The Calderon-Vaillancourt Theorem

What follows is a completely self contained proof of the Calderon-Vaillancourt Theorem on the
L? boundedness of pseudo-differential operators.

1 The result

Definition 1.1. The symbol class S, is the space of smooth functions b on R? x R? such that
050b(x,6)] < Cap, @, E€RY,

for all o, f € N¢.

For the next definition, we recall that ¢(£) = [ e~ <o (y)dy.

Definition 1.2 (Pseudo-differential operator). Given b € S3,, the pseudo-differential operator of
symbol b, Op(b), is the operator defined by

@xwwu»=<mw-{/e”fu%smx@da

for all ¢ in the Schwartz space S(R?).

Theorem 1.3 (Calderon-Vaillancourt). There exists C, Noy > 0 such that for all b € 5§, and all
p € S(RY)

b <C 92970 | oo . 1.1
lOp(b) |12 (ray < |a+rﬁr@%vll % 0 bl Lo ||| L2 (ray (1.1)

The next sections are devoted to the proof of this theorem.

2 The Schur estimate

Let K € S(R?9) and consider the associated operator

Au(z) = y K(z,y)u(y)dy,

defined for any u € LP(R?), p € [1, 00]. Introduce the norms
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Proposition 2.1. For all p € [1,00] and all u € LP(R?),
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1_1/p021/p:01 if p=o0.

with the convention that C|

Proof. Assume that p < co. Observe that for each z € R¢, Holder’s inequality yields

[ @iy = [ 1K) @) u)dy
(/ K(w)dy)l_w (/ |K<x,y>||u<y>|pdy)1/p.

(/ K(m)u(y)dy)p <A e [ 1K)y

By integrating this inequality with respect to z and using the Fubini Theorem, we obtain the
result. If p = oo, the estimate is obvious. O

IN

Hence we have

3 The Cotlar-Knapp-Stein criterion

Consider a countable family (A;);en of bounded operators on L?(R¢). We will actually assume that
each A; is compact, which will not be a restriction for the final application. The only reason for
this (non necessary) additional condition is that the spectral theorem for self-adjoint operators is
maybe more elementary, or at least more popular, for compact operators than the general theorem
of Von Neumann.

For simplicity, || - || denotes the operator norm on L?(R9).

Proposition 3.1. Assume that
supZHA;AkHl/QSM, sipZHAkA;Hl/QgM.
7ok J

Then, if we set

Sy =Y A,

J<N

we have
[[Snl| <M,  NeN.

Proof. Consider the self-adjoint (and compact) operator
HN = SX[SN
The Spectral Theorem then yields

IS8l = sup (SySnw,¢) = ||Hy|| = maxo(Hy)

llell2=1

as well as
[HN | = [[Hn|[™,  meN,



so that

1Sl = |[HFM ™. (3.1)
One then writes
D) I ) WP I
jl kl jnz km

where all indices are taken between 0 and N — 1, and observes that

AL Al 1A% A, ||
147, Ay, -+ A5, A; || < S and
AZ 1A [ Ary A3 1A, Al

Therefore, since min(a, b) < (ab)*/? for all a,b > 0 and ||A|| < M for all k, we have

IHRI < MY Y NAG A2 Y (1A AL Y [ Ar, A5 121147, A, 112

J1 k1 J2 Jm km
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Ji<N
Using (3.1), we thus have ||Sy|| < N/2™M and get the result by letting m — oc. O

4 Phase space translations

For (q,p) € R? x R? define U(q, p) by

ix-p

Ulg,p)p(x) = e Pp(z — q),

say for ¢ in the Schwartz space S(R?). These operators are obviously unitary on L?(R?). They
also satisfy the relations

U(g,p)* = e "IPU(~q, —p), (4.1)
and
Uq1,p1)U(g2,p2) = € PV 2U(q1 + g2, p1 + p2), (4.2)

which are both easily seen by elementary calculations.
We also define 7, by

Tq,pa(l‘, E) = a(m -4, 5 - p)
Lemma 4.1. For all (q,p) € R? x R? and a € S(R??),
U(g,p)Op(a)U(q,p)" = Op (1qpa).-
Proof. Tt follows from (4.1) and the Fubini Theorem since

Ula:p)Opla)Ua.p)"ola) = m=(2m) " [ [0 Sa(o — g, e vee0me a(y + g)dyd
= en [ [ e 0.c - pee)dzdc = Op(rpa) o(0)
by the change of variables { =( —pand y + ¢ = 2. O



Lemma 4.2. There exists x € C§°(R?*?) such that

Z TgpX = 1.

