The Calderon-Vaillancourt Theorem

What follows is a completely self contained proof of the Calderon-Vaillancourt Theorem on the L^{2} boundedness of pseudo-differential operators.

1 The result

Definition 1.1. The symbol class S_{00}^{0} is the space of smooth functions b on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b(x, \xi)\right| \leq C_{\alpha \beta}, \quad x, \xi \in \mathbb{R}^{d}
$$

for all $\alpha, \beta \in \mathbb{N}^{d}$.
For the next definition, we recall that $\widehat{\varphi}(\xi)=\int e^{-i y \cdot \xi} \varphi(y) d y$.
Definition 1.2 (Pseudo-differential operator). Given $b \in S_{00}^{0}$, the pseudo-differential operator of symbol b, $O p(b)$, is the operator defined by

$$
O p(b) \varphi(x)=(2 \pi)^{-d} \int e^{i x \cdot \xi} b(x, \xi) \widehat{\varphi}(\xi) d \xi
$$

for all φ in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{d}\right)$.
Theorem 1.3 (Calderon-Vaillancourt). There exists $C, N_{\mathrm{CV}}>0$ such that for all $b \in S_{00}^{0}$ and all $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
\|O p(b) \varphi\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C \max _{|\alpha+\beta| \leq N_{\mathrm{CV}}}\left\|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b\right\|_{L^{\infty}}\|\varphi\|_{L^{2}\left(\mathbb{R}^{d}\right)} \tag{1.1}
\end{equation*}
$$

The next sections are devoted to the proof of this theorem.

2 The Schur estimate

Let $K \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$ and consider the associated operator

$$
A u(x)=\int_{\mathbb{R}^{d}} K(x, y) u(y) d y
$$

defined for any $u \in L^{p}\left(\mathbb{R}^{d}\right), p \in[1, \infty]$. Introduce the norms

$$
\|A\|_{l-\text { Schur }}:=\sup _{x} \int|K(x, y)| d y, \quad \quad\|A\|_{r-\text { Schur }}:=\sup _{y} \int|K(x, y)| d x
$$

Proposition 2.1. For all $p \in[1, \infty]$ and all $u \in L^{p}\left(\mathbb{R}^{d}\right)$,

$$
\|A u\|_{L^{p}} \leq\|A\|_{l-\text { Schur }}^{1-1 / p}\|A\|_{r-\text { Schur }}^{1 / p}\|u\|_{L^{p}}
$$

with the convention that $C_{1}^{1-1 / p} C_{2}^{1 / p}=C_{1}$ if $p=\infty$.
Proof. Assume that $p<\infty$. Observe that for each $x \in \mathbb{R}^{d}$, Hölder's inequality yields

$$
\begin{aligned}
\int|K(x, y) u(y)| d y & =\int|K(x, y)|^{1-1 / p}|K(x, y)|^{1 / p}|u(y)| d y \\
& \leq\left(\int|K(x, y)| d y\right)^{1-1 / p}\left(\int|K(x, y)||u(y)|^{p} d y\right)^{1 / p}
\end{aligned}
$$

Hence we have

$$
\left(\int|K(x, y) u(y)| d y\right)^{p} \leq\|A\|_{l-\text { Schur }}^{p-1} \int|K(x, y) \| u(y)|^{p} d y .
$$

By integrating this inequality with respect to x and using the Fubini Theorem, we obtain the result. If $p=\infty$, the estimate is obvious.

3 The Cotlar-Knapp-Stein criterion

Consider a countable family $\left(A_{j}\right)_{j \in \mathbb{N}}$ of bounded operators on $L^{2}\left(\mathbb{R}^{d}\right)$. We will actually assume that each A_{j} is compact, which will not be a restriction for the final application. The only reason for this (non necessary) additional condition is that the spectral theorem for self-adjoint operators is maybe more elementary, or at least more popular, for compact operators than the general theorem of Von Neumann.

