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Foreword

These notes are an expanded version of a course given in winter 2015 in Toulouse and which
was meant as a continuation of a course of Jean-Pierre Otal on Riemannian geometry and
ergodic geodesic flows. We thought together it would be nice to supplement such a course
by presenting the subject of Quantum Chaos (or quantum ergodicity) and the famous
Shnirelman Theorem.

The main goal of the course itself was both to introduce students to the beautiful sub-
ject of Quantum Chaos and to motivate some fundamental results of microlocal analysis,
in particular the Egorov Theorem which describes the relationship between the geodesic
flow and the semiclassical Schrödinger equation.

This expanded version can be considered at two levels. At the first level, we define the
objects involved in the Shnirelman Theorem (Theorem 1.18), namely the Laplace Beltrami
operator and its eigenfunctions on the quantum side, and the ergodicity of the geodesic
flow on the classical side, and then prove the theorem by using the existence of a pseudo-
differential quantization (Theorem 2.6) as a black box. This is the purpose of Chapters 1
and 2 which correspond essentially to what was thaught in class (on the board); we had
some time left to present bits of proofs of Theorem 2.6 but definitely not all of them!

At the second level, the objective is to demystify the proof of the Shnirelman Theorem
to beginners in the field by giving a complete and elementary1 proof of Theorem 2.6.
This rests on a fairly minimal and elementary approach of the pseudo-differential calculus
on Rn (mostly with compactly supported symbols) and its use in the construction of a
quantization on a manifold. With such tools, we can then prove the local Weyl law and
the Egorov Theorem which are the main microlocal inputs in the proof of the Shnirelman
Theorem.

In principle, this course is designed for students with a standard background on analysis
(functional analysis, distributions theory) and differential geometry at the master level,
although we realize that more familiarity with any of these subjects, e.g. on differential
topology and Riemannian geometry, is helpful. In a few places in these notes, the reader
will find informal references to Otal’s course; this is mostly for the convenience of our
own students to emphasize the relationships between our courses but, in principle, this
document is mostly self contained.

1one can always do simpler but, for the sake of completeness, it is hard to avoid certain technicalities
such as the invariance of pseudo-differential operators under coordinates change
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Chapter 1

The Shnirelman Theorem

In this chapter, we introduce the objects involved in the Shnirelman Theorem namely,
on the spectral side, the Laplace-Beltrami operator and its eigenfunctions and, on the
dynamical side, the geodesic flow and the notion of ergodicity. The theorem itself is
stated in Section 1.4 (see Theorem 1.18).

1.1 Memento on differential geometry

In this section, we record, in a rather compact form, some notation, conventions and usual
formulas that will be used in these notes. We refer to the lectures by J.-P. Otal and
standard textbooks on differential geometry for a more detailed presentation.

We consider a smooth manifold M of dimension n.

Charts on M . If κ : U ⊂ M → V ⊂ Rn is a local diffeomorphism (or chart), the
local coordinates (x1, . . . , xn) are the components of κ, i.e. κ(m) =

(
x1(m), . . . , xn(m)

)
.

If κ̃ : Ũ → Ṽ is another chart (with components
(
x̃1, . . . , x̃n

)
), the associated transition

maps are

κ̃ ◦ κ−1 : κ(U ∩ Ũ)→ κ̃(U ∩ Ũ), κ ◦ κ̃−1 : κ̃(U ∩ Ũ)→ κ(U ∩ Ũ).

Letting χ = κ̃ ◦ κ−1, one denotes

(∂x̃/∂x) :=

(
∂x̃i
∂xj

)
= dχ(x), (∂x/∂x̃) =

(
∂xi
∂x̃j

)
= dχ(x)−1, (1.1)

that are respectively the Jacobian matrices of the transition maps κ̃ ◦ κ−1 and κ ◦ κ̃−1.
Our convention is that i labels the rows and j labels the columns.

Tangent bundle. Given local coordinates κ = (x1, . . . , xn) on U ⊂M and ϕ smooth on
U , one sets

∂xjϕ := ∂j(κ∗ϕ), κ∗ϕ := ϕ ◦ κ−1,

7



8 CHAPTER 1. THE SHNIRELMAN THEOREM

and, so defined,
(
∂x1 , . . . , ∂xn

)
is a local basis of the tangent space. More precisely, for

any m ∈ U , the n maps ϕ 7→ (∂xjϕ)(κ(m)) form a basis of TmM . If one considers another
system of coordinates

(
x̃1, . . . , x̃n

)
, then two decompositions of the same vector

v =
∑

vj∂xj =
∑

ṽk∂x̃k

are related by

ṽk =
∑
j

∂x̃k
∂xj

vj ,

or, in matrix form (viewing v = (v1, . . . , vn)T and ṽ = (ṽ1, . . . , ṽn)T as rows),

ṽ = (∂x̃/∂x)v.

The chart of TM associated to κ is the map TU = π−1
TM (U)→ V × Rn defined by

TU 3 v 7→
(
x1(m), . . . , xn(m), v1, . . . , vn

)
, m = πTM (v), v =

∑
vj∂xj ,

where πTM : TM → M is the projection. The transition map between two such systems
is thus of the form

(x, v) 7→ (x̃, ṽ) =
(
χ(x), dχ(x)v

)
.

Cotangent bundle. The cotangent bundle is the dual to TM in the sense that

T ∗M = tm∈MT ∗mM

with T ∗mM := (TmM)∗ the dual to the tangent space at m. Given coordinates on M , one
denotes by (dx1, . . . , dxn) the dual basis to (∂x1 , . . . , ∂xn). Then two decompositions of
the same covector

T ∗mM 3 X∗ =
∑

ξjdxj =
∑

ξ̃kdx̃k

are related by

ξ̃k =
∑
j

∂xj
∂x̃k

ξj ,

or in matrix form (with ξ = (ξ1, . . . , ξn)T and ξ̃ = (ξ̃1, . . . , ξ̃n)T )

ξ̃ =
(
(∂x̃/∂x)−1

)T
ξ. (1.2)

The local coordinates on T ∗M associated to the chart κ : U → V on M are defined by

T ∗U 3 X∗ 7→ (x1(m), . . . , xn(m), ξ1, . . . , ξn), m = πT ∗M (X∗), X∗ =
∑

ξjdxj ,

where πT ∗M : T ∗M →M is the projection. The transition maps are then

(x, ξ) 7→ (x̃, ξ̃) =
(
χ(x), (dχ(x)−1)T ξ

)
. (1.3)
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Also, if a is a smooth function on T ∗M , we set

(κ∗a)(x, ξ) := a(X∗) if x = κ
(
πT ∗M (X∗)

)
, X∗ =

∑
ξjdxj . (1.4)

Notice that, strictly speaking, κ∗a is meaningless since κ∗ can be applied to functions
on M rather than T ∗M . Rigorously, this means we consider the pushforward by the
coordinate diffeomorphism associated to κ on T ∗U , but we use the above abuse of notion
for simplicity.

The sections of T ∗M are the 1-forms on M . In particular, the differential of a smooth
function ϕ on M is intrinsically defined and reads in local coordinates dϕ =

∑
j(∂xjϕ)dxj .

Transition maps on T (T ∗M) To describe the symplectic structure on T ∗M , it is useful
to record the form of the transition maps between charts on T (T ∗M). Given a chart
κ : U → V on M , one considers the associated chart on T ∗M , i.e. T ∗U → V ×Rn as above,
and then associates to it the corresponding chart on T (T ∗M), i.e. T (T ∗U)→ V ×Rn×R2n.
Then, the transition map between two such charts associated respectively to κ and κ̃ is of
the form (

x, ξ,X, Y
)
7→
(
x̃, ξ̃, X̃, Ξ̃

)
where, viewing X,Ξ, X̃, Ξ̃ as rows,

x̃ = χ(x), ξ̃ = (dχ(x)−1)T ξ,

(
X̃

Ξ̃

)
=

(
(∂x̃/∂x) 0n
Σ(x, ξ) (∂x/∂x̃)T

)(
X
Ξ

)
(1.5)

where Σ(x, ξ) = (Σij) with

Σij = −
∑
λ,µ,ν

∂xλ
∂x̃i

∂2x̃µ
∂xj∂xλ

∂xν
∂x̃µ

ξν . (1.6)

In other words, two decompositions1 of a same vector of T (T ∗M) of the form∑
j

Xj∂xj + Ξj∂ξj =
∑
k

X̃k∂x̃k + Ξ̃k∂ξ̃k ,

are related by

X̃k =
∑
j

∂x̃k
∂xj

Xj , Ξ̃k = −
∑
j

∑
λ,µ,ν

∂xλ
∂x̃k

∂2x̃µ
∂xj∂xλ

∂xν
∂x̃µ

ξν

Xj +
∑
j

∂xj
∂x̃k

Ξj .

Symplectic structure on T ∗M . The cotangent bundle T ∗M is equipped with a natural
1-form (i.e. a section of T ∗(T ∗M)) called the Liouville form, which we denote by ξdx.
It is defined in local coordinates (x1, . . . , xn, ξ1, . . . , ξn) as

ξdx =
∑
j

ξjd(xj ◦ πT ∗M ),

1here ∂xj is a short hand for ∂xj◦πT∗M
since, strictly speaking, the coordinates induced on T ∗M by

those on M are
(
x1 ◦ πT∗M , . . . , xn ◦ πT∗M , ξ1, . . . , ξn

)
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which one also writes usually (and below) as
∑

j ξjdxj , but which is better understood
written as above to emphasize it is a section of T ∗(T ∗M) and not an element of T ∗M . The
invariance of this definition follows from the fact that, given another coordinate system
(x̃1, . . . , x̃n, ξ̃1, . . . , ξ̃n), one has

∑
ξjdxj =

∑
ξ̃kdx̃k. Equivalently, by using the notation

of the previous paragraph, this last equality can be written∑
j

ξjXj =
∑
k

ξ̃kX̃k

and follows from the transformations rules (1.2) and (1.5). One can then define the
symplectic form σ as the exterior derivative of the Liouville form

σ := d(ξdx) =
∑
j

dξj ∧ dxj .

It is a 2-form on T ∗M (i.e. a section of Λ2T ∗(T ∗M)) which is closed. To see more explicitly
the action of σ, we record that given X∗ ∈ T ∗M and two vectors W,W ′ ∈ TX∗(T ∗M),
which we write

W =
∑

Xj∂xj + Ξj∂ξj , W ′ =
∑

X ′j∂xj + Ξ′j∂ξj ,

one has

σX∗(W,W
′) =

∑
j

ΞjX
′
j −XjΞ

′
j =

(
X
Ξ

)
·
(

0n −In
In 0

)(
X ′

Ξ′

)
. (1.7)

One can also check directly that σ is invariantly defined by
∑

j dξj ∧dxj , in the sense that∑
j dξj ∧ dxj =

∑
k dξ̃k ∧ dx̃k. To prove this equality it suffices to observe that, if we set

S =

(
(∂x̃/∂x) 0n
Σ(x, ξ) (∂x/∂x̃)T

)
, J =

(
0n −In
In 0

)
, (1.8)

the invariance is a consequence of the identity

STJS = J,

(one says S is a symplectic matrix) which can be checked by hand by using the form of S,
in particular (1.6).

1.2 The Laplace-Beltrami operator

Everywhere in this course we consider a compact (connected) Riemannian manifold (M, g).
We recall that this means that at any point m ∈ M the tangent space TmM is equipped
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with a scalar product g(m) (also denoted by 〈·, ·〉g(m)) smoothly varying with m. More
explicitly, if κ = (x1, . . . , xn) : U ⊂M → V ⊂ Rn is a local chart then

g(m) =

n∑
j,k=1

gjk(x)dxjdxk,

where x = κ(m) and (gjk(·)) is a matrix of smooth real valued functions on V which is
positive definite at every point. At each point, this matrix is the Gram matrix of the scalar
product in the basis

(
∂x1 , . . . , ∂xn

)
. In other words, if v =

∑
vj∂xj and w =

∑
wj∂xj are

two vectors in TmM , one has

〈v,w〉g(m) =
n∑

j,k=1

gjk(x)vjwk.

Exercise 1.1. If κ̃ = (x̃1, . . . , x̃n) is another coordinates system in which

g(m) =
n∑

j̃,k̃=1

g̃j̃k̃(x̃)dx̃j̃dx̃k̃,

make sure you understand that, as a product of matrices,(
∂x/∂x̃

)T (
gjk(x)

)(
∂x/∂x̃

)
=
(
g̃j̃k̃(x̃)

)
. (1.9)

Here we use the notation (1.1).

We also introduce the standard notation

(gjk(x)) := (gjk(x))−1 (1.10)

which will be used further in the text. This inverse matrix is the matrix of the natural
scalar product on T ∗mM in the basis (dx1, . . . , dxn).

There is a natural measure associated to g, called the Riemannian measure, which
is locally of the form

dvolg = |g(x)|dx1 · · · dxn, |g(x)| :=
√

det
(
gjk(x)

)
(1.11)

in the sense that, whenever ϕ is a continuous function compactly supported in U ,

ˆ
M
ϕ(m)dvolg =

ˆ
V

(
κ∗ϕ)(x)|g(x)|dx, (1.12)

where we recall that κ∗ϕ = ϕ ◦ κ−1.

Exercise 1.2. Use the transformation rule (1.9) to check that (1.12) is independent of
the choice of the chart.
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The Laplace-Beltrami operator, or more simply the Laplacian, is a differential
operator of order 2 acting on functions on M and naturally associated to g. One can
define it as follows. For any smooth function ϕ on M and any m ∈ M , the differential
of ϕ at m, dϕ(m), belongs to T ∗mM , the dual to the tangent space TmM . Thanks to the
inner product g(m), dϕ(m) can be represented by a vector, denoted by ∇gϕ(m), in the
sense that

dϕ(m) · v = 〈∇gϕ(m), v〉g(m) for all v ∈ TmM,

the left hand side standing for dϕ(m)(v). The vector ∇gϕ(m) ∈ TmM is called the
gradient of ϕ at m.

Exercise 1.3. Check that, in local coordinates, if dϕ =
∑

j ∂xjϕdxj then

∇gϕ =
∑

(∇gϕ)k∂xk with (∇gϕ)k =
∑
j

gjk(x)∂xjϕ,

where we recall that ∂xjϕ(x) is the usual short hand for ∂(κ∗ϕ)/∂xj.

Then, ∆g can be defined as the (unique) differential operator on M which satisfies

−
ˆ
M
ϕ(m)(∆gψ)(m)dvolg =

ˆ
〈∇gϕ(m),∇gψ(m)〉g(m)dvolg, (1.13)

for all ϕ,ψ ∈ C∞(M). To justify this fact and see what this operator looks like, we work
in local coordinates and assume that at least one of the two functions ϕ,ψ is compactly
supported in U . Then, using Exercise 1.3,

ˆ
M
〈∇gϕ(m),∇gψ(m)〉g(m)dvolg =

ˆ
V

n∑
j,k=1

gjk(x)(∇gϕ)j(∇gψ)k|g(x)|dx

=

ˆ
V

n∑
j,k=1

gjk(x)(∂xjϕ)(∂xkψ)|g(x)|dx.

Integrating by part, we findˆ
M
〈∇gϕ,∇gψ〉gdvolg = −

ˆ
V

∑
j,k

(κ∗ϕ)∂xj

(
|g(x)|gjk(x)(∂xkψ)

)
dx

= −
ˆ
V

(κ∗ϕ)
∑
j,k

|g(x)|−1∂xj

(
|g(x)|gjk(x)(∂xkψ)

)
|g(x)|dx

= −
ˆ
M
ϕ(m)(∆gψ)(m)dvolg

provided we define ∆gψ by

κ∗(∆gψ) =
∑
j,k

|g(x)|−1 ∂

∂xj

(
|g(x)|gjk(x)

∂

∂xk
(κ∗ψ)

)
. (1.14)
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Exercise 1.4. Check directly that (1.14) is invariantly defined, namely if κ̃ : Ũ → Ṽ is
another chart, with components

(
x̃1, . . . , x̃n

)
, then

κ∗
∑
j,k

|g(x)|−1∂xj

(
|g(x)|gjk(x)∂xk(κ∗ψ)

)
= κ̃∗

∑
j,k

|g̃(x̃)|−1∂x̃j

(
|g̃(x̃)|g̃jk(x̃)∂x̃k(κ̃∗ψ)

)
for all ψ supported in U ∩ Ũ .

Exercise 1.5. Check that in local coordinates, the Laplace-Beltrami operator also reads∑
j,k

gjk(x)∂xj∂xk −
∑
i,j,k

gjk(x)Γijk(x)∂xi (1.15)

where Γijk(x) are the Christoffel symbols of g given by

Γijk(x) =
1

2

∑
l

gil(x)
(
∂xjgkl(x) + ∂xkglj(x)− ∂xlgjk(x)

)
. (1.16)

We next introduce the inner product on L2(M) = L2(M,dvolg),

〈ϕ,ψ〉M =

ˆ
M
ϕ(m)ψ(m)dvolg.

The above integral has a clear sense say for ϕ,ψ ∈ C(M); the space L2(M) itself can be
defined as the closure of C(M) (or even C∞(M)) for the L2 norm. Then, it follows from
(1.13) that

〈ϕ,∆gψ〉M = 〈∆gϕ,ψ〉M , for all ϕ,ψ ∈ C∞(M). (1.17)

One says that ∆g is formally self-adjoint on C∞(M). To justify the terminology, we
note that such a relation is the analogue of the fact that AX · Y = X · AY when A is a
real symmetric matrix of size N and X,Y ∈ RN . This analogy goes further since, much
as symmetric matrices can be diagonalized in an orthonormal basis, we have the following
result.

Theorem 1.6. There exists an orthonormal basis (ej)j∈N of L2(M) composed of smooth
functions and a sequence (λj)j∈N of real numbers such that

0 = λ1 < λ2 ≤ λ3 ≤ · · · lim
j→∞

λj = +∞, (1.18)

and
−∆gej = λjej .

The functions ej are called the eigenfunctions and the numbers λj the eigenvalues of
−∆g. The sequence (λj)j∈N is called the spectrum. Let us point out that the eigenvalues
are counted according to their multiplicities; in other words,

mult(λN ) := #{j ∈ N | λj = λN} = dim Ker(−∆g − λNI) ≥ 1.
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The multiplicity mult(λN ) is finite for each N (since λj →∞ as j →∞) but it can grow
as N → ∞. We also note in passing that λ1 = 0 has multiplicity 1 (hence the first strict
inequality in (1.18)) since

0 = −
ˆ
M
e1(∆ge1)dvolg =

ˆ
M
|∇ge1|2g(m)dvolg ⇒ ∇ge1 = 0 ⇒ de1 = 0,

which in turns implies that e1 is constant since M is connected. However, we will not
use this information since the Shnirelman Theorem deals with eigenfunctions in the limit
j →∞.

The most simple illustration of Theorem 1.6 is given by the circle: identifying L2(T)
with L2(0, 2π), the functions ej(θ) := eijθ/

√
2π form an orthonormal basis of L2(T), by

the L2 theory of Fourier series, and are eigenfunctions of the natural Laplacian on T, i.e.

− d2

dθ2
ej = j2ej .

The eigenvalues are j2 and have multiplicity 2 if j 6= 0, illustrating that multiplicities can
be larger than 1 (note however that the boundedness of the multiplicities is something
quite specific to one dimensional domains).

We won’t prove Theorem 1.6, mostly by lack of time but also since its proof is not
essential to understand the Shnirelman Theorem (for a proof see e.g. [6, Ch. 5, Sec. 1] or
[9, Th. 14.7]. See also [1]).

The spectrum and eigenfunctions of the Laplace-Beltrami operator are fundamental
objects but they are in general very hard (not to say impossible) to compute, up to some
very rare cases such as the torus Tn or the sphere Sn. The Shnirelman Theorem will
give an example of the kind of qualitative information on the eigenfunctions which can be
recovered from geometric properties of the manifold.

