence (ii).

Step 2. We now check that for all a ∈ R, all t ≥ 1/2, there exists an event Ωλ
a,t, depending

only on (NS
s (i), N

M,λ
s (i))i∈Jλ

a ,s∈[(t−1/2)aλ,(t+1/4)aλ] such that

(i) on Ωλ
a,t, a.s., there is i ∈ Jλ

a such that ηλaλs(i) = 0 for all s ∈ [t, t+ 1/4];

(ii) qλ := Pr[Ωλ
a,t] does not depend on t, a and q := lim infλ→0 qλ > 0.

This is much more delicate. We put kλ = ,1/νS((3aλ/8,∞))-. Observe that due to
(HS(∞)), kλ << nλ = ,1/νS((aλ,∞))-

We introduce the event Ωλ
a,t on which (see Figure 7):

(a) we have ∆NM,λ
tM (iM ) > 0 for some iM ∈ [[,(a + 1/3)nλ-, ,(a + 2/3)nλ-]], some tM ∈

[(t− 1/12)aλ, taλ] and this is the only match falling in Jλ
a during [(t− 1/2)aλ, taλ];

(b) there are jg ∈ [[,anλ-, ,(a+ 1/4)nλ-]] and jd ∈ [[,(a + 3/4)nλ-, ,(a+ 1)nλ − 1-]] such
that NS

aλ(t+1/4)(jg)−NS
aλ(t−1/2)(jg) = NS

aλ(t+1/4)(jd)−NS
aλ(t−1/2)(jd) = 0;

(c) for all i ∈ [[iM − kλ, iM + kλ]], NS
aλ(t−1/12)(i)−NS

aλ(t−1/2)(i) > 0;

(d) there is j0 ∈ [[iM − kλ, iM + kλ]] such that NS
aλ(t+1/4)(j0)−NS

aλ(t−1/12)(j0) = 0.
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We first prove point (i), considering two cases.

• If the zone [[iM − kλ, iM + kλ]] is completely occupied at time tM−, then it burns at
time tM and since no seed falls on j0, which belongs to this zone, during [tM , aλ(t + 1/4)] ⊃
[aλt, aλ(t+ 1/4)], we deduce that ηλaλs(j0) = 0 for all s ∈ [t, t+ 1/4].

• Assume now that there is i0 ∈ [[iM − kλ, iM + kλ]] that is vacant at time tM−. Recall
that there is no fire in Jλ

a during [aλ(t− 1/2), tM) and that on each site of [[iM −kλ, iM +kλ]],
at least one seed falls during [aλ(t− 1/2), aλ(t− 1/12)] ⊂ [aλ(t− 1/2), tM ). Then necessarily,
a fire starting at some i′M /∈ Jλ

a at some time t′M ∈ [aλ(t − 1/2), tM ) has made vacant i0.
Assume e.g. that i′M < ,anλ- and observe that i′M < jg < i0. The fire (t′M , i′M ) has then
also necessarily made vacant jg. Since no seed falls on jg during [aλ(t− 1/2), aλ(t+1/4)], we
deduce that jg remains vacant during [t′M , aλ(t+ 1/4)] ⊃ [aλt, aλ(t+ 1/4)].

We now prove (ii). The quantity Pr[Ωλ
a,t] does obviously not depend on a ∈ R nor

on t ≥ 1/2 by invariance by spatial translation and by time stationarity. We infer from
Proposition 11.1 that for πM (ds, dx) a Poisson measure on [0,∞)×R with intensity measure
dsdx, the probability of (a) tends, as λ→ 0, to

q := Pr
(

πM ([t− 1/12, t]× [a+ 1/3, a+ 2/3]) = 1,

πM (([t− 1/2, t]× [a, a+ 1])\([t− 1/12, t]× [a+ 1/3, a+ 2/3])) = 0
)

,

(t  ,i  )M M

λ λM

(a+1)

j jg d[i  −  k  ,i  +  k  ]M

a

a

a

a

λ

λ

λ

λ

(t+1/4)

t

(t−1/12)

(t−1/2)
a (a+1/3) (a+2/3)nλ nλnλ nλ

Figure 7. The event Ωλ
a,t.

A match falls on iM at time tM , no seed fall on jg and jd during [aλ(t − 1/2), aλ(t + 1/4)]. All the
sites of [[iM − kλ, iM + kλ]] receive at least one seed during [aλ(t − 1/2), aλ(t − 1/12)]. Finally, there
is at least one site of [[iM − kλ, iM + kλ]] on which no seed falls during [aλ(t− 1/12), aλ(t + 1/4)].
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which is clearly positive. Next, the probability of (b) tends to 1. Indeed, treating e.g. the
case of jg, there holds, recalling that nλ + 1/νS((aλ,∞)),

Pr
[

∃ j ∈ [[,anλ-, ,(a+ 1/4)nλ-]], N
S
aλ(t+1/4)(j) = NS

aλ(t−1/2)(j)
]

+ 1− νS((0, 3aλ/4))
nλ/4

+ 1− e−νS((3aλ/4,∞))/[4νS((aλ,∞))],

which tends to 1 as λ→ 0 due to (HS(∞)). The probability of (c) (conditionally on (a)) also
tends to 1. Indeed, its value is nothing but

νS((0, 5aλ/12))
2kλ+1 + e−2νS((5aλ/12,∞))/νS((3aλ/8,∞))

which tends to 1 due to (HS(∞)), since 5/12 > 3/8. Finally, the probability of (d) (condi-
tionally on (a)) also tends to 1, since it equals

1− (νS((0, aλ/3)))
2kλ+1 + 1− e−2νS((aλ/3,∞))/νS((3aλ/8,∞)),

which tends to 1 due to (HS(∞)), since 1/3 < 3/8.

Step 3. Let now T > 0 be fixed. Set K = ,4T -. For a ∈ R, we set

Ω̃λ
a,T = Ωλ

a,0 ∩
K
⋂

k=2

Ωλ
a+(k−1),k/4.

Then it is clear from Steps 1 and 2 (observe that (K/4 + 1/4 ≥ T )) that

(i) on Ω̃λ
a,T , for all t ∈ [0, T ] there is i ∈ [[,anλ-, [[,(a+K)nλ − 1-]] such that ηλaλt(i) = 0;

(ii) pλ = Pr[Ω̃λ
a,T ] does not depend on a and p := lim infλ→0 pλ ≥ qK−1 > 0;

(iii) Ω̃λ
a,T depends only on (NS

aλt(i), N
M,λ
aλt (i))t∈[0,T+1],i∈[[*anλ+,*(a+K)nλ+−1]].

Step 4. We deduce that for all a ∈ Z, conditionally on Ωλ
a,T , clusters on the left of

,anλ-− 1 are never connected (during [0, aλT ]) to clusters on the right of ,(a+K)nλ-. Thus
on Ωλ

a,T , fires starting on the left of ,anλ- − 1 do not affect the zone [,(a +K)nλ-,∞) ∩ Z

and fires starting on the right of ,(a+K)nλ- do not affect the zone (−∞, ,anλ- − 1] ∩ Z.

We deduce that for A ≥ 2K, the FFA(µS , µλM )-process and the FF (µS , µλM )-process
coincide on IλA/2 during [0, aλT ] as soon as there are a1 ∈ [−A,−A/2−K] and a2 ∈ [A/2, A−K]

with Ωλ
a1,T

∩ Ωλ
a2,T

realized. Furthermore, Ωλ
a,T is independent of Ωλ

b,T for all a, b ∈ Z with
|a − b| > K. Thus we can bound the probabilities of the statement from below, for A ≥ 2K
and λ > 0 small enough (so that Pr[Ωλ

a,T ] ≥ p/2), by

1− Pr





*A/(2K)+
⋂

l=1

(Ωλ
*−A++lK,T )

c



− Pr





*A/(2K)+
⋂

l=1

(Ωλ
*A/2++lK,T )

c





≥1− 2(1− p/2)*A/(2K)+

≥1− 2(1− p/2)A/(2K)−1.

This concludes the proof: choose CT = 2/(1 − p/2) > 0 (p depends only on T ) and αT =
− log(1− p/2)/(2K) > 0. !

When β = BS, the proof is similar, but consequently simpler.

Proof when β = BS. Recall that aλ = TS and consider the true FF (µS , µλM )-process
(ηλt (i))t≥0,i∈Z. For a ∈ R, let Jλ

a = [[,anλ-, ,(a+ 1)nλ- − 1]].
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Step 1. We show here that for all a ∈ R, there exists an event Ωλ
a,0, depending only on

(NS
s (i), N

M,λ
s (i))i∈Jλ

a ,s∈[0,3aλ/4] such that

(i) on Ωλ
a,0, a.s., there is i ∈ Jλ

a such that ηλaλs(i) = 0 for all s ∈ [0, 3/4];

(ii) limλ→0 Pr[Ωλ
a,0] = 1.

This is done as in the case where β =∞. Consider simply Ωλ
a,0 = {∃ i ∈ Jλ

a , N
S
3aλ/4

(i) =

0}. Clearly, (i) is satisfied. To check (ii), recall that |Jλ
a | = nλ → ∞, whence Pr[Ωλ

a,0] =
1− νS((0, 3TS/4))nλ → 1, because νS((0, 3TS/4)) < 1 (recall that supp νS = [0, TS]).

Step 2. We now check that for all a ∈ R, all t ≥ 1/2, there exists an event Ωλ
a,t, depending

only on (NS
s (i), N

M,λ
s (i))i∈Jλ

a ,s∈[(t−1/4)aλ,(t+1/4)aλ] such that

(i) on Ωλ
a,t, a.s., there is i ∈ Jλ

a such that ηλaλs(i) = 0 for all s ∈ [t, t+ 1/4];

(ii) qλ := Pr[Ωλ
a,t] does not depend on t, a and q := lim infλ→0 qλ > 0.

This is much easier than in the case where β =∞: simply set

Ωλ
a,t =

{

∃ i0 ∈ Jλ
a , N

S
aλ(t+1/4)(i0) = NS

aλ(t−1/4)(i0), N
M,λ
aλt (i0) > NM,λ

aλ(t−1/4)(i0)
}

.

Point (i) is obviously checked since no seed fall on i0 during [aλ(t − 1/4), aλ(t + 1/4)] and a

match falls on i0 during [aλ(t − 1/4), aλt]. Next, Pr
(

Ωλ
a,t

)

= 1− r
|Jλ

a |
λ , where (for any i ∈ Z,

any t ≥ 1/4)

rλ :=Pr
[

NS
aλ(t+1/4)(i0) > NS

aλ(t−1/4)(i0) or N
M,λ
aλt (i0) = NM,λ

aλ(t−1/4)(i0)
]

=Pr
[

NS
aλ/2

(i) > 0 or NM
aλ/4

(i) = 0
]

=νS([0, TS/2]) + ν
λ
M ((TS/4,∞))− νS([0, TS/2])ν

λ
M ((TS/4,∞)).

Due to (HM ), νλM ((TS/4,∞)) = 1 − λ
∫ TS/4
0 µ1

M (λt,∞)dt = 1 − λTS(1 + ε(λ))/4, for some
function ε such that limλ→0 ε(λ) = 0. Setting α = νS([0, TS/2]) ∈ (0, 1), we deduce that

rλ =α+ 1− λTS(1 + ε(λ))/4 − α(1− λTS(1 + ε(λ))/4)

=1− λ(1 − α)TS(1 + ε(λ))/4.

Recalling that |Jλ
a | + nλ + 1/(λTS), we finally conclude that

Pr
(

Ωλ
a,t

)

+ 1− r1/(λTS)
λ → 1− e−(1−α)/4 =: q > 0.

Steps 3 and 4 are exactly the same as when β =∞. !

17. Localization of the results when β ∈ {∞, BS}

We recall that aλ, nλ are defined in (3.1) and (3.2). For A > 0, we set as usual Aλ = ,Anλ-
and IλA = [[−Aλ, Aλ]]. For i ∈ Z, we set iλ = [i/nλ, (i+ 1)/nλ).

In the next sections, we will prove the following localized version of Theorems 4.3 and 5.4,
separating the cases β =∞ and β = BS.

Proposition 17.1. Let β ∈ {∞, BS}. Assume (HM ) and (HS(β)). Let A > 0 be
fixed. Consider, for each λ ∈ (0, 1], the process (Zλ,A

t (x), Dλ,A
t (x))t≥0,x∈[−A,A] associated with

the FFA(µS , µλM )-process and the LFFA(β)-process (ZA
t (x), DA

t (x), H
A
t (x))t≥0,x∈[−A,A].
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(a) For any T > 0, any {x1, . . . , xp} ⊂ [−A,A], (Zλ,A
t (xi), D

λ,A
t (xi))t∈[0,T ],i=1,...,p goes

in law to (ZA
t (xi), DA

t (xi))t∈[0,T ],i=1,...,p, in D([0, T ],R × I ∪ {∅})p, as λ tends to 0. Here
D([0,∞),R× I ∪ {∅}) is endowed with the distance dT .

(b) For any {(t1, x1), . . . , (tp, xp)} ⊂ [0,∞) × [−A,A] (assume also that tk 2= 1 for k =

1, . . . , p if β = ∞), (Zλ,A
ti (xi), D

λ,A
ti (xi))i=1,...,p goes in law to (ZA

ti (xi), DA
ti(xi))i=1,...,p in

(R× I ∪ {∅})p. Here I ∪ {∅} is endowed with δ.
(c)-(i) Assume first that β =∞. For all t > 0,





ψS

(

1− 1/|CA(η
λ,A
aλt , 0)|

)

aλ
11{|CA(ηλ,A

aλt ,0)|≥1}



 ∧ 1

goes in law to ZA
t (0) as λ→ 0.

(c)-(ii) Assume next that β = BS. For any t ≥ 0, any k ∈ N, there holds

lim
λ→0

Pr
[

|CA(η
λ,A
TSt , 0)| = k

]

= E
[

qk(Z
A
t (0))

]

,

where qk(z) was defined, for k ≥ 0 and z ∈ [0, 1], in (5.2).

Assuming for a moment that this proposition holds true, we conclude the proofs of The-
orems 4.3 and 5.4.

Proof of Theorem 4.3. Let us first prove (a). Consider a continuous bounded functional
Ψ : D([0, T ],R× I ∪ {∅})p 0→ R. We have to prove that limλ→0 Gλ(Ψ) = 0, where

Gλ(Ψ) = E
[

Ψ
(

(Zλ
t (xi), D

λ
t (xi))t∈[0,T ],i=1,...,p

)]

− E
[

Ψ
(

(Zt(xi), Dt(xi))t∈[0,T ],i=1,...,p

)]

.

Using now Propositions 15.4 and 16.2, we observe that for any A > 2maxi=1,...,p |xi|, for all
λ ∈ (0, 1] small enough,

|Gλ(Ψ)|

≤2||Ψ||∞ Pr
[

(Zλ,A
t (x), Dλ,A

t (x))t∈[0,T ],x∈[−A/2,A/2] 2= (Zλ
t (x), D

λ
t (x))t∈[0,T ],x∈[−A/2,A/2]

]

+ 2||Ψ||∞Pr
[

(ZA
t (x), DA

t (x))t∈[0,T ],x∈[−A/2,A/2] 2= (Zt(x), Dt(x))t∈[0,T ],x∈[−A/2,A/2]

]

+
∣

∣

∣
E

[

Ψ
(

(Zλ,A
t (xi), D

λ,A
t (xi))t∈[0,T ],i=1,...,p

)]

− E
[

Ψ
(

(ZA
t (xi), D

A
t (xi))t∈[0,T ],i=1,...,p

)]

∣

∣

∣

≤4||Ψ||∞CT e
−αTA

+
∣

∣

∣
E

[

Ψ
(

(Zλ,A
t (xi), D

λ,A
t (xi))t∈[0,T ],i=1,...,p

)]

− E
[

Ψ
(

(ZA
t (xi), D

A
t (xi))t∈[0,T ],i=1,...,p

)]

∣

∣

∣
.

Thus Proposition 17.1-(a) implies that lim supλ→0 |Gλ(Ψ)| ≤ 4||Ψ||∞CT e−αTA. We conclude
by making A tend to infinity.

Point (b) is checked similarly. The proof of (c) is also similar, since Dλ
t (0) = Dλ,A

t (0)
implies that C(ηλaλt, 0) = CA(η

λ,A
aλt , 0). !

Proof of Theorem 5.4. It is deduced from Propositions 15.4, 16.2 and 17.1 exactly as Theorem
4.3. !

18. Convergence proof when β = BS

The aim of this section is to prove Proposition 17.1 in the case where β = BS and this
will conclude the proof of Theorem 5.4. In the whole section, we thus assume (HM ) and
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(HS(BS)). The parameters A > 0 and T > 0 are fixed and we omit the subscript/superscript
A in the whole proof.

