
The Calderon-Vaillancourt Theorem

What follows is a completely self contained proof of the Calderon-Vaillancourt Theorem on the
L2 boundedness of pseudo-differential operators.

1 The result

Definition 1.1. The symbol class S0
00 is the space of smooth functions b on Rd × Rd such that

|∂αx ∂
β
ξ b(x, ξ)| ≤ Cαβ , x, ξ ∈ Rd,

for all α, β ∈ Nd.

For the next definition, we recall that ϕ̂(ξ) =
∫
e−iy·ξϕ(y)dy.

Definition 1.2 (Pseudo-differential operator). Given b ∈ S0
00, the pseudo-differential operator of

symbol b, Op(b), is the operator defined by

Op(b)ϕ(x) = (2π)−d
∫
eix·ξb(x, ξ)ϕ̂(ξ)dξ,

for all ϕ in the Schwartz space S(Rd).

Theorem 1.3 (Calderon-Vaillancourt). There exists C,NCV > 0 such that for all b ∈ S0
00 and all

ϕ ∈ S(Rd)

||Op(b)ϕ||L2(Rd) ≤ C max
|α+β|≤NCV

||∂αx ∂
β
ξ b||L∞ ||ϕ||L2(Rd). (1.1)

The next sections are devoted to the proof of this theorem.

2 The Schur estimate

Let K ∈ S(R2d) and consider the associated operator

Au(x) =
∫

Rd

K(x, y)u(y)dy,

defined for any u ∈ Lp(Rd), p ∈ [1,∞]. Introduce the norms

||A||l−Schur := sup
x

∫
|K(x, y)|dy, ||A||r−Schur := sup

y

∫
|K(x, y)|dx.
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Proposition 2.1. For all p ∈ [1,∞] and all u ∈ Lp(Rd),

||Au||Lp ≤ ||A||1−1/p
l−Schur||A||

1/p
r−Schur||u||Lp ,

with the convention that C1−1/p
1 C

1/p
2 = C1 if p =∞.

Proof. Assume that p <∞. Observe that for each x ∈ Rd, Hölder’s inequality yields∫
|K(x, y)u(y)|dy =

∫
|K(x, y)|1−1/p|K(x, y)|1/p|u(y)|dy

≤
(∫
|K(x, y)|dy

)1−1/p(∫
|K(x, y)||u(y)|pdy

)1/p

.

Hence we have (∫
|K(x, y)u(y)|dy

)p
≤ ||A||p−1

l−Schur

∫
|K(x, y)||u(y)|pdy.

By integrating this inequality with respect to x and using the Fubini Theorem, we obtain the
result. If p =∞, the estimate is obvious. �

3 The Cotlar-Knapp-Stein criterion

Consider a countable family (Aj)j∈N of bounded operators on L2(Rd). We will actually assume that
each Aj is compact, which will not be a restriction for the final application. The only reason for
this (non necessary) additional condition is that the spectral theorem for self-adjoint operators is
maybe more elementary, or at least more popular, for compact operators than the general theorem
of Von Neumann.

For simplicity, || · || denotes the operator norm on L2(Rd).

Proposition 3.1. Assume that

sup
j

∑
k

||A∗jAk||1/2 ≤M, sup
k

∑
j

||AkA∗j ||1/2 ≤M.

Then, if we set
SN =

∑
j≤N

Aj ,

we have
||SN || ≤M, N ∈ N.

Proof. Consider the self-adjoint (and compact) operator

HN := S∗NSN .

The Spectral Theorem then yields

||SN ||2 = sup
||ϕ||L2=1

(S∗NSNϕ,ϕ) = ||HN || = maxσ(HN )

as well as
||Hm

N || = ||HN ||m, m ∈ N,
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so that

||SN || = ||Hm
N ||1/2m. (3.1)

One then writes
Hm
N =

∑
j1

∑
k1

· · ·
∑
jm

∑
km

A∗j1Ak1 · · ·A
∗
jmAkm

,

where all indices are taken between 0 and N − 1, and observes that

||A∗j1Ak1 · · ·A
∗
jmA

∗
km
|| ≤


||A∗j1Ak1 || · · · ||A

∗
jm
Akm
||

and
||A∗j1 ||||Akm

||||Ak1A∗j2 || · · · ||Akm−1A
∗
jm
||

.