1.3 The geodesic flow

In this section, we recall the definition of the geodesic flow on (M, g), in particular its
Hamiltonian formulation on the cotangent bundle. We first recall briefly the Riemannian
formulation: for any m ∈M and v ∈ TmM , there exists a unique smooth curve γ : R→M
which solves the differential equation

γ(0) = m, γ̇(0) = v, Dγ̇(t)γ̇(t) = 0, (1.19)

where Dγ̇(t)γ̇(t) is the covariant derivative of the vector field γ̇ along the curve γ. That γ is
defined on R is non trivial (it solves a nonlinear ODE) but it follows from the compactness
of M (see your course or any textbook on Riemannian geometry). In local coordinates,
this equation reads

ẍi(t) +
∑
j,k

Γijk(x(t))ẋj(t)ẋk(t) = 0, (1.20)
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where x(t) = κ(γ(t)). The geodesic flow (Gt)t∈R on the tangent bundle is then the
family of maps Gt : TM → TM associating to any element v ∈ TmM the value at time t
of the solution to (1.20), that is

v ∈ TmM 7→ γ̇(t) ∈ Tγ(t)M,

i.e. πTM (Gt(v)) = γ(t) and Gt(v) = γ̇(t) ∈ Tγ(t)M .
A property of the equation (1.19) is that the Riemannian norm is preserved along the

flow, i.e. ||γ̇(t)||g(γ(t)) = ||v||g(m) for all t. This implies that one can restrict Gt to the
unit sphere bundle SM (also denoted by UM) defined as the subset of vectors in TM
of norm 1.

In this course, we will adopt the Hamiltonian description of the geodesic flow, i.e. on
the cotangent bundle rather than on the tangent bundle. Both formulations are equivalent,
but the Hamiltonian point of view is more natural in our context. Let us recall some
definitions. The Hamiltonian associated to the metric g is the function

p : T ∗M → R

which is invariantly defined by the following formula in local coordinates

(κ∗p)(x, ξ) =
∑
j,k

gjk(x)ξjξk, (1.21)

(we refer to (1.4) for the abuse of notation κ∗p). In other words, in each fiber of T ∗M , p is
the quadratic form arising from the natural scalar product induced by g(m). By looking
at the top order term in the expression of the Laplace-Beltrami operator in (1.15) (i.e. the
one with derivatives of higher order) and by replacing ∂xj by iξj , we recover (1.21). For
this reason, p is also called the principal symbol of (minus) the Laplacian2.

The differential dp is a 1-form on T ∗M and, using the symplectic form σ on T ∗M , one
can identify dp with a vector field on T ∗M , namely the unique vector field Wp such that,
for all vector field W on T ∗M

σ(W,Wp) = dp ·W, (1.22)

i.e. at each X∗ ∈ T ∗M , σX∗(W (X∗),Wp(X
∗)) = dp(X∗) ·W (X∗). In local coordinates on

T ∗M , Wp is of the form

Wp =
∑
j

(∂ξjp)∂xj − (∂xjp)∂ξj . (1.23)

One can then consider the differential equation associated to this vector field

γ̇∗ = Wp(γ
∗), (1.24)

2we will not do any further use of the notion of principal symbol in these notes; we thus record this
terminology very briefly, mainly to help a reader who will find it in the literature
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whose solutions are curves t 7→ γ∗(t) on T ∗M . More explicitly in local coordinates, if we
write (xt1, . . . , x

t
n, ξ

t
1, . . . , ξ

t
n) the coordinates of γ∗(t), the equation (1.24) reads

ẋti = 2

n∑
k=1

gik(xt)ξtk, ξ̇t = −
n∑

j,k=1

(∂ig
jk)(xt)ξtjξ

t
k. (1.25)

Exercise 1.7. The two questions are independent.

1. Check that

d

dt

 n∑
j,k=1

gjk(xt)ξtjξ
t
k

 = 0. (1.26)

2. Recover the Riemannian formulation (1.20) from the Hamiltonian one (1.25).

Hints: use (and check) that ẋtj = 1
2

∑
gjk(x

t)ξtk and that, if G(x) =
(
gjk(x)

)
, then

∂xi
(
G(x)−1

)
= −G(x)−1

(
∂xiG(x)

)
G(x)−1. Recall also (1.10) and (1.16).

The geodesic flow on the cotangent bundle (Φt)t∈R is the flow of the vector field
Wp, i.e. given X∗0 ∈ T ∗M , t 7→ Φt(X∗0 ) is the solution to (1.24) such that γ∗(0) = X∗0 .
That it is defined for all t ∈ R follows from (1.26), i.e. equivalently

p ◦ Φt = p, (1.27)

and from the fact that for any compact set K of R, p−1(K) is compact (the trajectory
t 7→ Φt(X∗0 ) is confined in the compact set p−1

(
{p(X∗0 )}

)
hence cannot blow up in finite

time). This last property follows from the compactness of M and the positive definiteness
of the matrix (gjk(x)) in (1.21).

Exercise 1.8. Check the details.

The property (1.27) is called the conservation of the energy. It is nothing but the
Hamiltonian expression of the preservation of the Riemannian norm along the flow, as
mentionned previously. Much as Gt acts on the unit sphere bundle SM , Φt acts on the
unit cosphere bundle S∗M which is defined as

S∗M = p−1(1).

That S∗M is preserved by the flow is a direct consequence of (1.27).
We next recall the notion of ergodicity of the geodesic flow. One first needs to recall

that T ∗M is equipped with a natural measure |dxdξ| defined locally as dx1 · · · dxndξ1 · · · dξn.
The invariance of this definition follows from the fact that the transitions maps (1.3) on
T ∗M have their Jacobian equal to 1; indeed, if κ : U → V and κ̃ : Ũ → Ṽ are local charts
on M and a ∈ C∞0 (T ∗M) such that a vanishes outside the intersection of coordinates
patches π−1

T ∗M (U ∩ Ũ), one has
ˆ
· · ·

ˆ
V×Rn

(κ∗a)(x, ξ)dx1 · · · dξn =

ˆ
· · ·

ˆ
Ṽ×Rn

(κ̃∗a)(x̃, ξ̃)dx̃1 · · · dξ̃n,
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where we use the (abuse of) notation (1.4) for κ∗ and κ̃∗. One then defines the com-
mon value of these integrals as

´
a|dxdξ| and extends this definition to all functions in

C∞0 (T ∗M) by mean of a partition of unity on M .

There is then a natural measure on S∗M called the Liouville measure3 which we
denote by Lg or dLg. It is defined by mean of “polar coordinates” on T ∗M as follows.
The Liouville measure can be defined as the unique measure on S∗M such that

ˆ
T ∗M

a|dxdξ| =
ˆ ∞

0

(ˆ
S∗M

a(ρω)dLg(ω)

)
ρn−1dρ, (1.28)

say for all a ∈ C∞0 (T ∗M). We point out that the precise knowledge of the construction of
dLg is useless for our purposes (basically, it consists in introducing polar coordinates on
each cotangeant space as can be done on any Euclidean space). To see that it is unique,
and also to compute certain integrals, we essentially only need to observe that, for ρ > 0
and a ∈ C∞0 (T ∗M),

d

dρ

(ˆ
p≤ρ2

a|dxdξ|
)

= ρn−1

ˆ
S∗M

a(ρω)dLg(ω). (1.29)

Exercise 1.9. Prove formula (1.29) by cheking first that

ˆ
p≤ρ2

a|dxdξ| =
ˆ ρ

0
µn−1

(ˆ
S∗M

a(µω)dLg(ω)

)
dµ.

Hint: formally this is (1.28) with a replaced by a1[0,ρ2](p), but the latter is not smooth.
Justify the formula by approximating 1[0,ρ2](p) by a family of smooth functions ψ((p−ρ2)/ε)
with ε→ 0+ and ψ ∈ C∞(R) equal to 1 on (−∞, 0] and vanishing on [1,∞).

We illustrate the interest of (1.29) with the following formula which will be useful in
the proof of the Shnirelman theorem (see (2.17) and (2.23)).

Proposition 1.10. Let f ∈ C∞0 (R), ψ ∈ C∞(M) and consider a = ψ × f ◦ p (i.e.
a = (ψ ◦ πT ∗M )(f ◦ p)). Then

ˆ
S∗M

a(ρω)dLg = n|Bn|f(ρ2)

ˆ
M
ψ(m)dvolg,

where |Bn| is the Lebesgue measure of the unit (Euclidean) ball on Rn.

Proof. By using a partition of unity, we may assume that ψ is supported in a coordinate
patch. Then ˆ

p≤ρ2
a|dxdξ| =

ˆ ˆ
ξ·G(x)ξ≤ρ2

(κ∗ψ)(x)f(ξ ·G(x)ξ)dxdξ

3this terminology is also used for the natural measure on SM but we will not use it in these notes
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where G(x) = (gjk(x)). One can rewrite ξ ·G(x)ξ as |G(x)1/2ξ|2 with G(x)1/2 the unique
positive definite square root of G(x). Then, using the change of variable G(x)1/2ξ = ζ

whose Jacobian is det
(
G(x)1/2

)−1
, that is exactly |g(x)| (see (1.11)), we find

ˆ
p≤ρ2

a|dxdξ| =

(ˆ
|ζ|≤ρ

f(|ζ|2)dζ

)(ˆ
(κ∗ψ)(x)|g(x)|dx

)
where the second factor in the right hand side is precisely

´
M ψdvolg. On the other hand,

we can easily differentiate the first factor with respect ot ρ by using polar coordinates on
Rn for it reads ˆ ρ

0

ˆ
Sn−1

f(r2)rn−1drdvolSn−1

hence its derivative is ρn−1f(ρ2) times the the measure of Sn−1 which is exactly n|Bn|
since |Bn| =

´ 1
0 r

n−1
´
Sn−1 dvolSn−1dr. �

A straightforward consequence of Proposition 1.10 is that the Liouville measure is
finite and more precisely that

Lg(S
∗M) = n|Bn|volg(M).

It is also invariant by the geodesic flow Φt, i.e. Lg(B) = Lg
(
Φt(B)

)
for every Borel

subset B ⊂ S∗M and t ∈ R (for completeness this fact is proved in Proposition 1.15).

Definition 1.11. The geodesic flow is ergodic if the Borel subsets of S∗M which are
invariant by Φt have either zero or full Liouville measure.

For a function a on T ∗M (resp. S∗M), we denote by [a]T its time average along the
geodesic flow,

[a]T (ω) :=
1

T

ˆ T

0
a ◦ Φt(ω)dt.

It is a function on T ∗M (resp. S∗M ; note that the definition still makes sense since Φt

preserves S∗M). For a function on S∗M , we denote by

 
S∗M

a :=
1

Lg(S∗M)

ˆ
S∗M

adLg

the (phase space) average of a over S∗M .
A consequence of the ergodicity is the following famous result.

Theorem 1.12 (Birkhoff’s Ergodic Theorem). Let a ∈ C∞(S∗M). For Lg almost every
ω ∈ S∗M , [a]T (ω) has a limit a+(ω) as T → +∞. If in addition the geodesic flow is
ergodic, then for Lg almost every ω, one has

a+(ω) =

 
S∗M

a.
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We leave as an exercise for the reader to check that the above theorem implies the
following result.

Corollary 1.13. If (Φt)t∈R is ergodic, then for every a ∈ C∞(S∗M,R) one has

ˆ
S∗M

(
[a]T −

 
S∗M

a

)2

dLg → 0, T → +∞. (1.30)

Notice that a direct proof of Corollary 1.13 (i.e. without using Theorem 1.12) is given
in Zworski’s book [9].

Remark. As far as the Shnirelman Theorem is concerned, one could consider directly
(1.30) as an assumption (instead of the ergodicity), since this is this property which will
be used in the proof (see page 36). The course by J.-P. Otal and the Birkoff Ergodic
Theorem show you that manifolds with an ergodic geodesic flow (e.g. compact quotients
of the hyperbolic plane) satisfy this property.

Exercise 1.14 (The Poisson bracket and its invariance by the geodesic flow). Given two
functions a, b ∈ C∞(T ∗M) one defines their Poisson bracket by

{a, b} := σ(Wa,Wb) (1.31)

(see (1.7) and (1.23)) that is, in local coordinates,

{a, b} =
n∑
j=1

∂a

∂ξj

∂b

∂xj
− ∂a

∂xj

∂b

∂ξj
. (1.32)

It is a function on T ∗M . The purpose of this exercise is to show that

{a ◦ Φt, b ◦ Φt} = {a, b} ◦ Φt (1.33)

for all t ∈ R (recall that the flow is complete by compactness of M). In Questions 1 and 2
below, we choose local coordinates and use the same notation for the Hamiltonian vector
field or the geodesic flow and their components in local coordinates, namely

Wp = (∂ξ1p, . . . , ∂ξnp,−∂x1p, . . . ,−∂xnp)T

for the (components of the) Hamiltonian vector field and

Φt = (xt1, . . . , x
t
n, ξ

t
1, . . . , ξ

t
n)T

for the (components of the) geodesic flow.

1. Check that JdWp + dW T
p J = 0 (see (1.8) for J).

2. Check that
d

dt

(
(dΦt)TJ(dΦt)

)
= 0.
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3. Check that for all X∗ ∈ T ∗M , W,W ′ ∈ TX∗(T ∗M) and t ∈ R,

σΦt(X∗)

(
dΦt
|X∗W,dΦt

|X∗W
′) = σX∗(W,W

′).

Remark: one says that the symplectic form is invariant by the flow, or that Φt is
symplectic.

4. Prove (1.33) by using Question 3.

Proposition 1.15 (Measure preserving properties of the geodesic flow). For all t ∈ R
and all functions a ∈ C∞0 (T ∗M), b ∈ C∞(S∗M),

ˆ
T ∗M

a ◦ Φt|dxdξ| =
ˆ
T ∗M

a|dxdξ| (1.34)

and ˆ
S∗M

b ◦ Φt dLg =

ˆ
S∗M

b dLg. (1.35)

Furthermore, for any Borel subset B ⊂ S∗M , Lg(Φ
t(B)) = Lg(B).

Proof. We prove first (1.34). Since the equality is true for t = 0 and R is connected, it
suffices to check that the left hand side is locally constant in t. By the group property of the
flow, it then suffices to show that for any a ∈ C∞0 (T ∗M) there exists t0 > 0 such that (1.34)
holds for |t| < t0. By using a partition of unity on M , we may assume that a is supported
in π−1

T ∗M (K) for some compact subset K of an open coordinate patch U . By compactness
of supp(a) and continuity of the flow, there exists t0 > 0 such that Φt(supp(a)) is contained
in π−1

T ∗M (U) for |t| < t0. The interest of this reduction is that we can compute everything
in single patch which we do now. As in Exercise 1.14, we keep the notation Φt for its
expression in local coordinates. Then using that d

dtdetMt = detMt tr
(
M−1
t Ṁt

)
whenever

Mt is an invertible matrix depending smoothly on t, we find

d

dt
det(dΦt) = det(dΦt) tr

(
(dΦt)−1dWp|ΦtdΦt

)
.

On the other hand, using that4

dWp =

(
∂2p

∂xj∂ξi
∂2p
∂ξj∂ξi

− ∂2p
∂xj∂xi

− ∂2p
∂ξj∂xi

)

we have tr(dWp) = 0 hence d
dtdet(dΦt) = 0. Since dΦ0 = I, the determinant is equal to 1

and we get (1.34) by the change of variable (x′, ξ′) = Φt(x, ξ).
We can now prove (1.35). We start by observing that (1.34) implies that for any ρ

ˆ
p−1([0,ρ2])

a ◦ Φt|dxdξ| =
ˆ
p−1([0,ρ2])

a|dxdξ|.

4i labels the rows and j the columns
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This follows as Exercise 1.9 together with the observation that p−1([0, ρ2]) is invariant by
Φt, which follows from (1.27). Then, by differentiating the above identity at ρ = 1 and
using (1.29), we get (1.35) when b = a|S∗M . Since any smooth function on S∗M can be
written as such a restriction, we have proved (1.35). Finally, the invariance Lg(Φ

t(B)) =
Lg(B) is exactly (1.35) with, formally, b = 1B. This can be justified using standard
arguments, by approximating 1B in L1(S∗M,dLg) by a sequence of smooth functions (in
local coordinates dLg is the Lebesgue measure multiplied by a positive smooth function).
�

Exercise 1.16. For a function a ∈ C∞(T ∗M) and ρ > 0, we denote by aρ the function
on S∗M defined by aρ(ω) = a(ρω).

1. Check that for all ρ ≥ 0, ω ∈ S∗M and t ∈ R

Φt(ρω) = ρΦρt(ω).

2. Show that for all a ∈ C∞0 (T ∗M), ω ∈ S∗M and ρ > 0,

[aρ]T (ω) = [a]T/ρ(ρω),

and thus that, if the geodesic flow is ergodic, for all ρ > 0 and almost every ω ∈ S∗M
one has

[a]T (ρω)→
 
S∗M

aρ, T → +∞.

1.4 Statement of the theorem

Definition 1.17. A subset S of N is of density 1 if

DN (S) :=
1

N
#S ∩ [1, N ]→ 1, N →∞,

or equivalently5 if

lim inf
N→∞

DN (S) = 1.

In the sequel, we let

 
M
ψ :=

1

volg(M)

ˆ
M
ψ(m)dvolg,

be the (space) average of a (continuous) function ψ on M .

5the equivalence following from the obvious fact that DN (S) ≤ 1 hence so does its lim sup
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Theorem 1.18 (Shnirelman’s theorem). Assume that the geodesic flow on M is ergodic.
Let (ej)j∈N be an orthonormal basis of eigenfunctions of ∆g. Then there exists S ⊂ N of
density 1 such that, for all ψ ∈ C(M),

〈ej , ψej〉M →
 
M
ψ as j →∞ in S. (1.36)

This result can be rephrased as the following weak convergence of probability measures

|ej(m)|2dvolg ⇀
1

volg(M)
dvolg, as j →∞ in S.

One says loosely that ”almost all eigenfunctions are equidistributed” over the manifold,
”almost” refering to the fact that j runs over a set of density 1 and ”equidistributed”
refering to the fact that the limit is the uniform measure on M .

Some references: Theorem 1.18 first appeared in the paper [4] of Shnirelman. Complete
proofs were given later by Zelditch [8] and Colin de Verdière [2] (we do not comment on
other forms of this theorem for manifolds with boundary or toral automorphisms). Since
then, it has attracted a lot of activity, particularly around the question of Unique Quantum
Ergodicity, i.e. whether or not one can take S = N. This was answered positively in the
special case of quotients of the hyperbolic plane (and for a special type of eigenfunctions)
by Lindenstrauss [5] but remains open for manifolds with variable (negative) curvature.
The proof of Theorem 1.18 displayed in the next chapter follows closely the presentation of
Zworski’s book [9] (up to the fact that we try to use a fairly elementary pseudo-differential
calculus rather than the complete theory developed in [9]).

In the rest of this section, we give a brief description of the quantum mechanical
interpretation of Shnirelman’s theorem, to justify in particular the name of quantum
chaos.

We present first some elementary facts on classical vs quantum mechanics. To keep
the discussion at a reasonable length and since we don’t assume any prior knowledge of
the reader on quantum mechanics, we will be fairly sketchy and only stress on the main
elementary aspects illustrating our purpose.