We recall that aλ, nλ and mλ are defined in (3.1), (3.2) and (3.4). For A > 0, we set as
usual Aλ = ,Anλ- and IλA = [[−Aλ, Aλ]]. For i ∈ Z, we set iλ = [i/nλ, (i + 1)/nλ). For [a, b]
an interval of [−A,A] and λ ∈ (0, 1), we introduce, assuming that −A < a < b < A,

[a, b]λ =[[,nλa+mλ-+ 1, ,nλb−mλ- − 1]] ⊂ Z,(18.1)

[−A, b]λ =[[−Aλ, ,nλb −mλ- − 1]] ⊂ Z,

[a,A]λ =[[,nλa+mλ-+ 1, Aλ]] ⊂ Z,

For x ∈ (−A,A) and λ ∈ (0, 1), we introduce

xλ =[[,nλx−mλ- , ,nλx+mλ-]] ⊂ Z.(18.2)

18.1. Height of the barriers. We need the following lemma. It describes the time
needed for a destroyed (microscopic) cluster to be regenerated. Below, we assume that the
zone around 0 is completely vacant at time TSt0. Then we consider the situation where a
match falls on the site 0 at some time TSt1 ∈ (TSt0, TS(t0 + 1)) and we compute the law of
Θt0,t1 , which is the delay needed for the destroyed cluster to be fully regenerated (divided by
TS).

Lemma 18.1. Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t≥0,i∈Z. Let 0 ≤

t0 < t1 < t0 + 1 be fixed. Put ζt0,t(i) = min(NS
TS(t0+t)(i) − NS

TSt0
(i), 1) and ζt1,t(i) =

min(NS
TS(t1+t)(i)−NS

TSt1
(i), 1) for all t > 0 and i ∈ Z. Define

Θt0,t1 = inf {t > 0 : ∀ i ∈ C(ζt0,t1−t0 , 0), ζt1,t(i) = 1} ∈ [0, 1].

The the law of Θt0,t1 is θt1−t0 , recall Definition 5.1.

Proof. We can assume that t0 = 0 by stationarity. We put u = t1 = t1 − t0 and write,
for h ∈ [0, 1],

Pr [Θt0,t1 ≤ h] =Pr
[

NS
TSu(0) = 0

]

+
∑

k≥1

k−1
∑

j=0

Pr
[

NS
TSu(j − k) = NS

TSu(j + 1) = 0,

∀ i ∈ [[j − k + 1, j]], NS
TSu(i) > 0, NS

TS(u+h)(i) > NS
TSu(i)

]

.

This yields, since gS(u, h) = Pr[NS
TSu > 0, NS

TS(u+h) > NS
TSu

],

Pr [Θt0,t1 ≤ h] =νS([TSu, TS]) +
∑

k≥1

k[νS([TSu, TS])]
2[gS(u, h)]

k

=νS([TSu, TS]) +
[νS([TSu, TS])]2

[1− gS(u, h)]2
gS(u, h) = θu([0, h]),

recall Definition 5.1. !

18.2. Persistent effect of microscopic fires. Here we study the effect of microscopic
fires. First, they produce a barrier, and then, if there are alternatively macroscopic fires on
the left and right, they still have an effect. This phenomenon is illustrated on Figure 8 in the
case of the limit process.

We say that R = (ε; t0, t1, . . . , tK ; s) satisfies (PP ) (like ping-pong) if

(i) K ≥ 2, ε ∈ {−1, 1},
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(ii) 0 < t0 < t1 < · · · < tK < s < tK + 1,

(iii) for all k = 0, . . . ,K − 1, tk+1 − tk < 1,

(iv) t2 − t0 > 1 and for all k = 2, . . . ,K − 2, tk+2 − tk > 1.

We set εk = (−1)kε for k ≥ 0.

Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t≥0,i∈Z.

We introduce, for each λ ∈ (0, 1), the process (ζλ,Rt (i))t≥t0,i∈[[−mλ,mλ]] defined as follows:

• for all t ∈ [t0, t1), all i ∈ [[−mλ,mλ]], ζ
λ,R
t (i) = min(NS

TSt(i)−NS
TSt0

(i), 1),

• for all i ∈ [[−mλ,mλ]], ζ
λ,R
t1 (i) = ζλ,Rt1− (i)11{i!∈C(ζλ,R

t1−
,0)},

• for k = 1, . . . ,K − 1,
(∗) for all t ∈ (tk, tk+1), i ∈ [[−mλ,mλ]], ζ

λ,R
t (i) = min (ζλ,Rtk (i) +NS

TSt
(i)−NS

TStk
(i), 1),

(∗) for all i ∈ [[−mλ,mλ]], ζ
λ,R
tk+1

(i) = ζλ,Rtk+1−(i)11i!∈C(ζλ,R
tk+1−

,εkmλ)
,

• for all t ∈ (tK ,∞), i ∈ [[−mλ,mλ]], ζ
λ,R
t (i) = min (ζλ,RtK (i) +NS

TSt(i)−NS
TStK

(i), 1).

Roughly, we start at time TSt0 with an empty configuration and seeds fall according to
(NS

t (i))t≥0,i∈Z. At time TSt1, there is a (microscopic) fire at 0. Then alternatively on the left
and right, far away from 0 (at −mλ or at mλ), there is a (macroscopic) fire at time TStk.

t  , t 

t1

t +1
0

t 2

t +1 θ
0 1

t3

t +13

t  +12

t4

t +14

s

t0

Figure 8. Persistent effect of a microscopic fire. Here R = (1; t0, t1, t2, t3, t4; s).
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Consider the event

ΩS
R(λ) =

{

∃ −mλ < i1 < i2 < i3 < mλ : ζλ,Rs (i1) = ζ
λ,R
s (i3) = 0, ζλ,Rs (i2) = 1

}

.

Lemma 18.2. Let R = (ε; t0, t1, . . . , tK ; s) satisfy (PP ). Consider Θt0,t1 defined in

Lemma 18.1 and (ζλ,Rt (i))t≥t0,i∈[[−mλ,mλ]] defined above. There holds

lim
λ→0

Pr
(

ΩS
R(λ)

∣

∣Θt0,t1 > t2 − t1
)

= 1.

Proof. We assume that ε = 1 and that K is even for simplicity. Fix α = 1/K.

First fire. We put C = C(ζλ,Rt1− , 0). Since t1−t0 < 1 (so that each site is vacant with proba-
bility νS((TS(t1−t0), TS)) > 0 at time t1), the probability that C ⊂ [[−,αmλ-, ,αmλ-]] clearly
tends to 1. Thus the match falling at time t1 at 0 destroys nothing outside [[−,αmλ-, ,αmλ-]]
(with probability tending to 1).

Second fire. Since t2 − t0 > 1 (so that TS(t2 − t0) > TS), at least one seed has fallen,
during [t0, t2) on each site of [[,αmλ-+ 1,mλ]]. Thus the fire at time t2 destroys completely
this zone, but does not affect [[−mλ,−,αmλ- − 1]], because t2 < t1 + Θt0,t1 and because by
definition of Θt0,t1 , there is an empty site in C ⊂ [[−,αmλ-, ,αmλ-]] during [t1, t1 + Θt0,t1 ].

Third fire. Since t3 − t2 < 1, the probability that there is a vacant site in [[,αmλ- +
1, ,2αmλ-]] at time t3 tends to 1 as λ→ 0.

Next, all the sites of [[−mλ,−,αmλ- − 1]] are occupied at time t3− (because they have
not been affected by a fire and because t3− t0 > t2− t0 > 1). Thus the fire at time t3 destroys
the zone [[−mλ,−,αmλ- − 1]] and does not affect the zone [[,2αmλ-,mλ]].

Fourth fire. Since t4 − t3 < 1, the probability that there is (at least) a vacant site in
[[−,2αmλ-,−,αmλ- − 1]] at time t4 tends to 1 as λ→ 0.

Next, all the sites of [[,2αmλ-,mλ]] are occupied at time t4− (because they have not been
affected by a fire during (t2, t4) with t4 − t2 > 1). Thus the fire at time t4 destroys the zone
[[,2αmλ-,mλ]] and does not affect the zone [[−mλ,−,2αmλ-]].

Last fire and conclusion. Iterating the procedure, we see that with a probability tending
to 1 as λ→ 0, the fire at time tK destroys the zone [[,(Kα/2)mλ-,mλ]] = [[,mλ/2-,mλ]].

Then one easily concludes: since 0 < s − tK < 1, the probability that there is at least
one site in [[,mλ/2-, ,2mλ/3-]] with no seed falling during [tK , s] tends to 1, the probability
that there is at least one site in [[,2mλ/3-+ 1, ,5mλ/6-]] with at least one seed falling during
[tK , s] tends to 1, and the probability that there is at least one site in [[,5mλ/6-+1,mλ]] with
no seed falling during [tK , s] tends to 1. !

18.3. The coupling. We are going to construct a coupling between the FFA(µS , µλM )-
process (on the time interval [0, TST ]) and the LFFA(BS)-process (on [0, T ]).

First, we couple a family of i.i.d. SR(µλM )-processes (NM,λ
t (i))t≥0,i∈Z with a Poisson

measure πM (dt, dx) on [0, T ]× [−A,A] with intensity measure dtdx as in Proposition 11.1.

We call n := πM ([0, T ]×[−A,A]) and we consider the marks (Tq, Xq)q=1,...,n of πM ordered
in such a way that 0 < T1 < · · · < Tn < T .

Next, we introduce some i.i.d. families of i.i.d. SR(µS)-processes (NS,q
t (i))t≥0,i∈Z, for

q = 0, 1, . . . , independent of πM and (NM,λ
t (i))t≥0,i∈Z.
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Then we build a family of i.i.d. SR(µS)-processes, independent of (NM,λ
t (i))t≥0,i∈Z and

of πM , as follows.

• For q ∈ {1, . . . , n}, for all i ∈ (Xq)λ (recall that (Xq)λ = [[,nλXq−mλ-, ,nλXq +mλ-]])
set (NS,λ

t (i))t≥0 = (NS,q
t (i− ,nλXq-))t≥0.

(We have a problem if i belongs to (Xq)λ ∩ (Xr)λ for some q < r. Then set e.g.

(NS,λ
t (i))t≥0 = (NS,q

t (i − ,nλXq-))t≥0. This will occur with a very small probability, so
that this choice is not important).

• For all other i ∈ Z set (NS,λ
t (i))t≥0 = (NS,0

t (i))t≥0.

The FFA(µS , µλM )-process (ηλt (i))t≥0,i∈Iλ
A
is built upon the seed processes (NS,λ

t (i))t≥0,i∈Z

and match processes (NM,λ
t (i))t≥0,i∈Z.

The advantage of the previous construction is the following. When a match falls at some
Xq for the LFFA(BS)-process, it will fall at ,nλXq- in the discrete process, and thus if it is
microscopic, it will involve the same seed processes for all values of λ.

It also considerably simplifies the dependence/independence considerations.

Finally, we build the LFFA(BS)-process. We consider the Poisson measure πM previously
introduced, and for all 0 < t0 < t1 < t0+1, for all q = 1, . . . , n, we consider Θq

t0,t1 defined from

(NS,q
t (i))t≥0,i∈Z as in Lemma 18.1. We define (Zt(x), Dt(x), Ht(x))t∈[0,T ],x∈[−A,A] as follows:

Algorithm 18.3. Consider the marks (Tk, Xk)k=1,...,n of πM in [0, T ] × [−A,A],
ordered chronologically and set T0 = 0.

Step 0. Put Z0(x) = H0(x) = 0 and D0(x) = {x} for all x ∈ [−A,A].

Assume that for some k ∈ {0, . . . , n − 1}, (Zt(x), Dt(x), Ht(x))t∈[0,Tk],x∈[−A,A] has been
built.

Step k+1. For t ∈ (Tk, Tk+1) and x ∈ [−A,A], put Zt(x) = min(1, ZTk(x) + t − Tk),
set Ht(x) = max(0, HTk(x) − t + Tk) and then define Dt(x) as in (15.1). Finally, build
(ZTk+1

(x), DTk+1
(x), HTk+1

(x)) as follows.

(i) If ZTk+1−(Xk+1) = 1, set HTk+1
(x) = HTk+1−(x) for all x ∈ [−A,A] and consider

[a, b] := DTk+1−(Xk+1). Set ZTk+1
(x) = 0 for all x ∈ (a, b) and ZTk+1

(x) = ZTk+1−(x) for all
x ∈ [−A,A] \ [a, b]. Set finally ZTk+1

(a) = 0 if ZTk+1−(a) = 1 and ZTk+1
(a) = ZTk+1−(a) if

ZTk+1−(a) < 1 and ZTk+1
(b) = 0 if ZTk+1−(b) = 1 and ZTk+1

(b) = ZTk+1−(b) if ZTk+1−(b) < 1.

(ii) If ZTk+1−(Xk+1) < 1, set HTk+1
(Xk+1) = Θk+1

Tk+1−ZTk+1−(Xk+1),Tk+1
, ZTk+1

(Xk+1) =

ZTk+1−(Xk+1) and (ZTk+1
(x), HTk+1

(x)) = (ZTk+1−(x), HTk+1−(x)) for all x ∈ [−A,A] \
{Xk+1}.

(iii) Using the values of (ZTk+1
(x), HTk+1

(x))x∈[−A,A], compute (DTk+1
(x))x∈[−A,A] as in

(15.1).

Lemma 18.4. The process (Zt(x), Dt(x), Ht(x))t∈[0,T ],x∈[−A,A] built in Algorithm 18.3
is a LFFA(BS)-process.

Proof. The only difference between algorithms 15.3 and 18.3 is that in Step k+1, point
(ii), we use Θk+1

Tk+1−ZTk+1−(Xk+1),Tk+1
instead of FS(ZTk+1−(Xk+1), Vk+1). But due to Lemma

18.1 and Definition 5.1, these two variables have the same law θZTk+1−(Xk+1) (conditionally

on Tk+1, Xk+1 and (Zt(x), Dt(x), Ht(x))t∈[0,Tk+1),x∈[−A,A]). Indeed, it suffices to use that in
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Algorithm 15.3, Vk+1 is independent of ZTk+1−(Xk+1), while in Algorithm 18.3, the family

(NS,k+1
t (i))t≥0,i∈Z is independent of (Tk+1, ZTk+1−(Xk+1)). !

Finally, we observe that (Zt(x), Dt(x), Ht(x))t∈[0,T ],x∈[−A,A] depends only on πM and on

((NS,q
t (i))t∈[0,T ],i∈Z)q≥1. It is independent of (N

S,0
t (i))t∈[0,T ],i∈Z.

18.4. A favorable event. First, we know from Proposition 11.1 that

ΩM
A,T (λ) :=

{

∀t ∈ [0, T ], ∀i ∈ IλA, ∆NM,λ
TSt (i) 2= 0 iff πM ({t}× iλ) 2= 0

}

satisfies limλ→0 Pr[ΩM
A,T (λ)] = 1. Next, we recall that the marks of πM are called (T1, X1),

. . . , (Tn, Xn) and are ordered chronologically. We introduce TM = {0, T1, . . . , Tn}, BM =
{X1, . . . , Xn}, as well as the set CM of connected components of [−A,A] \ BM (sometimes
referred to as cells).

For α > 0, we consider the event

ΩM (α) =

{

min
s,t∈TM ,s!=t

|t− s| ≥ α, min
x,y∈BM∪{−A,A},x !=y

|x− y| ≥ α,

}

,

which clearly satisfies limα→0 Pr[ΩM (α)] = 1. Observe that for any given α > 0, there is
λα > 0 such that for all λ ∈ (0,λα), on ΩM (α),

• for all x, y ∈ BM ∪ {−A,A} with x 2= y, xλ ∩ yλ = ∅,

• the family {cλ, c ∈ CM} ∪ {xλ, x ∈ BM} is a partition of IλA (recall (18.1) and (18.2)).

Indeed, it suffices that sup(0,λα)[mλ/nλ] < α/4.

Let q ∈ {1, . . . , n}. We call Uq the set of all possible R = (ε, t0, . . . , tK ; s) satisfying (PP )
with ε ∈ {−1, 1}, with {t0, . . . , tK , s} ⊂ TM and with Θq

t0,t1 > t2 − t1. We introduce, for

q = 1, . . . , n and R ∈ Uq, the event ΩS,q
R (λ) defined as in Subsection 18.2 with the SR(µS)-

processes (NS,q
t (i))t≥0,i∈Z. Then we put

ΩS
1 (λ) = ∩

n
q=1 ∩R∈Uq Ω

S,q
R (λ),

which satisfies limλ→0 Pr
(

ΩS
1 (λ)

)

= 1 thanks to Lemma 18.2 (since for each q, (NS,q
t (i))t≥0,i∈Z

is independent of πM and since conditionally on πM , the set Uq is finite).

We also consider the event ΩS
2 (λ) on which the following conditions hold: for all t1, t2 ∈ TM

with 0 < t2 − t1 < 1, for all q = 1, . . . , n, there are

−mλ < i1 < i2 < −mλ/2 < i3 < 0 < i4 < mλ/2 < i5 < i6 < mλ

such that

• for j = 1, 3, 4, 6, NS,q
TSt2

(ij)−NS,q
TSt1

(ij) = 0,

• for j = 2, 5, NS,q
TSt2

(ij)−NS,q
TSt1

(ij) > 0.

There holds limλ→0 Pr
(

ΩS
2 (λ)

)

= 1. Indeed, it suffices to prove that almost surely,
limλ→0 Pr

(

ΩS
2 (λ)|πM

)

= 1. Since there are a.s. finitely many possibilities for q, t1, t2 and

since πM is independent of (NS,q
t (i))t≥0,i∈Z, it suffices to work with a fixed q ∈ {1, . . . , n} and

some fixed 0 < t2 − t1 < 1.