Therefore, since min(a, b) ≤ (ab)1/2 for all a, b ≥ 0 and ||Ak|| ≤M for all k, we have

||Hm
N || ≤ M

∑
j1

∑
k1

||A∗j1Ak1 ||
1/2
∑
j2

||Ak1A∗j2 ||
1/2 · · ·

∑
jm

||Akm−1A
∗
jm ||

1/2
∑
km

||A∗jmAkm
||1/2

≤ M
∑
j1<N

M2m−1.

Using (3.1), we thus have ||SN || ≤ N1/2mM and get the result by letting m→∞. �

4 Phase space translations

For (q, p) ∈ Rd × Rd define U(q, p) by

U(q, p)ϕ(x) = eix·pϕ(x− q),

say for ϕ in the Schwartz space S(Rd). These operators are obviously unitary on L2(Rd). They
also satisfy the relations

U(q, p)∗ = e−iq·pU(−q,−p), (4.1)

and

U(q1, p1)U(q2, p2) = e−ip1·q2U(q1 + q2, p1 + p2), (4.2)

which are both easily seen by elementary calculations.
We also define τq,p by

τq,pa(x, ξ) = a(x− q, ξ − p).

Lemma 4.1. For all (q, p) ∈ Rd × Rd and a ∈ S(R2d),

U(q, p)Op(a)U(q, p)∗ = Op (τq,pa) .

Proof. It follows from (4.1) and the Fubini Theorem since

U(q, p)Op(a)U(q, p)∗ϕ(x) = eip·x(2π)−d
∫ ∫

ei(x−q)·ξa(x− q, ξ)e−iy·ξe−iq·pe−ip·yϕ(y + q)dydξ

= (2π)−d
∫ ∫

ei(x−z)·ζa(x− q, ζ − p)ϕ(z)dzdζ = Op (τq,pa)ϕ(x)

by the change of variables ξ = ζ − p and y + q = z. �
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Lemma 4.2. There exists χ ∈ C∞0 (R2d) such that∑
(q,p)∈Z2d

τq,pχ ≡ 1.

Proof. The result has nothing to do with the dimension and easily follows from the existence of
θ ∈ C∞0 (R) such that 1 =

∑
j∈Z θ(x − j). We can construct the latter by choosing θ0 ∈ C∞0 (R)

such that θ ≥ 0 and θ ≡ 1 on [0, 1] so that the following smooth and 1 periodic function

Θ(x) :=
∑
j∈N

θ0(x− j)

is bounded from below by 1 since x − j belongs to [0, 1] for some j. One then obtains θ by
considering θ = θ0/Θ and then χ with χ = θ ⊗ · · · ⊗ θ. �

5 Elementary symbolic calculus

In this section we give the minimal symbolic calculus properties required for the proof of the
Calderon-Vaillancourt Theorem.

We start by observing that, if a ∈ S(R2d), the operator Op(a) (see Definition 1.2) has a kernel

KOp(a)(x, y) = (2π)−dâ(x, y − x), , (5.1)

where â denotes the Fourier transform of a with respect to ξ. This follows from the Fubini theorem
by expanding ϕ̂(ξ) into

∫
e−iy·ξϕ(y)dy in the definition of Op(a)ϕ.

Clearly, this kernel belongs to S(R2d) and thus so does the kernel of Op(a)∗ which is given by

KOp(a)∗(x, y) = (2π)−dâ(y, x− y). (5.2)

It will be sufficient for the present purpose to show that Op(a)∗ is of the form Op(a∗) for some
Schwartz function a∗ depending continuously on a in the Schwartz space. To describe this conti-
nuity, we introduce the (semi)norms of the Schwartz space,

||a||N,S := max
|α+β|≤N

||〈x〉N 〈ξ〉N∂αx ∂
β
ξ a||L∞ , (5.3)

where N ∈ N.