Let us start with a well known example of classical mechanics, the harmonic oscillator,
that is a particle of mass m connected to a spring moving (horizontally) along an axis.
Its motion is governed by Newton’s law (mass × acceleration = sum of forces), i.e. the
ordinary differential equation

mẍ = −kx, (1.37)

where x = x(t) ∈ R is the position on the axis of the particle at time t. This system can
be described equivalently by its Hamiltonian, or total energy, namely the function

Ho(x, ξ) =
1

2m
ξ2 +

k

2
x2
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from which the following (system of) first order differential equation(s)

ẋ =
∂Ho

∂ξ
(x, ξ) =

ξ

m
, ξ̇ = −∂Ho

∂x
(x, ξ) = −kx (1.38)

allows clearly to recover (1.37). The solutions to this autonomous system are given by a
one parameter group of diffeomorphisms (Φt

o)t∈R, called the (classical) flow and defined
by Φt

o(x0, ξ0) := (x(t), ξ(t)) if (x(t), ξ(t)) is the solution to (1.38) at time t satisfying
(x(0), ξ(0)) = (x0, ξ0).

Exercise 1.19. Compute explicitly Φt
o.

Let us note that the first equation in (1.38) yields ξ = mẋ so that ξ can be interpreted
as the momentum of the particle and the first term of the Hamiltonian as its kinetic
energy. The second term is the potential energy and the associated force −kx is minus
its derivative with respect to x (one says the force derives from the potential kx2/2). As
is well known, the total energy of the particule is constant (in time): if (x(t), ξ(t)) is a
solution to the above system, then

d

dt
Ho(x(t), ξ(t)) =

∂Ho

∂x
(x(t), ξ(t))ẋ(t) +

∂Ho

∂ξ
(x(t), ξ(t))ξ̇(t)

= 0. (1.39)

In other words, Ho = Ho ◦ Φt
o, i.e. the Hamiltonian is invariant by the flow.

The above properties of the harmonic oscillator remain valid for any smooth function
H : Rn × Rn → R, or more generally H : T ∗M → R. In this context, Rn × Rn or T ∗M
are called the classical phase space. The associated Hamilton motion equations are the
system of 2n equations

ẋ =
∂H

∂ξ
(x, ξ), ξ̇ = −∂H

∂x
(x, ξ), (1.40)

generating a one parameter group of diffeomorphisms under whichH is invariant. A special
case of interest is when H = p (see (1.21)), in which case the Hamiltonian trajectories
are geodesics (compare (1.40) and the vector field (1.23)). For this reason, we will see
the geodesic flow as an object of classical mechanics and sometimes rephrase some of its
mathematical properties in physical terms; for instance, the preservation of the cosphere
bundle by the geodesic flow is exactly the conservation of the energy.

Classical mechanics allows to describe the dynamics of systems at macroscopic scales.
At microscopic (i.e. atomistic or molecular) scales, one has to use a quantum mechanical
description by mean of wave functions. This means that a quantum particle moving in
the Euclidean space6 Rn is no longer described by 2n coordinates (position + speed (or
momentum)) but by a function ψ ∈ L2(Rn), so called state or wave function, which
is normalized by ||ψ||L2 = 1. Information on the particle are recovered from ψ in a

6for simplicity, but one can also consider a n dimensional manifold
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probabilistic fashion: for instance, the probability of the particle to be in a (Borel) set
B ⊂ Rn is given by

P(particle ∈ B) =

ˆ
B
|ψ(x)|2dx = 〈ψ,1Bψ〉L2(Rn)

where 1B is the characteristic function of B and 〈., .〉L2(Rn) the L2 inner product. The
quantum Hamiltonians are defined by self-adjoint operators on L2(Rn). A typical example
is the one of Schrödinger operators

Ĥ := − ~2

2m
∆ + V (x),

where m is the mass of the particle, ~ is the Planck constant, ∆ is the usual Laplacian and
V a real valued function acting on L2(Rn) (or a subspace of L2(Rn)) as a multiplication
operator. For instance, if one considers V (x) = −K/|x| in R3 then, with appropriate
physical constants, Ĥ gives a good description of the hydrogen atom (i.e. an electron
moving around a proton) in the sense that the operator Ĥ has a sequence of negative
eigenvalues7 proportional to −1/n2, n ∈ N (see [7]), which fit the energy levels that
are observed experimentaly. We note that the corresponding hamiltonian in classical
mechanics describing the motion of a light body around a heavy one (e.g. a satellite

around the earth) would be the fun ction |ξ|2
2m −

K
|x| . Naively, this is very similar to an

electron moving around a proton but, at microscopic scales, quantum Hamiltonians give
a better description than classical ones.

The relation between classical and quantum Hamiltonians is given by a quantization
procedure: in the present context, the quantum Hamiltonian Ĥ is constructed from the

classical Hamiltonian H(x, ξ) := |ξ|2
2m + V (x) by replacing the momentum variables ξj by

the differentiation operators ~∂xj/i, that is formally

Ĥ = H(x,−i~∇).

The quantization is the mapping H 7→ Ĥ, which goes from the set (or a subset) of functions
on the classical phase space T ∗Rn to a set of operators on L2(Rn).

From the dynamical (i.e. time dependent) point of view, the evolution of a quantum
particle in the initial state ψ is described by the Schrödinger equation

i~∂tΨ = ĤΨ, Ψ(t = 0, x) = ψ(x),

which is linear PDE. At least formally, viewing Ĥ as continuous operator on L2 (this is
not the case; the Laplacian forces Ĥ to be defined on a subspace of L2), the solution is
given by

Ψ(t, x) =
(
e−itĤ/~ψ

)
(x)

7there is also a (continuous) spectrum on [0,+∞) which corresponds to “scattering states” but we will
not discuss it in this short description
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that is by mean of the family of operators
(
e−itĤ/~)

t∈R which forms a group. We do not

enter here into the detailed definition of such a group (see Section 2.2 when Ĥ = ∆g) but
rather point out the analogy with classical mechanics, in particular with the geodesic flow,
where the dynamics is also described by mean of a one parameter group.

We now discuss the role of the Planck constant which has so far only played the role
of a physical backing. Physically, it is a very small constant which shows up only at the
quantum level. From a theoretical point of view, we can extrapolate the smallness of ~
by letting it go to zero; it turns out that this allows to describe the transition between
quantum and classical mechanics. This is called the semiclassical limit. In some sense,
as ~ → 0, the equations of quantum mechanics converge to their classical counterparts.
From a purely mathematical point of view, many equations involving a small parameter
can be seen as quantum mechanical ones, the small parameter being interpreted as a
Planck constant. For instance, in the study of large eigenvalues of the Laplace-Beltrami
operator, we can rewrite

−∆geN = λNeN ⇐⇒ −h2
N∆geN = eN

and interpret hN := λ
−1/2
N as a Planck constant (it goes to 0 as N → ∞). We will see

in the next chapter to which extent the Schrödinger group associated to the Laplace-
Beltrami operator eith2N∆g/hN converges to the geodesic flow (see the Egorov Theorem
inside Theorem 2.6). This is a purely mathematical fact, but it is of course reminiscent of
the above statement on the convergence of quantum to classical mechanics as ~→ 0.

Given this rough description of classical and quantum mechanics, one can summarize
what quantum chaos is. It consists in the study of “quantum systems”, e.g. the eigenfunc-
tions of the Laplace Beltrami operator on a manifold, whose dynamics of the “classical
background”, e.g. the geodesic flow on the cotangent bundle, is chaotic, i.e. ergodic. Note
that this is not limited to Riemannian manifolds; other models exhibit similar features
(certain bounded domains of Rn, toral automorphisms, quantized baker’s map,...).
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Chapter 2

Proof of the Shnirelman theorem

In this chapter, we show how to get the Shnirelman theorem from the existence of a
quantization on M .

2.1 Sets of density one

Proposition 2.1. Let (uj)j≥1 be a sequence of complex numbers such that

1

N

N∑
j=1

|uj | → 0 as N →∞.

Then there exists a set S of density 1 such that

uj → 0 as j →∞, j ∈ S.

To prove this proposition, we will use the following lemma.

Lemma 2.2. 1. A finite intersection of sets of density 1 has density 1.

2. If (Sk)k≥1 is a nonincreasing1 sequence of sets and (Nk)k≥1 an increasing sequence
of N such that

DN (Sk) ≥ 1− 1

k
, N ≥ Nk, (2.1)

then one can find a set S of density 1 such that

S ∩ [Nk,+∞) ⊂ Sk, for all k ≥ 2. (2.2)

3. If (Sk)k≥1 is a nonincreasing of sets of density 1, one can find an increasing sequence
(Nk)k≥1 such that (2.2) holds.

1Sk+1 ⊂ Sk

27
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Proof of Lemma 2.2. 1. By induction, the proof is reduced to the case of two sets S1, S2

of density 1. Using that S1 ⊂ (S1 ∩ S2) ∪ Sc2, one has

S1 ∩ [1, N ] ⊂
(
(S1 ∩ S2) ∩ [1, N ]

)
∪
(
Sc2 ∩ [1, N ]

)
.

By taking the cardinal and dividing by N , we obtain

DN (S1) ≤ DN (S1 ∩ S2) + 1−DN (S2).

This shows that DN (S1 ∩ S2) ≥ DN (S1) + DN (S2) − 1 which yields the result by taking
the liminf.
2. Observe that the intervals [Nk, Nk+1) ∩ N form a partition of [N1,∞) ∩ N. Define

S :=

∞⋃
l=1

Sl ∩ [Nl, Nl+1).

The fact that Sl ⊂ Sk for l ≥ k implies that S ∩ [Nk,+∞) ⊂ Sk. To see that S has
density 1, we note first that for any integer N ≥ N1 there is a unique k = k(N) such
that N ∈ [Nk, Nk+1). Since Nk is increasing, k(N) is non decreasing. It is also clearly
unbounded so k(N)→∞ as N →∞. Observing finally that

Sk(N) ∩ [N1, N ] = Sk(N) ∩ [N1, N2) ∪ · · · ∪ Sk(N) ∩ [Nk(N), N ]

is contained in S ∩ [N1, N ] (since Sk is nonincreasing), we see that

DN (S) =
#S ∩ [1, N ]

N
≥ #S ∩ [N1, N ]

N
≥

#Sk(N) ∩ [N1, N ]

N
≥ DN (Sk(N))−

N1

N

whose right hand side goes to 1 as N →∞ by (2.1).
3. It suffices to choose the sequence (Nk)k≥1 as an increasing sequence such that (2.1)
holds and then to use the item 2. �

The last lemma and its proof are essentially taken from [3].

Proof of Proposition 2.1. For all k ≥ 1, we can find Nk ≥ 1 such that

1

N

N∑
j=1

|uj | ≤
1

(2k)2
, N ≥ Nk.

By the Tchebychev inequality, we then have for all N ≥ Nk,

#

{
1 ≤ j ≤ N | |uj | ≥

1

2k

}
≤ N

2k

and thus by taking the complement, we have

#

{
1 ≤ j ≤ N | |uj | <

1

2k

}
≥ N

(
1− 1

2k

)
.
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Setting

Sk :=

{
j ≥ 1 | |uj | <

1

2k

}
the above inequality says precisely that

DN (Sk) ≥ 1− 1

k
, N ≥ Nk,

and we can assume that the sequence (Nk) is increasing (otherwise, it suffices to replace
Nk by max(N1, . . . , Nk) + 1). We next choose S of density 1 according to the item 2 of
Lemma 2.2 and it remains to see that uj → 0 as j → ∞ in S. Indeed, since S ∩ [Nk,∞)
is contained in Sk we have

lim sup
j→∞
j∈S

|uj | ≤
1

2k
.

This is true for all k so we get the result. �

Another application of Lemma 2.2 is that Theorem 1.18 is a consequence of the fol-
lowing one.

Theorem 2.3. For all ψ ∈ C∞(M) there exists Sψ of density 1 such that (1.36) holds.

Lemma 2.4. There is a countable subset of C∞(M) which is dense in C(M).

Proof. Pick a partition of unity
∑N

i=1 ϕi = 1 on M with functions supported in coordi-
nates patches. We let κi be the corresponding diffeomorphisms. Each space C(supp(ϕi))
is separable since, by the Stone-Weierstrass Theorem, polynomials with rational coeffi-
cients are dense in C

(
κi
(
supp(ϕi)

))
, the space of continuous functions on the compact set

κi
(
supp(ϕi)

)
(if you are not familiar with this result prove it as an exercise). The result

follows. �

Proof that Theorem 2.3 ⇒ Theorem 1.18. By Lemma 2.4, we pick first a countable
family (ψl)l≥1 of C∞(M) which is dense in C(M). For each ψl, Theorem 2.3 allows to
choose a subset Sψl of density 1 such that (1.36) holds for ψl. We define

Sk =
k⋂
l=1

Sψl

which is a nonincreasing sequence of subsets of density 1 by the item 1 of Lemma 2.2. We
next choose S as in the item 3 of the same lemma. Then, for all l ≥ 1, we have

〈ej , ψlej〉M →
 
ψl as j →∞ in S,
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since, for j large enough, j belongs to Sl (by (2.2)) hence to Sψl . Then, for any ψ ∈ C(M)
and any ε > 0 we can find l such that ||ψ − ψl||∞ < ε. Thus, for all j ≥ 1,∣∣∣∣〈ej , ψej〉M −  

M
χ

∣∣∣∣ ≤ ∣∣〈ej , (ψ − ψl)ej〉M ∣∣+

∣∣∣∣〈ej , ψlej〉M −  
M
ψl

∣∣∣∣+

 
M
|ψ − ψl|

≤ ε+

∣∣∣∣〈ej , ψlej〉M −  
M
ψl

∣∣∣∣+ ε,

where the estimate of the first term of the right hand side uses that ||ej ||L2(M) = 1. Using
next that, for all j large enough in S, the second term in the right hand side is smaller
than ε, we get the result. �

The above proof reduces Theorem 1.18 to Theorem 2.3. The proof of Theorem 2.3
rests on the construction of a quantization as we will see below.

2.2 Functional calculus

In this section, we introduce the functional calculus associated to ∆g. It will play an
important role in the properties of the quantization displayed in Theorem 2.6 (Section
2.3).

Let us denote by B(R) the algebra of bounded Borel functions on R (actually, piecewise
continuous will be sufficient here). For any f ∈ B(R) and any ϕ ∈ L2(M), which can be
uniquely written as

ϕ =
∑
j∈N

cjej , cj = 〈ej , ϕ〉M ,

with convergence in L2(M), we set

f(−∆g)ϕ :=
∑
j∈N

f(λj)cjej . (2.3)

This defines an element in L2(M) since it is a sum of orthogonal terms such that∑
j

|f(λj)cj |2 ≤ sup
R
|f |2

∑
j

|cj |2 =
(

sup |f |
)2||ϕ||2L2(M) <∞. (2.4)

It is clear that the map ϕ 7→ f(−∆g)ϕ is linear on L2(M). It is also continuous since, by
(2.4),

||f(−∆g)||Lc(L2) ≤ sup
R
|f |, (2.5)

where Lc(L2) denotes the algebra of bounded (i.e. continuous) linear operators on L2(M)
and || · ||Lc(L2) is the usual operator norm.
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Proposition 2.5. The map

B(R) 3 f 7→ f(−∆g) ∈ Lc(L2) (2.6)

is a continuous morphism of algebras. In particular

f1(−∆g)f2(−∆g) = (f1f2)(−∆g),

for all f1, f2 ∈ B(R). Furthermore,

f(−∆g)
∗ = f(−∆g),

for all f ∈ B(R). In particular, if f is real valued then f(−∆g) is selfadjoint. Finally

f ≥ 0 =⇒ f(−∆g) ≥ 0. (2.7)

Proof. Left to the reader as an exercise. �

The morphism (2.6) is usually called the functional calculus of the Laplacian. The
operators of the form f(−∆g) are called functions of the Laplacian.

Let us comment more specifically on the functions of the Laplacian we shall use to
prove the Shnirelman Theorem. We will consider the Schrödinger group which is the
family of operators defined as

eiτ∆g := fτ (−∆g) with fτ (λ) := e−iτλ.

It follows from Proposition 2.5 that the family (eiτ∆g)τ∈R is a unitary group on L2(M) in
the sense that(

eiτ∆g
)∗

= e−iτ∆g , ei0∆g = I, eiτ1∆geiτ2∆g = ei(τ1+τ2)∆g .

The terminology comes from the fact that eiτ∆g solves the Schrödinger equation. We
record here an elementary aspect of this fact (which is the only one we will use in this
course): given an eigenfunction ej , the function ϕ(τ,m) = (eiτ∆gej)(m) solves

i∂τϕ+ ∆gϕ = 0, ϕ|τ=0 = ej , (2.8)

which is a trivial consequence of the fact that ϕ = e−iτλjej and ∆gej = −λjej .
We will see (and use) below that there is a deep connection between the geodesic flow

and the Schrödinger group.
Other useful functions of the Laplacian are the semiclassical spectral localizations

which are of the form f(−h2∆g) with f compactly supported and h a (small) parameter
in (0, 1]. For instance, if f = 1[0,1], the operator 1[0,1](−h2∆g) is an orthogonal projector,
since

1[0,1](−h2∆g) = 1[0,1](−h2∆g)
∗, 1[0,1](−h2∆g)

2 = 1[0,1](−h2∆g)



32 CHAPTER 2. PROOF OF THE SHNIRELMAN THEOREM

by Proposition 2.5. An important observation is that this operator is a finite rank operator
since it is given by

1[0,1](−h2∆g)ϕ =
∑

λj∈[0,h−2]

〈ej , ϕ〉Mej ,

where the sum contains finitely many terms since λj → +∞. As a finite rank operator,
one can compute its trace and one finds

tr
(
1[0,1](−h2∆g)

)
=

∑
λj∈[0,h−2]

1 (2.9)

= #
{
j ∈ N | λj ∈ [0, h−2]

}
. (2.10)

We will see in the next section the interest of this observation. We note here that the
number (2.10) can be written as the trace of a function of h2∆g which is very important:
it turns out that one can give non trivial information on functions of h2∆ but getting
relevant properties on other projections, e.g. on individual eigenfunctions, is very hard
(not to say impossible). Actually, analyzing the orthogonal projection 1[0,1](−h2∆g) is
not so easy but we will see that we can get more easily information from f(−h2∆g) with
f ∈ C∞0 (R) and this will be sufficient.

2.3 Main proof

In this section, we prove Theorem 2.3 by using as a black box the following theorem on a
the existence of quantization that will be investigated further on in text.

Theorem 2.6 (Existence of a quantization). One can find a quantization, namely a family
of linear maps

Oph : C∞0 (T ∗M)→ Lc
(
L2(M)

)
indexed by h ∈ (0, 1] and satisfying the following properties

• Uniform L2 bounds: for all a ∈ C∞0 (T ∗M), there exists C > 0 such that

||Oph(a)||Lc(L2) ≤ C (2.11)

for all h ∈ (0, 1].

• Symbolic calculus: for all a, b ∈ C∞0 (T ∗M) there exists C > 0 such that∣∣∣∣Oph(a)Oph(b)−Oph
(
ab
)∣∣∣∣
Lc(L2)

≤ Ch (2.12)

and ∣∣∣∣Oph(a)∗ −Oph
(
ā
)∣∣∣∣
Lc(L2)

≤ Ch (2.13)

for all h ∈ (0, 1].
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• Egorov Theorem: for all T > 0 and all a ∈ C∞0 (T ∗M), there exists C > 0 such
that ∣∣∣∣∣∣e−ith∆gOph(a)eith∆g −Oph

(
a ◦ Φt

)∣∣∣∣∣∣
Lc(L2)

≤ Ch, (2.14)

for all h ∈ (0, 1] and t ∈ [−T, T ]. Recall that (Φt)t∈R is the geodesic flow on T ∗M .

• Approximate functional calculus: for all f ∈ C∞0 (R) and all ψ ∈ C∞(M) there
exists C > 0 such that∣∣∣∣ψf(−h2∆g)−Oph

(
ψf ◦ p

)∣∣∣∣
Lc(L2)

≤ Ch (2.15)

for all h ∈ (0, 1]. Recall that p is the principal symbol of the Laplacian (see (1.21)).