(q.p)€Z?¢

Proof. The result has nothing to do with the dimension and easily follows from the existence of
0 € C5°(R) such that 1 = > ., 0(x — j). We can construct the latter by choosing 6y € C5°(R)
such that # > 0 and # =1 on [0, 1] so that the following smooth and 1 periodic function

O(z) =Y _fo(x — )

JjEN

is bounded from below by 1 since z — j belongs to [0,1] for some j. One then obtains 6 by
considering 6 = 6y/0 and then y with y =0® --- ® 6. O

5 Elementary symbolic calculus

In this section we give the minimal symbolic calculus properties required for the proof of the
Calderon-Vaillancourt Theorem.
We start by observing that, if a € S(R?4), the operator Op(a) (see Definition 1.2) has a kernel

KOp(a) (z,y) = (277)_(16'(37’ Y =), (5.1)

where @ denotes the Fourier transform of a with respect to £. This follows from the Fubini theorem
by expanding $(€) into [ e~ ¢p(y)dy in the definition of Op(a)ep.
Clearly, this kernel belongs to S(R?¢) and thus so does the kernel of Op(a)* which is given by

Kop(ay-(2,y) = 2m) " Ya(y, = — y). (5.2)

It will be sufficient for the present purpose to show that Op(a)* is of the form Op(a*) for some
Schwartz function a* depending continuously on a in the Schwartz space. To describe this conti-
nuity, we introduce the (semi)norms of the Schwartz space,

- N N qa qf
llalln,s == ‘a%%§N||<x> (€)" 070 al|Le-, (5.3)

where N € N.

Proposition 5.1 (Stablity of Op(S(R?%)) by adjunction). There ezists an antilinear map a — a*
on S(R%4) such that

(Op(a)*, @) 2 = (¥, Op(a®)p) L2, ¥, € S(RY),
and continuous in the sense that for all Ny € N there exists C > 0 and No € N such that
la*[[ny,s < Cllal[n,s- (5.4)

Proof. By (5.2), we look for a Schwartz function a* such that

~

a*(z,y —z) = aly,z — y),



~

ie a*(x,2) = a(x + z,—2z) = a(x + z, z). Taking the inverse Fourier transform, we get

o~

a*(z,&) = (27r)7d/ei5'za(:c + z,z)dz.

This function depends continuously on a in the Schwartz space since, by expanding 2° = (z+z—2)°
by the binomial formula, one easily checks that x%“@?@? a* is a linear combination of

/eif'zz‘s/ (z + 2)%" " (zﬂaﬁ(m + z, z)) dz,

with §’+¢” = 6. This implies that |\x55”8§6?a*||po is bounded by some seminorm of @ in S(R3?)
hence by some seminorm of a. O

6 Proof of the theorem

Using Lemma 4.2, we write first
b= Z b7y px = Z Tap (XT—q,—pb) - (6.1)
(¢,p)€Z24 (¢,p)

For simplicity, we set
bg,p = XT—q,—pb-

We also introduce

Byp = Op(brgpx) (6.2)
= U(Qap)Op(qu)U(%p)*

the second line being a consequence of Lemma 4.1.
To be in position to use the Cotlar-Knapp-Stein criterion, we mainly need the following result.

Proposition 6.1. There exist C > 0 and Ny > 0 such that, for all (q1,p1), (g2, p2) € Z2? and
all b € SY, we have

—2d-2 —2d-2 2
[[Bgy o1 By pollz2 12 < Clq1 — q2) (p1 — p2) I 1|07 Oebl |75 » (6.4)
and
* —2d—2 —2d—2 2
1By, 1 Bazpa|lz2— 02 < Clqr — qa) (p1 — p2) T |10z Ocb] |7, - (6.5)

The proof goes in two steps. The first remark is that the family (bgp)(qp)ez2¢ is bounded in
S(R24). To state this property more precisely, we use the notation (5.3).

Lemma 6.2. For all N € N, there exists C > 0 such that, for all (¢,p) € Z*¢ and all b € S,

o 08
lbasllvs < max 102070 (6:6)

Proof. Tt is an easy consequence of the Leibniz rule, using that ()" (¢)" is bounded on the support
of x. O



Lemma 6.3. For all D > 0, there exist C' > 0 and N > 0 such that,

10p(a1)U (a, p)Op(a2)U (q,p)*|| < C(a)~ (p) P lla1]|w.sllaz]|n.s,
for all ay,as € S(RY) and all q,p € 72.