For simplicity, $\|\cdot\|$ denotes the operator norm on $L^{2}\left(\mathbb{R}^{d}\right)$.
Proposition 3.1. Assume that

$$
\sup _{j} \sum_{k}\left\|A_{j}^{*} A_{k}\right\|^{1 / 2} \leq M, \quad \quad \sup _{k} \sum_{j}\left\|A_{k} A_{j}^{*}\right\|^{1 / 2} \leq M
$$

Then, if we set

$$
S_{N}=\sum_{j \leq N} A_{j}
$$

we have

$$
\left\|S_{N}\right\| \leq M, \quad N \in \mathbb{N}
$$

Proof. Consider the self-adjoint (and compact) operator

$$
H_{N}:=S_{N}^{*} S_{N}
$$

The Spectral Theorem then yields

$$
\left\|S_{N}\right\|^{2}=\sup _{\|\varphi\|_{L^{2}}=1}\left(S_{N}^{*} S_{N} \varphi, \varphi\right)=\left\|H_{N}\right\|=\max \sigma\left(H_{N}\right)
$$

as well as

$$
\left\|H_{N}^{m}\right\|=\left\|H_{N}\right\|^{m}, \quad m \in \mathbb{N}
$$

so that

$$
\begin{equation*}
\left\|S_{N}\right\|=\left\|H_{N}^{m}\right\|^{1 / 2 m} \tag{3.1}
\end{equation*}
$$

One then writes

$$
H_{N}^{m}=\sum_{j_{1}} \sum_{k_{1}} \cdots \sum_{j_{m}} \sum_{k_{m}} A_{j_{1}}^{*} A_{k_{1}} \cdots A_{j_{m}}^{*} A_{k_{m}}
$$

where all indices are taken between 0 and $N-1$, and observes that

$$
\left\|A_{j_{1}}^{*} A_{k_{1}} \cdots A_{j_{m}}^{*} A_{k_{m}}^{*}\right\| \leq\left\{\begin{array}{l}
\left\|A_{j_{1}}^{*} A_{k_{1}}\right\| \cdots\left\|A_{j_{m}}^{*} A_{k_{m}}\right\| \\
\text { and } \\
\left\|A_{j_{1}}^{*}\right\|\left\|A_{k_{m}}\right\|\left\|A_{k_{1}} A_{j_{2}}^{*}\right\| \cdots\left\|A_{k_{m-1}} A_{j_{m}}^{*}\right\|
\end{array}\right.
$$

Therefore, since $\min (a, b) \leq(a b)^{1 / 2}$ for all $a, b \geq 0$ and $\left\|A_{k}\right\| \leq M$ for all k, we have

$$
\begin{aligned}
\left\|H_{N}^{m}\right\| & \leq M \sum_{j_{1}} \sum_{k_{1}}\left\|A_{j_{1}}^{*} A_{k_{1}}\right\|^{1 / 2} \sum_{j_{2}}\left\|A_{k_{1}} A_{j_{2}}^{*}\right\|^{1 / 2} \cdots \sum_{j_{m}}\left\|A_{k_{m-1}} A_{j_{m}}^{*}\right\|^{1 / 2} \sum_{k_{m}}\left\|A_{j_{m}}^{*} A_{k_{m}}\right\|^{1 / 2} \\
& \leq M \sum_{j_{1}<N} M^{2 m-1} .
\end{aligned}
$$

Using (3.1), we thus have $\left\|S_{N}\right\| \leq N^{1 / 2 m} M$ and get the result by letting $m \rightarrow \infty$.

4 Phase space translations

For $(q, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ define $U(q, p)$ by

$$
U(q, p) \varphi(x)=e^{i x \cdot p} \varphi(x-q)
$$

say for φ in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{d}\right)$. These operators are obviously unitary on $L^{2}\left(\mathbb{R}^{d}\right)$. They also satisfy the relations

$$
\begin{equation*}
U(q, p)^{*}=e^{-i q \cdot p} U(-q,-p) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
U\left(q_{1}, p_{1}\right) U\left(q_{2}, p_{2}\right)=e^{-i p_{1} \cdot q_{2}} U\left(q_{1}+q_{2}, p_{1}+p_{2}\right) \tag{4.2}
\end{equation*}
$$

which are both easily seen by elementary calculations.
We also define $\tau_{q, p}$ by