Proposition 5.1 (Stablity of Op(S(R2d)) by adjunction). There exists an antilinear map a 7→ a∗

on S(R2d) such that

(Op(a)∗ψ,ϕ)L2 = (ψ,Op(a∗)ϕ)L2 , ψ, ϕ ∈ S(Rd),

and continuous in the sense that for all N1 ∈ N there exists C > 0 and N2 ∈ N such that

||a∗||N1,S ≤ C||a||N2,S . (5.4)

Proof. By (5.2), we look for a Schwartz function a∗ such that

â∗(x, y − x) = â(y, x− y),
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ie â∗(x, z) = â(x+ z,−z) = â(x+ z, z). Taking the inverse Fourier transform, we get

a∗(x, ξ) = (2π)−d
∫
eiξ·zâ(x+ z, z)dz.

This function depends continuously on a in the Schwartz space since, by expanding xδ = (x+z−z)δ
by the binomial formula, one easily checks that xδξµ∂αx ∂

β
ξ a
∗ is a linear combination of∫

eiξ·zzδ
′
(x+ z)δ

′′
∂µz

(
zβ∂αx â(x+ z, z)

)
dz,

with δ′+δ′′ = δ. This implies that ||xδξµ∂αx ∂
β
ξ a
∗||L∞ is bounded by some seminorm of â in S(R2d)

hence by some seminorm of a. �

6 Proof of the theorem

Using Lemma 4.2, we write first

b =
∑

(q,p)∈Z2d

bτq,pχ =
∑
(q,p)

τq,p (χτ−q,−pb) . (6.1)

For simplicity, we set
bq,p = χτ−q,−pb.

We also introduce

Bq,p := Op (bτq,pχ) (6.2)
= U(q, p)Op(bq,p)U(q, p)∗. (6.3)

the second line being a consequence of Lemma 4.1.
To be in position to use the Cotlar-Knapp-Stein criterion, we mainly need the following result.

Proposition 6.1. There exist C > 0 and NCV > 0 such that, for all (q1, p1), (q2, p2) ∈ Z2d and
all b ∈ S0

00, we have

||Bq1,p1B∗q2,p2 ||L2→L2 ≤ C〈q1 − q2〉−2d−2〈p1 − p2〉−2d−2 max
|α+β|≤NCV

||∂αx ∂ξb||2L∞ , (6.4)

and

||B∗q1,p1Bq2,p2 ||L2→L2 ≤ C〈q1 − q2〉−2d−2〈p1 − p2〉−2d−2 max
|α+β|≤NCV

||∂αx ∂ξb||2L∞ . (6.5)

The proof goes in two steps. The first remark is that the family (bq,p)(q,p)∈Z2d is bounded in
S(R2d). To state this property more precisely, we use the notation (5.3).

Lemma 6.2. For all N ∈ N, there exists C > 0 such that, for all (q, p) ∈ Z2d and all b ∈ S0
00,

||bq,p||N,S ≤ C max
|α+β|≤N

||∂αx ∂
β
ξ b||L∞ . (6.6)

Proof. It is an easy consequence of the Leibniz rule, using that 〈x〉N 〈ξ〉N is bounded on the support
of χ. �
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Lemma 6.3. For all D > 0, there exist C > 0 and N > 0 such that,

||Op(a1)U(q, p)Op(a2)U(q, p)∗|| ≤ C〈q〉−D〈p〉−D||a1||N,S ||a2||N,S ,

for all a1, a2 ∈ S(Rd) and all q, p ∈ Zd.

Proof. By Lemma 4.1, we have U(q, p)Op(a2)U(q, p)∗ = Op(τq,p(a2)) so the kernel Kq,p of the
operator Op(a1)U(q, p)Op(a2)U(q, p)∗ is given by

Kq,p(x, y) = (2π)−2d

∫
â1(x, z − x)τ̂q,pa2(z, y − z)dz

= (2π)−2d

∫
â1(x, z − x)eip·(z−y)â2(z − q, y − z)dz,

and it is not hard to check that it is a Schwartz function. By Proposition 2.1, it is then sufficient
to show that

|Kq,p(x, y)| ≤ CD〈q〉−D〈p〉−D〈x− y〉−d−1||a1||N,S ||a2||N,S .