• Local Weyl’s law: for all a ∈ C∞0 (T ∗M) and all E1 ≤ E2,

(2πh)n
∑

E1≤h2λj≤E2

〈ej , Oph(a)ej〉M →
ˆ
p−1([E1,E2])

a|dxdξ|, h→ 0. (2.16)

The proof of this theorem will be splitted into separate propositions or theorems which
will be proved in the next chapters. For the convenience of the reader, we record in the
next table the localization of the proofs of the different items.

Parts of the proof of Theorem 2.6

Item (2.11) (2.12) (2.13) (2.14) (2.15) (2.16)

Proof Prop 3.15 Prop 3.17 Prop 3.18 Sec. 3.3 Chap. 5 Thm 4.18

In the rest of the present section, we use Theorem 2.6 to prove the Shnirelman Theorem,
more precisely Theorem 2.3.

Let us pick ψ ∈ C∞(M). We wish to show that 〈ej , ψej〉M →
ffl
M ψ along a subset of

density 1. Using that ||ej ||L2(M) = 1, we have

 
M
ψ =

( 
M
ψ

)
〈ej , ej〉M =

〈
ej , (

 
M
ψ)ej

〉
M

so up to the replacement of ψ by ψ −
ffl
M ψ, we may assume that

 
M
ψ = 0. (2.17)

Under this assumption and according to Proposition 2.1, it then suffices to prove that

1

N

N∑
j=1

∣∣〈ej , ψej〉M ∣∣2 → 0, N →∞. (2.18)
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Summing from j = 1 to N , namely over the eigenvalues λ1, . . . , λN is not easy; it is more
convenient to sum over all eigenvalues λj such that λ1 ≤ λj ≤ λN , that is to possibly
consider additional terms λN+1, ... which are equal to λN . Therefore, we introduce

h−2
N := λN

and define
NhN := #{j | λj ≤ λN} = #{j | h2

Nλj ∈ [0, 1]}.

We will see that we can replace the proof of (2.18) by the proof of

1

NhN

∑
h2Nλj≤1

∣∣〈ej , ψej〉M ∣∣2 → 0, hN → 0. (2.19)

The interest is that we will be able to study this sum by mean of the local Weyl law (with
E1 = 0 and E2 = 1). This reduction follows from Theorem 2.7 and Proposition 2.8 below.

Theorem 2.7 (Weyl’s law). Let E1 ≤ E2 be real numbers and for h ∈ (0, 1] set

Nh(E1, E2) = #{j | h2λj ∈ [E1, E2]}.

Then

(2πh)nNh(E1, E2)→
ˆ
p−1([E1,E2])

|dxdξ|, h→ 0. (2.20)

In particular, we have

NhN ∼ (2πhN )−n
ˆ
p−1([0,1])

|dxdξ|, (2.21)

and

{j | λj = λN} = o(h−nN ). (2.22)

Proof. This is essentially a consequence of the local Weyl law (2.16). Let f ∈ C∞0 (R) be
equal to one on [E1, E2]. Then

Nh(E1, E2) =
∑

{j | h2λj∈[E1,E2]}

1 =
∑

h2λj∈[E1,E2]

〈ej , ej〉M

=
∑

h2λj∈[E1,E2]

〈ej , f(−h2∆g)ej〉M

=
∑

h2λj∈[E1,E2]

(
〈ej , Oph(f ◦ p)ej〉M +O(h)

)
using (2.15). Therefore, using that the sum contains Nh(E1, E2) terms, we get(

1 +O(h)
)
Nh(E1, E2) =

∑
h2λj∈[E1,E2]

〈ej , Oph(f ◦ p)ej〉M .
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Multiplying this identity by (2πh)n and letting h go to zero, we get (2.20) from (2.16) with
a = f ◦ p (note that f ◦ p = 1 on p−1([E1, E2])). Then (2.21) (resp. (2.22)) is a special
case obtained by considering h = hN and E1 = 0, E2 = 1 (resp. E1 = E2 = 1). For (2.22),
we use additionally that p−1({1}) has zero measure on T ∗M . �

Proposition 2.8. Let (bj)j≥1 be a bounded sequence. Then 1

N

∑
1≤j≤N

bj

−
 1

NhN

∑
λ1≤λj≤λN

bj

→ 0, N →∞.

Proof. Let us observe first that N ≤ NhN and that, according to (2.22),

NhN = #{j | λj < λN}+ o(h−nN ) ≤ N + o(h−nN )

so that NhN −N = o(h−nN ). In particular 1

N

∑
1≤j≤N

bj

−
 1

NhN

∑
1≤j≤N

bj

 =
NhN −N
NhN

 1

N

∑
1≤j≤N

bj

→ 0, N →∞

since the bracket in the right hand side is bounded while
NhN−N
NhN

goes to zero by (2.21)

and the fact that NhN −N = o(h−nN ). On the other hand∣∣∣∣∣∣
 1

NhN

∑
1≤j≤N

bj

−
 1

NhN

∑
λ1≤λj≤λN

bj

∣∣∣∣∣∣ ≤ 1

NhN

∑
λj=λN

|bj | → 0, N →∞,

by (2.21) and (2.22). This completes the proof. �

Proof of Theorem 2.3. Let f ∈ C∞0 (R) be equal to 1 on [0, 1]. Using that, if λj ≤ λN ,
f(−h2

N∆g)ej = ej and (2.15), we have

1

NhN

∑
λj≤λN

∣∣〈ej , ψej〉M ∣∣2 =
1

NhN

∑
λj≤λN

∣∣〈ej , OphN (a)ej〉M
∣∣2 +O(hN ),

with
a = ψf ◦ p.

Note that, by Proposition 1.10 and (2.17), we have for all ρ > 0,
ˆ
S∗M

a(ρω)dLg(ω) = 0. (2.23)

Using next that eith∆gej = e−ithλjej , we have

〈ej , OphN (a)ej〉M = 〈eithN∆gej , OphN (a)eithN∆gej〉M
= 〈ej , e−ithN∆gOphN (a)eithN∆gej〉M .



36 CHAPTER 2. PROOF OF THE SHNIRELMAN THEOREM

By fixing T > 0 and taking the mean in time, (2.14) implies that

〈ej , OphN (a)ej〉M = 〈ej , OphN ([a]T )ej〉M +OT (hN ),

where OT (hN ) is a quantity bounded (in modulus) by ChN , for some constant independent
of j (such that λj ≤ λN ) but possibly depending on T . Using that each ej is normalized
in L2(M), we get from (2.11), (2.12), (2.13) and the Cauchy Schwartz inequality

|〈ej , OphN (a)ej〉M |2 ≤ ||OphN ([a]T )ej ||2L2(M) +OT (hN )

≤ 〈ej , OphN (|[a]T |2)ej〉M +OT (hN ).

Note that to get the second line, we have used

||OphN ([a]T )ej ||2L2(M) = 〈ej , Ophn([a]T )∗OphN ([a]T )ej〉M .

Thus, using the local Weyl law,

lim sup
N→∞

 1

NhN

∑
h2Nλj≤1

∣∣〈ej , ψej〉M ∣∣2
 ≤ C ˆ

p−1([0,1])
|[a]T |2|dxdξ|. (2.24)

Since T is arbitrary, we can let it go to infinity so that the right hand side goes to zero by
Corollary 1.13, Exercise 1.16 and (2.23). This proves (2.19) and thus completes the proof.
�



Chapter 3

Quantization

3.1 Elementary pseudo-differential calculus

The prototype of operators on Rn for the quantization we wish to construct is given by
pseudo-differential operators.

Definition 3.1. For a ∈ C∞0 (R2n) and h ∈ (0, 1], the pseudo-differential operator
oph[a] is defined by

oph[a]u(x) = (2π)−n
ˆ
Rn
eix·ξa(x, hξ)û(ξ)dξ, (3.1)

for all u ∈ C∞0 (Rn). Here û(ξ) =
´
Rn e

−iy·ξu(y)dy is the Fourier transform of u.

One has to think of R2n as T ∗Rn. In this definition, we consider only symbols a in
C∞0 (R2n) to avoid technical discussions which can be (mostly) avoided in this course. How-
ever (3.1) makes sense on much larger classes of symbols (see Chapter 5 for an example).
In particular, if we take a = 1, the Fourier inversion formula yields

oph[1] = I.

This formula justifies the normalization factor (2π)−n in (3.1).
A simple application of the Fubini Theorem and the change of variable ξ 7→ ξ/h show

that

oph[a]u(x) = (2π)−n
ˆ ˆ

ei(x−y)·ξa(x, hξ)u(y)dydξ

=

ˆ (
(2πh)−n

ˆ
ei(x−y)·ξ/ha(x, ξ)dξ

)
u(y)dy.

In other words, oph[a] is an operator with an integral kernel, i.e.

oph[a]u(x) =

ˆ
Kh(x, y)u(y)dy

37
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with

Kh(x, y) = (2πh)−n
ˆ
ei(x−y)·ξ/ha(x, ξ)dξ. (3.2)

This suggests to introduce the following more general definition.

Definition 3.2. For A ∈ C∞b (R3n) with compact support in ξ (i.e. supp(A) ⊂ Rn×Rn×
B̄(0, R) for some R > 0), we let OPh(A) be the operator with integral kernel

KA,h(x, y) := (2πh)−n
ˆ
ei(x−y)·ξ/hA(x, y, ξ)dξ. (3.3)

Recall that C∞b (R3n) is the space of smooth functions on R3n which are bounded
together with all their derivatives.

Remark. It is trivial but important to observe that

OPh(A) = oph[a], if A(x, y, ξ) = a(x, ξ) with a ∈ C∞0 (R2n). (3.4)

To see that such operators are well defined on L2, we will use the following lemma.

Lemma 3.3 (Fast decay of the Fourier transform). Let A ∈ C∞b (R3n) be compactly sup-

ported in ξ. Denote by Â be the Fourier transform of A with respect to ξ, i.e.

Â(x, y, z) =

ˆ
e−iξ·zA(x, y, ξ)dξ.

Then, for all N > 0 there exists C > 0 such that

|Â(x, y, z)| ≤ C(1 + |z|)−N ,

for all x, y, z ∈ Rn. In particular

KA,h(x, y) = (2πh)−nÂ

(
x, y,

y − x
h

)
,

decays fast with respect to x−y
h .

Proof. The main observation is that

|z|2e−iξ·z = −∆ξe
−iξ·z

so that, by iteration, (1 + |z|2)Ne−iξ·z = (1−∆ξ)
Ne−iξ·z. Then, by integration by part

(1 + |z|2)N Â(x, y, z) =

ˆ
e−iξ·z(1−∆ξ)

NA(x, y, ξ)dξ.
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Therefore, assuming that A (hence (1−∆ξ)
NA) is supported in R2n × B̄(0, R) we obtain

(1 + |z|2)N
∣∣Â(x, y, z)

∣∣ ≤ ||(1−∆ξ)
NA||L∞(R3n)

∣∣B̄(0, R)
∣∣ (3.5)

whose right hand side is a constant independent of x, y, z. This shows that |Â(x, y, z)| ≤
C(1 + |z|2)−N which implies the result since (1 + |z|2)−1 ≤ 2(1 + |z|)−1. �

Remark. If A depends on a parameter but is uniformly compactly supported in ξ and
has uniformly bounded derivatives, it follows from (3.5) that the constant C in Lemma
3.3 can be chosen independent of the parameter.

It follows from Lemma 3.3 that, for all u ∈ L2(Rn),

OPh(A)u(x) =

ˆ
KA,h(x, y)u(y)dy,

is a well defined continuous function on Rnx (here KA,h is defined by (3.3)).

Exercise 3.4. Check this ! Check also that, for all a ∈ C∞0 (R2n), oph[a] maps L2(Rn)
into C∞0 (Rn).

Not only OPh(A)u is continuous (hence measurable) whenever u belongs to L2, but we
will see that it also belongs to L2, making OPh(A) a linear map on L2. Furthermore this
map is continuous. This is a consequence of the following proposition.

Proposition 3.5 (Uniform L2 boundedness). For a given A ∈ C∞b (R3n) with compact
support in ξ, there exists C > 0 such that∣∣∣∣OPh(A)u

∣∣∣∣
L2 ≤ C||u||L2 ,

for all u ∈ L2 and h ∈ (0, 1].

Note that this proposition provides the estimate∣∣∣∣OPh(A)
∣∣∣∣
L2→L2 ≤ C,

which is uniform in h ∈ (0, 1]. It rests on the following elementary result.

Lemma 3.6 (Schur test). Let K be a measurable function on R2n such that

C1 := sup
x∈Rn

ˆ
|K(x, y)|dy <∞, C2 := sup

y∈Rn

ˆ
|K(x, y)|dx <∞. (3.6)

Then the operator K with the integral kernel K satisfies

||K||L2→L2 ≤
√
C1C2. (3.7)
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Proof. By the Cauchy-Schwarz inequality for |K(x, y)u(y)| = |K(x, y)|1/2×|K(x, y)|1/2|u(y)|,
we find first

ˆ
|K(x, y)u(y)|dy ≤

(ˆ
|K(x, y)|dy

)1/2(ˆ
|K(x, y)||u(y)|2dy

)1/2

≤
√
C1

(ˆ
|K(x, y)||u(y)|2dy

)1/2

.

Then, by the above inequality (used in the second line below), we get

ˆ ∣∣ˆ K(x, y)u(y)dy
∣∣2dx ≤ |

ˆ (ˆ
|K(x, y)||u(y)|dy

)2

dx

≤ C1

ˆ ˆ
|K(x, y)||u(y)|2dydx

≤ C1C2

ˆ
|u(y)|2dy

which yields the result. �

Proof of Proposition 3.5. It is a consequence of Lemma 3.6 together with the kernel
estimate of Lemma 3.3. Indeed, choosing N > n, one has

ˆ
|KA,h(x, y)|dy ≤ C(2πh)−n

ˆ (
1 +

∣∣∣∣x− yh
∣∣∣∣)−N dy = C(2π)−n

ˆ
(1 + |z|)−Ndz

whose right hand side is finite (since the integral is finite) and independent of h and x.
The same estimate holds for

´
|KA,h(x, y)|dx so the result follows. �

As a direct consequence of (3.4) and Proposition 3.5, we get

Corollary 3.7. For all a ∈ C∞0 (R2n), there exists C > 0 such that∣∣∣∣oph[a]
∣∣∣∣
L2→L2 ≤ C,

for all h ∈ (0, 1].

The next proposition will be useful to justify the results of symbolic calculus.

Proposition 3.8. Let A,B ∈ C∞b (R3n) be compactly supported in ξ. Assume that

A(x, x, ξ) = B(x, x, ξ), (3.8)

for all x, ξ ∈ Rn. Then there exists C > 0 such that, for all h ∈ (0, 1],∣∣∣∣OPh(A)−OPh(B)
∣∣∣∣
L2→L2 ≤ Ch.
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Proof. The integral kernel of OPh(A)−OPh(B) reads

(2πh)−n
ˆ
ei(x−y)·ξ/h(A(x, y, ξ)−B(x, y, ξ)

)
dξ. (3.9)

By the Taylor formula

A(x, y, ξ)−A(x, x, ξ) =

n∑
j=1

(yj − xj)
ˆ 1

0
(∂yjA)(x, x+ s(y − x), ξ)ds,

where each integral belongs to C∞b (R3n) and is compactly supported in ξ. Thus, using
(3.8), one can write

A(x, y, ξ)−B(x, y, ξ) =

n∑
j=1

(yj − xj)Cj(x, y, ξ)

with Cj ∈ Cb(R3n) compactly supported in ξ. Using that

(yj − xj)ei(x−y)·ξ/h = ih∂ξje
i(x−y)·ξ/h

and integrations by part in ξ, we see that (3.9) is the sum

−ih
∑
j

(2πh)−n
ˆ
ei(x−y)·ξ/h∂ξjCj(x, y, ξ)dξ.

Therefore

OPh(A)−OPh(B) = −ih
∑
j

OPh(∂ξjCj)

has norm bounded by Ch according to Proposition 3.5. The result follows. �

Proposition 3.9 (Elementary composition formula). For all a, b ∈ C∞0 (R2n), there exists
C > 0 such that ∣∣∣∣oph[a]oph[b]− oph[ab]

∣∣∣∣
L2→L2 ≤ Ch,

for all h ∈ (0, 1].

Lemma 3.10. Let õph[b] be the operator with kernel (2πh)−n
´
ei(x−y)·ξ/hb(y, ξ)dξ. Then

̂̃oph[b]u(ξ) =

ˆ
e−iy·ξb(y, hξ)u(y)dy,

for all u ∈ C∞0 (Rn).



42 CHAPTER 3. QUANTIZATION

Proof. Let ϕh(ξ) =
´
e−iy·ξb(y, hξ)u(y)dy. Then

õph[b]u(x) = (2π)−n
ˆ
eix·ξϕh(ξ)dξ = (2π)−nϕ̂h(−x)

thus, by the Fourier inversion formula

̂̃oph[b]u(ξ) = (2π)−n
ˆ
e−ix·ξϕ̂h(−x)dx = ϕh(ξ)

which is exactly the result. �

Proof of Proposition 3.9. Observe first that

||oph[a]oph[b]− oph[a]õph[b]||L2→L2 ≤ ||oph[a]||L2→L2 ||oph[b]− õph[b]||L2→L2

≤ Ch, (3.10)

using Proposition 3.7 and Proposition 3.8. On the other hand, using the definition (3.1)
together with Lemma 3.10

oph[a]õph[b]u(x) = (2π)−n
ˆ
eix·ξa(x, hξ)

(ˆ
e−iy·ξb(y, hξ)u(y)dy

)
dξ

=

ˆ (
(2π)−n

ˆ
ei(x−y)·ξa(x, hξ)b(y, hξ)dξ

)
u(y)dy

that is
oph[a]õph[b] = OPh(A), A(x, y, ξ) = a(x, ξ)b(y, ξ).

Since A(x, x, ξ) = a(x, ξ)b(x, ξ), Proposition 3.8 implies that∣∣∣∣OPh(A)− oph[ab]
∣∣∣∣
L2→L2 ≤ Ch.

Together with (3.10), this yields the result. �

In the following proposition, we provide an elementary justification of the fact that
pseuodifferential operators are invariant by conjugation by diffeomorphisms.

Proposition 3.11 (Invariance mod h). Let χ : V →W be a diffeomorphism between open
subsets of Rn. Let ψ ∈ C∞0 (V ). For a ∈ C∞0 (W × Rn) define

aχ(x, ξ) = a
(
χ(x), (dχ(x)T )−1ξ

)
.

Then aχ belongs to C∞0 (V × Rn) and∣∣∣∣(χ∗oph[a]χ∗
)
ψ − oph[aχ]ψ

∣∣∣∣
L2→L2 ≤ Ch, h ∈ (0, 1].

The constant C remains bounded as long as a and ψ belong respectively to bounded subsets
of C∞0 (W × Rn) and C∞0 (V ).
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Let us comment that the operator
(
χ∗oph[a]χ∗

)
ψ, namely

u 7→
(
χ∗oph[a]χ∗

)
(ψu)

is defined globally, i.e. for all u ∈ L2(Rn), since the cutoff ψ guarantees that χ∗(ψu) =
(ψ ◦χ−1)(u◦χ−1) is well defined on Rn (it is implicitly continued by 0 outside the support
of ψ ◦ χ−1 ∈ C∞0 (W )) even if u is not supported where χ−1 is defined. Also χ∗(oph[a]v)
is well defined for all v ∈ L2(Rn) (in particular for v = χ∗(ψu)) since the compactness of
supp(a) in W ×Rn ensures that oph[a]v is supported in a compact subset of W hence can
be composed with χ.