Observe that for each i, Pr(NS,q
TSt2

(i) − NS,q
TSt1

(i) = 0) = νS((TS(t2 − t1), TS)) < 1 and

Pr(NS,q
TSt2

(i)−NS,q
TSt1

(i) > 0) = νS((0, TS(t2−t1))) < 1 by definition of TS and since t2−t1 < 1.
Recall also that mλ tends to infinity. Thus during [TSt1, TSt2], the probability that a seed
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falls on each site of [[−mλ + 1,−,mλ/4-]] tends to 0, the probability that no seed at all
falls on [[−,mλ/4- + 1,−,mλ/2- − 1]] tends to 0, the probability a seed falls on each site of
[[−,mλ/2-,−1]] tends to 0, etc.

We finally introduce the event

Ω(α,λ) = ΩM
A,T (λ) ∩ ΩM (α) ∩ ΩS

1 (λ) ∩ Ω
S
2 (λ).

We observe that Ω(α,λ) is independent of (NS,0
t (i))t≥0,i∈Z and that for any ε > 0, choosing

α > 0 small enough, Pr[Ω(α,λ)] > 1− ε for all λ > 0 small enough.

18.5. Heart of the proof. We now handle the main part of the proof.

Consider the LFFA(BS)-process. Observe that by construction, we have, for c ∈ CM and
x, y ∈ c, Zt(x) = Zt(y) for all t ∈ [0, T ], thus we can introduce Zt(c).

If x ∈ BM , it is at the boundary of two cells c−, c+ ∈ CM and then we set Zt(x−) = Zt(c−)
and Zt(x+) = Zt(c+) for all t ∈ [0, T ].

If x ∈ (−A,A) \ BM , we put Zt(x−) = Zt(x+) = Zt(x) for all t ∈ [0, T ].

For x ∈ BM and t ≥ 0 we set H̃t(x) = max(Ht(x), 1 − Zt(x), 1 − Zt(x−), 1 − Zt(x+)).
Observe that x is microscopic or acts like a barrier at time t if and only if H̃t(x) > 0.

Actually Zt(x) always equals either Zt(x−) or Zt(x+) and these can be distinct only at
a point where has occurred a microscopic fire (that is if x = Xq for some q ∈ {1, . . . , n}, if
ZTq−(Xq) < 1 and if t > Tq).

For all x ∈ (−A,A) and t ∈ [0, T ], we put

τt(x) = sup {s ≤ t : Zs(x+) = Zs(x−) = Zs(x) = 0} ∈ [0, t] ∩ TM .

For c ∈ CM and t ∈ [0, T ], we clearly have τt(x) = τt(y) for all x, y ∈ c, so that we can also
define τt(c).

Observe, using Algorithm 18.3, that

for x /∈ BM , Zt(x) = min (t− τt(x), 1) for all t ∈ [0, T ],(18.3)

for q = 1, . . . , n, Zt(Xq) = min (t− τt(Xq), 1) for all t ∈ [0, Tq).(18.4)

Indeed, τt(x) stands for the last time before t where x was involved in a macroscopic
fire (with the convention that a macroscopic fire occurs at time 0). Thus for x /∈ BM , if
t − τt(x) ≥ 1, Zt(x) = 1, and if t − τt(x) < 1, Zt(x) = t − τt(x). For x = Xq, the same
reasoning holds during [0, Tq).

We also define for all t ∈ [0, T ], all c ∈ CM and all x ∈ (−A,A) here (cλ is defined by
(18.1) and xλ by (18.2))

τλt (c) = sup
{

s ≤ t : ∀i ∈ cλ, η
λ
TSt−(i) = 1 and ηλTSt(i) = 0

}

∈ [0, t],

ρλt (c) = sup
{

s ≤ t : ∃i ∈ cλ, η
λ
TSt−(i) = 1 and ηλTSt(i) = 0

}

∈ [0, t],

τλt (x) = sup
{

s ≤ t : ∀i ∈ xλ, η
λ
TSt−(i) = 1 and ηλTSt(i) = 0

}

∈ [0, t]

with the convention that ηλ0−(i) = 1 for all i ∈ IλA. Observe that on ΩM
A,T (λ), we have

τλt (c), ρ
λ
t (c), τ

λ
t (x) ∈ [0, t] ∩ TM for all t ∈ [0, T ], all c ∈ CM and all x ∈ (−A,A).

For t ∈ [0, T ], consider the event

Ωλ
t =

{

∀s ∈ [0, t], ∀c ∈ CM , τλs (c) = ρ
λ
s (c) = τs(c) and ∀x ∈ BM , τλs (x) = τs(x)

}

.
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We define Ωλ
t− similarly, replacing [0, t] by [0, t). The aim of the subsection is to prove the

following result.

Lemma 18.5. For any α > 0, any λ ∈ (0,λα), Ωλ
T a.s. holds on Ω(α,λ).

Proof. We work on Ω(α,λ) and assume that λ ∈ (0,λα). Clearly, τ0(x) = τλ0 (x) = 0
and τ0(c) = τλ0 (c) = ρ

λ
0 (c) = 0 for all x ∈ BM , all c ∈ CM , so that Ωλ

0 a.s. holds. We will show
that for q = 0, . . . , n− 1, Ωλ

Tq
implies Ωλ

Tq+1
. This will prove that Ωλ

Tn
holds. The extension

to Ωλ
T will be straightforward (see Step 1 below).

We thus fix q ∈ {0, . . . , n − 1} and assume Ωλ
Tq
. We repeatedly use below that on the

time interval (Tq, Tq+1), there are no fires at all (in [−A,A]) for the LFFA(BS)-process and
no fires at all (in IλA) during (TSTq, TSTq+1) for the FFA(µS , µλM )-process (use ΩM

A,T (λ)).

Step 1. To start with, we observe that since there are no fires between TSTq and TSTq+1,
we have τλt (x) = τλTq

(x), τλt (c) = τλTq
(c) and ρλt (c) = ρλTq

(c) for all x ∈ BM , all c ∈ CM ,

all t ∈ [Tq, Tq+1) (because ηλTSt(i) is nondecreasing on [Tq, Tq+1) for all i ∈ IλA). By the
same way, τt(x) = τTq (x) and τt(c) = τTq (c) for all x ∈ BM , all c ∈ CM , all t ∈ [Tq, Tq+1)
(because Zt(x), Zt(x+), Zt(x−) are nondecreasing on [Tq, Tq+1) for all x ∈ [−A,A]). Hence for
t ∈ [Tq, Tq+1), Ωλ

t = Ωλ
Tq
. Thus Ωλ

Tq
implies Ωλ

Tq+1−
.

Step 2. Let c ∈ CM . Observe that on Ωλ
Tq+1−

, there holds, for all i ∈ cλ,

ηλTSTq+1−(i) = min
(

NS,0
TSTq+1−

(i)−NS,0
TSτTq (c)

(i), 1
)

.(18.5)

Indeed, seeds are falling on i according to (NS,0
t (i))t≥0. Furthermore, we know from Step 1

that ρλTq+1−(c) = τ
λ
Tq+1−(c) = τTq+1−(c) = τTq (c). By definition of τλTq+1−(c), η

λ
TSτTq

(i) = 0 for

all i ∈ cλ. And by definition of ρλTq+1−
(c), no fire affects cλ during (TSρλTq+1−

(c), TSTq+1).

Step 3. We show here that if ZTq+1−(Xq+1) < 1, there exist j1, j2, j3, j4 ∈ (Xq+1)λ such
that j1 < j2 < ,nλXq+1- < j3 < j4 and ηλTSTq+1−

(j2) = ηλTSTq+1−
(j3) = 0 and ηλTSTq+1−

(j1) =

ηλTSTq+1−
(j4) = 1.

Recall that for i ∈ (Xq+1)λ, the seeds fall according to (NS,q+1
t (i−,nλXq+1-))t≥0. Recall

also that τλTq+1−
(Xq+1) = τTq+1−(Xq+1) (by Step 1), so that by definition, (Xq+1)λ is com-

pletely vacant at time TSτTq+1−(Xq+1). Recall finally that τTq+1−(Xq+1) ∈ TM (and so does
Tq+1).

Observe that by (18.4), ZTq+1−(Xq+1) < 1 implies that Tq+1−τTq+1−(Xq+1) < 1. Since we
work on ΩS

2 (λ), we know that there are some sites i1 < i2 < i3 < ,nλXq+1- < i4 < i5 < i6 in
(Xq+1)λ such that at least one seed has fallen on i2 and i5 and no seed has fallen on i1, i3, i4, i6
during [TSτTq+1−(Xq+1), TSTq+1). All this implies that ηλTSTq+1−(i2) = η

λ
TSTq+1−(i5) = 1 and

ηλTSTq+1−(i3) = η
λ
TSTq+1−(i4) = 0 (because the vacant sites i1, i6 protect the occupied sites i2, i4

from fires falling outside (Xq+1)λ and because no fire falls on (Xq+1)λ during [0, TSTq+1)).

Step 4. Next we check that if ZTq+1−(c) = 1 for some c ∈ CM , then ηλTSTq+1−
(i) = 1 for

all i ∈ cλ.

Recalling (18.3), we see that ZTq+1−(c) = 1 implies that Tq+1 − τTq+1−(c) ≥ 1 and thus
Tq+1 − τTq (c) ≥ 1 by Step 1. Using (18.5), we conclude that for all i ∈ cλ, ηλTSTq+1−

(i) =
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min(NS,0
TSTq+1−

(i)−NS,0
TSτTq (c)(i)

, 1) = 1 (at least one seed falls on each site during a time interval

of length greater than TS).

Step 5. We now prove that if H̃Tq+1−(x) = 0 for some x ∈ BM , then for all i ∈ xλ,
ηλTSTq+1−

(i) = 1.

Preliminary considerations. Let k ∈ {1, . . . , n} such that x = Xk, which is at the bound-
ary of two cells c−, c+ ∈ CM . We know that H̃Tq+1−(x) = 0, whence HTq+1−(x) = 0 and
ZTq+1−(x) = ZTq+1−(c+) = ZTq+1−(c−) = 1. This implies that Tq+1 ≥ 1, because Zt(x) = t
for all t < 1, all x ∈ [−A,A].

No fire has concerned (c−)λ during (TSρλTq+1−
(c−), TSTq+1) (by definition of ρλTq+1−

(c−)).

But Step 1 implies that ρλTq+1−
(c−) = τTq+1−(c−) ≤ Tq+1 − 1, because ZTq+1−(c−) = 1, see

(18.3). Using a similar argument for c+, we conclude that no match falling outside (Xk)λ can
affect (Xk)λ during (TS(Tq+1 − 1), TSTq+1) (because to affect (Xk)λ, a match falling outside
(Xk)λ needs to cross c− or c+).

Case 1. First assume that k ≥ q + 1. Then we know that no fire has fallen on (Xk)λ
during [0, TSTq+1). Due to the preliminary considerations, we deduce that no fire at all has
concerned (Xk)λ during (TS(Tq+1 − 1), TSTq+1). This time interval is of length greater than
TS . Thus (Xk)λ is completely occupied at time TSTq+1−.

Case 2. Assume that k ≤ q and ZTk−(Xk) = 1, so that there already has been a macro-
scopic fire in (Xk)λ (at time aλTk). Since then ZTk(Xk) = 0 and ZTq+1−(Xk) = 1, we deduce
that Tq+1 − Tk ≥ 1. We conclude as in Case 1 that no fire at all has concerned (Xk)λ during
(TS(Tq+1 − 1), TSTq+1), which implies the claim.

Case 3. Assume that k ≤ q and ZTk−(Xk) < 1 and Tq+1 − Tk ≥ 1. Then there already
has been a microscopic fire in (Xk)λ (at time TSTk). But there are no fire in (Xk)λ during
(TSTk, TSTq+1) and we conclude as in Case 2.

Case 4. Assume finally that k ≤ q and ZTk−(Xk) < 1 and Tq+1−Tk < 1. There has been
a microscopic fire in (Xk)λ (at time TSTk). Since HTq+1−(Xk) = 0, we deduce (see Algorithm
18.3) that Tk +Θk

Tk−ZTk−(Xk),Tk
≤ Tq+1.

Consider the zone C(ηλTSTk−
, ,nλXk-) destroyed by the match falling at time TSTk. This

zone is completely occupied at time TS(Tk + ΘTk−ZTk−(Xk),Tk
) ≤ TSTq+1 by definition of

ΘTk−ZTk−(Xk),Tk
, see Lemma 18.1, using here again the preliminary considerations.

We deduce that C(ηλTSTk−
, ,nλXk-) is completely occupied at time TSTq+1−.

Consider now i ∈ (Xk)λ \ C(ηλTSTk−
, ,nλXk-). Then i has not been killed by the fire

falling on ,nλXk-. Thus i cannot have been killed during (TS(Tq+1 − 1), TSTq+1) (due to the
preliminary considerations) and is thus occupied at time TSTq+1−. This implies the claim.

Step 6. Let us now prove that if H̃Tq+1−(x) > 0 and ZTq+1−(x+) = 1 for some x ∈ BM ,
there are i1, i2 ∈ xλ such that i1 < i2 and ηλTSTq+1−

(i1) = 1, ηλTSTq+1−
(i2) = 0.

Recall that x is at the boundary of two cells c−, c+. We have either HTq+1−(x) > 0 or
ZTq+1−(c−) < 1 (because ZTq+1−(c+) = 1 by assumption). Clearly, x = Xk for some k ≤ q,
with ZTk−(Xk) < 1 (else, we would have Ht(x) = 0 and Zt(c−) = Zt(c+) for all t ∈ [0, Tq+1)).
Thus, recalling (18.4), Tk − ZTk−(Xk) = τTk−(Xk) = τλTk−

(Xk), so that (Xk)λ is completely
empty at time TS(Tk − ZTk−(Xk)).
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Case 1. Assume first that HTq+1−(x) > 0. Then by construction, see Algorithm 18.3,
Tk +Θk

Tk−ZTk−(Xk),Tk
> Tq+1 > Tk.

Consider C = C(ηλTSTk−
, ,nλXk-). By ΩS

2 (λ), we have

C ⊂ [[,nλXk −mλ/2-, ,nλXk +mλ/2-]],

because Tk − ZTk−(Xk) and Tk belong to TM and 0 < ZTk−(Xk) < 1.

The component C is destroyed at time TSTk. By Definition of Θk
Tk−ZTk−(Xk),Tk

, see

Lemma 18.1, we deduce that C is not completely occupied at time TSTq+1 < TS(Tk +
Θk

Tk−ZTk−(Xk),Tk
). Consequenty, there is i2 ∈ [[,nλXk −mλ/2-, ,nλXk + mλ/2-]] such that

ηλTSTq+1−
(i2) = 0.

Finally, using again ΩS
2 (λ) there is necessarily (at least) one seed falling on a site in

[[,nλXk − mλ + 1-, ,nλXk − mλ/2 − 1-]] ⊂ (Xk)λ during (TSTq, TSTq+1). This shows the
result.

Case 2. Assume next that HTq+1−(x) = 0 and that Tq+1 − [Tk − ZTk−(Xk)] < 1. Recall
that (Xk)λ is completely empty at time TS(Tk − ZTk−(Xk)). Since Tk − ZTk−(Xk) and Tq+1

belong to TM and since their difference is smaller than 1 by assumption, ΩS
2 (λ) guarantees us

the existence of i1 < i2 < i3, all in (Xk)λ, such that (at least) one seed falls on i2 and no
seed fall on i1 nor on i3 during (TS(Tk −ZTk−(Xk)), TSTq+1). One easily concludes that i2 is
occupied and i3 is vacant at time TSTq+1−, as desired.

Case 3. Assume finally that HTq+1−(x) = 0 and that Tq+1 − [Tk − ZTk−(Xk)] ≥ 1. Since
HTq+1−(x) = 0, there holds ZTq+1−(c−) < 1 = ZTq+1−(c+) and Tk +Θk

Tk−ZTk−(Xk),Tk
≤ Tq+1.

We aim to use the event ΩS
1 (λ). We introduce

t0 = Tk − ZTk−(Xk) = τTk−(Xk) = τ
λ
Tk−(Xk).

Observe that τTk−(c−) = τTk−(c+) = τTk−(x) because there is no match falling (exactly) on
x during [0, Tk). Thus Zt0(x) = Zt0(c−) = Zt0(c+) = 0.

Set now t1 = Tk and s = Tq+1. Observe that 0 < t1 − t0 < 1 (because ZTk−(Xk) <
1). Necessarily, Zt(c−) has jumped to 0 at least one time between t0 and Tq+1− (else, one
would have ZTq+1−(c−) = 1, since Tq+1 − t0 ≥ 1 by assumption) and this jump occurs after
t0 + 1 > t1 (since a jump of Zt(c−) requires that Zt(c−) = 1, and since for all t ∈ [t0, t0 + 1),
Zt(c−) = t− t0 < 1).

We thus may denote by t2 < t3 < · · · < tK , for some K ≥ 2, the successive times of jumps
of the process (Zt(c−), Zt(c+)) during (t0 + 1, s). We also put ε = 1 if t2 is a jump of Zt(c+)
and ε = −1 else. Then we observe that Zt(c−) and Zt(c+) do never jump to 0 at the same
time during (t0, s] (else, it would mean that they are killed by the same fire at some time u,
whence necessarily, Hr(u) = 0 and Zr(c−) = Zr(c+) for all r ∈ (u, s]).