Proof. By Lemma 4.1, we have U(q,p)Op(az2)U(q,p)* = Op(7qp(a2)) so the kernel K, of the
operator Op(a1)U (g, p)Op(a2)U(q,p)* is given by

Kyp(z,y) = (27r)_2d/61(x,z — x)mz(z,y —2)dz
= (27r)*2d/61(5c,z —2)e? (2 — ¢,y — 2)dz,

and it is not hard to check that it is a Schwartz function. By Proposition 2.1, it is then sufficient
to show that

|Kqp(, )| < Cpla) P (p) " (z — )" Ma||n,sllaz||n.s.

To get the latter, we compute (z — y)*¢’p? K, , by expanding
Polg—itzrta)f, oy =(—ztzy)°

using the binomial law, and integrations by part to handle the term p”. We obtain a linear
combination of integrals of the form

1" "

/eipzaz (mﬁl(z _ x)ﬁ”+a a1 (v, 2z —x)(y —2)* (2 — q)ﬁ as(z —q,y — z)) dz,

with 8/ + 3" + 8" = 8 and o + o’. These integrals are bounded by seminorms of a; and as
(uniformly with respect to (x — y), q, p) and the result follows then easily. O

Proof of Proposition 6.1. We have

1Bgypr Bay pollzz—r2 = |[U(q1,p1)Op(bgs p,)U (g1, 1) U(g2, p2)Op(bgs p,) U (g2, p2)|[ L2 L2
[[O0p(bg p )U (q1,1)"U (g2, p2) Op(bgs p,) U (g2, p2)"U(q1, p1)|| L2 L2
= ||Op(bq1,p1)U(Q2 —q1,P2 —Pl)OP( qz,pz) ((J2 —q1,P2 —p1) ||L2~>L2

using the unitarity of U(qy,p1) to get the second line and the identities (4.1) and (4.2) to get the
third one. Then, by writing Op(bg, »,)* = Op (b}, ,,) according to Proposition 5.1, Lemma 6.3
gives the estimate

2d—2 72d72||b

[[Bgs,p1 Bay po 2212 < Clq1 — q2)" ™" “(p1 — p2) 1,01 1IN0, 81105, o IN1 s

for some N; depending only on d. Using (5.4) and (6.6), the seminorms in the right hand side can
be replaced by max|,1g/<n, H@g@?b“%w and we get (6.4). The proof of (6.5) is similar. O
We recall that we assumed that the operators A; in Proposition 3.1 were compact!. This

condition is fullfilled by the operators By ;.

Proposition 6.4. For all (¢,p) € Z*¢, B, is compact on L*>(R%).

1we recall that is assumption is only for simplicity and can be removed



Proof. Recall that By, is given by (6.3). Since b,, belongs to C§°(R%), the kernel of Op(b,.p)
belongs to the Schwartz class (see (5.1)), hence to L?(R2?), and thus is Hilbert-Schmidt. O

Set now by = 3,111y bTa.pX SO that
Op(bn) = Z By p.
lal+IpI<N

Lemma 6.5. For all 1, ¢ € S(R?),

(wa @)(bN)SO)L2 - (wa Q?(b)QO)L% N — .

Proof. It suffices to observe that
.00 = (207 [ [ Gl 3 dedo
e [ [ e e pe s,

where the first line follows from Fubini’s Theorem and the second one by dominated convergence
since by — b pointwise with ||by || bounded. O

Proof of Theorem 1.3. By Propositions 3.1, 6.1 and 6.4, there exists C' > 0 and N¢y such that,
for all N and all b
b _2<C  max |02 L.
[[Op(bn)||L2— 12 < s, 105 0 bl

Thus, for all ¥, p € S(R?), the Cauchy-Schwarz inequality yields

< 295b|| 100 . .
(¥, Op(bn ) ) 2] < C s 1103 9¢ bl| L= [|]| L2 may [[¥]| L2 () (6.7)

By Lemma 6.5, we can let N go to oo and thus replace by by b in the left hand side of (6.7).
Taking then the supremum over those 1 such that ||¢)||2 = 1, we get the result. O