Lemma 3.12. The integral kernel of χ∗oph[a]χ∗ψ is

Kχ,h(x, y) := (2πh)−n
ˆ
ei(χ(x)−χ(y))·η/ha(χ(x), η)ψ(y)|det(dχ(y))|dη. (3.11)

Proof. A simple calculation using that

χ∗oph[a]χ∗ψu(x) = (2πh)−n
ˆ ˆ

ei(χ(x)−t)·η/ha(χ(x), η)(ψu)(χ−1(t))dtdη

and using the change of variable χ−1(t) = y. �

Lemma 3.13. Let θ ∈ C∞0 (Rn) be such that θ = 1 near 0. Then, for all N ≥ 0,
(1− θ(x− y))Kχ,h(x, y) reads

(−1)Nh2N 1− θ(x− y)

|χ(x)− χ(y)|2N
(2πh)−n

ˆ
ei(χ(x)−χ(y))·η/h(∆N

η a)(χ(x), η)ψ(y)|det(dχ(y))|dy.

In particular, if Kχ,θ,h is the operator with kernel (1 − θ(x − y))Kχ,h(x, y), there exists
C > 0 such that ∣∣∣∣Kχ,θ,h∣∣∣∣L2→L2 ≤ Ch, (3.12)

for all h ∈ (0, 1].

Proof. The first observation is that, due to the support of a and ψ, we may assume that
both x and y belong to a compact subset of V (otherwise a(χ(x), η)ψ(y) vanishes). Then,
by injectivity of χ and the fact that 1 − θ(x − y) vanishes near the diagonal x = y, we
know that χ(x)− χ(y) does not vanish on the support of (1− θ(x− y))a(χ(x), η)ψ(y). In
particular, on such a support, we can use the identity

−h2

|χ(x)− χ(y)|2
∆ηe

i(χ(x)−χ(y))·η/h = ei(χ(x)−χ(y))·η/h.
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Using N times this identity and integrating by part in (3.11), we get the expected formula
for (1− θ(x, y))Kχ,θ,h(x, y). Let us now prove (3.12). The support of (∆N

η a)(χ(x), η)ψ(y)
ensures that there exist R > 0, C > 0 and V1 b V such that∣∣(∆N

η a)(χ(x), η)ψ(y)|det(dχ(y))|
∣∣ ≤ C1V1(x)1V1(y)1B(0,R)(η).

On the other hand, on the support of the above function, we have∣∣∣∣ 1− θ(x− y)

|χ(x)− χ(y)|2N

∣∣∣∣ ≤ C,
since the denominator does not vanish on the support of 1− θ(x− y). Therefore, one can
find a constant (depending on N) such that∣∣(1− θ(x− y))Kχ,h(x, y)

∣∣ ≤ ChN−n1V1(x)1V1(y),

for all x, y ∈ Rn and h ∈ (0, 1]. Choosing N ≥ n + 1 and using Lemma 3.6, the result
follows. �

Proof of Proposition 3.11. By (3.12), it suffices to consider the operator with kernel
θ(x− y)Kχ,h(x, y) for some suitable θ ∈ C∞0 (Rn) equal to 1 near 0. Let us introduce

A(x, y) :=

ˆ 1

0
dχ(x+ s(y − x))Tds.

If we let W0 bW be a compact subset of W such that supp(a) ⊂W0×Rn, A(x, y) is well
defined for all x ∈ χ−1(W0) and y ∈ supp(ψ) such that x−y is small enough (to guarantee
that the segment [x, y] is contained in V where χ is defined). Thus, by choosing θ with a
small enough support,

η 7→ A(x, y)η is invertible for all x ∈ χ−1(W0), y ∈ supp(ψ) such that x− y ∈ supp(θ),

since A(x, y) is close to dχ(x)T if x− y is small. Then, writing(
χ(x)− χ(y)

)
· η = (x− y) ·A(x, y)η,

and using the change of variable A(x, y)η = ξ

θ(x− y)Kχ,h(x, y) = (2πh)−n
ˆ
ei(x−y)·ξ/hF (x, y, ξ)dy

with

F (x, y, ξ) = θ(x− y)a
(
χ(x), A(x, y)−1ξ

)
|det(dχ(y))|

∣∣detA(x, y)
∣∣−1

ψ(y).

Setting G(x, y, ξ) = aχ(x, ξ)ψ(y), we find

F (x, x, ξ) = aχ(x, ξ)ψ(x) = G(x, x, ξ),

so using Proposition 3.8 and the fact that oph[aχ]ψ = OPh(G), the result follows. �
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3.2 Definition of the quantization on M

Let us pick a finite atlas on M , composed of charts κl : M ⊃ Ul → Vl ⊂ Rn, l = 1, . . . , L,
and consider a partition of unity on M of the form

L∑
l=1

Ψ2
l = 1 with Ψl ∈ C∞0 (Ul). (3.13)

The existence of such a partition is classical (for completeness, we refer to Proposition
A.1 for a construction). We recall that κ∗l and κl∗ denote respectively the pullback and
pushforward operators defined as

κ∗l u = u ◦ κl, κl∗ϕ = ϕ ◦ κ−1
l ,

when u is a function on Vl and ϕ a function on Ul. One also defines

ψl = κl∗Ψl ∈ C∞0 (Vl) ⊂ C∞0 (Rn). (3.14)

We also recall that we use the notation κl∗ for functions on T ∗M (see (1.4)). In particular,
we use this notation in the following definition.

Definition 3.14. For h ∈ (0, 1] and a ∈ C∞0 (T ∗M), we set

Oph(a) =

L∑
l=1

(
κ∗l oph[κl∗(Ψla)]κl∗

)
Ψl. (3.15)

We repeat the same kind of comments as those after Proposition 3.11 to justify that
this definition is meaningful. On one hand, the cutoff Ψl on the right hand side allows to
localize functions inside Ul hence to apply the operator κl∗. On the other hand the cutoff
Ψl on a ensures that κl∗(Ψla) is globally defined (it belongs to C∞0 (R2n)) and that the
range of oph[κl∗(Ψla)] is contained in C∞0 (Vl) so that one can apply the operator κ∗l .

The above formula defines Oph(a) on C∞(M). However, according to the next propo-
sition, we can extend it to L2(M).

Proposition 3.15. For all a ∈ C∞0 (T ∗M) there exists C > 0 such that

||Oph(a)ϕ||L2(M) ≤ C||ϕ||L2(M)

for all h ∈ (0, 1] and ϕ ∈ C∞(M). In particular Oph(a) has a unique linear continuous
extension to L2(M) and (2.11) holds true.

Proof. This is mostly a consequence of Corollary 3.7. We provide some detail to explain
ho to pass from L2(Rn) to L2(M). We consider a single term in the sum (3.15). Then∣∣∣∣(κ∗l oph[κl∗(Ψla)]κl∗

)
Ψlϕ

∣∣∣∣2
L2(M)

=

ˆ
Rn

∣∣oph[κl∗(Ψla)](κl∗Ψlϕ
)
(x)
∣∣2|gl(x)|dx
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where |gl(x)| is the Riemannian density. Since κl∗(Ψla) is supported in a compact subset
of Vl×Rn, we integrate only over a compact subset of Vl. In particular, |gl(x)| is bounded
there so ∣∣∣∣(κ∗l oph[κl∗(Ψla)]κl∗

)
Ψlϕ

∣∣∣∣
L2(M)

≤ C ||oph[κl∗(Ψla)]κl∗(Ψlϕ)||L2(Rn)

≤ C ′ ||κl∗(Ψlϕ)||L2(Rn) (3.16)

the second line following from Corollary 3.7. Finally, writing 1 = |gl(x)|−1|gl(x)| and using
that |gl(x)|−1 is bounded on the support of κl∗Ψl, we have

||κl∗(Ψlϕ)||2L2(Rn) =

ˆ
Rn

∣∣(κl∗Ψlϕ
)
(x)
∣∣2dx ≤ C ˆ

Rn

∣∣(κl∗Ψlϕ
)
(x)
∣∣2|gl(x)|dx = C||Ψlϕ||2L2(M).

We can thus replace ||κl∗(Ψlϕ)||L2(Rn) in (3.16) by (a constant times) ||Ψlϕ||L2(M), which
is itself bounded by ||ϕ||L2(M), so the result follows. �

Proposition 3.16. Let κ : U ⊂ M → V ⊂ Rn be a local chart. If K is a compact subset
of U and Ψ̃ ∈ C∞0 (U) is equal to 1 near K, then for all a ∈ C∞0 (T ∗M) such that

supp(a) ⊂ π−1
T ∗M (K), (3.17)

we have ∣∣∣∣∣∣Oph(a)−
(
κ∗
(
oph[κ∗a]

)
κ∗
)

Ψ̃
∣∣∣∣∣∣
Lc(L2)

≤ Ch, h ∈ (0, 1].

The constant C remains bounded as long as a belongs to a bounded subset of C∞0 (T ∗M)
such that (3.17) holds.

Proof. Write first(
κ∗
(
oph[κ∗a]

)
κ∗
)

Ψ̃ =
∑
l

Ψ2
l κ
∗(oph[κ∗a](κ∗Ψ̃)

)
κ∗

=
∑
l

κ∗
(
(κ∗Ψl)

2oph[κ∗a](κ∗Ψ̃)
)
κ∗ (3.18)

where κ∗Ψl makes only sense on Vl ∩ V for those l such that Ul ∩U is non empty, but the
assumption on the support of a allows to set to zero the terms such that Ul ∩U is empty.
Furthermore, for the other terms, (κ∗Ψl)

2(κ∗a) is smooth on R2n. We next wish to write
for each l

(κ∗Ψl)
2oph[κ∗a](κ∗Ψ̃) = (κ∗Ψl)oph[κ∗a](κ∗Ψl)(κ∗Ψ̃) +OLc(L2(Rn))(h), (3.19)

namely to move one of the cutoffs κ∗Ψl from the left to the right, up to a remainder. One
has to be a little careful there, because κ∗Ψl alone is not globally smooth on Rn (it is not
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well defined due to the part of supp(Ψl) which may not meet U). One can justify (3.19)
as follows. Write the integral kernel of (κ∗Ψl)

2oph[κ∗a]κ∗Ψ̃ as

(κ∗Ψl)(x)2

(
(2πh)−n

ˆ
ei(x−y)·ξ/h(κ∗a)(x, ξ)(κ∗Ψ̃)(y)dξ

)
(3.20)

where the parenthese is smooth on R2n and supported in Kx × Ky while (κ∗Ψl) is only
smooth (and defined) on V . Pick θ ∈ C∞0 (Rn) which is equal to 1 near 0. Then, the
operator with kernel 1 − θ(x − y) times (3.20) has O(h∞) operator norm. On the other
hand, on the support of the bracket of (3.20) i.e. on K ×K, one can write

((κ∗Ψl)(x)− (κ∗Ψ)l(y)) θ(x− y) = θ(x− y)

ˆ 1

0
d(κ∗Ψl)(y + s(x− y))ds · (x− y)

where the right hand side is smooth on K ×K since the segment [x, y] is contained in V
whenever x, y belong to K and x− y is small enough (which is guaranteed by taking the
support of θ close enough to 0). This allows to replace (κ∗Ψl)(x)2 by (κ∗Ψl)(x)(κ∗Ψl)(y)
in (3.20) up to an error of size O(h) in operator norm, hence to justify (3.19). We are
then left with the study of

κ∗
(
oph[κ∗(Ψla)](κ∗(ΨlΨ̃))

)
κ∗ = κ∗l (κ ◦ κ−1

l )∗
(
oph[κ∗(Ψla)](κ∗(ΨlΨ̃))

)
(κ ◦ κ−1

l )∗κl∗

where we can use both charts since Ψla and ΨlΨ̃ are supported in the intersection of their
domains. Using Proposition 3.11 with χ = κ◦κ−1

l , the right hand side of the last displayed
formula reads

κ∗l

(
oph[κl∗(Ψla)](κl∗(ΨlΨ̃))

)
κl∗+OLc(L2)(h) = κ∗l

(
ψloph[κl∗a]ψl(κl∗Ψ̃)

)
κl∗+OLc(L2)(h).

It remains to see that, since Ψ̃ = 1 near the support of a, one has

κ∗l

(
ψloph[κl∗a]ψl(κl∗Ψ̃)

)
κl∗ = κ∗l (ψloph[κl∗a]ψl)κl∗ +OLc(L2)(h)

which is proved similarly as (3.19). Thus (3.18), reads∑
l

κ∗l
(
ψloph[κl∗a]ψl

)
κl∗ +OLc(L2)(h) = Oph(a) +OLc(L2)(h),

which completes the proof. �

One first application of Proposition 3.16 is to provide a simple proof of the approximate
composition formula (2.12).

Proposition 3.17. For all a, b ∈ C∞0 (T ∗M), there exists C > 0 such that, for all h ∈
(0, 1], ∣∣∣∣Oph(a)Oph(b)−Oph(ab)

∣∣∣∣
Lc(L2)

≤ Ch.



48 CHAPTER 3. QUANTIZATION

Proof. By linearity of Oph(·) and by using a partition of unity on M , we may assume that
a is as in Proposition 3.16. Then, using that ||Oph(b)||Lc(L2) is bounded uniformly in h,
we find

Oph(a)Oph(b) = κ∗
(
oph[κ∗a]

)
κ∗Oph(Ψ̃b) +OLc(L2)(h).

Now observe that Ψ̃b is supported in the same coordinate patch as a. Then by picking
˜̃Ψ ∈ C∞0 (U) which is equal to 1 near the support of Ψ̃, Proposition 3.16 gives

Oph(Ψ̃b) =
(
κ∗
(
oph[κ∗(Ψ̃b)]κ∗

)
˜̃Ψ +OLc(L2)(h)

Using Proposition 3.9, we have(
κ∗
(
oph[κ∗a]

)
κ∗
) (
κ∗
(
oph[κ∗(Ψ̃b)]κ∗

)
˜̃Ψ =

(
κ∗
(
oph[κ∗(aΨ̃b)]

)
κ∗

)
˜̃Ψ +OLc(L2)(h).

Using the support property of a, we have aΨ̃b = ab. Using again Proposition 3.16, we
then find (

κ∗
(
oph[κ∗(ab)]κ∗

) ˜̃Ψ = Oph(ab) +OLc(L2)(h)

and the result follows. �

Proposition 3.18. The property (2.13) is true.

Proof. Let T =
(
κ∗l oph[κl∗(Ψla)]κl∗

)
Ψl. For notational simplicity in the computation

below, we drop the index l and, for φ, ϕ ∈ C∞(M), we set

v = κ∗φ, u = κ∗ϕ, ψ = κ∗Ψ(= κl∗Ψl∗).

Then

〈φ, Tϕ〉M =

ˆ
(κ∗φ)(x) (oph[κ∗(Ψa)]κ∗(Ψϕ)) (x)|g(x)|dx

=

ˆ
v(x)

(
(2π)−n

ˆ
ei(x−y)·ξψ(x)(κ∗a)(x, hξ)ψ(y)u(y)dy

)
|g(x)|dx

= (2π)−n
ˆ (ˆ

ei(y−x)·ξ|g(x)|(κ∗ā)(x, hξ)ψ(x)v(x)dx

)
ψ(y)u(y)dy.

Introducing the Riemannian measure by writing dy = |g(y)|−1|g(y)|dy, and then swapping
the names of the integration variables, we see that 〈φ, Tϕ〉M reads

(2π)−n
ˆ (ˆ

ei(x−y)·ξ|g(y)|(κ∗ā)(y, hξ)ψ(y)v(y)dy

)
|g(x)|−1ψ(x)u(x)|g(x)|dx,

or equivalently

〈φ, Tϕ〉M =
〈(
κ∗(OPh(A)κ∗φ), ϕ

〉
M
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with

A(x, y, ξ) = |g(x)|−1ψ(x)(κ∗ā)(y, hξ)|g(y)|ψ(y).

Using proposition (3.8) together with the fact that A and ψ(x)(κ∗ā)(x, hξ)ψ(y) coincide
when x = y, we find that

T ∗ = κ∗OPh(A)κ∗ =
(
κ∗oph[κ∗(Ψā)]κ∗

)
Ψ +OLc(L2)(h),

and the result follows. �

3.3 The Egorov Theorem

In this section, we prove a weak version of the Egorov Theorem, namely the property
(2.14). The proof itself is given at the end of the section. We need first to establish some
preparatory results. In passing, we collect some computations which will be useful in other
sections.

We start with calcultation in local coordinates; we use a chart κ : U ⊂ M → V ⊂ Rn
and consider the local expression of ∆g

−P :=
∑
j,k

gjk(x)∂j∂k +
∑
i

Γi(x)∂i,

where, according to Exercise 1.5, one has Γi(x) = −
∑

j,k g
jk(x)Γijk(x). We won’t however

use the explicit form of Γi(x). We also define

p0(x, ξ) :=
∑
j,k

gjk(x)ξjξk,

p1(x, ξ) :=
∑
i

Γi(x)ξi

that is p0 = κ∗p according to (1.21).

We start with a local result.

Proposition 3.19. Let ψ ∈ C∞0 (V ) and b ∈ C∞0 (Rn × Rn)

h2P (ψoph[b]) = oph
[
b0 + hb1 + h2b2

]
where

b0 = p0ψb

b1 = −i∂ξp0 · ∂x(ψb)− ip1ψb

b2 = P (ψb).
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Proof. Given any arbitrary u ∈ C∞0 (Rn), we apply h2P to

oph[ψb]u(x) = (2π)−n
ˆ
eix·ξψ(x)b(x, hξ)û(ξ)dξ

and use the Leibniz rule to distribute the x derivatives on eix·ξ and ψ(x)b(x, hξ). One
then obtain a sum of the form

∑
hkoph[bk]u with

b0(x, ξ) =
∑
j,k

gjk(x)ξjξkψ(x)b(x, ξ)

b1(x, ξ) = −2i
∑
j,k

gjk(x)ξj∂xk
(
ψ(x)b(x, ξ)

)
− i
∑
k

Γk(x)ξkψ(x)b(x, ξ),

and b2 = P (ψb). This yields the result. �

We record in passing the following global consequence of this calculation.

Proposition 3.20. For all a ∈ C∞0 (T ∗M), one has

−h2∆gOph(a) = Oph(pa) +OLc(L2)(h).

More generally, for all k ∈ N,

(−h2∆g)
kOph(a) = Oph(pka) +OLc(L2)(h).

Proof. We give the proof in the case k = 1 and leave its adaptation to the case of larger
k as an exercise.

−h2∆gOph(a) =
L∑
l=1

−h2∆g

(
κ∗l oph[κl∗(Ψla)]κl∗

)
Ψl

=
L∑
l=1

(
κ∗l h

2Ploph[κl∗(Ψla)]κl∗
)
Ψl

where Pl is the expression of −∆g in the l-th chart, namely −∆gκ
∗
l = κ∗l Pl. By Proposition

3.19 with ψb := κl∗(Ψla), one has

h2Ploph[κl∗(Ψla)] = oph[κl∗(Ψlpa)] + hoph[b1,l + hb2,l]

for some smooth and compactly supported symbols b1,l, b2,l. One can then check that∣∣∣∣(κ∗l oph[b1,l + hb2,l]κl∗
)
Ψl

∣∣∣∣
Lc(L2(M))

≤ C, h ∈ (0, 1],

exactly as in the proof of Proposition 3.15. The result follows. �

In Proposition 3.19, we have composed a pseudo-differential operator with h2P on the
left. We now compute the composition with h2P on the right.
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Proposition 3.21. Let b ∈ C∞0 (R2n) and ψ ∈ C∞0 (V ). Then

oph[b]ψh2P = OPh(A0 + hA1 + h2A2)

where, for each j,
Aj(x, y, ξ) = b(x, ξ)cj(y, ξ)

with

c0 = ψp0

c1 = i
(
divy

(
ψ∂ξp0

)
− ψp1

)
c2 = −

∑
j,k

∂j∂k
(
ψgjk

)
+
∑
i

∂i
(
ψΓi

)
Note that, using Propositions 3.5 and 3.8, we find in particular that

oph[b]ψh2P = oph[bp0]ψ +OLc(L2(Rn))(h). (3.21)

Proof of Proposition 3.21. It is stlightly less direct than the one Proposition 3.19. The
first step is to observe that for any u ∈ C∞0 (V )

(ψPu)(y) = −
∑
j,k

∂j∂k
(
ψ(y)gjk(y)u

)
−
∑
i

∂i
(
Γ̃i(y)u

)
+W (y)u (3.22)

with

Γ̃i(y) = ψ(y)Γi(y)− 2
∑
j

∂j
(
ψ(y)gji(y)

)
W (y) = −

∑
j,k

∂j∂k
(
ψ(y)gjk(y)

)
+
∑
i

∂i
(
ψ(y)Γi(y)

)
.