Furthermore, there is always at least one jump of (Zt(c−), Zt(c+)) in any time interval of
length 1 (during [t0 + 1, s)), because else, Zt(c+) and Zt(c−) would both become equal to 1
and thus would remain equal forever.

Finally, observe that two jumps of Zt(c−) cannot occur in a time interval of length 1 (since
a jump of Zt(c−) requires that Zt(c−) = 1) and the same thing holds for c+.

Consequently, the family R = {ε, t0, . . . , tK ; s} necessarily satisfies the condition (PP ).
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Next, t2− t1 < Θk
Tk−ZTk−(Xk),Tk

= Θk
t0,t1 , because else, we would have Ht2−(Xk) = 0 and

thus the fire destroying c+ (or c−) at time t2 would also destroy c− (or c+), we thus would
have Zt2(c+) = Zt2(c−) = 0, so that Zt(c+) and Zt(c−) would remain equal forever.

Finally, we check that (ηλTSt(i))t≥t0,i∈xλ = (ζλ,R,k
t (i + ,nλx-))t≥t0,i∈xλ , this last process

being built with the family of seed processes (NS,k
TSt(i))t≥t0,i∈xλ as in Subsection 18.2. Both

are empty at time t0. Seeds fall according to the same processes. In both cases, a first match
falls on ,nλx- at time t1. In both cases (say that ε = 1) a fire destroys the occupied connected
component containing ,nλx-+mλ at time t2 (by definition for ζλ,R and since Zt2−(c+) = 1
implies, exactly as in Step 4, that ηλTSt2−

(i) = 1 for all i in (c+)λ, so that the fire destroying
c+ at time t2 also destroys the occupied connected component around ,nλx- +mλ, which is
at the boundary of c+). And so on.

We thus can use ΩS
1 (λ) and conclude that there are some sites i1 < i2 in xλ with

ηλTSTq+1−
(i1) = 1 and ηλTSTq+1−

(i2) = 0 as desired.

Step 7. We finally conclude the proof. We put z := ZTq+1−(Xq+1) and consider separately
the cases where z ∈ (0, 1) and z = 1. Observe that z = 0 never happens, since by construction,
ZTq+1−(Xq+1) = min(ZTq (Xq+1) + (Tq+1 − Tq), 1) > 0 and since Tq+1 > Tq.

Case z ∈ (0, 1). Then in the LFFA(BS)-process, see Algorithm 18.3, ZTq+1
(x) =

ZTq+1−(x) > 0 for all x ∈ [−A,A], whence τTq+1
(x) = τTq+1−(x) and τTq+1

(c) = τTq+1−(c)
for all x ∈ BM , all c ∈ CM .

Using Step 3, we see that the match falling on ,nλXq+1- at time TSTq+1 destroys nothing
outside [[j2+1, j3−1]]. As a conclusion, we obviously have τλTq+1

(x) = τλTq+1−
(x) and ρλTq+1

(c) =

τλTq+1
(c) = τλTq+1−

(c) for all x ∈ BM \ {Xq+1} and all c ∈ CM . There also holds τλTq+1
(Xq+1) =

τλTq+1−
(x) because j1 (see Step 3), which is occupied at time TSTq+1− and not killed at time

TSTq+1 (thanks to j2), does belong to (Xq+1)λ.

We conclude that when z ∈ (0, 1), Ωλ
Tq+1−

implies Ωλ
Tq+1

. Using Step 1, we deduce that

Ωλ
Tq

implies Ωλ
Tq+1

when z ∈ (0, 1).

Case z = 1. Then there are a, b ∈ BM ∪ {−A,A} such that DTq+1−(Xq+1) = [a, b]. We
assume that a, b ∈ BM , the other cases being treated similarly. Recalling Algorithm 18.3, we
know that for all c ∈ CM with c ⊂ (a, b), ZTq+1−(c) = 1, for all x ∈ BM ∩(a, b), H̃Tq+1−(x) = 0,

while finally H̃Tq+1−(a) > 0 and H̃Tq+1−(b) > 0. For the LFFA(BS)-process, we have

(i) τTq+1
(c) = Tq+1 for all c ∈ CM with c ⊂ (a, b),

(ii) τTq+1
(x) = Tq+1 for all x ∈ BM ∩ (a, b),

(iii) τTq+1
(c) = τTq+1−(c) for all c ∈ CM with c ∩ (a, b) = ∅,

(iv) τTq+1
(x) = τTq+1−(x) for all x ∈ BM \ (a, b).

Next, using Steps 4, 5, using Step 6 for a (and a very similar result for b), we immediately
check that the fire occurring at ,nλXq+1- at time TSTq+1

• destroys completely all the cells c ∈ CM with c ⊂ (a, b),

• destroys completely all the zones xλ with x ∈ BM ∩ (a, b),

• does not destroy at all the cells c ∈ CM with c ∩ (a, b) = ∅ and the zones xλ with
x ∈ BM \ [a, b],
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• does not destroy completely aλ nor bλ.

Consequently, we have

(i) ρλTq+1
(c) = τλTq+1

(c) = Tq+1 for all c ∈ CM with c ⊂ (a, b),

(ii) τλTq+1
(x) = Tq+1 for all x ∈ BM ∩ (a, b),

(iii) ρλTq+1
(c) = ρλTq+1−

(c) and τλTq+1
(c) = τλTq+1−

(c) for all c ∈ CM with c ∩ (a, b) = ∅,

(iv) τλTq+1
(x) = τλTq+1−

(x) for all x ∈ BM \ (a, b).

We conclude that when z = 1, Ωλ
Tq+1−

implies Ωλ
Tq+1

. Using Step 1, we deduce that Ωλ
Tq

implies Ωλ
Tq+1

when z = 1. !

18.6. Conclusion. To achieve the proof, we will need the following result.

Lemma 18.6. Let (NS
t (i))t≥0,i∈Z be a family of i.i.d. SR(µS)-processes.

(i) Put Kλ
t = (2mλ + 1)−1|{i ∈ [[−mλ,mλ]] : NS

TSt(i) > 0}| and

Uλ
t =

(

ψS(Kλ
t )

TS

)

∧ 1,

recall Notation 2.5. Then for any T > 0, sup[0,T ] |U
λ
t − t ∧ 1| tends a.s. to 0 as λ tends to 0.

(ii) For any k ≥ 0, Pr[|C(min(NS
TSt, 1), 0)| = k] = qk(t∧1), where qk(z) was defined (5.2).

Proof. We start with (i). First observe that t 0→ Uλ
t and t 0→ t ∧ 1 are nondecreasing

and t 0→ t ∧ 1 is continuous. By the Dini Theorem, it suffices to prove that for all t ∈ [0, T ],
a.s., limUλ

t = t ∧ 1. To do so, observe that (2mλ + 1)Kλ
t has a binomial distribution with

parameters 2mλ + 1 and νS((0, TSt)). Thus Kλ
t tends a.s. to νS((0, TSt)). Hence Uλ

t tends
a.s. to (ψS(νS((0, TSt)))/TS) ∧ 1 = t ∧ 1 by definition of ψS .

We now check (ii). If t ≥ 1, then obviously, min(NS
TSt(i), 1) = 1 for all i ∈ Z, whence

|C(min(NS
TSt, 1), 0)| =∞ a.s. Consequently, Pr[|C(min(NS

TSt, 1), 0)| = k] = 0 = qk(1).

For t < 1, the result relies on a simple computation involving the i.i.d. random variables
min(NS

TSt(i), 1), which have a Bernoulli distribution with parameter νS((0, TSt)): if k = 0,
there holds

Pr[|C(min(NS
TSt, 1), 0)| = 0] = Pr[NTSt(i) = 0] = νS((TSt, TS)) = q0(t).

For k ≥ 1,

Pr[|C(min(NS
TSt, 1), 0)| = k]

=
k−1
∑

j=0

Pr
[

NS
TSt(j − k) = NS

TSt(j + 1) = 0, ∀i ∈ [[j − k + 1, j]], NS
TSt(i) = 1

]

=k[νS((TSt, TS))]
2[νS((0, TSt))]

k = qk(t),

which ends the proof. !

We finally give the

Proof of Proposition 17.1 when β = BS. Let us fix x0 ∈ (−A,A), t0 ∈ (0, T ] and ε > 0. We
will prove that with our coupling (see Subsection 18.3), there holds

(a) limλ→0 Pr
[

δ(Dλ
t0(x0), Dt0(x0)) > ε

]

= 0;
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(b) limλ→0 Pr
[

δT (Dλ(x0), D(x0)) > ε
]

= 0;

(c) limλ→0 Pr
[

sup[0,T ] |Z
λ
t (x0)− Zλ

t (x0)| ≥ ε
]

= 0;

(d) limλ→0 Pr
[

|C(ηλTSt0
, ,nλx0-)| = k

]

= E[qk(Zt(x0))].

Recall that qk(z) was defined, for k ≥ 0 and z ∈ [0, 1] in (5.2). These points will clearly
imply the result.

First, we introduce, for ζ > 0, the event Ωx0

A,T (ζ) on which x0 /∈ ∪n
q=1[Xq− ζ, Xq+ ζ]. The

probability of this event obviously tends to 1 as ζ → 0.

On Ωx0

A,T (ζ), for λ > 0 small enough (say, small enough such that 4mλ/nλ < ζ), ,nλx0- /∈
∪n
q=1(Xq)λ. We then call c0 ∈ CM the cell containing x0.

Step 1. We first show that (a) (which holds for an arbitrary value of t0 ∈ (0, T ]) implies
(b). Indeed, we have by construction, for any t ∈ [0, T ], δ(Dλ

t (x0), Dt(x0)) < 4A. Hence by
dominated convergence, (a) implies that limλ→0 E

[

δ(Dλ
t (x0), Dt(x0))

]

= 0, whence again by
dominated convergence, limλ→0 E

[

δT (Dλ(x0), D(x0))
]

= 0.

Step 2. Due to Lemma 18.5, we know that on Ω(α,λ) ∩ Ωx0

A,T (ζ), we have τλt (c0) =

ρλt (c0) = τt(x0) for all t ∈ [0, T ]. This implies that for all i ∈ (c0)λ, for all t ∈ [0, T ],

ηλTSt(i) = min(NS,0
TSt(i)−NS,0

TSτt(x0)
(i), 1).

We also recall that by construction, (τt(x0))t≥0 is independent of (NS,0
t (i))t≥0,i∈Z.

Step 3. Here we prove (d), for some fixed k ≥ 0. Let δ > 0 be fixed. We first consider

α0 > 0, ζ0 > 0 and λ0 > 0 such that for all λ ∈ (0,λ0), Pr
[

Ω(α0,λ) ∩ Ω
x0

A,T (ζ0)
]

> 1−δ. Then

we consider λk ≤ λ0 in such a way that for λ ∈ (0,λk), [[,nλx0-−k−1, ,nλx0-+k+1]] ⊂ (c0)λ
on Ωx0

A,T (ζ0) (it suffices that 2k < ζ0nλ for all λ ∈ (0,λk)).

We easily conclude: for λ ∈ (0,λk), recalling (18.3), using Lemma 18.6-(ii) together with
a (spatial and temporal) stationarity argument, using Step 2 and that (NS,0

t (i))t≥0,i∈Z is
independent of Ωx0

A,T (ζ) ∩ Ω(α,λ) and τt(x0), we obtain
∣

∣Pr
[

|C(ηλTSt, ,nλx0-)| = k
]

− E [qk(Zt(x0))]
∣

∣

=
∣

∣Pr
[

|C(ηλTSt, ,nλx0-)| = k
]

− E [qk(min(t− τt(x0), 1))]
∣

∣

≤Pr
[(

Ω(α,λ) ∩Ωx0

A,T (ζ)
)c]

< δ.

This concludes the proof of (d).

Step 4. We next prove (c). For δ > 0 fixed, we consider α0 > 0, ζ0 > 0 and λ0 > 0 be
as in Step 3. Consider the successive values 0 = s0 < s1 < · · · < sl < T of (τt(x0))t∈[0,T ]. Set
also sl+1 = T . Recall the definition of Zλ

t (x), see (3.5), and compare to Lemma 18.6-(i).

Let k ∈ {0, . . . , l} be fixed. Denote by (Uk,λ
t )t≥0 the process defined as in Lemma 18.6-(i)

with the seed process (NS,0
sk/TS+t(i−,nλx0-)−N

S,0
sk/TS

(i−,nλx0-))t≥0,i∈Z (this is indeed a family

of SR(µS)-processes by stationarity and since s1, . . . , sl are independent of (NS,0
t (i))t≥0,i∈Z).

Then due to Lemma 18.6-(i), for all λ > 0 small enough, say λ ∈ (0,λ1),

Pr

(

sup
[sk,sk+1)

|Uk,λ
t−sk − (t− sk) ∧ 1| ≥ ε

)

≤ δ.
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But on Ω(α,λ) ∩ Ωx0

A,T (ζ), we have Zλ
t (x0) = Uk,λ

t−sk for all t ∈ [sk, sk+1), see Step 2. It also
holds, recall (18.3), that Zt(x0) = (t− sk)∧ 1 for t ∈ [sk, sk+1). As a conclusion, for all λ > 0
small enough,

Pr

(

sup
[sk,sk+1)

|Zλ
t (x0)− Zt(x0)| ≥ ε

)

≤Pr
(

(Ω(α,λ) ∩ Ωx0

A,T (ζ))
c
)

+ Pr

(

sup
[sk,sk+1)

|Uk,λ
t−sk − (t− sk) ∧ 1| ≥ ε

)

≤ 2δ.

Observing finally that l ≤ πM ([0, T ]× (−A,A)) and that E[πM ([0, T ]× (−A,A))] = 2TA, we
easily deduce that for all λ > 0 small enough,

Pr

(

sup
[0,T ]

|Zλ
t (x0)− Zt(x0)| ≥ ε

)

≤ 2TAδ.

Point (c) immediately follows.

Step 5. It remains to prove (a). Let δ > 0. Put T ∗
M = TM ∪ {t0}. Define the events

Ω∗
M (α), ΩS,∗

1 (λ) and ΩS,∗
2 (λ) as ΩM (α), ΩS

1 (λ) and ΩS
2 (λ), replacing TM by T ∗

M . Define also
Ω∗(λ,α) = ΩM

A,T (λ) ∩ Ω
∗
M (α) ∩ ΩS,∗

1 (λ) ∩ ΩS,∗
2 (λ). Clearly, choosing α1 > 0 and ζ1 > 0 small

enough, we have Pr[Ω∗(λ,α1) ∩Ω
x0

A,T (ζ1)] ≥ 1− δ for all λ > 0 small enough, say λ ∈ (0,λ2).

On Ω∗(λ,α1) ∩ Ω
x0

A,T (ζ1), we can argue exactly as in the proof of Lemma 18.5 to check
that

(i) if Zt0(x0) < 1, then Dt0(x0) = {x0} and C(ηλTSt, ,nλx0-) ⊂ (x0)λ (see Step 3 of
the proof of Lemma 18.5), whence Dλ

t0(x0) ⊂ [x0 −mλ/nλ, x0 + mλ/nλ]. We deduce that
δ(Dt0(x0), Dλ

t0(x0)) ≤ 2mλ/nλ;

(ii) if Zt0(x0) = 1 and Dt0(x0) = [a, b] for some a, b ∈ BM ∪ {−A,A}, then

• for all c ∈ CM with c ⊂ [a, b], ηλTSt(i) = 1 for all i ∈ cλ (see Step 4 of the preceding
proof);

• for all x ∈ BM ∩ (a, b), ηλTSt(i) = 1 for all i ∈ xλ (see Step 5 of the preceding proof);

• there are i ∈ aλ and j ∈ bλ such that ηλTSt(i) = η
λ
TSt(j) = 0 (see Step 6 of the preceding

proof);

so that

[[,nλa-+mλ + 1, ,nλb- −mλ − 1]] ⊂ C(ηλTSt, ,nλx0-) ⊂ [[,nλa- −mλ, ,nλb-+mλ]],

and thus [a+mλ/nλ, b−mλ/nλ] ⊂ Dλ
t0(x0) ⊂ [a−mλ/nλ, b+mλ/nλ], whence as previously,

δ(Dt0(x0), Dλ
t0(x0)) ≤ 2mλ/nλ.

Thus for all λ ∈ (0,λ2), on Ω∗(λ,α1) ∩ Ω
x0

A,T (ζ1), we always have δ(Dt0(x0), Dλ
t0(x0)) ≤

2mλ/nλ. We conclude that for δ > 0, for all λ ∈ (0,λ2) small enough (so that 2mλ/nλ < ε),
there holds

Pr
[

δ(Dt0(x0), D
λ
t0(x0)) > ε

]

≤ Pr[(Ω∗(λ,α) ∩ Ωx0

A,T (ζ))
c] < δ.

This concludes the proof. !
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19. Convergence proof when β =∞

The aim of this section is to prove Proposition 17.1 in the case where β =∞ and this will
conclude the proof of Theorem 4.3. This section generalizes consequently [14, Section 4] and
the proof we present here is quite different and slightly less intricate. We follow essentially the
ideas of the previous section. Some points are easier (because the height of the barriers are
deterministic in the limit process), but some other points are more complicated (in particular,
the height of the barriers are not constant as a function of λ).

In the whole section, we assume (HM ) and (HS(∞)). The parameters A > 0 and T > 0
are fixed and we omit the subscript/superscript A in the whole proof.