To get the latter, we compute (x− y)αqβpγKq,p by expanding

qβ = (q − z + z − x+ x)β , (x− y)α = (x− z + z − y)α

using the binomial law, and integrations by part to handle the term pγ . We obtain a linear
combination of integrals of the form∫

eip·z∂γz

(
xβ
′
(z − x)β

′′+α′ â1(x, z − x)(y − z)α
′′
(z − q)β

′′′
â2(z − q, y − z)

)
dz,

with β′ + β′′ + β′′′ = β and α′ + α′′. These integrals are bounded by seminorms of a1 and a2

(uniformly with respect to (x− y), q, p) and the result follows then easily. �

Proof of Proposition 6.1. We have

||Bq1,p1B∗q2,p2 ||L2→L2 = ||U(q1, p1)Op(bq1,p1)U(q1, p1)∗U(q2, p2)Op(bq2,p2)∗U(q2, p2)||L2→L2

= ||Op(bq1,p1)U(q1, p1)∗U(q2, p2)Op(bq2,p2)∗U(q2, p2)∗U(q1, p1)||L2→L2

= ||Op(bq1,p1)U(q2 − q1, p2 − p1)Op(bq2,p2)∗U(q2 − q1, p2 − p1)∗||L2→L2

using the unitarity of U(q1, p1) to get the second line and the identities (4.1) and (4.2) to get the
third one. Then, by writing Op(bq2,p2)∗ = Op

(
b∗q2,p2

)
according to Proposition 5.1, Lemma 6.3

gives the estimate

||Bq1,p1B∗q2,p2 ||L2→L2 ≤ C〈q1 − q2〉−2d−2〈p1 − p2〉−2d−2||bq1,p1 ||N1,S ||b∗q2,p2 ||N1,S

for some N1 depending only on d. Using (5.4) and (6.6), the seminorms in the right hand side can
be replaced by max|α+β|≤N2 ||∂αx ∂

β
ξ b||2L∞ and we get (6.4). The proof of (6.5) is similar. �

We recall that we assumed that the operators Aj in Proposition 3.1 were compact1. This
condition is fullfilled by the operators Bq,p.

Proposition 6.4. For all (q, p) ∈ Z2d, Bq,p is compact on L2(Rd).
1we recall that is assumption is only for simplicity and can be removed
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Proof. Recall that Bq,p is given by (6.3). Since bq,p belongs to C∞0 (Rd), the kernel of Op(bq,p)
belongs to the Schwartz class (see (5.1)), hence to L2(R2d), and thus is Hilbert-Schmidt. �

Set now bN =
∑
|q|+|p| bτq,pχ so that

Op(bN ) =
∑

|q|+|p|≤N

Bq,p.

Lemma 6.5. For all ψ,ϕ ∈ S(Rd),

(ψ,Op(bN )ϕ)L2 → (ψ,Op(b)ϕ)L2 , N →∞.

Proof. It suffices to observe that

(ψ,Op(bN )ϕ)L2 = (2π)−d
∫ ∫

eix·ξψ(x)bN (x, ξ)ϕ̂(ξ)dξdx

→ (2π)−d
∫ ∫

eix·ξψ(x)b(x, ξ)ϕ̂(ξ)dξdx,

where the first line follows from Fubini’s Theorem and the second one by dominated convergence
since bN → b pointwise with ||bN ||∞ bounded. �

Proof of Theorem 1.3. By Propositions 3.1, 6.1 and 6.4, there exists C > 0 and NCV such that,
for all N and all b

||Op(bN )||L2→L2 ≤ C max
|α+β|≤NCV

||∂αx ∂
β
ξ b||L∞ .

Thus, for all ψ,ϕ ∈ S(Rd), the Cauchy-Schwarz inequality yields

|(ψ,Op(bN )ϕ)L2 | ≤ C max
|α+β|≤NCV

||∂αx ∂
β
ξ b||L∞ ||ϕ||L2(Rd)||ψ||L2(Rd). (6.7)

By Lemma 6.5, we can let N go to ∞ and thus replace bN by b in the left hand side of (6.7).
Taking then the supremum over those ψ such that ||ψ||L2 = 1, we get the result. �
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