The interest is to write ψP with derivatives to the left rather than to the right. Then,
using the expression (3.2) for the kernel of oph[b], we can write(

oph[b]ψh2Pu
)
(x) = (2πh)−n

ˆ ˆ
ei(x−y)·ξ/hb(x, ξ)(h2Pu)(y)dξdy

and then integrate by part in y the derivatives coming from (3.22). This shows that the
above integral reads

(2πh)−n
ˆ ˆ

ei(x−y)·ξ/hb(x, ξ)

 2∑
j=0

hjcj(y, ξ)

u(y)dξdy

which is exactly the result. �

We then obtain a result similar to Proposition 3.20.
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Proposition 3.22. For all a ∈ C∞0 (T ∗M), one has

Oph(a)(−h2∆g) = Oph(pa) +OLc(L2)(h).

More generally, for all k ∈ N,

Oph(a)(−h2∆g)
k = Oph(pka) +OLc(L2)(h).

Proof. It is similar to the one of Proposition 3.20 using additionally (3.21). �

Definition 3.23. The commutator of two linear operators A,B acting on the same
vector space is the operator

[A,B] = AB −BA.

This definition is relatively formal but is sufficient for our purpose below. Typically,
we will consider the case when A,B are differential (or pseudo-differential) operators,
for which the compositions AB and BA make clearly sense on the space of smooth and
compactly supported functions. We suggest readers non familiar with commutators to
work out the following exercise.

Exercise 3.24. 1. If A,B,C are linear operators (such that all compositions make
sense) check that

[A,BC] = [A,B]C +B[A,C].

2. Let φ be a smooth function, seen as a differential operator of order 0. Let α be a
non zero multi-index. Show that[

(h∂x)α, φ(x)] = h
∑

0 6=γ≤α
h|γ|−1 α!

γ!(α− γ)!
(∂γφ(x))(h∂x)α−γ .

It follows in particular from Propositions 3.20 and 3.22 that

[−h2∆g, Oph(a)
]

= −h2∆gOph(a) +Oph(a)h2∆g

= Oph(pa)−Oph(pa) +OLc(L2)(h)

= OLc(L2)(h).

The next proposition gives a sharper description of this commutator.

Proposition 3.25. For all a ∈ C∞0 (T ∗M),

[−h2∆g, Oph(a)
]

= ihOph({a, p}) +OLc(L2)(h
2), h ∈ (0, 1], (3.23)

where {., .} is the Poisson bracket which has been introduced in Exercise 1.14.
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Remark 1. To be completely rigorous, the meaning of (3.23) is that the left hand
side, seen as an operator acting on C∞(M), has a continuous extension to L2(M) which
coincides with the right hand side.

Remark 2. In the proof of (2.14) below, we will apply Proposition 3.25 with a replaced
by a ◦ Φt and t in a compact set. In this case, the remainder term OLc(L2)(h

2) depends
on t. However, the bound O(h2) is locally uniform in t, i.e. for all T there is CT such
that the norm of the remainder is bounded by CTh

2 for |t| ≤ T . This follows from the
remark after Lemma 3.3 and the Schur test. We won’t insist on this technical point below
to focus on the main ideas.

Before proving in detail Proposition 3.25, we isolate first a calculation which allows to
understand the main point on Rn, without worrying about extra technical details due to
the partition of unity on the manifold.

If b ∈ C∞0 (R2n), Propositions 3.19 and 3.21 allow to compute explicitly[
h2P,ψoph[a]ψ

]
= OPh(C0 + hC1 + h2C2) (3.24)

with

C0 = ψ(x)b(x, ξ)
(
p0(x, ξ)− p0(y, ξ)

)
ψ(y)

C1 = −iψ(x)
(
∂ξp0 · ∂xb(x, ξ) + (p1(x, ξ)− p1(y, ξ))b(x, ξ) + divy(∂ξp0(y, ξ))b(x, ξ)

)
ψ(y)

−iψ(x)b(x, ξ)∂ξp0(y, ξ) · ∂yψ(y)− i∂xψ(x) · ∂ξp0(x, ξ)b(x, ξ)ψ(y)

and some computable C2 ∈ C∞0 (R3n) which does not need to be explicited since, by
Proposition 3.5,

||h2OPh(C2)||Lc(L2(Rn)) ≤ Ch2.

One can also rewrite the operator OPh(C0) by using the Taylor formula

p0(x, ξ)− p0(y, ξ) = ∂q0(x, y, ξ) · (x− y) (3.25)

where

∂q0(x, y, ξ) :=

ˆ 1

0
(∂xp0)(y + s(x− y), ξ)ds.

Indeed, by integration by part in ξ (e.g. as in the proof of Proposition 3.8), the kernel of
OPh(C0)

ψ(x)

(
(2πh)−n

ˆ
ei(x−y)·ξ/hb(x, ξ)∂q0(x, y, ξ) · (x− y)dξ

)
ψ(y)

can be written

ihψ(x)

(
(2πh)−n

ˆ
ei(x−y)·ξ/hdivξ (b(x, ξ)∂q0(x, y, ξ)) dξ

)
ψ(y)
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which provides a factor ih. Using additionally that

divξ (b(x, ξ)∂q0(x, y, ξ))|x=y = ∂ξb · ∂xp0 + bdivξ(∂xp0)

we conclude by using Proposition 3.8 that

OPh(C0) = ihψoph [∂ξb · ∂xp0 + bdivξ(∂xp0)]ψ +OLc(L2(Rn))(h
2). (3.26)

Remark. Strictly speaking, the Taylor formula for p0 (which is defined on V × Rn) only
makes sense if the segment [x, y] is contained in V . Since x, y belong to the support of ψ
hence to V , this condition is satisfied if V is convex, but not in general. One can overcome
this difficulty by considering ψ̃ ∈ C∞0 (V ) which is equal to 1 near the support of ψ which
allows to replace everywhere p0(x, ξ) by p̃0(x, ξ) := ψ̃(x)p0(x, ξ) which is globally defined.
This allows to justify completely the above argument and get in the end (3.26).

Using again Proposition 3.8, we can change y into x wherever we want in the expression
of C1 up to an error of size h at the level of the operator; in other words

OPh(C1) = −i ψoph[∂ξp0 · ∂xb+ bdivx(∂ξp0)]ψ − ioph[b(∂xψ
2) · ∂ξp0] +OLc(L2(Rn))(h).

Observing that divx(∂ξp0) = divξ(∂xp0) and taking into account the factor h in front of
C1 in (3.24), we conclude that[

h2P,ψoph[b]ψ
]

= ihψoph[∂ξb · ∂xp0 − ∂ξp0 · ∂xb]ψ − ihoph[b(∂xψ
2) · ∂ξp0]

+ OLc(L2(Rn))(h
2). (3.27)

If the operator P was defined on Rn, we could take ψ ≡ 1 so that ∂x(ψ2) ≡ 0 and (3.27)
would read exactly [

h2P, oph[b]
]

= ihoph[{b, p0}] + OLc(L2(Rn))(h
2)

that is the analogue of Proposition 3.25 on Rn rather than M . Intuitively, the reason why
the above computations also cover the case of a manifold is that we will replace ψ by the
functions (3.14) of the partition of unity (3.13) so that the sum of derivatives ∂x(ψ2

l ) will be
zero thus discarding again the contribution of the second term of (3.27) after summation.
In the proof below, we mostly consider this question.

Proof of Proposition 3.25. In the expression (3.15) of Oph(a), we let for simplicity

ψl = κl∗Ψl, bl = κl∗a.

We also let Pl = κl∗(−∆g)κ
∗
l as in the proof of Proposition 3.20. Then[

− h2∆g, κ
∗
l ψloph[bl]ψlκl∗

]
= κ∗l

[
h2Pl, ψloph[bl]ψl

]
κl∗.

Also, letting Ψ̃l be smooth and compactly supported in the same patch as Ψl and equal
to 1 near the support of Ψl, by setting ψl = κl∗Ψl, one has[

h2Pl, ψloph[bl]ψl
]

=
[
h2Pl, ψloph[bl]ψl

]
ψ̃l.
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This follows from Exercise 3.24 using that ψlψ̃l = ψl and ψl[P, ψ̃l] = 0 Hence, using (3.27)
and setting p0,l = κl∗p, we find[

h2Pl, ψloph[bl]ψl
]

= ihψoph[{bl, p0,l}]ψl + ihoph[bl{ψ2
l , p0,l}]ψ̃l + OLc(L2(Rn))(h

2)

where, by the invariance of the definition of the Poisson bracket under coordinates change,

{bl, p0,l} = κl∗{a, p}, bl{ψ2
l , p0,l} = κl∗

(
a{Ψ2

l , p}
)
.

Furthermore, using Proposition 3.16, we have

κ∗l

(
oph[bl{ψ2

l , p0,l}]ψ̃l
)
κl∗ = Oph

(
a{Ψ2

l , p}
)

+OLc(L2)(h).

Therefore, after summation in l, we find

[
− h2∆g, Oph(a)

]
= ihOph({a, p}) + ihOph

(
a

{∑
l

Ψ2
l , p

})
+OLc(L2)(h

2)

where the second term in the right hand side vanishes since {1, p} = 0. This completes
the proof. �

The last step to prove (2.14) is the following one.

Proposition 3.26. Let a ∈ C∞0 (T ∗M). Define at = a ◦ Φt for all t ∈ R. Then

∂tat = {p, at}.

Proof. Using that Φt is the flow of the vector field Wp defined in (1.22) one has

∂t(a ◦ Φt) =
(
da ·Wp

)
|Φt = σ(Wp,Wa)|Φt .

Using the definition of the Poisson bracket (1.31), the above function equals precisely
{p, a} ◦ Φt and thus, using (1.33),

∂tat = {p ◦ Φt, a ◦ Φt}.

By conservation of energy, i.e. (1.27), one has p ◦ Φt = p and the result follows. �

Proof of (2.14). We start by giving the main idea and then comment on some minor
technical details. One computes

d

dt

(
eith∆gOph(at)e

−ith∆g

)
= eith∆g (ih∆hOph(at) +Oph(∂tat)−Oph(at)ih∆g) e

−ith∆g

= eith∆g

(
Oph(∂tat)−

i

h

[
− h2∆g, Oph(at)

])
e−ith∆g . (3.28)
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By integration of this identity, we find

eith∆gOph(at)e
−ith∆g −Oph(a) =

ˆ t

0
eish∆g

(
Oph(∂sas)−

i

h

[
− h2∆g, Oph(as)

])
e−ish∆gds.

By Propositions 3.25 and 3.26, one has

Oph(∂sas)−
i

h

[
− h2∆g, Oph(as)

]
= Oph({p, as})−Oph({p, as}) +OLc(L2)(h) (3.29)

where the last term depends on s but, on every compact time interval J , its operator norm
can be bounded by Ch, with C independent of s (but depending on J). By integration,
also using that e±ish∆g have norm 1, we find that for every T ,∣∣∣∣∣∣eith∆gOph(at)e

−ith∆g −Oph(a)
∣∣∣∣∣∣
Lc(L2)

≤ CTh, h ∈ (0, 1], |t| ≤ T. (3.30)

By unitarity of e±ith∆g , this estimate is equivalent to (2.14). This essentially completes
the proof, up to the justification of some algebraic manipulations which are related to the
remark after Proposition 3.25. To get (3.28), we have used that

d

dt
eith∆g = eith∆g ih∆g,

d

dt
e−ith∆g = −eith∆g ih∆g = −ih∆ge

ith∆g

which is formally obvious but has to be handled with care since ∆g is not a bounded
operator on L2(M). One way to proceed is to prove (3.28) in the weak sense, by testing it
against finite linear combinations of eigenfunctions of ∆g. Indeed for any two eigenfunc-
tions ej , ek of ∆g, one has〈

eith∆gOph(at)e
−ith∆gej , ek

〉
=

〈
Oph(at)e

−ith∆gej , e
−ith∆gek

〉
=

〈
Oph(at)e

ithλjej , e
ithλkek

〉
and using (2.8) the derivative can be rigorously computed and is the sum of〈

eith∆gOph(∂tat)e
−ith∆gej , ek

〉
(3.31)

and 〈
eith∆gOph(at)(−ih∆g)e

−ith∆gej , ek

〉
+
〈
Oph(at)e

−ith∆gej , (−ih∆g)e
ith∆gek

〉
.

In these two terms, we can integrate by part the second Laplacian using (1.17) (recall also
that we consider a complex Hilbert space so that moving i from one factor to the other
turns it into −i) and we get〈

eith∆g
[
ih∆g, Oph(at)

]
e−ith∆gej , ek

〉
(3.32)
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which is meaningful since this equality is tested against smooth functions. Applying
Propositions 3.25 and 3.26 and then integrating in time, we find〈(

eith∆gOph(at)e
−ith∆g −Oph(a)

)
ej , ek

〉
=

〈(ˆ t

0
hBh(s)ds

)
ej , ek

〉
for some Bh(s) ∈ Lc(L2), locally uniformly bounded in s. By linearity, this identity
remains true if one replaces the eigenfunctions by finite linear combinations of eigenfunc-
tions and then by any L2 functions, since one can use a density argument for the operators
involved on both sides are continuous on L2(M). This then fully justifies (3.30). �
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Chapter 4

Proof of the local Weyl law

4.1 Hilbert-Schmidt operators

Let H and K be two separable Hilbert spaces over C.

Lemma 4.1. Let A ∈ L(H,K). If (ej)j∈N and (fk)k∈N are orthonormal bases of H and
K respectively, then ∑

j

||Aej ||2K =
∑
k

||A∗fk||2H.

Proof. For each j, we have

||Aej ||2K =
∑
k

∣∣(fk, Aej)K∣∣2 =
∑
k

∣∣(A∗fk, ej)K∣∣2.
Summing over j and swapping the summations with respect to j and k, we get∑

j

||Aej ||2K =
∑
k

∑
j

∣∣(A∗fk, ej)K∣∣2 =
∑
k

||A∗fk||2H

which is precisely the result. �

Definition 4.2. An operator A ∈ L(H,K) is Hilbert-Schmidt if

||A||HS :=

∑
j

||Aej ||2K

1/2

<∞,

for some orthonormal basis (ej)j∈N of H. We denote by S2(H,K) the set of Hilbert-Schmidt
operators from H to K. If H = K, we denote it by S2(H).

Note that ||A||HS is independent of the choice of the orthonormal basis by Lemma 4.1.

59



60 CHAPTER 4. PROOF OF THE LOCAL WEYL LAW

Proposition 4.3. 1. If A ∈ S2

(
H,K

)
, then A∗ ∈ S2

(
K,H

)
and

||A||HS = ||A∗||HS.

2. For all A ∈ S2

(
H,K

)
, we have

||A||H→K ≤ ||A||HS.

3. S2

(
H,K

)
is a vector space and || · ||HS is a norm thereon.

4. S2

(
H,K

)
is complete.

5. If H1 and K1 are separable Hilbert spaces and

A ∈ S2

(
H,K

)
, B ∈ L(H1,H), C ∈ L(K,K1)

then CAB ∈ S2

(
H1,K1

)
and

||CAB||HS ≤ ||C||K→K1 ||A||HS||B||H1→H.

Proof. Item 1 follows directly from Lemma 4.1. To prove item 2, we fix u ∈ H and write

u = lim
N→∞

uN , uN =
∑
j≤N

(
ej , u

)
Hej .

Then, by the triangle inequality and the Cauchy-Schwartz inequality,

||AuN ||K ≤
∑
j≤N
|
(
ej , u

)
H|
∣∣∣∣Aej∣∣∣∣K

≤

∑
j≤N
|
(
ej , u

)
H|

2

1/2∑
j≤N

∣∣∣∣Aej∣∣∣∣2K
1/2

≤ ||A||HS||u||H.

Letting N go to infinity and using the continuity of A, we obtain ||Au||K ≤ ||A||HS||u||H
which yields the result. The proof of item 3 is a routine which we omit; we only point out
that ||A||HS = 0 only if A = 0 by item 2. Let us now prove item 4. Let (Aj) be a Cauchy
sequence in S2

(
H,K

)
. By item 2, it is a Cauchy sequence in L(H,K) hence converges in

operator norm to a bounded operator A. It remains to show that A is Hilbert-Schmidt
and that ||A−Aj ||HS → 0. Fix ε > 0. Then for J > 0 large enough

||Ak −Aj ||HS ≤ ε, j, k ≥ J.

This implies in particular that,∑
m≤N

||(Ak −Aj)em||2K ≤ ε2, N ≥ 0, j, k ≥ J.
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Thus, by letting k go to infinity for fixed N and j and then N to infinity, we see that A
is Hilbert-Schmidt and that ||A − Aj ||HS ≤ ε for j ≥ J . Therefore ||A − Aj ||HS → 0. We
finally prove item 5. We first observe that

||CAej ||2K1
≤ ||C||2K→K1

||Aej ||2K
hence by summing over j, we see that CA ∈ S2(H,K1) and that ||CA||HS ≤ ||C||K→K1 ||A||HS.
To handle the case when B 6= IH, we observe that

CAB =
(
B∗(CA)∗

)∗
which shows that CAB is Hilbert-Schmidt and that

||CAB||HS ≤ ||B∗||H→H1 ||CA||HS ≤ ||C||K→K1 ||A||HS||B||H1→H,

using item 1 and the fact that the operator norms of an operator and its adjoint coincide.
�

Proposition 4.4. Let A ∈ S2(H,K) and (fk)k∈N be an orthonormal basis of K. Define

ΠN = orthogonal projection on span {fk | k ≤ N}.

Then
||ΠNA−A||HS → 0, N →∞.

Proof. By item 1 of Proposition 4.3, it is equivalent to show that ||A∗ΠN − A∗||HS → 0.
Writing this Hilbert-Schmidt norm in term of the orthonormal basis (fk), we obtain

||A∗(ΠN − 1)||2HS =
∑
k>N

||A∗fk||2H

which clearly goes to zero as N →∞. �

Remark. Of course if we consider a projection PN onto the N first vectors of an or-
thonormal basis of H, we also have APN → A in the Hilbert-Schmidt class. This follows
directly from Proposition 4.4 by taking the adjoint.

Using that ΠN is a finite rank operator and the property 2 in Proposition 4.3, we
derive automatically the following corollary.

Corollary 4.5. Hilbert-Schmidt operators are compact.

We conclude this section with an important example of Hilbert-Schmidt operator.
To any K ∈ L2(R2n), we can associate the sesquilinear form

Q(v, u) =

ˆ ˆ
v(x)K(x, y)u(y)dydx, u, v ∈ L2(Rn).