We recall that aλ, nλ and mλ are defined in (3.1), (3.2) and (3.4). For A > 0, we set as
usual Aλ = ,Anλ- and IλA = [[−Aλ, Aλ]]. For i ∈ Z, we set iλ = [i/nλ, (i + 1)/nλ). For [a, b]
an interval of [−A,A] and λ ∈ (0, 1), we introduce, assuming that −A < a < b < A,

[a, b]λ =[[,nλa+mλ-+ 1, ,nλb−mλ- − 1]] ⊂ Z,(19.1)

[−A, b]λ =[[−Aλ, ,nλb −mλ- − 1]] ⊂ Z,

[a,A]λ =[[,nλa+mλ-+ 1, Aλ]] ⊂ Z,

For x ∈ (−A,A) and λ ∈ (0, 1), we introduce as usual

xλ =[[,nλx−mλ- , ,nλx+mλ-]] ⊂ Z.(19.2)

19.1. Speed of occupation. We start with some easy estimates.

Lemma 19.1. Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t≥0,i∈Z. Let a < b.

(i) For t < 1, limλ→0 Pr[∀i ∈ [[,amλ-, ,bmλ-]], NS
aλt(i) > 0] = 0.

(ii) For t ≥ 1, limλ→0 Pr[∀i ∈ [[,amλ-, ,bmλ-]], NS
aλt(i) > 0] = 1.

(iii) For t < 1, limλ→0 Pr[∀i ∈ [[,anλ-, ,bnλ-]], NS
aλt(i) > 0] = 0.

(iv) For t > 1, limλ→0 Pr[∀i ∈ [[,anλ-, ,bnλ-]], NS
aλt(i) > 0] = 1.

(v) For t > 0 and i ∈ Z, limλ→0 Pr[NS
aλt(i) > 0] = 1.

Proof. To check points (i) and (ii), it suffices to note that

νS((0, aλt))
(b−a)mλ ∼ e−(b−a)mλνS((aλt,∞)),

which tends to 0 if t < 1 (see (3.4)) and to 1 if t ≥ 1 (because then mλνS((aλt,∞)) ≤
mλνS((aλ,∞)) +mλ/nλ → 0). To check points (iii) and (iv), observe that

νS((0, aλt))
(b−a)nλ ∼ e−(b−a)nλνS((aλt,∞)) ∼ e−(b−a)νS((aλt,∞))/νS((aλ,∞))

tends to 0 if t < 1 and to 1 if t > 1 due to (HS(∞)). Finally, (v) follows from the fact that

1− νS((aλt,∞))

obviously tends to 1. !

19.2. Height of the barriers. We describe here the time needed for a destroyed (mi-
croscopic) cluster to be regenerated. Roughly, we assume that the zone around 0 is completely
vacant at time aλt0. Then we consider the situation where a match falls on the site 0 at some
time aλt1 ∈ (aλt0, aλ(t0 + 1)) and we denote by Θλ

t0,t1 the delay needed for the destroyed
cluster to be fully regenerated (divided by aλ). We show that Θλ

t0,t1 + t1− t0 when λ is small.
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Lemma 19.2. Consider a family of i.i.d. SR(µS)-processes (NS
t (i))t≥0,i∈Z. Let 0 ≤

t0 < t1 < t0 + 1 be fixed. Put ζλt0,t(i) = min(NS
aλ(t0+t)(i) − NS

aλt0(i), 1) and ζλt1,t(i) =

min(NS
aλ(t1+t)(i)−NS

aλt1(i), 1) for all t > 0 and i ∈ Z. Define

Θλ
t0,t1 = inf

{

t > 0 : ∀ i ∈ C(ζλt0,t1−t0 , 0), ζ
λ
t1,t(i) = 1

}

∈ [0, 1].

Then for all δ > 0,
lim
λ→0

Pr
[

|Θλ
t0,t1 − (t1 − t0)| ≥ δ

]

= 0.

Proof. We can assume that t0 = 0 by stationarity. We put u = t1 = t1 − t0. Exactly as
in the case where β = BS (see Subsection 18.1), we obtain, for h > 0,

Pr
[

Θλ
t0,t1 ≤ h

]

= νS((aλu,∞)) +
[νS((aλu,∞))]2

[1− gλS(u, h)]
2
gλS(u, h),

where
gλS(u, h) = Pr

[

NS
aλu(0) > 0, NS

aλ(u+h)(0) > NS
aλu(0)

]

.

For h > u, we observe that gλS(u, h) ≥ 1− νS((aλh,∞))− νS((aλu,∞)), whence

Pr
[

Θλ
t0,t1 ≤ h

]

≥

(

νS((aλu,∞))

νS((aλh,∞)) + νS((aλu,∞))

)2

[1− νS((aλh,∞))− νS((aλu,∞))],

which tends to 1 as λ→ 0 due to (HS(∞)), since aλ increases to infinity and since h > u.

For h < u, there holds gλS(u, h) ≤ 1− νS((aλh,∞)), so that

Pr
[

Θλ
t0,t1 ≤ h

]

≤ νS((aλu,∞)) +

(

νS((aλu,∞))

νS((aλh,∞))

)2

[1− νS((aλh,∞))],

which tends to 0 due to (HS(∞)) and since h < u. This concludes the proof. !

19.3. Persistent effect of microscopic fires. We handle a study similar to subsection
18.2.

Recall that R = (ε; t0, t1, . . . , tK ; s) satisfies (PP ) if

(i) K ≥ 2, ε ∈ {−1, 1},

(ii) 0 < t0 < t1 < · · · < tK < s < tK + 1,

(iii) for all k = 0, . . . ,K − 1, tk+1 − tk < 1,

(iv) t2 − t0 > 1 and for all k = 2, . . . ,K − 2, tk+2 − tk > 1,

and that we set εk = (−1)kε for k ≥ 0.

For a family of i.i.d. SR(µS)-processes (NS
t (i))t≥0,i∈Z, we introduce, for each λ ∈ (0, 1),

the process (ζλ,Rt (i))t≥t0,i∈[[−mλ,mλ]] defined as follows:

• for all t ∈ [t0, t1), all i ∈ [[−mλ,mλ]], ζ
λ,R
t (i) = min(NS

aλt(i)−NS
aλt0(i), 1),

• for all i ∈ [[−mλ,mλ]], ζ
λ,R
t1 (i) = ζλ,Rt1− (i)11{i!∈C(ζλ,R

t1−
,0)},

• for k = 1, . . . ,K − 1,
(∗) for all t ∈ (tk, tk+1), i ∈ [[−mλ,mλ]], ζ

λ,R
t (i) = min (ζλ,Rtk (i) +NS

aλt(i)−NS
aλtk(i), 1),

(∗) for all i ∈ [[−mλ,mλ]], ζ
λ,R
tk+1

(i) = ζλ,Rtk+1−(i)11i!∈C(ζλ,R
tk+1−

,εkmλ)
,

• for all t ∈ (tK ,∞), i ∈ [[−mλ,mλ]], ζ
λ,R
t (i) = min (ζλ,RtK (i) +NS

aλt(i)−NS
aλtK (i), 1).
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Consider the event

ΩS
R(λ) =

{

∃ −mλ < i1 < i2 < i3 < mλ : ζλ,Rs (i1) = ζ
λ,R
s (i3) = 0, ζλ,Rs (i2) = 1

}

.

Lemma 19.3. Let R = (ε; t0, t1, . . . , tK ; s) satisfy (PP ). For each λ ∈ (0, 1], consider
the process (ζλ,Rt (i))t≥t0,i∈[[−mλ,mλ]] defined above. If t2 − t1 < t1 − t0, there holds

lim
λ→0

Pr
(

ΩS
R(λ)

)

= 1.

Compare to Lemma 18.2: the condition Θt0,t1 > t2 − t1 is replaced by the condition
t1 − t0 > t2 − t1. This is very natural, in view of Lemma 19.2.

Proof. In view of Lemma 19.1, the proof is very similar to that of Lemma 18.2. We
assume that ε = 1 and that K is even for simplicity. Fix α = 1/K.

First fire. We put C = C(ζλ,Rt1− , 0). Since t1 − t0 < 1, C ⊂ [[−,αmλ-, ,αmλ-]] with
probability tending to 1 (use Lemma 19.1-(i) and space/time stationarity). Thus the match
falling at time t1 destroys nothing outside [[−,αmλ-, ,αmλ-]].

Second fire. Since t2 − t0 > 1, at least one seed has fallen, during [t0, t2) on each site of
[[,αmλ-+ 1,mλ]] with probability tending to 1 (use Lemma 19.1-(ii) and space/time station-
arity). Thus the fire at time t2 destroys completely the zone [[,αmλ-+ 1,mλ]]. Furthermore,
it does not affect [[−mλ,−,αmλ- − 1]] with probability tending to 1, because t2 < t1 +Θλ

t0,t1

with probability tending to 1 (Θλ
t0,t1 + t1− t0 by Lemma 19.2 and t2− t1 < t1− t0 by assump-

tion) and because there is an empty site in C ⊂ [[−,αmλ-, ,αmλ-]] during [t1, t1 +Θλ
t0,t1 ] (by

definition of Θλ
t0,t1).

Third fire. Since t3 − t2 < 1, the probability that there is a vacant site in [[,αmλ- +
1, ,2αmλ-]] at time t3 tends to 1 as λ→ 0 (use Lemma 19.1-(i) and space/time stationarity).

Next, all the sites of [[−mλ,−,αmλ-−1]] are occupied at time t3− with probability tending
to 1 (because they have not been affected by a fire during [t0, t3) and because t3−t0 > t2−t0 >
1, see Lemma 19.1-(ii)). Thus the fire at time t3 destroys the zone [[−mλ,−,αmλ- − 1]] and
does not affect the zone [[,2αmλ-,mλ]].

Last fire and conclusion. Iterating the procedure, we see that with a probability tending
to 1 as λ→ 0, the fire at time tK destroys the zone [[,(Kα/2)mλ-,mλ]] = [[,mλ/2-,mλ]].

Then one easily concludes: since 0 < s− tK < 1, the probability that there is at least one
site in [[,mλ/2-, ,2mλ/3-]] with no seed falling during [tK , s] tends to 1 (by Lemma 19.1-(i)),
the probability that there is at least one site in [[,2mλ/3- + 1, ,5mλ/6-]] with at least one
seed falling during [tK , s] tends to 1 (by Lemma 19.1-(v)), and the probability that there is at
least one site in [[,5mλ/6-+ 1,mλ]] with no seed falling during [tK , s] tends to 1 (by Lemma
19.1-(i)). !

19.4. The coupling. We are going to construct a coupling between the FFA(µS , µλM )-
process (on the time interval [0, aλT ]) and the LFFA(∞)-process (on [0, T ]).

First, we couple a family of i.i.d. SR(µλM )-processes (NM,λ
t (i))t≥0,i∈Z with a Poisson

measure πM (dt, dx) on [0, T ]× [−A,A] with intensity measure dtdx as in Proposition 11.1.

We call n := πM ([0, T ]×[−A,A]) and we consider the marks (Tq, Xq)q=1,...,n of πM ordered
in such a way that 0 < T1 < · · · < Tn < T .
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Next, we introduce some i.i.d. families of i.i.d. SR(µS)-processes (NS,q
t (i))t≥0,i∈Z, for

q = 0, 1, . . . , independent of πM and (NM,λ
t (i))t≥0,i∈Z.

Then we build a family of i.i.d. SR(µS)-processes (independent of (NM,λ
t (i))t≥0,i∈Z and

πM ) as follows.

• For q ∈ {1, . . . , n}, for all i ∈ (Xq)λ (recall that (Xq)λ = [[,nλXq−mλ-, ,nλXq+mλ-]]),
set (NS,λ

t (i))t≥0 = (NS,q
t (i− ,nλXq-))t≥0.

(In the rare case where i belongs to (Xq)λ ∩ (Xr)λ for some q < r, set e.g. (NS,λ
t (i))t≥0 =

(NS,q
t (i − ,nλXq-))t≥0. This will occur with a very small probability, so that this choice is

not important).

• For all other i ∈ Z set (NS,λ
t (i))t≥0 = (NS,0

t (i))t≥0.

The FFA(µS , µλM )-process (ηλt (i))t≥0,i∈Iλ
A
is built from the seed processes (NS,λ

t (i))t≥0,i∈Z

and from the match processes (NM,λ
t (i))t≥0,i∈Z.

Finally, we build the LFFA(∞)-process (Zt(x), Dt(x), Ht(x))t∈[0,T ],x∈[−A,A] from πM (use

Algorithm 18.3 replacing Θk+1
Tk+1−ZTk+1−(Xk+1),Tk+1

by ZTk+1−(Xk+1)) and observe that it is

independent of (NS,q
t (i))t∈[0,T ],i∈Z,q≥0.

19.5. A favorable event. First, we know from Proposition 11.1 that

ΩM
A,T (λ) :=

{

∀t ∈ [0, T ], ∀i ∈ IλA, ∆NM,λ
aλt (i) 2= 0 iff πM ({t}× iλ) 2= 0

}

satisfies limλ→0 Pr[ΩM
A,T (λ)] = 1. Next, we recall that the marks of πM are called (T1, X1),

. . . , (Tn, Xn) and are ordered chronologically. We introduce TM = {0, T1, . . . , Tn}, BM =
{X1, . . . , Xn}, as well as the set CM of connected components of [−A,A] \ BM (sometimes
referred to as cells).

We also introduce SM = {2t− s : s, t ∈ TM , s < t}, which has to be seen as the possible
limit values of t+Θλ

s,t + t+ t− s, recall Lemma 19.2.

For α > 0, we consider the event

ΩM (α) =
{

min
s,t∈TM∪SM ,s!=t

|t− s| ≥ α, min
s,t∈TM∪SM ,s!=t

|t− (s+ 1)| ≥ α,

min
x,y∈BM∪{−A,A},x !=y

|x− y| ≥ α
}

,

which clearly satisfies limα→0 Pr[ΩM (α)] = 1. As in the case β = BS, for any given α > 0,
there is λα > 0 such that for all λ ∈ (0,λα), on ΩM (α),

• for all x, y ∈ BM ∪ {−A,A}, with x 2= y, xλ ∩ yλ = ∅,

• the family {cλ, c ∈ CM} ∪ {xλ, x ∈ BM} is a partition of IλA (recall (19.1) and (19.2)).

Let q ∈ {1, . . . , n}. We call Uq the set of all possible R = (ε, t0, . . . , tK ; s) satisfying (PP )
with ε ∈ {−1, 1}, with {t0, . . . , tK , s} ⊂ TM and with t1 − t0 > t2 − t1. We introduce, for
q = 1, . . . , n and R ∈ Uq, the event ΩS,q

R (λ) defined as in Subsection 19.3 with the SR(µS)-

processes (NS,q
t (i))t≥0,i∈Z. Then we put

ΩS
1 (λ) = ∩

n
q=1 ∩R∈Uq Ω

S,q
R (λ),

which satisfies limλ→0 Pr
(

ΩS
1 (λ)

)

= 1 thanks to Lemma 19.3.
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We also consider the event ΩS
2 (λ) on which the following conditions hold: for all t1, t2 ∈

TM ∪ SM with 0 < t2 − t1 < 1, for all q = 1, . . . , n, there are

−mλ < i1 < i2 < −mλ/2 < i3 < 0 < i4 < mλ/2 < i5 < i6 < mλ

such that

• for j = 1, 3, 4, 6, NS,q
aλt2(ij)−NS,q

aλt1(ij) = 0,

• for j = 2, 5, NS,q
aλt2(ij)−NS,q

aλt1(ij) > 0.

There holds limλ→0 Pr
(

ΩS
2 (λ)

)

= 1. Indeed, it suffices to prove that almost surely,
limλ→0 Pr

(

ΩS
2 (λ)|πM

)

= 1. Since there are a.s. finitely many possibilities for q, t1, t2 and

since πM is independent of (NS,q
t (i))t≥0,i∈Z, it suffices to work with a fixed q ∈ {1, . . . , n} and

some fixed 0 < t2 − t1 < 1. The result then follows from Lemma 19.1-(i)-(v) together with
space/time stationarity.

Next we introduce the event ΩS
3 (λ) on which the following conditions hold: for all t1, t2 ∈

TM ∪ SM ,

• for all c ∈ CM , if 0 < t2 − t1 < 1, there is i ∈ cλ with NS,λ
aλt2(i)−NS,λ

aλt1(i) = 0;

• for all x ∈ BM , if 0 < t2 − t1 < 1, there is i ∈ xλ with NS,λ
aλt2(i)−NS,λ

aλt1(i) = 0;

• if t2 − t1 > 1, for all c ∈ CM , for all i ∈ cλ, N
S,λ
aλt2(i)−NS,λ

aλt1(i) > 0.

• if t2 − t1 > 1, for all x ∈ BM , for all i ∈ xλ, N
S,λ
aλt2(i)−NS,λ

aλt1(i) > 0.

There holds limλ→0 Pr
(

ΩS
3 (λ)

)

= 1. As previously, it suffices to work with some fixed
t1, t2, x ∈ (−A,A) and c = (a, b) ⊂ (−A,A). Observing that |xλ| ∼ 2mλ and that |cλ| ∼
(b− a)nλ, Lemma 19.1 and space/time stationarity shows the result.

We also need ΩS
4 (γ,λ), defined for γ > 0 as follows: for all q = 1, . . . , n, for all t0, t1 ∈ TM

with t0 < t1 < t0 + 1, there holds |Θq,λ
t0,t1 − (t1 − t0)| < γ. Here Θ

q,λ
t0,t1 is defined as in Lemma

19.2 with the seed processes family (NS,q
t (i))t≥0,i∈Z. Lemma 19.2 directly implies that for any

γ > 0, limλ→0 Pr[ΩS
4 (γ,λ)] = 1.

We finally introduce the event

Ω(α, γ,λ) = ΩM
A,T (λ) ∩ ΩM (α) ∩ ΩS

1 (λ) ∩ Ω
S
2 (λ) ∩ Ω

S
3 (λ) ∩Ω

S
4 (γ,λ).

We have shown that for any ε > 0, there exists α > 0 such that for any γ > 0, there holds
lim infλ→0 Pr[Ω(α, γ,λ)] > 1− ε.

19.6. Heart of the proof. We now handle the main part of the proof, following closely
Subsection 18.5.

Consider the LFFA(∞)-process. Observe that by construction, we have, for c ∈ CM and
x, y ∈ c, Zt(x) = Zt(y) for all t ∈ [0, T ], thus we can introduce Zt(c).

If x ∈ BM , it is at the boundary of two cells c−, c+ ∈ CM and then we set Zt(x−) = Zt(c−)
and Zt(x+) = Zt(c+) for all t ∈ [0, T ].

If x ∈ (−A,A) \ BM , we put Zt(x−) = Zt(x+) = Zt(x) for all t ∈ [0, T ].

For x ∈ BM and t ≥ 0 we set H̃t(x) = max(Ht(x), 1 − Zt(x), 1 − Zt(x−), 1− Zt(x+)).



94

Actually Zt(x) always equals either Zt(x−) or Zt(x+) and these can be distinct only at
a point where has occurred a microscopic fire (that is if x = Xq for some q ∈ {1, . . . , n} with
Tq < t and ZTq−(Xq) < 1).

For all x ∈ (−A,A) and t ∈ [0, T ], we put

τt(x) = sup {s ≤ t : Zs(x+) = Zs(x−) = Zs(x) = 0} ∈ [0, t] ∩ TM .

For c ∈ CM and t ∈ [0, T ], we can define τt(c) as usual.

Observe, using Algorithm 18.3, that as when β = BS,

for x /∈ BM , Zt(x) = min (t− τt(x), 1) for all t ∈ [0, T ],(19.3)

for q = 1, . . . , n, Zt(Xq) = min (t− τt(Xq), 1) for all t ∈ [0, Tq).(19.4)

We also define for all t ∈ [0, T ], all c ∈ CM and all x ∈ (−A,A)

τλt (c) = sup
{

s ≤ t : ∀i ∈ cλ, η
λ
aλt−(i) = 1 and ηλaλt(i) = 0

}

∈ [0, t],

ρλt (c) = sup
{

s ≤ t : ∃i ∈ cλ, η
λ
aλt−(i) = 1 and ηλaλt(i) = 0

}

∈ [0, t],

τλt (x) = sup
{

s ≤ t : ∀i ∈ xλ, η
λ
aλt−(i) = 1 and ηλaλt(i) = 0

}

∈ [0, t]

with the convention that ηλ0−(i) = 1 for all i ∈ IλA. Observe that on ΩM
A,T (λ), we have

τλt (c), ρ
λ
t (c), τ

λ
t (x) ∈ [0, t] ∩ TM for all t ∈ [0, T ], all c ∈ CM and all x ∈ (−A,A).

For t ∈ [0, T ], consider the event

Ωλ
t =

{

∀s ∈ [0, t], ∀c ∈ CM , τλs (c) = ρ
λ
s (c) = τs(c) and ∀x ∈ BM , τλs (x) = τs(x)

}

.

Lemma 19.4. Let α > γ > 0. For any λ ∈ (0,λα), Ωλ
T a.s. holds on Ω(α, γ,λ).

Proof. We work on Ω(α, γ,λ) and assume that λ ∈ (0,λα). Clearly, τ0(x) = τλ0 (x) = 0
and τ0(c) = τλ0 (c) = ρ

λ
0 (c) = 0 for all x ∈ BM , all c ∈ CM , so that Ωλ

0 a.s. holds. We will show
that for q = 0, . . . , n− 1, Ωλ

Tq
implies Ωλ

Tq+1
. This will prove that Ωλ

Tn
holds. The extension

to Ωλ
T will be straightforward (see Step 1 below).

We thus fix q ∈ {0, . . . , n − 1} and assume Ωλ
Tq
. We repeatedly use below that on the

time interval (Tq, Tq+1), there are no fires at all (in [−A,A]) for the LFFA(BS)-process and
no fires at all (in IλA) during (aλTq, aλTq+1) for the FFA(µS , µλM )-process (use ΩM

A,T (λ)).

Step 1. Exactly as in the proof of Lemma 18.5-Step 1, Ωλ
Tq

implies Ωλ
Tq+1−

.

Step 2. Exactly as in the proof of Lemma 18.5-Step 2, we observe that for c ∈ CM , on
Ωλ

Tq+1−
, there holds, for all i ∈ cλ,

ηλaλTq+1−(i) = min
(

NS,0
aλTq+1−

(i)−NS,0
aλτTq (c)

(i), 1
)

.(19.5)

Step 3. If ZTq+1−(Xq+1) < 1, there exist j1, j2, j3, j4 ∈ (Xq+1)λ such that j1 < j2 <
,nλXq+1- < j3 < j4 and ηλaλTq+1−(j2) = η

λ
aλTq+1−(j3) = 0 and ηλaλTq+1−(j1) = η

λ
aλTq+1−(j4) =

1. The proof is the same as Lemma 18.5-Step 3.

Step 4. Next we check that if ZTq+1−(c) = 1 for some c ∈ CM , then ηλ
aλTq+1−

(i) = 1 for
all i ∈ cλ.

Recalling (19.3), we see that ZTq+1−(c) = 1 implies that Tq+1 − τTq+1−(c) ≥ 1 and thus
Tq+1− τTq (c) ≥ 1 by Step 1. Using ΩM (α) and that Tq+1, τTq (c) ∈ TM , we deduce that Tq+1−
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τTq (c) > 1. Using (19.5), we conclude that for all i ∈ cλ, ηλaλTq+1−
(i) = min(NS,0

aλTq+1−
(i) −

NS,0
aλτTq (c)(i)

, 1) = 1 by ΩS
3 (λ).

Step 5. We now prove that if H̃Tq+1−(x) = 0 for some x ∈ BM , then for all i ∈ xλ,
ηλ
aλTq+1−

(i) = 1.

Preliminary considerations. Let k ∈ {1, . . . , n} such that x = Xk, which is at the bound-
ary of two cells c−, c+ ∈ CM . We know that H̃Tq+1−(x) = 0, whence HTq+1−(x) = 0 and
ZTq+1−(x) = ZTq+1−(c+) = ZTq+1−(c−) = 1. This implies that Tq+1 ≥ 1 (because Zt(x) = t
for all t < 1 and all x ∈ [−A,A]) and thus Tq+1 ≥ 1 + α due to ΩM (α).

No fire has concerned (c−)λ during (aλρλTq+1−
(c−), aλTq+1) (by definition of ρλTq+1−

(c−)).

But Step 1 implies that ρλTq+1−
(c−) = τTq+1−(c−) ≤ Tq+1 − 1 because ZTq+1−(c−) = 1,

see (19.3). Recalling ΩM (α), we deduce that ρλTq+1−
(c−) < Tq+1 − 1 − α. Using a similar

argument for c+, we conclude that no match falling outside (Xk)λ can affect (Xk)λ during
(aλ(Tq+1 − 1 − α), aλTq+1) (because to affect (Xk)λ, a match falling outside (Xk)λ needs to
cross c− or c+).

Case 1. First assume that k ≥ q + 1. Then we know that no fire has fallen on (Xk)λ
during [0, aλTq+1). Due to the preliminary considerations, we deduce that no fire at all has
concerned (Xk)λ during (aλ(Tq+1 − 1− α), aλTq+1). Using ΩS

3 (λ), we conclude that (Xk)λ is
completely occupied at time aλTq+1−.

Case 2. Assume that k ≤ q and ZTk−(Xk) = 1, so that there already has been a macro-
scopic fire in (Xk)λ (at time aλTk). Since ZTk(Xk) = 0 and ZTq+1−(Xk) = 1, we deduce that
Tq+1−Tk ≥ 1, whence Tq+1−Tk ≥ 1+α as usual. We conclude as in Case 1 that no fire at all
has concerned (Xk)λ during (TS(Tq+1 − 1− α), TSTq+1), which implies the claim by ΩS

3 (λ).

Case 3. Assume that k ≤ q and ZTk−(Xk) < 1 and Tq+1−Tk ≥ 1, whence Tq+1−Tk ≥ 1+α
due to ΩM (α). Then there already has been a microscopic fire in (Xk)λ (at time aλTk). But
there are no fire in (Xk)λ during (aλTk, aλTq+1) ⊃ (TS(Tq+1−1−α), TSTq+1) and we conclude
as in Case 2.

Case 4. Assume finally that k ≤ q and ZTk−(Xk) < 1 and Tq+1 − Tk < 1, whence
Tq+1 − Tk ≤ 1−α due to ΩM (α). There has been a microscopic fire in (Xk)λ (at time aλTk).
Since HTq+1−(Xk) = 0, we deduce (see Algorithm 18.3 and recall that Θk

Tk−ZTk−(Xk),Tk
is

replaced by ZTk−(Xk)) that Tk + ZTk−(Xk) ≤ Tq+1, whence Tk + ZTk−(Xk) ≤ Tq+1 − α by
ΩM (α) (SM was designed for that purpose).

Consider the zone C = C(ηλ
aλTk−

, ,nλXk-) destroyed by the match falling at time aλTk.

This zone is completely occupied at time aλ(Tk + Θk,λ
Tk−ZTk−(Xk),Tk

): this follows from the

definition of Θk,λ
Tk−ZTk−(Xk),Tk

, see Lemma 18.1 and from the preliminary considerations. Using

ΩS
4 (γ,λ), we deduce that Tk + Θk,λ

Tk−ZTk−(Xk),Tk
≤ Tk + ZTk−(Xk) + γ < Tq+1, since γ < α.

Hence C is completely occupied at time aλTq+1−.

Consider now i ∈ (Xk)λ \ C. Then i has not been killed by the fire starting at ,nλXk-.
Thus i cannot have been killed during (aλ(Tq+1 − 1 − α), aλTq+1) (due to the preliminary
considerations) and we conclude, using ΩS

3 (λ), that i is occupied at time aλTq+1−. This
implies the claim.
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Step 6. Let us now prove that if H̃Tq+1−(x) > 0 and ZTq+1−(x+) = 1 for some x ∈ BM ,
there are i1, i2 ∈ xλ such that i1 < i2 and ηλaλTq+1−(i1) = 1, ηλaλTq+1−(i2) = 0. Recall that x
is at the boundary of two cells c−, c+.

We have either HTq+1−(x) > 0 or ZTq+1−(c−) < 1 (because ZTq+1−(c+) = 1 by assump-
tion). Clearly, x = Xk for some k ≤ q, with ZTk−(Xk) < 1 (else, we would have Ht(x) = 0 and
Zt(c−) = Zt(c+) for all t ∈ [0, Tq+1)). Thus, recalling (19.4), Tk − ZTk−(Xk) = τTk−(Xk) =
τλTk−

(Xk), so that (Xk)λ is completely empty at time aλ(Tk − ZTk−(Xk)).

Case 1. Assume first that HTq+1−(x) > 0. Then by construction, see Algorithm 18.3 (with
ΘTk−ZTk−(Xk),Tk

replaced by ZTk−(Xk)), there holds Tk +ZTk−(Xk) > Tq+1 > Tk, whence by
ΩM (α), Tk + ZTk−(Xk) > Tq+1 + α > Tk + 2α.

Consider C = C(ηλ
aλTk−

, ,nλXk-). By ΩS
2 (λ), we have C ⊂ [[,nλXk −mλ/2-, ,nλXk +

mλ/2-]] (because (Xk)λ is completely empty at time aλ(Tk − ZTk−(Xk)), because Tk −
ZTk−(Xk) and Tk belong to TM and because 0 < ZTk−(Xk) < 1).

The component C is destroyed at time TSTk. By Definition of Θk,λ
Tk−ZTk−(Xk),Tk

, see

Lemma 19.2, we deduce that C is not completely occupied at time aλ(Tk +Θ
k,λ
Tk−ZTk−(Xk),Tk

).

But by ΩS
4 (γ,λ) we see that Θ

k,λ
Tk−ZTk−(Xk),Tk

≥ ZTk−(Xk)−γ, whence Tk+Θ
k,λ
Tk−ZTk−(Xk),Tk

≥

Tk +ZTk−(Xk)− γ > Tq+1 since γ < α. All this implies that C is not completely occupied at
time aλTq+1−.

Finally, using again ΩS
2 (λ) there is necessarily (at least) one seed falling on a site in

[[,nλXk − mλ + 1-, ,nλXk − mλ/2 − 1-]] ⊂ (Xk)λ during (aλTq, aλTq+1). This shows the
result.

Case 2. Assume next that HTq+1−(x) = 0 and that Tq+1 − [Tk − ZTk−(Xk)] < 1. Recall
that (Xk)λ is completely empty at time aλ(Tk − ZTk−(Xk)). Since Tk − ZTk−(Xk) and Tq+1

belong to TM and since their difference is smaller than 1 by assumption, ΩS
2 (λ) guarantees us

the existence of i1 < i2 < i3, all in (Xk)λ, such that (at least) one seed falls on i2 and no
seed fall on i1 nor on i3 during (aλ(Tk − ZTk−(Xk)), aλTq+1). One easily concludes that i2 is
occupied and i3 is vacant at time aλTq+1−, as desired.

Case 3. Assume finally that HTq+1−(x) = 0 and that Tq+1 − [Tk − ZTk−(Xk)] ≥ 1,
whence Tq+1 − [Tk − ZTk−(Xk)] ≥ 1 + α by ΩM (α). Since HTq+1−(x) = 0, there holds
ZTq+1−(c−) < 1 = ZTq+1−(c+) and Tk+ZTk−(Xk) ≤ Tq+1, so that Tk+ZTk−(Xk) ≤ Tq+1−α.

We aim to use the event ΩS
1 (λ). We introduce t0 = Tk − ZTk−(Xk) = τTk−(Xk) =

τλTk−
(Xk). Observe that τTk−(c−) = τTk−(c+) = τTk−(x) because there has been no fire

(exactly) at x during [0, Tk). Thus Zt0−(x) = Zt0−(x−) = Zt0−(x+) = 1 and Zt0(x) =
Zt0(c−) = Zt0(c+) = 0.

Set now t1 = Tk and s = Tq+1. Observe that 0 < t1 − t0 < 1. Necessarily, Zt(c−) has
jumped to 0 at least one time between t0 and Tq+1− (else, one would have ZTq+1−(c−) = 1,
since Tq+1 − t0 ≥ 1 by assumption) and this jump occurs after t0 + 1 > t1 (since a jump of
Zt(c−) requires that Zt(c−) = 1, and since for all t ∈ [t0, t0 + 1), Zt(c−) = t− t0 < 1).

We thus may denote by t2 < t3 < · · · < tK , for some K ≥ 2, the successive times of
jumps of the process (Zt(c−), Zt(c+)) during (t0 + 1, s). We also put ε = 1 if t2 is a jump
of Zt(c+) and ε = −1 else. Then we prove exactly as in Lemma 18.5-Step 6-Case 3 that
R = {ε, t0, . . . , tK ; s} necessarily satisfies the condition (PP ).
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Next, t2 − t1 < ZTk−(Xk) = t1 − t0, because else, we would have Ht2−(Xk) = 0 and thus
the fire destroying c+ (or c−) at time t2 would also destroy c− (or c+), we thus would have
Zt2(c+) = Zt2(c−) = 0, so that Zt(c+) and Zt(c−) would remain equal forever.

Finally, we check as in Lemma 18.5-Step 6-Case 3 that (ηλaλt(i))t≥t0,i∈xλ = (ζλ,R,k
t (i +

,nλx-))t≥t0,i∈xλ , this last process being built upon the family (NS,k
t (i))t≥t0,i∈xλ as in Subsec-

tion 19.3.

We thus can use ΩS
1 (λ) and conclude that there are some sites i1 < i2 in xλ with

ηλTSTq+1−
(i1) = 1 and ηλTSTq+1−

(i2) = 0 as desired.

Step 7. The conclusion follows from the previous steps exactly as in the proof of Lemma
18.5-Step 7: it suffices to replace everywhere TS by aλ. !

19.7. Conclusion. To achieve the proof, we will need the following result.

Lemma 19.5. Let (NS
t (i))t≥0,i∈Z be a family of i.i.d. SR(µS)-processes, and define

ζλt (i) = min(NS
aλt(i), 1).

(i) Put Kλ
t = (2mλ + 1)−1|{i ∈ [[−mλ,mλ]] : ζλt (i) > 0}| and

Uλ
t =

(

ψS(Kλ
t )

aλ

)

∧ 1,

recall Notation 2.5. Then for any ε > 0, any T > 0,

lim
λ→0

Pr

[

sup
[0,T ]

|Uλ
t − t ∧ 1| > ε

]

= 0.