By the Cauchy-Schwarz inequality, Q is obviously continuous on L2(Rn)2 hence there
exists a unique bounded operator AK : L2(Rn)→ L2(Rn) such that

Q(v, u) =
(
v,AKu

)
L2(Rn)

.
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Definition 4.6. AK is the operator with L2 kernel K.

Proposition 4.7. The operator AK belongs to S2

(
L2(Rn)

)
and

||AK ||HS = ||K||L2(R2n).

Proof. Let (ej)j∈N be an orthonormal basis of L2(Rn). Then the countable family(
ek ⊗ ej

)
(j,k)∈N2 , ek ⊗ ej(x, y) := ek(x)ej(y)

is an orthonormal basis of L2(R2n): that this is an orthonormal system is a simple calcu-
lation which we omit and proving that finite linear combinations are dense follows from
the density of L2(Rn) ⊗ L2(Rn) in L2(R2n) and the density of finite linear combinations
of (ej) in L2(Rn). Then

||AK ||2HS =
∑
j

||AKej ||2L2(Rn) =
∑
j

∑
k

∣∣(ek, AKej)L2(Rn)

∣∣2
=

∑
j

∑
k

∣∣Q(ek, ej)
∣∣2

=
∑
(j,k)

∣∣(ek ⊗ ej ,K)L2(R2n)

∣∣2 = ||K||2L2(R2n),

completes the proof. �

4.2 Trace class operators

Definition 4.8 (Trace class operators). An operator T : H → H is trace class if it can
be written

T =

N∑
k=1

A∗kBk (4.1)

for some N and some Hilbert-Schmidt operators

Ak, Bk : H → Kk, k = 1, . . . , N,

between a Hilbert space Kk and H.

The interest of trace class operators is that one can define their trace.

Definition 4.9 (Trace of an operator). If T : H → H is trace class and (ej)j∈N is an
orthonormal basis of H, the trace of T is

tr(T ) =
∑
j∈N

(ej , T ej). (4.2)

Sometimes, if we need to specify the Hilbert space, we will denote trH(T ) for tr(T ).
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The following proposition says that this definition is meaninful.

Proposition 4.10. Let T : H → H be trace class and (ej)j∈N be an orthonormal basis of
H. Then

1.
∑

n∈N
∣∣(ej , T ej)∣∣ <∞. In particular, the sum in (4.2) is convergent.

2. If (fk)k∈N is another orthonormal basis, then
∑

j∈N(ej , T ej) =
∑

k∈N(fk, T fk).

The second item says that the trace of T is intrinsinc, i.e. does not depend on the
orthonormal basis.

Proof of Proposition 4.10. It suffices to prove the result when N = 1 in (4.1) i.e. when
T = A∗B, with A,B : H → K Hilbert-Schmidt. The first item follows from∑∣∣(ej , T ej)H∣∣ =

∑∣∣(Aej , Bej)K∣∣ ≤ (∑ ||Aej ||2K
)1/2 (∑

||Bej ||2K
)1/2

the right hand side being finite since A and B are Hilbert-Schmidt. To prove the second
item, we pick an orthonormal basis (εm)l∈N of K and use that for any j,

(ej , T ej)H = (Aej , Bej)K

=
∑
m

(εm, Aej)K(εm, Bej)K

=
∑
m

(A∗εm, ej)H(B∗εm, ej)H

and thus, summing over j, we get∑
j

(ej , T ej)H =
∑
j

∑
m

(A∗εm, ej)H(B∗εm, ej)H

=
∑
m

∑
j

(A∗εm, ej)H(B∗εm, ej)H

=
∑
m

∑
j

(ej , A
∗εm)H(ej , B∗εm)H

=
∑
m

(B∗εm, A
∗εm)H

which does not depend on (ej)j∈N. Note that in the second line we have swapped the
summations over m and j which is possible since (A∗εm, ej)H and (B∗εm, ej)H belong to
l2(N× N) since ∑

m,j

∣∣(A∗εm, ej)H∣∣2 =
∑
m

||A∗εm||2H = ||A∗||2HS <∞.

The proof is complete. �

In the next proposition, we give an example of calculation of a trace. We consider
Hilbert-Schmidt operators with L2 kernels, as in Definition 4.6.
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Proposition 4.11. Let A = AK1 and B = AK2 be operators on L2(Rn) with L2 kernels
K1,K2 ∈ L2(R2n). Then

trL2(Rn)

(
AB
)

=

ˆ ˆ
K1(x, y)K2(y, x)dxdy.

Proof. Let us observe first that A∗ is the operator with L2 kernel K∗1 (x, y) := K1(y, x).
Observe also that (

K∗1 ,K2

)
L2(R2n)

=

ˆ ˆ
K1(x, y)K2(y, x)dxdy.

The conclusion follows then from the following calculation. Given an orthonormal basis
(ej) of L2(Rn), we have

tr(AB) =
∑
j

(
ej , ABej

)
L2(Rn)

=
∑
j

(
A∗ej , Bej

)
L2(Rn)

=
∑
j

∑
k

(
ek, A∗ej

)
L2(Rn)

(
ek, Bej

)
L2(Rn)

=
∑
j

∑
k

(
ek ⊗ ej ,K∗1

)
L2(R2n)

(
ek ⊗ ej ,K2

)
L2(R2n)

=
(
K∗1 ,K2

)
L2(R2n)

,

using in the fourth line that (ek⊗ej)(j,k) is an orthonormal basis of L2(R2n) (see Proposition
4.7). �

A useful consequence of this proposition is the following one.

Proposition 4.12. Let K ∈ S(R2n) be a Schwartz function and A be the operator with
kernel K,

Au(x) =

ˆ
K(x, y)u(y)dy.

Then A is trace class on L2(R2n) and

tr(A) =

ˆ
K(x, x)dx.

Proof. Denote 〈x〉 = (1 + |x|2)1/2. Let A2 = (1 − ∆)n〈x〉2nA, that is the operator with
integral kernel

K2(x, y) = (1−∆x)n
(
〈x〉2nK(x, y)

)
,

which belongs to S(R2n). Then A = A1A2 with

A1 = 〈x〉−2n(1−∆)−n,
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that is the operator with integral kernel

K1(x, y) = 〈x〉−2n(2π)−n
ˆ
ei(x−y)·ξ(1 + |ξ|2)−ndξ.

(If this is not clear to you check that (1 − ∆)n〈x〉2n
´
K1(x, y)u(y)dy = u(x) for all u ∈

S(Rn).) The function K1 belongs to L2(R2n) since the integral is an L2 function of x− y
and 〈x〉−2n belongs to L2. Obviously K2 is L2 since it is Schwartz so A1 and A2 are
Hilbert-Schmidt. On the other hand, using that A = A1A2, we have

K(x, z) =

ˆ
K1(x, y)K2(y, z)dy.

Using Proposition 4.11, we get the result. �

We conclude this section with applications to pseudo-differential operators.

Proposition 4.13. Let a ∈ C∞0 (R2n) and ψ1, ψ2 ∈ C∞0 (Rn). Then ψ1oph[a]ψ2 is both
Hilbert-Schmidt and trace class on L2(Rn). Furthermore

||ψ1oph[a]ψ2||HS ≤ Ch−n/2, h ∈ (0, 1] (4.3)

and

trL2(Rn)

(
ψ1oph[a]ψ2

)
= (2πh)−n

ˆ ˆ
ψ1(x)ψ2(x)a(x, ξ)dxdξ. (4.4)

Proof. By (3.2), the integral kernel of ψ1oph[a]ψ2 is

Kh(x, y) = (2π)−nψ1(x)ψ2(y)h−nâ

(
x,
y − x
h

)
where â is the Fourier transform of a with respect to ξ. The function Kh is smooth and
compactly supported. It is in particular L2 and its L2 squared norm is bounded by

(2πh)−2n

ˆ ˆ ∣∣∣∣â2

(
x,
y − x
h

)∣∣∣∣ dxdy||ψ1||2L∞ ||ψ2||2L∞ = Ch−n

with

C = (2π)−2n||ψ1||2L∞ ||ψ2||2L∞
ˆ ˆ

|â(x, z)|2dxdz,

which yields (4.3) by application of Proposition 4.7. That the operator is trace class and
the formula (4.4) follow from Proposition 4.12. �

We state a similar result for operators on M rather than Rn.
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Proposition 4.14. For all a ∈ C∞0 (T ∗M), Oph(a) is Hilbert-Schmidt and trace class.
Furthermore

||Oph(a)||HS ≤ Ch−n/2, h ∈ (0, 1] (4.5)

and

trL2(M)

(
Oph(a)

)
= (2πh)−n

ˆ
T ∗M

a|dxdξ|. (4.6)

Proof. This result is of course a consequence of Proposition 4.13. Our purpose is to explain
how to pass from Rn to M . Let us observe first that if κl : Ul ⊂M → Vl ⊂ Rn is a chart,
the mapping

Ul : L2(Ul) 3 ϕ 7→ |gl|1/2(κl∗ϕ) ∈ L2(Vl)

is unitary (here |gj |1/2 is a shorthand for for |g(x)|1/2 - see (1.11) - in the l-th chart ) since,
by (1.12),

||Ulϕ||L2(Vl,dx) = ||ϕ||L2(Ul,dvolg).

Furthermore, if B is an operator on Rn with kernel K ∈ C∞0 (Vl × Vl), then we can see B
as an operator on L2(Rn) or L2(Vl) (by restriction) and it is not hard to check that

||B||HS(L2(Rn)) = ||B||HS(L2(Vl))

by considering an othornormal basis of L2(Rn) made of the union of an othonormal basis of
L2(Vl) (made of functions supported in V ) and of an orthonormal basis of the orthogonal
complement L2(Rn \Vl), the contribution of which is zero in the Hilbert-Schmidt norm of
B (on L2(Rn)) for all its elements belong to the null space of B. The same property holds
for an operator A on L2(M) with a kernel supported on Ul×Ul. As a first application, we
consider the Hilbert-Schmidt norm of each operator Al :=

(
κ∗l oph[κl∗(Ψla)]κl∗

)
Ψl in the

sum (3.15). One can see it as an operator on L2(Ul) and L2(M), and then one has

||Al||HS(L2(M,dvolg)) = ||Al||HS(L2(Ul,dvolg)) = ||UlAlU∗l ||L2(Vl,dx).

Using that
UlAlU∗l = |gl|1/2ψloph[(κl∗a)]ψl|gl|−1/2

we see that (4.5) follows from (4.3). The same argument allows to show that Al is of
trace class since UlAlU∗l is trace class by Proposition 4.13 . Furthermore, using that U∗l is
unitary hence maps an orthonormal basis into an orthonormal basis, we also have

trL2(M,dvolg)

(
Al
)

= trL2(Ul,dvolg)(Al) = trL2(Vl,dx)

(
UlAlU∗l

)
= (2πh)−n

ˆ ˆ
ψl(x)2(κl∗a)(x, ξ)dxdξ

= (2πh)−n
ˆ
T ∗M

(Ψl ◦ πT ∗M )2a|dxdξ|

the last two identities following from (4.4) and the definition of |dxdξ| on page 17. After
summation over l, using (3.13), we get (4.6).
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4.3 The local Weyl law

Definition 4.15. For a given compact interval J ⊂ R we define

NJ(h) =
{
j ∈ N | h2λj ∈ J

}
and

NJ(h) = #NJ(h).

One of the main results of this section is an asymptotic formula for NJ(h). Before,
proving it, we give first a rough estimate.

Proposition 4.16 (Rough bound on the eigenvalues distribution). For all compact inter-
val J b R, there exists C = C(J) such that

NJ(h) ≤ Ch−n, (4.7)

for all h ∈ (0, 1].

Proof. Let f ∈ C∞0 (R) be equal to 1 on J . Then

NJ(h) =
∑

j∈NJ (h)

||ej ||2L2 =
∑

j∈NJ (h)

||f(h2P )ej ||2L2 .

By (2.15) we have, for some C independent of h,

NJ(h) ≤
∑

j∈NJ (h)

∣∣∣∣Oph(f ◦ p)ej
∣∣∣∣2
L2 + ChNJ(h). (4.8)

On the other hand, by the non-negativity of Oph(f ◦ p)∗Oph(f ◦ p), we have∑
j∈NJ (h)

∣∣∣∣Oph(f ◦ p)ej
∣∣∣∣2
L2 =

∑
j∈NJ (h)

〈
ej , Oph(f ◦ p)∗Oph(f ◦ p)ej

〉
M

≤ tr
(
Oph(f ◦ p)∗Oph(f ◦ p)

)
=
∣∣∣∣Oph(f ◦ p)

∣∣∣∣2
HS

= O(h−n),

the last estimate following from Proposition 4.14. Using (4.8), we obtain

(1− Ch)NJ(h) ≤ Ch−n.

This implies the result for 0 < h ≤ h0 small enough. It also trivially true for h ∈ [h0, 1].
This completes the proof. �

A consequence of Proposition 4.16 is the following useful result.

Proposition 4.17. For all s > n/4, (1− h2∆g)
−s is Hilbert-Schmidt on L2(M) and one

has the bound ∣∣∣∣(1− h2∆g)
−s∣∣∣∣

HS
≤ Csh−n/2,

for all h ∈ (0, 1].
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Proof. Write
∑

j ||(1− h2∆g)
−sej ||2L2(M) =

∑
(h2λj + 1)−2s and decompose it as

∑
h2λj<1

(h2λj + 1)−2s +
∑
k≥0

 ∑
2k≤h2λj<2k+1

(h2λj + 1)−2s

 .

By (4.7), this expression is of the form

O(h−n) +
∑
k≥0

O
(
(2k/2h−1)n

)
O(2−2ks)

where, in the sum over k, the first O is for the number of terms in the sum over j (by (4.7)
applied with 2−k/2h instead of h) and the second O is for the terms themselves. Therefore

||(1− h2∆g)
−s||2HS = O(h−n)

(
1 +

∑
k

2(n
2
−2s)k

)
the sum in the right hand side being convergent by the assumption on s. The result
follows. �

Theorem 4.18 (Local Weyl’s law). For all compact interval J and all a ∈ C∞0 (T ∗M),

hn
∑

j∈NJ (h)

〈
ej , Oph(a)ej

〉
M
−→ (2π)−n

ˆ
p−1(J)

a |dxdξ|,

as h→ 0.

Lemma 4.19. Let U be a coordinate patch on M and a ∈ C∞0 (T ∗U) be real valued. Then
there exist two real valued functions b1, b2 ∈ C∞0 (T ∗U) such that

a = b22 − b21.

Proof. Let C > 0 such that sup |a| ≤ C. We can then choose χ ∈ C∞0 (T ∗U) such that

χ ≡ 1 in a neighborhood of supp(a).

If κ : U → V is a chart, this follows from the standard existence of cutoff functions on
V × Rn. Write then

a = 2Cχ2 + a− 2Cχ2.

The function 2Cχ2 + a belongs to C∞0 (T ∗U). Our choice of C implies that it is non-
negative. Therefore, its square root b2 :=

√
2Cχ2 + a clearly belongs to C0

0 (T ∗U). Let us
show it is smooth. On the open set supp(a)c, b2 =

√
2Cχ which is smooth. On the the

other hand, in a neighborhood of supp(a), we have

2Cχ2 + a = 2C − a ≥ C > 0

hence b2 is smooth on this neighborhood. Therefore, b2 is smooth on T ∗M . Finally, we
obviously have −2Cχ2 = −b21 with b1 :=

√
2Cχ ∈ C∞0 (T ∗U) so the result follows. �
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Lemma 4.20. Let b ∈ C∞0 (T ∗M) be real valued and set Bh = Oph(b). Let f ∈ C∞0 (R).
Then ∣∣tr(B∗hBhf(−h2∆g)

)
− tr

(
Oph(b2(f ◦ p))

)∣∣ ≤ Ch1−n

Proof. Let us write B∗hBhf(−h2∆g)−Oph(b2(f ◦ p)) as(
B∗hBhf(−h2∆g)−Oph(b2(f ◦ p))

)
(1− h2∆g)

n(1− h2∆g)
−n.

By Proposition 4.17, (1−h2∆g)
−n = (1−h2∆g)

−n/2(1−h2∆g)
−n/2 is a composition of two

Hilbert-Schmidt operators whose product of Hilbert-Schmidt norms is O(h−n). Therefore,
it suffices to show that∣∣∣∣(B∗hBhf(−h2∆g)−Oph(b2(f ◦ p))

)
(1− h2∆g)

n
∣∣∣∣
Lc(L2)

≤ Ch.

On one hand, we have

B∗hBhf(−h2∆g)(1− h2∆g)
n = B∗hBhf̃(−h2∆g) with f̃(λ) = (λ2 + 1)nf(λ).

Moreover, using (2.11), (2.13), (2.12) and (2.15),

B∗hBhf̃(−h2∆g) = Oph(b2f̃ ◦ p) +OLc(L2)(h).

On the other hand, using Proposition 3.22, we have

Oph(b2(f ◦ p))(1− h2∆g)
n = Oph(b2(f ◦ p)(p+ 1)n) +OLc(L2)(h)

= Oph(b2(f̃ ◦ p)) +OLc(L2)(h).

The result follows. �

Proof of Theorem 4.18. By linearity and a partition of unity argument, we may assume
that a is supported in T ∗U for some coordinate patch U . By linearity again, we may also
assume that a is real valued and then, by Lemma 4.19, that a = b2 for some b ∈ C∞0 (T ∗M).
For simplicity, we write

Ah := Oph(a), Bh := Oph(b).

Then ∑
j∈NJ (h)

〈
ej , Ahej

〉
= tr

(
Oph(b2)1J(−h2∆g)

)
= tr

(
B∗hBh1J(−h2∆g)

)
+O(h1−n)

using that∣∣tr ((Oph(b2)−B∗hBh
)
1J(−h2∆g)

)) ∣∣ ≤ ||B∗hBh −Oph(b2)||Lc(L2)||1J(−h2∆g)
)
||2HS

≤ Ch1−n.
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Fix next f1, f2 ∈ C∞0 (R) such that

f1 ≤ 1J ≤ f2.

Note that if J has empty interior (i.e. is reduced to a point) then f1 ≡ 0. Then, by
non-negativity of 〈

B∗hBhej , ej
〉

=
∣∣∣∣Bhej∣∣∣∣2L2

for all j, we have

tr
(
B∗hBhf1(−h2∆g)

)
≤ tr

(
B∗hBh1J(−h2∆g)

)
≤ tr

(
B∗hBhf2(−h2∆g)

)
.

By Lemma 4.20, we have

tr
(
B∗hBhfk(−h2∆g)

)
= tr

(
Oph(b2fk ◦ p)

)
+O(h1−n), k = 1, 2,

hence, using (4.6), we have

hntr
(
B∗hBhfk(−h2∆g)

)
−→ (2π)−n

ˆ
T ∗M

b2fk ◦ p |dxdξ|, h→ 0.

Therefore

(2π)−n
ˆ
T ∗M

af1 ◦ p |dxdξ| ≤ lim inf
h→0

(
hntr

(
Ah1J(−h2∆g)

))
and

lim inf
h→0

(
hntr

(
Ah1J(−h2∆g)

))
≤ (2π)−n

ˆ
T ∗M

af2 ◦ p |dxdξ|.

By approximating 1J by smooth functions (see Exercise 4.21 below), one can choose,for
any ε > 0, the functions f1 and f2 such that∣∣∣∣∣

ˆ
T ∗M

afk ◦ p |dxdξ| −
ˆ
p−1(J)

a |dxdξ|

∣∣∣∣∣ ≤ ε, k = 1, 2.

For all ε > 0, we thus have the inequalities

(2π)−n
ˆ
p−1(J)

a |dxdξ| − ε ≤ lim inf
h→0

hntrL2(M)

(
Ah1J(h2P )

)
and

lim sup
h→0

hntrL2(M)

(
Ah1J(−h2∆g)

)
≤ (2π)−n

ˆ
p−1(J)

a |dxdξ|+ ε.