(ii) Put also Cλ
t = C(ζλt , 0) and define

V λ
t =

(

a−1
λ ψS(1− 1/|Cλ

t |)11{|Cλ
t |>0}

)

∧ 1.

Then for any ε > 0, for all t ∈ [0, 1),

lim
λ→0

Pr
[

Cλ
t ⊂ [[−mλ,mλ]], |V

λ
t − t| < ε

]

= 1.

Proof. We split the proof into three steps.

Step 1. Here we show that for t ≥ 0 fixed, limλ→0 Pr
[

|Uλ
t − t ∧ 1| > ε

]

= 0.

Case 1. Assume first that t ≥ 1. Then Lemma 19.1-(ii) implies that limλ→0 Pr[Kλ
t = 1] =

1. But Kλ
t = 1 implies that Uλ

t = [ψS(1)/aλ] ∧ 1 = 1 (because ψS(1) =∞).

Case 2. Assume next that t < 1. Then the random variable Xλ
t = (2mλ + 1)Kλ

t has a
binomial distribution with parameters 2mλ+1 and νS((0, aλt)). Let ε ∈ (0, t) be fixed. Then,
using Bienaymé-Chebyshev’s inequality,

Pr[Kλ
t ≤νS((0, aλ(t− ε)))] = Pr[Xλ

t ≤ (2mλ + 1)νS((0, aλ(t− ε)))]

≤ Pr[|Xλ
t − (2mλ + 1)νS((0, aλt))| ≥ (2mλ + 1)νS((aλ(t− ε), aλt))]

≤
(2mλ + 1)νS((0, aλt))νS((aλt,∞))

(2mλ + 1)2ν2S((aλ(t− ε), aλt))

≤
νS((aλt,∞))

(2mλ + 1)ν2S((aλ(t− ε), aλt))
.
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This last quantity tends to 0. Indeed, (HS(∞)) implies that νS((aλ(t− ε), aλt)) ∼ νS((aλ(t−
ε),∞)) ≥ νS((aλt,∞)) and it suffices to use that mλνS((aλt,∞))→∞ by (3.4), since t < 1.

By the same way, for ε > 0,

Pr[Kλ
t ≥νS((0, aλ(t+ ε)))] = Pr[Xλ

t ≥ (2mλ + 1)νS((0, aλ(t+ ε)))]

≤ Pr[|Xλ
t − (2mλ + 1)νS((0, aλt))| ≥ (2mλ + 1)νS((aλt, aλ(t+ ε)))]

≤
(2mλ + 1)νS((0, aλt))νS((aλt,∞))

(2mλ + 1)2ν2S((aλt, aλ(t+ ε)))

≤
νS((aλt,∞))

(2mλ + 1)ν2S((aλt, aλ(t+ ε)))
,

which also tends to 0, because (HS(∞)) implies that νS((aλt, aλ(t+ ε))) ∼ νS((aλt,∞)), and
because mλνS((aλt,∞))→∞, since t < 1.

To conclude the step it suffices to note that for 0 < t − ε < t < t + ε < 1, Kλ
t ∈

(νS((0, aλ(t− ε))), νS((0, aλ(t+ ε)))) implies that Uλ
t ∈ (t− ε, t+ ε) by definition of ψS .

Step 2. Using a well suited version of the Dini theorem, we conclude the proof of (i).
Indeed, let ε > 0 and consider a subdivision 0 = t0 < t1 < · · · < tl = T , with ti+1 − ti < ε/2.
Using Step 1, we see that limλ→0 Pr[maxi=0,...,l |Uλ

ti − ti∧ 1| > ε/2] = 0. Observe that t 0→ Uλ
t

is a.s. nondecreasing and that t 0→ t∧1 is nondecreasing and Lipschitz continuous. We deduce
that sup[0,T ] |U

λ
t − t ∧ 1| ≤ ε/2 + maxi=0,...,l |Uλ

ti − ti ∧ 1|. One immediately concludes.

Step 3. It remains to prove (ii). Let thus t < 1 and ε > 0 be fixed. We can of course
assume that 0 < t− ε < t < t+ ε < 1.

First, limλ→0 Pr[Cλ
t ⊂ [[−mλ,mλ]]] = 1 due to Lemma 19.1-(i).

Next, each site is vacant with probability νS((aλt,∞)). It is thus classical that as λ→ 0,
νS((aλt,∞))|Cλ

t | goes in law to a random variable X with density xe−x11x>0. Indeed,

• for Yδ a geometric random variable with parameter δ, the random variable δYδ goes in
law, as δ → 0, to an exponentially distributed random variable with parameter 1;

• |Cλ
t | is the sum of two independent geometric random variables, both with parameter

νS((aλt,∞));

• xe−x11x>0 is the density of the sum of two independent exponentially distributed random
variables with parameter 1.

For δ > 0, consider 0 < a < 1 < b such that Pr[X ∈ (a, b))] ≥ 1− δ. Then

lim
λ→0

Pr[|Cλ
t | ∈ (a/νS((aλt,∞)), b/νS((aλt,∞))] ≥ 1− δ.

But due to (HS(∞)), |Cλ
t | ∈ (a/νS((aλt,∞)), b/νS((aλt,∞)) implies, if λ is small enough,

that |Cλ
t | ∈ (1/νS((aλ(t− ε),∞)), 1/νS((aλ(t+ ε),∞)), whence finally

V λ
t ∈ (a−1

λ ψS(νS((0, aλ(t− ε)))), a
−1
λ ψS(νS((0, aλ(t+ ε)))) = (t− ε, t+ ε).

We have proved that for all δ > 0, lim infλ→0 Pr[|V λ
t − t| < ε] ≥ 1 − δ, which concludes the

proof. !

We finally give the

Proof of Proposition 17.1 when β = ∞. Let us fix x0 ∈ (−A,A), t0 ∈ (0, T ] \ {1} and ε > 0.
We will prove that with our coupling (see Subsection 18.3), there holds
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(a) limλ→0 Pr
[

δ(Dλ
t0(x0), Dt0(x0)) > ε

]

= 0;

(b) limλ→0 Pr
[

δT (Dλ(x0), D(x0)) > ε
]

= 0;

(c) limλ→0 Pr
[

sup[0,T ] |Z
λ
t (x0)− Zt(x0)| ≥ ε

]

= 0;

(d) limλ→0 Pr
[

|Wλ
t0(x0)− Zt0(x0)| > ε

]

= 0, where

Wλ
t0(x0) =

(

ψS(1− 1/|CA(ηλaλt0 , ,nλx0-)|)11{|CA(ηλ
aλt0

,*nλx0+)|>0}

aλ

)

∧ 1.

These points will clearly imply the result.

First, we introduce, for ζ > 0, the event Ωx0

A,T (ζ) on which x0 /∈ ∪n
q=1[Xq− ζ, Xq+ ζ]. The

probability of this event obviously tends to 1 as ζ → 0.

On Ωx0

A,T (ζ), we have, for λ > 0 small enough (say, such that 4mλ/nλ < ζ), ,nλx0- /∈
∪n
q=1(Xq)λ. We then call c0 ∈ CM the cell containing x0.

Step 1. As in the case where β = BS, (a) implies (b) (the fact that t0 = 1 is excluded in
(a) is of course not a problem, because {1} is Lebesgue-negligible).

Step 2. Due to Lemma 19.4, we know that if 0 < γ < α, on Ω(α, γ,λ) ∩ Ωx0

A,T (ζ),

τλt (c0) = ρ
λ
t (c0) = τt(x0) for all t ∈ [0, T ]. This implies that for all i ∈ (c0)λ, for all t ∈ [0, T ],

ηλTSt(i) = min(NS,0
aλt(i)−NS,0

aλτt(x0)
(i), 1).

We also recall that by construction, (τt(x0))t≥0 is independent of (NS,0
t (i))t≥0,i∈Z.

Step 3. Here we prove (d). Let δ > 0 be fixed. We first consider α0 > 0, γ0 ∈ (0,α0),

ζ0 > 0 and λ0 > 0 such that for all λ ∈ (0,λ0), Pr
[

Ω(α0, γ0,λ) ∩ Ω
x0

A,T (ζ0)
]

> 1 − δ. Then

we consider λ1 ≤ λ0 in such a way that for λ ∈ (0,λ1), [[,nλx0- −mλ, ,nλx0-+mλ]] ⊂ (c0)λ
(this can be done properly by using Ωx0

A,T (ζ) and the fact that mλ/nλ → 0).

Introduce Cλ
t and V λ

t as in Lemma 19.5-(ii), using the seed processes (NS,λ
t+τt(x0)/aλ

(i +

,nλx0-)−NS
τt(x0)/aλ

(i+ ,nλx0-))t≥0,i∈Z.

Then by Step 2, we observe that Cλ
t0−τt(x0)

⊂ [[−mλ,mλ]] implies that, on Ω(α, γ,λ) ∩

Ωx0

A,T (ζ) and for λ < λ1, CA(ηλaλt0 , ,nλx0-) = {i+,nλx0- : i ∈ Cλ
t0−τt(x0)

}, whence Wλ
t0(x0) =

V λ
t0−τt0(x0)

. All this implies, using Lemma 19.5-(ii), that

lim inf
λ→0

Pr
[

|Wλ
t0(x0)− (t0 − τt0(x0))| < ε

∣

∣ t0 − τt0(x0) < 1
]

≥ 1− δ.

Recalling finally (19.3), we deduce that

lim inf
λ→0

Pr
[

|Wλ
t0(x0)− Zt0(x0)| < ε

∣

∣ t0 − τt0(x0) < 1
]

≥ 1− δ.

If now t0−τt0(x0) > 1, then Step 2 and ΩS
3 (λ) imply that (c0)λ is completely occupied at time

aλt0. Hence |C(ηλaλt0 , ,nλx0-)| ≥ |(c0)λ| + |c|nλ ≥ αnλ by ΩM (α). Consequently, Wλ
t0(x0) ≥

[a−1
λ ψS(1 − 1/(αnλ))] ∧ 1 + [a−1

λ ψS(1 − νS((aλ,∞))/α)] ∧ 1. For ε > 0, νS((aλ,∞))/α ≤
νS(((1 − ε)aλ,∞)) for all λ small enough: use (HS(∞)).
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Thus for all λ small enough, on Ω(α, γ,λ) ∩ Ωx0

A,T (ζ), we have Wλ
t0(x0) ≥ [a−1

λ ψS(1 −
νS(((1 − ε)aλ,∞)))] ∧ 1 = 1− ε by definition of ψS . Thus

lim inf
λ→0

Pr
[

Wλ
t0(x0) ∈ (1− ε, 1]

∣

∣ t0 − τt0(x0) > 1
]

≥ 1− δ.

Recalling (19.3), we deduce that

lim inf
λ→0

Pr
[

|Wλ
t0(x0)− Zt0(x0)| < ε

∣

∣ t0 − τt0(x0) > 1
]

≥ 1− δ.

Finally, we observe that a.s., t0 − τt0(x0) 2= 1. Indeed, we have excluded t0 = 1 and the only
value charged with positive probability by τt0(x0) is 0. Thus

lim inf
λ→0

Pr
[

|Wλ
t0 (x0)− Zt0(x0)| < ε

]

≥ 1− δ.

Since this holds for any δ > 0, this concludes the proof of (d).

Step 4. Next, (c) is proved exactly as when β = BS (change the beginning: let first
δ > 0, α0 > 0, ζ0 ∈ (0,α0) and λ0 > 0 be as in Step 3; replace everywhere TS by aλ; and
make use of Lemma 19.5 instead of Lemma 18.6).

Step 5. Finally, (a) is also proved as when β = BS. The only difference is that when put
T ∗
M = TM ∪ {t0}, we need that t0 2= 1 (because 0 ∈ TM and Ω∗

M (α) will thus require that for
|t0 − 1| > α). !

20. Cluster-size distribution when β ∈ {∞, BS}

The aim of this section is to prove Corollaries 4.4 and 5.5.

20.1. Study of the LFF (∞) and LFF (BS)-processes. We first extend [14, Lemma
17].

Lemma 20.1. Let β ∈ {∞, BS}. Let (Zt(x), Dt(x), Ht(x))t≥0,x∈R be a LFF (β)-
process. There are some constants 0 < c1 < c2 and 0 < κ1 < κ2 such that the following
estimates hold.

(i) For any t ∈ (1,∞), any x ∈ R, any z ∈ [0, 1), Pr[Zt(x) = z] = 0.
(ii) For any t ∈ [0,∞), any B > 0, any x ∈ R, P [|Dt(x)| = B] = 0.
(iii) For all t ∈ [0,∞), all x ∈ R, all B > 0, Pr[|Dt(x)| ≥ B] ≤ c2e−κ1B.
(iv) For all t ∈ [3/2,∞), all x ∈ R, all B > 0, Pr[|Dt(x)| ≥ B] ≥ c1e−κ2B.
(v) For all t ∈ [5/2,∞), all 0 ≤ a < b < 1, all x ∈ R, c1(b − a) ≤ Pr(Zt(x) ∈ [a, b]) ≤

c2(b − a).

Proof. By invariance by translation, it suffices to treat the case x = 0. When β = BS,
the function FS was defined in Definition 5.1. Recall that the LFF (∞)-process can be viewed
as a LFF (BS)-process with the function FS(z, v) = z, see Remark 15.1.

We consider a Poisson measure πM (dt, dx, dv) on [0,∞)×R× [0, 1] with intensity measure
dtdxdv. We also denote by πM (dt, dx) =

∫

v∈[0,1] πM (dt, dx, dv).

Point (i). For t ∈ [0, 1], we have a.s. Zt(0) = t. But for t > 1 and z ∈ [0, 1), Zt(0) =
z implies that the cluster containing 0 has been killed at time t − z, so that necessarily
πM ({t− z}× R) > 0. This happens with probability 0.

Point (ii). For any t > 0, |Dt(0)| is either 0 or of the form |Xi −Xj | (with i 2= j), where
(Ti, Xi)i≥1 are the marks of the Poisson measure πM (ds, dx) restricted to [0, t]×R. We easily
conclude as previously that for B > 0, Pr(|Dt(0)| = B) = 0.
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Point (iii). First if t ∈ [0, 1), we have a.s. |Dt(0)| = 0 and the result is obvious. Recall
now that v0 ∈ [0, 1) was defined in Lemma 15.5 and that for (τ, X, V ) a mark of πM such that
V ≥ v0, we have Ht(X) > 0 or Zt(X) < 1 for all t ∈ [τ, τ + 1/4] (see the proof of Proposition
15.4-Step 1). This implies that for t ≥ 1,

{Dt(0) ≥ B} ⊂{[0, B/2] is connected at time t or [−B/2, 0] is connected at time t}

⊂ {πM ([t− 1/4, t]× [0, B/2]× [v0, 1]) = 0}

∪ {πM ([t− 1/4, t]× [−B/2, 0]× [v0, 1]) = 0} .

Consequently, Pr[|Dt(0)| ≥ B] ≤ 2e−(1−v0)B/8 as desired.

Point (iv). Fix t ≥ 3/2 and B > 0. Consider the event Ωt,B = Ω1
t,B ∩ Ω

2
t ∩ Ω

3
t,B,

illustrated by Figure 9, where

• Ω1
t,B = {πM ([t− 3/2, t]× [0, B]× [0, 1]) = 0};

• Ω2
t is the event that in the box [t − 3/2, t] × [−1, 0] × [0, 1], πM has exactly 5 marks

(Si, Yi, Vi)i=1,...5 with Y5 < Y4 < Y3 < Y2 < Y1, mini=1,...,5 Vi > v0 and t − 3/2 < S1 < t − 1,
S1 < S2 < S1 + 1/4, S2 < S3 < S2 + 1/4, S3 < S4 < S3 + 1/4, S4 < S5 < S4 + 1/4 and
S5 + 1/4 > t.

• Ω3
t,B is the event that in the box [t− 3/2, t]× [B,B+1]× [0, 1], πM has exactly 5 marks

(S̃i, Ỹi, Ṽi)i=1,...,5 with Ỹ1 < Ỹ2 < Ỹ3 < Ỹ4 < Ỹ5, mini=1,...,5 Ṽi > v0 and t− 3/2 < S̃1 < t− 1,
S̃1 < S̃2 < S̃1 + 1/4, S̃2 < S̃3 < S̃2 + 1/4, S̃3 < S̃4 < S̃3 + 1/4, S̃4 < S̃5 < S̃4 + 1/4 and
S̃5 + 1/4 > t.

We of course have p := Pr(Ω2
t ) = Pr(Ω3

t,B) > 0, and this probability does not depend

on t ≥ 3/2 nor on B > 0. Furthermore, Pr(Ω1
t,B) = e−3B/2. These three events being

independent, we conclude that Pr(Ωt,B) ≥ p2e−3B/2. To conclude the proof of (iv), it thus
suffices to check that Ωt,B ⊂ {[0, B] ⊂ Dt(0)}. But on Ωt,B, using the same arguments as in
Point (iii), we observe that:

• the fire starting at (S2, Y2) can not affect [0, B], because since S2 ∈ [S1, S1 + 1/4),
HS2−(Y1) > 0 or ZS2−(Y1) > 0, with Y2 < Y1 < 0;

• then the fire starting at (S3, Y3) can not affect [0, B], because since S3 ∈ [S2, S2 + 1/4),
HS3−(Y2) > 0 or ZS3−(Y2) > 0, with Y3 < Y2 < 0;

−1 0 B B+1

(S , Y )

(S , Y )

(S , Y )

(S , Y )

(S , Y )

(S , Y )
(S , Y )

(S , Y )

t−3/2

t−1

t

1 1 11

2 2

3 3

4 4

5 5

3 3

4 4

5 5

(S , Y )2 (S , Y )2

Figure 9. The event Ωt,B.
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• then the fire starting at (S4, Y4) can not affect [0, B], because since S4 ∈ [S3, S3 + 1/4),
HS4−(Y3) > 0 or ZS4−(Y3) > 0, with Y4 < Y3 < 0;

• then the fire starting at (S5, Y5) can not affect [0, B], because since S5 ∈ [S4, S4 + 1/4),
HS5−(Y4) > 0 or ZS5−(Y4) > 0, with Y5 < Y4 < 0;

• furthermore, the fires starting on the left at −1 during (S1, t] cannot affect [0, B], because
for all t ∈ (S1, t], there is always a site xt ∈ {Y1, Y2, Y3, Y4} ⊂ [−1, 0] with Ht(xt) > 0 or
Zt(xt) < 1;

• the same arguments apply on the right of B.

As a conclusion, the zone [0, B] is not affected by any fire during (S1 ∨ S̃1, t]. Since the
length of this time interval is greater than 1, we deduce that for all x ∈ [0, B], Zt(x) =
min(ZS1∨S̃1

(x) + t− S1 ∨ S̃1, 1) ≥ min(t− S1 ∨ S̃1, 1) = 1 and Ht(x) = max(HS1∨S̃1
(x)− (t−

S1 ∨ S̃1), 0) ≤ max(1− (t− S1 ∨ S̃1), 0) = 0, whence [0, B] ⊂ Dt(0).

Point (v). For 0 ≤ a < b < 1 and t ≥ 1, we have Zt(0) ∈ [a, b] if and only there
is τ ∈ [t − b, t − a] such that Zτ (0) = 0. And this happens if and only if Xt,a,b :=
∫ t−a
t−b

∫

R
11{y∈Ds−(0)}πM (ds, dy) ≥ 1. We deduce that

Pr (Zt(0) ∈ [a, b]) = Pr (Xt,a,b ≥ 1) ≤ E [Xt,a,b] =

∫ t−a

t−b
E[|Ds(0)|]ds ≤ C(b − a),

where we used Point (iii) for the last inequality.

Next, we have {πM ([t − b, t− a]×Dt−b(0)) ≥ 1} ⊂ {Xt,a,b ≥ 1}: it suffices to note that
a.s., {Xt,a,b = 0} ⊂ {Xt,a,b = 0, Dt−b(0) ⊂ Ds(0) for all s ∈ [t− b, t−a]} ⊂ {πM ([t− b, t−a]×
Dt−b(0)) = 0}. Now since Dt−b(0) is independent of πM (ds, dx) restricted to (t− b,∞)× R,
we deduce that for t ≥ 5/2

Pr (Zt(0) ∈ [a, b]) ≥ Pr [πM ((t− b, t− a]×Dt−b(0)) ≥ 1]

≥ Pr [|Dt−b(0)| ≥ 1] (1− e−(b−a)) ≥ c(1− e−(b−a)),

where we used Point (iv) (here t − b ≥ 3/2) to get the last inequality. This concludes the
proof, since 1− e−x ≥ x/2 for all x ∈ [0, 1]. !

20.2. The case β =∞. We can now handle the

Proof of Corollary 4.4. We thus assume (HM ) and (HS(∞)) and consider, for each λ > 0,
a FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z. Let also (Zt(x), Dt(x), Ht(x))t≥0,x∈R be a LFF (∞)-
process.

Point (ii). Using Lemma 20.1-(iii)-(iv) and recalling that |C(ηλaλt, 0)|/nλ = |Dλ
t (0)|

by (3.3), it suffices to check that for all t ≥ 3/2, all B > 0, limλ→0 Pr
[

|Dλ
t (0)| ≥ B

]

=
Pr [|Dt(0)| ≥ B]. This follows from Theorem 4.3-(b), which implies that |Dλ

t (0)| goes in law
to |Dt(0)| and from Lemma 20.1-(ii).

Point (i). Due to Lemma 20.1-(v) we only need that for all 0 < a < b < 1, all t ≥ 5/2,

lim
λ→0

Pr
(

|C(ηλaλt, 0)| ∈ [1/νS((aλa,∞)), 1/νS((aλb,∞))]
)

= Pr (Zt(0) ∈ [a, b]) .

But using Theorem 4.3-(c) and Lemma 20.1-(i), we know that

lim
λ→0

Pr
[

ψS

(

1− 1/|C(ηλaλt, 0)|
)

11{|C(ηλ
aλt,0)|≥1} ∈ [aλa, aλb]

]

= Pr (Zt(0) ∈ [a, b]) .
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Using finally the definition of ψS (see Notation 2.5-(ii)), we see that for all c ∈ N, all 0 < α < β,

ψS (1− 1/c) 11{c≥1} ∈ [α,β] if and only if c ∈ [1/νS((α,∞)), 1/νS((β,∞))].

One immediately concludes. !

20.3. The case β = BS. We finally give the

Proof of Corollary 5.5. We thus assume (HM ) and (HS(BS)) and consider, for each λ > 0,
a FF (µS , µλM )-process (ηλt (i))t≥0,i∈Z. Let also (Zt(x), Dt(x), Ht(x))t≥0,x∈R be a LFF (BS)-
process.

Point (ii). Using Lemma 20.1-(iii)-(iv) and recalling that |C(ηλaλt, 0)|/nλ = |Dλ
t (0)|

by (3.3), it suffices to check that for all t ≥ 3/2, all B > 0, limλ→0 Pr
[

|Dλ
t (0)| ≥ B

]

=
Pr [|Dt(0)| ≥ B]. This follows from Theorem 5.4-(b), which implies that |Dλ

t (0)| goes in law
to |Dt(0)| and from Lemma 20.1-(ii).

Point (i). Theorem 5.4-(c) asserts that for all t ≥ 0, all k ≥ 0, limλ→0 Pr[|C(ηλTSt, 0)| =
k] = E[qk(Zt(0))], where qk(z) was defined in (5.2). Using next Lemma 20.1-(v) and recalling
that Zt(0) ∈ [0, 1] a.s., we see that for t ≥ 5/2, the law of Zt(0) is of the form

gt(z)11{0≤z≤1}dz + αtδ1(dz),

for some function gt : [0, 1] 0→ R+ satisfying c ≤ gt ≤ C, where the constants 0 < c < C do not
depend on t ≥ 5/2. One immediately deduces that for any k ≥ 0, E[qk(Zt(0))] ∈ [cqk, Cqk].

Indeed, there holds qk =
∫ 1
0 qk(z)dz and qk(1) = 0. This concludes the proof. !
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Numerical simulations



21. Simulations

We would like to present some simulations of the discrete forest fire process. In all the
simulations below, we choose µλM (dt) = λe−λt11t≥0dt and we consider different laws µS . We
simulate the FFA(µS , µλM ) process with A = 2.5, for some given value of λ. Since there are
too much concerned sites, it is not possible to draw the whole picture. We thus extract a zone
in which some interesting events occur.

In all the pictures below, time evolves vertically, with t = 0 at the bottom. On each site,
we plot white (resp. black) segments when the site is vacant (resp. occupied). Matches are
represented by bullets.

Figure 10. Simulation with β = BS.

We used µS = δ1, νS(dt) = 11{t∈[0,1]}dt, aλ = TS = 1 and λ = 10−3. Here everything happens,
roughly, as described by the limit process (compare with Figure 3).
At the begining, all the sites are vacant. Many sites remain vacant for a while, but we observe that all
become occupied after some time, except one, which has burnt due to the first match.
This first match produces a microscopic fire, involving very few sites (we cannot see it on the picture
because the bullet is slightly too large, but these sites were occupied just before the match).
The second fire is macroscopic: it concerns many sites. It it is limited on the right by a vacant site,
which is due to the effect of the first (microscopic) fire.
The third fire concerns few sites and is microscopic.
The fourth fire is macroscopic and is limited on the left by the a vacant site, produced by the second
fire (which was macroscopic and destroyed a large zone which is not filled again).
The fifth fire is macroscopic and is limited by a vacant site produced by the third fire, which was
microscopic.
Finally, the last fire is macroscopic, and is limited on both sides by vacant sites let by the two previous
(macroscopic) fires.
Observe that the time needed to completely fill again a macroscopic zone is roughly always the same
(look at the time needed after time 0, after the second fire, after the fourth fire).
Note also that the effect of the first (microscopic) fire persists for quite a long time: it limits the second
fire, which limits the fourth fire, which itself limits the sixth fire.
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Figure 11. Simulation with β =∞.

Here µS((t,∞)) = e−t2/2, νS(dt) = (
√

2/π)e−t2/211{t≥0}dt and λ = 10−3. We used the approximate

value aλ '
√

2 log(1/λ). The picture is not so far from the limit process (compare with Figure 2), but
there are some defaults.
The first fire is rather microscopic, but has however quite a large length.
The second fire, which is clearly macroscopic, is limited not by a previous microscopic fire, but by a
site where the first seed has needed an unusual large time to fall.
Also, the limit process predicts that the length of the barrier produced by a microscopic fire equals the
delay between the time at which the match falls and the last time where the zone was involved in a
maroscopic fire. We see here that this is roughly the case for the first fire, but the effect of the third
and fourth (microscopic) fires are too long.

Figure 12. Simulation with β = 5.

We considered µS((t,∞)) = (1+ t/β)−β−1 and νS((t,∞)) = (1+ t/β)−β with β = 5, λ = 5.10−3. We
used the approximate value aλ ' (1/λ)1/(β+1) . This picture resembles much the limit process (see
Figure 4): all the fires involve a macroscopic number of sites and we observe that sites where no seed
fall during a large time interval are rather rare.
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Figure 13. Simulation with β = 2.

Same thing as Figure 12 with β = 2 and λ = 10−3. This picture is in perfect adequacy with the
limit process (see Figure 4), at least from a qualitative point of view: when a fire starts, it burns a
macroscopic zone, which is rather quickly filled again, except for some quite rare sites.

Figure 14. Simulation with β = 0.

We used µS((t,∞)) = e(e+ t)−1[log(e+ t)]−2, νS((t,∞)) = [log(e+ t)]−1 and λ = 10−7. We used the
approximate value aλ ' 1/[λ log(1/λ)]. This picture is quite satisfactory when compared to the limit
process (see Figure 5): there are six sites where the first seed never falls and the fires have quite a low
effect, in the sense that most of the burnt sites become occupied again almost immediately.
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Appendix



22. Appendix

22.1. Regularly varying functions. The proof below is closely related to the theory
of regularly varying functions and is probably completely standard.

Lemma 22.1. Assume (HS). Then either (HS(BS)) holds or there exists β ∈ [0,∞)∪
{∞} such that (HS(β)) holds.

Proof. We thus assume (HS) and that the support of µS is unbounded. Hence, for all
t > 0,

ϕ(t) := lim
x→∞

νS((x,∞))

νS((xt,∞))
∈ [0,∞) ∪ {∞}

exists. The function ϕ is clearly nondecreasing and satisfies ϕ(1) = 1.

Step 1. We first show that for all t > 0, ϕ(1/t) = 1/ϕ(t), with the convention that
1/0 =∞ and 1/∞ = 0. This is not hard:

ϕ(1/t) = lim
x→∞

νS((x,∞))

νS((x/t,∞))
= lim

y→∞

νS((yt,∞))

νS((y,∞))
= 1/ϕ(t).

Step 2. By the same way, one easily checks that for 0 < s ≤ t, one has ϕ(st) = ϕ(s)ϕ(t)
as soon as ϕ(s) > 0 or ϕ(t) <∞. It suffices to write

ϕ(st) = lim
x→∞

νS((x,∞))

νS((xst,∞))
= lim

x→∞

νS((x,∞))

νS((xs,∞))

νS((xs,∞))

νS((xst,∞))
= ϕ(s)ϕ(t).

Step 3. We assume first that ϕ(s) > 0 for all s ∈ (0, 1). By Step 1, one easily deduces
that ϕ(s) ∈ (0,∞) for all s > 0. We thus have a nondecreasing function ϕ : (0,∞) 0→ (0,∞)
such that ϕ(st) = ϕ(s)ϕ(t) for all 0 < s ≤ t and such that ϕ(1) = 1. One classically concludes
that there exists β ∈ [0,∞) such that ϕ(t) = tβ.

Step 4. We now assume that ϕ(α) = 0 for some α ∈ (0, 1). We want to show that if so,
then ϕ(t) = 0 for all t ∈ (0, 1). This will imply that ϕ(t) = ∞ for t > 1 by Step 1, whence
ϕ(t) = t∞.

Let thus α∗ = sup{α > 0 : ϕ(α) = 0}. Suppose by contradiction that α∗ ∈ (0, 1). By
monotonicity, we have ϕ(α) = 0 for all α ∈ (0,α∗). By Step 1, we know that ϕ(s) ∈ (0,∞) for
all s ∈ (α∗, 1/α∗). Due to Step 2, we deduce that for all small ε > 0, ϕ((α∗−ε)(1/α∗−ε)) = 0.
But for ε > 0 small enough, we have (α∗−ε)(1/α∗−ε) > α∗ (because α∗ < 1). This contradicts
the definition of α∗. !

Next, we prove the existence of the scale mλ satisfying (3.4).

Lemma 22.2. Assume (HS(∞)). Recall (3.1), (3.2). There exists a function mλ :
(0, 1] 0→ N satisfying (3.4).

Proof. Recalling that limλ→0 aλ = ∞ and using (HS(∞)), we observe that for any
n ≥ 1, limλ→0 νS(((1 − 1/n)aλ,∞))/νS((aλ,∞)) = ∞. Thus there exists λn ∈ (0, 1] such
that for all λ ∈ (0,λn], νS(((1 − 1/n)aλ,∞))/νS((aλ,∞)) ≥ n. We of course may choose
λ1 = 1 and choose the sequence (λn)n≥1 decreasing to 0. Then we define ελ : (0, 1] 0→ (0, 1]
by setting, for all n ≥ 1, ελ = 1/n for λ ∈ (λn+1,λn]. There holds limλ→0 ελ = 0. Finally, we
put mλ = ,1/νS((aλ(1− ελ),∞))-. This function is obviously non-increasing. Next, recalling
that nλ = ,1/νS((aλ,∞))-, we see that for all n ≥ 1, all λ ∈ (λn+1,λn),

mλ

nλ
+

νS((aλ,∞))

νS((aλ(1− ελ),∞))
=

νS((aλ,∞))

νS((aλ(1 − 1/n),∞))
≤ 1/n,
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whence limλ→0(mλ/nλ) = 0. Finally, fix z ∈ (0, 1) and consider n large enough, so that
1− 1/n > z. Then for λ ∈ (0,λn), there holds ελ ≤ 1/n, whence

νS((aλz,∞))mλ +
νS((aλz,∞))

νS((aλ(1− ελ),∞))
≥

νS((aλz,∞))

νS((aλ(1− 1/n),∞))
→∞

as λ→ 0 due to (HS(∞)), since z < 1− 1/n. !

22.2. Coupling. Finally, we recall some well-known facts about coupling.

Lemma 22.3. (i) Let (pk)k≥0 and (qk)k≥0 be two probability laws on {0, 1, . . .}. One
can couple X ∼ (pk)k≥0 and Y ∼ (qk)k≥0 such that for all k ≥ 0, Pr[X = Y = k] ≥ pk ∧ qk.

(ii) For f, g two probability densities on R, one can couple X ∼ f(x)dx and Y ∼ g(x)dx
in such a way that Pr[X = Y ] ≥

∫

R
min(f(x), g(x))dx.

(iii) If we have a sequence of laws µn on some Polish space, converging weakly to some
law µ, then it is possible to find some random variables Xn ∼ µn and X ∼ µ such that a.s.,
limn→∞ Xn = X.

Proof. First observe that (iii) is nothing but the Skorokhod representation Theorem.

To prove (i), set rk = pk ∧ qk and r =
∑∞

0 rk. Consider a Bernoulli r.v. C with
parameter r, a (rk/r)k≥0-distributed r.v. Z, a ((pk − rk)/(1− r))k≥0-distributed r.v. U and a
((qk − rk)/(1− r))k≥0-distributed r.v. V . Assume that all these objects are independent and
put (X,Y ) = C(Z,Z)+(1−C)(U, V ). Some immediate computations show that X ∼ (pk)k≥0

and Y ∼ (qk)k≥0 and for k ≥ 0, Pr[X = Y = k] ≥ rk.

The proof of (ii) is similar: put h = min(f, g) and r =
∫

R
h(x)dx. Consider a Bernoulli

r.v. C with parameter r, a r.v. Z with density h/r, a r.v. U with density (f − h)/(1− r) and
a r.v. V with density (g − h)/(1− r). Assume that all these objects are independent and put
(X,Y ) = C(Z,Z) + (1 − C)(U, V ). Some immediate computations show that X ∼ f(x)dx,
Y ∼ g(y)dy and Pr[X = Y ] ≥ r. !
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