Since ε is arbitrary, we can let it go to zero and see that the liminf and the limsup are
equal. This yields the result. �

Exercise 4.21. Let J = [E1, E2] be a compact interval.
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1. Let (f2,k)k≥1 be a sequence of functions in C∞0 such that

0 ≤ f2,k ≤ 1, supp(f2,k) ⊂ [E1 − 1/k,E2 + 1/k], f2,k ≡ 1 on [E1, E2].

Check that, as k →∞,

f2,k → 1J in L1(R), f2,k ◦ p→ 1p−1(J) in L1(T ∗M, |dxdξ|).

2. Construct similarly a sequence f1,k in C∞0 (R) approaching 1J from below and such
that f1,k ◦ p→ 1p−1(J) in L1(T ∗M, |dxdξ|).

Hint: You may wish to use that p−1({E1}) and p−1({E2}) have zero |dxdξ| measure.
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Chapter 5

Approximate functional calculus

In this part, we give a proof of the property (2.15). We give it in a separate chapter for it
requires more than the pseudo-differential calculus with C∞0 symbols. However, it remains
elementary enough to avoid using a general pseudo-differential calculus.

Let us introduce the following definition.

Definition 5.1 (Semiclassical resolvent of the Laplacian). For z ∈ C \ R and h ∈ (0, 1]
we define

(−h2∆g − z)−1 := fz(−h2∆g),

with fz(λ) = (λ− z)−1, using (2.3).

Notice that, by (2.5), one has in particular∣∣∣∣(−h2∆g − z)−1
∣∣∣∣
Lc(L2)

≤ ||fz||L∞(Rλ)

≤ 1

|Im(z)|
. (5.1)

Exercise 5.2. Show that the map z 7→ (−h2∆g−z)−1 is continuous from C\R to Lc(L2).

Hint. Use (and prove) that

(−h2∆g − z)−1 − (−h2∆g − ζ)−1 = −(z − ζ)(−h2∆g − z)−1(−h2∆g − ζ)−1.

The relationship between the semiclassical resolvent and C∞0 functions of −h2∆g is
given by the so called Helffer-Sjöstrand formula. To state it, we need another definition.

Definition 5.3. Let f ∈ C∞0 (R). A function f̃ ∈ C∞0 (R2) is an almost analytic ex-
tension of f if

1. for all N ≥ 0, ∂f̃(x, y) = O(|y|N ), where ∂ = ∂x + i∂y,

2. f̃(x, 0) = f(x).

73
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Note that the first condition is a condition at y = 0, that is on the real axis, saying
that ∂f̃ vanishes to infinite order at y = 0.

The next exercise gives a simple explicit way to construct almost analytic extensions.

Exercise 5.4. Let f ∈ C∞0 (R). Let χ1, χ2 ∈ C∞0 (R) such that

χ1 ≡ 1 near the support of f, χ2 ≡ 1 near 0.

Check that

f̃(x, y) := χ1(x)χ2(y)
1

2π

ˆ
ei(x+iy)ξχ2(yξ)f̂(ξ)dξ

is an almost analytic extension of f .

In the sequel, for a continuous function B(x, y) defined on R2 \{y = 0}, or equivalently
on C \ R, with values in a Banach space, we shall denote

ˆ
|Imz|≥ε

∂f̃(z)B(z)L(dz) :=

ˆ
|y|≥ε

(ˆ
R
∂f̃(x, y)B(x, y)dx

)
dy, ε > 0,

and
ˆ
C
∂f̃(z)B(z)L(dz) := lim

ε→0

ˆ
|Imz|≥ε

∂f̃(z)B(z)L(dz), (5.2)

when the limit exists.

The main interest of almost analytic extensions is the following Cauchy type formula.

Proposition 5.5. Let f ∈ C∞0 (R) and f̃ ∈ C∞0 (R2) be an almost analytic extension of f .
Then, for all λ ∈ R,

f(λ) =
1

2π

ˆ
C
∂f̃(z)(λ− z)−1L(dz). (5.3)

Corollary 5.6 (Helffer-Sjöstrand formula). Let f ∈ C∞0 (R) and f̃ be an almost analytic
extension of f . Then

f(−h2∆g) =
1

2π

ˆ
C
∂f̃(z)(−h2∆g − z)−1L(dz). (5.4)

This corollary follows directly from Proposition 5.5 and the spectral theorem or, more
precisely, the definition (2.3). We only note that the convergence of the integral follows
from (5.1), which allows to bound the resolvent norm by |Im(z)|−1, and from the fact that
∂̄f̃(z) = O(|Im(z)|). We let the interested reader work out the details in exercise (we also
refer to [1]).
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Proof of Proposition 5.5. For fixed ε, we integrate by part with ∂ and use that ∂(λ−z)−1 =
0 to get

ˆ
|Imz|≥ε

∂f̃(z)(λ− z)−1L(dz) = i

ˆ
R
f̃(x,−ε) 1

λ− x+ iε
− f̃(x, ε)

1

λ− x− iε
dx. (5.5)

Then, using
f̃(x,±ε) = f(x)± ε∂yf̃(x, 0) +O(ε2〈x〉−2)

and the fact that
1

|λ− x± iε|
≤ 1

ε
,

the right hand side of (5.5) can be written

2ε

ˆ
R
f(x)

dx

(x− λ)2 + ε2
+ iε

ˆ
R
∂yf̃(x, 0)

2(x− λ)

(x− λ)2 + ε2
dx+O(ε)

that is,

2

ˆ
R
f(λ+ εt)

dt

1 + t2
− iε

ˆ
R
∂x∂yf̃(λ+ s, 0) ln(s2 + ε2)ds+O(ε). (5.6)

By dominated convergence, using that
∣∣ ln(s2 + ε2)

∣∣ . max
(
| ln ε|, 1 + |s|

)
, (5.6) converges

to 2πf(λ) as ε goes to zero. �

The Helffer-Sjöstrand formula suggests that to get (2.15), which is a pseudo-differential
approximation of f(−h2∆g), it suffices to find a pseudo-differential approximation of the
semiclassical resolvent. This is what we check in the rest of this appendix. The proof of
(2.15) itself is given at the end.

In the following definition, we use the notation 〈ξ〉 = (1+ |ξ|2)1/2. Note also that below
x belongs to Rn and has nothing to do with the notation x used above for Re(z).

Definition 5.7. For µ ∈ R, Sµ = Sµ(R2n) is the space of smooth functions a : R2n → C
such that, for all multi-indices α, β

|∂αx ∂
β
ξ a(x, ξ)| ≤ Caαβ〈ξ〉µ−|β|,

i.e. equivalently such that ||〈ξ〉−µ+|β|∂αx ∂
β
ξ a||L∞ <∞. Here and below L∞ = L∞(R2n).

For such symbols, one can define oph[a]u for all u in C∞0 (Rn) (or in the Schwartz space)
exactly as in (3.1), since û decays fast in ξ while a(x, hξ) grows at most polynomially.
Note that constant functions belong to S0 and, as already observed in Section 3.1, that
the Fourier inversion formula gives directly

oph[1] = I. (5.7)

Apart from the Helffer-Sjöstrand formula, the main property we will use in this ap-
pendix is the following proposition, or rather Corollary 5.9 below.
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Proposition 5.8. Let a ∈ S−m(Rn × Rn) with 0 < m < n. Then oph[a] has a locally
integrable integral kernel Ka,h(x, y) such that,

|Ka,h(x, y)| ≤ Cah−n
∣∣∣∣x− yh

∣∣∣∣m−n(1 +

∣∣∣∣x− yh
∣∣∣∣)−2n

, (5.8)

with a constant Ca of the form

Cn,m max
|β|≤Nn,m

∣∣∣∣〈ξ〉m+|β|∂βξ a
∣∣∣∣
L∞
. (5.9)

Proposition 5.8 together with the Schur test (Lemma 3.6) imply directly

Corollary 5.9. If a ∈ S−m with 0 < m < n, then oph[a] is bounded on L2(Rn) with an
operator norm that can be estimated by (5.9) .

Note that we consider only the case when −n < −m < 0 for this is the only one we are
going to use, but the L2 boundedness holds for other classes of symbols. In particular, any
symbol of order µ ≤ −n belongs to all spaces S−m with m ≥ n hence the corresponding
operator is also bounded on L2(Rn).

To prove Proposition 5.8, we need the following lemma.

Lemma 5.10. Let ν,N > 0 be positive real numbers such that N > ν. Then, there exists
C = CνN such that, for all λ > 0,

∑
k≥0

2kν
(

1 +
λ

2−k

)−N
≤ C λ−ν

(1 + λ)N−ν
.

Proof. The estimate is equivalent to the fact that the sum is O(λ−ν) if 0 < λ ≤ 1 and
O(λ−N ) if λ > 1. We thus prove these two estimates. Using that(

1 +
λ

2−k

)−N
≤ 2−kN

λN

the sum is bounded by λ−N
∑

k 2−k(N−ν) = O(λ−N ), which yields the result if λ > 1. If
0 < λ ≤ 1, we let k0 be the integer part of − log λ/ log 2 so that

2−k0−1 < λ ≤ 2−k0 .

Then

(3/2)−N ≤
(

1 +
λ

2−k

)−N
≤ 1 if k ≤ k0,

(
1 +

λ

2−k

)−N
≤ 2−N(k−k0−1) if k > k0

so that
k0∑
k=0

2kν
(

1 +
λ

2−k

)−N
≤
∑
k≤k0

2kν . 2k0ν . λ−ν
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and

∑
k>k0

2kν
(

1 +
λ

2−k

)−N
≤
∑
k>k0

2kν2−N(k−k0−1) = 2ν(k0+1)
∑
k>k0

2−(N−ν)(k−k0−1) . λ−ν .

This yields the result when 0 < λ ≤ 1. �

Exercise 5.11 (Dyadic partition of unity). Let χ0 ∈ C∞0 (Rn) be such that χ0(η) ≡ 1 near
η = 0. Let χ(η) := χ0(η/2)− χ0(η). Check that χ ∈ C∞0 (Rn \ 0) and that

χ0(ξ) +
N−1∑
k=0

χ(2−kξ) = χ0(2−Nξ)→ 1. (5.10)

as N →∞

Proof of Proposition 5.8. Formally, the Schwartz kernel of oph[a] reads

(2πh)−n
ˆ
eix−y

h
·ξa(x, ξ)dξ.

See for instance (3.2). The problem here is that a is not integrable in ξ. Using Exercise
5.11, this kernel can be rigorously written as the limit as N → ∞, in the distributions
sense, of

(2πh)−n
ˆ
eix−y

h
·ξa(x, ξ)χ0(2−Nξ)dξ = h−n

(
Kh(x, y) +

N−1∑
k=0

K
(k)
h (x, y)

)
(5.11)

where, replacing x−y
h by X, we have set

K
(k)
h (x, y) = (2π)−n

ˆ
eiX·ξa(x, ξ)χ(2−kξ)dξ

= 2nk(2π)−n
ˆ
ei2kX·ηa(x, 2kη)χ(η)dη

Kh(x, y) = (2π)−n
ˆ
eiX·ξa(x, ξ)χ0(ξ)dξ.

We show that the right hand side of (5.11) converges in L1
loc(R2n). Proceeding exactly as

for (3.5), we find that for any N ,

∣∣K(k)
h (x, y)

∣∣ .N 2nk
(

1 +
|X|
2−k

)−2N

sup
η

∣∣(1−∆)N
(
a(x, 2kη)χ(η)

)∣∣
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where the sup is bounded by a constant times 2−mk max|β|≤2N ||〈ξ〉m+|β|∂βξ a||L∞ since∣∣(1−∆η)
N
(
a(x, 2kη)χ(η)

)∣∣ . ∑
|β|+|α|=2N

∣∣2k|β|(∂βξ a)(x, 2kη)
∣∣∣∣(∂αχ)(η)

∣∣
. 2−mk

∑
|β|+|α|=2N

2k(|β|+m)|(∂βξ a)(x, 2kη)|
∣∣(∂αχ)(η)

∣∣
. 2−mk

∑
|β|+|α|=2N

〈2kη〉|β|+m|(∂βξ a)(x, 2kη)|
∣∣(∂αχ)(η)

∣∣
using that |η| is bounded from below on the support of χ. Similarly,∣∣∣∣ˆ eiX·ξa(x, ξ)χ0(ξ)dξ

∣∣∣∣ .N (
1 +

∣∣∣∣x− yh
∣∣∣∣)−N

.

∣∣∣∣x− yh
∣∣∣∣m−n(1 +

∣∣∣∣x− yh
∣∣∣∣)−2n

by choosing N ≥ 3n −m and with an implicit multiplicative constant of the form (5.9).
By Lemma 5.10, we thus see that, if x 6= y

h−n

|Kh(x, y)|+
∑
k≥0

∣∣∣K(k)
h (x, y)

∣∣∣
 ≤ Cah−n ∣∣∣∣x− yh

∣∣∣∣m−n(1 +

∣∣∣∣x− yh
∣∣∣∣)−2n

.

By dominated convergence, this implies the convergence of (5.11) in L1
loc(R2n) and then

the estimate (5.8). �

Our approximation of the semiclassical resolvent is the following one.

Proposition 5.12. One can write

(−h2∆g − z)−1 = Oph
(
(p− z)−1

)
+ hR(h, z)

where, for some C > 0 and M > 0,

||R(h, z)||Lc(L2) ≤ C
(

1 + |z|
|Im(z)|

)M
(5.12)

for all h ∈ (0, 1] and z ∈ C \ R.

We point out that in this statement we take Oph of (p−z)−1 which is not a C∞0 function
on T ∗M (it is smooth but not compactly supported) that is not as in Definition 3.14. We
shall see in the proof below that this does not cause any problem and only uses that oph
can be defined on symbols in Sµ.

Exercise 5.13. We let p0(x, ξ) =
∑
gjk(x)ξjξk as in Section 3.3.
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1. Show that, for any multi-index γ 6= 0 in N2n,

∂γ
(

1

p0 − z

)
= linear combination of

∂γ1p0 · · · ∂γjp0

(p0 − z)1+j
,

with 1 ≤ j ≤ |γ|, γ1 + · · ·+ γj = γ and γ1, . . . , γj 6= 0.

2. Show that for any compact subset K b V , there exists CK such that∣∣∣∣ 〈ξ〉2

p0(x, ξ)− z

∣∣∣∣ ≤ CK 1 + |z|
|Im(z)|

for all x ∈ K, ξ ∈ Rn and z ∈ C \ R.

Hint: write 〈ξ〉2
p0−z = 〈ξ〉2

p0+1
p0+1
p0−z and use that p0(x, ξ) ≥ cK |ξ|2 for some cK > 0 since

the matrix (gjk(x)) is positive definite for each x.

Proof of Proposition 5.12. We use the same notation as in the beginning of Section
3.3, for P, p0, p1, ψ, etc... We start by observing that the computation in Proposition 3.19
is still valid if the symbol is not compactly supported in ξ. In particular, we find that

(h2P − z)oph
[

ψ

p0 − z

]
ψ =

(
oph[ψ] + hoph[q1,z] + h2oph[q2,z]

)
ψ

= ψ2 +
(
hoph[q1,z] + h2oph[q2,z]

)
ψ (5.13)

where the function ψ to the right of the operators has to be understood as a multiplication
operator and where

q1,z = −i
p1ψ

p0 − z
− i∂ξp0 · ∂x

(
ψ

p0 − z

)
, q2,z = P

(
ψ(p0 − z)−1

)
.

Note that to get the first term in (5.13), we have used that oph[ψ] = ψoph[1] = ψ by (5.7).
Now, using Exercise 5.13, we observe that q1,z ∈ S−1 and q2,z ∈ S−2 (hence also belongs
to S−1) and that, for any N , there exist M and C such that, for j = 1, 2,

max
|β|≤N

||〈ξ〉1+|β|∂βξ qj,z||L∞ ≤ C
(

1 + |z|
|Im(z)|

)M
.

Therefore, using Proposition 5.8 and (5.13) , we find that for some M ,

(h2P − z)oph
[

ψ

p0 − z

]
ψ = ψ2 +OLc(L2(Rn))

(
h

(
1 + |z|
|Im(z)|

)M)
.

Using this result with ψ = ψl defined in (3.14) and pulling back the above identity on M ,
we find after summation over l,

(−h2∆g − z)Oph
(
(p− z)−1

)
= I +OLc(L2(M))

(
h

(
1 + |z|
|Im(z)|

)M)
.
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Applying (−h2∆g − z)−1 to the left of the operators in both sides of this equality and
using (5.1), we get the result. �

Proof of the Property (2.15). We let f̃ be an almost analytic extension of f . We
observe first that by linearity of Oph and Proposition 5.5, we have

1

2π

ˆ
∂̄f̃(z)Oph

(
(p− z)−1

)
L(dz) = Oph

(
1

2π

ˆ
∂̄f̃(z)(p− z)−1L(dz)

)
= Oph(f ◦ p).

Thus, using the Helffer-Sjöstrand formula and Proposition 5.12, we have∣∣∣∣f(−h2∆g)−Oph(f ◦ p)
∣∣∣∣
Lc(L2)

≤ h

ˆ
|∂̄f̃(z)|

∣∣∣∣R(h, z)
∣∣∣∣
Lc(L2)

L(dz)

≤ Ch

since the integral can be bounded by

C

ˆ
supp(f̃)

|Im(z)|M 1

|Im(z)|M
L(dz)

using (5.12) and the fact that ∂̄f̃ vanishes to infinite order on Im(z) = 0. This completes
the proof of (2.15) when ψ = 1. The general case follows from the easily verified fact that
Oph(ψf ◦ p) = ψOph(f ◦ p). �

Comment. In the proof of (2.15), we have deliberately omitted to specify in which sense
the integrals are taken, in order stress on the simplicity of the argument. The scrupulous
reader whishing to rewrite the proof in full details can take the integrals in (5.14) and
in the Helffer-Sjöstrand formula in the weak sense (i.e. by testing the integrands against
elements of L2(M)).



Appendix A

Partition of unity

Proposition A.1 (Partition of unity). Assume that M is a smooth compact manifold and
that we are given a finite open cover of M ,

M =
N⋃
i=1

Wi, Wi open subset of M.

Then there exist θi ∈ C∞0 (Wi), i = 1, . . . , N , such that

1 =
N∑
i=1

θi on M.

Furthermore, each θi can be taken of the form θi = ϕ2
i for some ϕi ∈ C∞0 (Wi).

A useful application of this result is that, when W1, . . . ,WN are coordinate patches,
each smooth function f on M can be written

∑
i θif , ie as a (finite) sum of functions

supported in coordinate patches.

Proof. Since each Wi is open, for any m ∈ Wi we can choose open subsets U im and Ũ im
contained in a coordinate patch at m such that

m ∈ U im b Ũ im ⊂Wi. (A.1)

Then, by compactness, we obtain a finite open cover of M

M =

N⋃
i=1

(
U imi1

∪ · · · ∪ U imini
)
. (A.2)

By pulling back cutoffs on Rn, we can select

φimik
∈ C∞0

(
Ũ imik

)
such that φimik

= 1 on U imik
and φimik

≥ 0 on M. (A.3)
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We then introduce

Φi =

(
ni∑
k=1

φimik

)2

, Φ =
N∑
i=1

Φi.

Clearly Φi belongs to C∞0 (Wi) by (A.1) and (A.3). By (A.3), we also have Φi ≥ 1 on each
U i
mik

hence on their union (over k). Therefore (A.2) implies that Φ ≥ 1 on M so that we

can define

ϕi =
1√
Φ

ni∑
k=1

φimik
∈ C∞0 (Wi),

which obviously satisfies
∑N

i=1 ϕ
2
i = 1. �
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