$$
\tau_{q, p} a(x, \xi)=a(x-q, \xi-p) .
$$

Lemma 4.1. For all $(q, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ and $a \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$,

$$
U(q, p) O p(a) U(q, p)^{*}=O p\left(\tau_{q, p} a\right)
$$

Proof. It follows from (4.1) and the Fubini Theorem since

$$
\begin{aligned}
U(q, p) O p(a) U(q, p)^{*} \varphi(x) & =e^{i p \cdot x}(2 \pi)^{-d} \iint e^{i(x-q) \cdot \xi} a(x-q, \xi) e^{-i y \cdot \xi} e^{-i q \cdot p} e^{-i p \cdot y} \varphi(y+q) d y d \xi \\
& =(2 \pi)^{-d} \iint e^{i(x-z) \cdot \zeta} a(x-q, \zeta-p) \varphi(z) d z d \zeta=O p\left(\tau_{q, p} a\right) \varphi(x)
\end{aligned}
$$

by the change of variables $\xi=\zeta-p$ and $y+q=z$.

Lemma 4.2. There exists $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{2 d}\right)$ such that

$$
\sum_{(q, p) \in \mathbb{Z}^{2 d}} \tau_{q, p} \chi \equiv 1
$$

Proof. The result has nothing to do with the dimension and easily follows from the existence of $\theta \in C_{0}^{\infty}(\mathbb{R})$ such that $1=\sum_{j \in \mathbb{Z}} \theta(x-j)$. We can construct the latter by choosing $\theta_{0} \in C_{0}^{\infty}(\mathbb{R})$ such that $\theta \geq 0$ and $\theta \equiv 1$ on $[0,1]$ so that the following smooth and 1 periodic function

$$
\Theta(x):=\sum_{j \in \mathbb{N}} \theta_{0}(x-j)
$$

is bounded from below by 1 since $x-j$ belongs to $[0,1]$ for some j. One then obtains θ by considering $\theta=\theta_{0} / \Theta$ and then χ with $\chi=\theta \otimes \cdots \otimes \theta$.

5 Elementary symbolic calculus

In this section we give the minimal symbolic calculus properties required for the proof of the Calderon-Vaillancourt Theorem.

We start by observing that, if $a \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$, the operator $O p(a)$ (see Definition 1.2) has a kernel

$$
\begin{equation*}
K_{O p(a)}(x, y)=(2 \pi)^{-d} \widehat{a}(x, y-x),, \tag{5.1}
\end{equation*}
$$

where \widehat{a} denotes the Fourier transform of a with respect to ξ. This follows from the Fubini theorem by expanding $\widehat{\varphi}(\xi)$ into $\int e^{-i y \cdot \xi} \varphi(y) d y$ in the definition of $O p(a) \varphi$.

Clearly, this kernel belongs to $\mathcal{S}\left(\mathbb{R}^{2 d}\right)$ and thus so does the kernel of $O p(a)^{*}$ which is given by

$$
\begin{equation*}
K_{O p(a)^{*}}(x, y)=(2 \pi)^{-d} \overline{\widehat{a}}(y, x-y) \tag{5.2}
\end{equation*}
$$

It will be sufficient for the present purpose to show that $O p(a)^{*}$ is of the form $O p\left(a^{*}\right)$ for some Schwartz function a^{*} depending continuously on a in the Schwartz space. To describe this continuity, we introduce the (semi)norms of the Schwartz space,

$$
\begin{equation*}
\|a\|_{N, \mathcal{S}}:=\max _{|\alpha+\beta| \leq N}\left\|\langle x\rangle^{N}\langle\xi\rangle^{N} \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a\right\|_{L^{\infty}}, \tag{5.3}
\end{equation*}
$$

where $N \in \mathbb{N}$.
Proposition 5.1 (Stablity of $O p\left(\mathcal{S}\left(\mathbb{R}^{2 d}\right)\right.$) by adjunction). There exists an antilinear map $a \mapsto a^{*}$ on $\mathcal{S}\left(\mathbb{R}^{2 d}\right)$ such that

$$
\left(O p(a)^{*} \psi, \varphi\right)_{L^{2}}=\left(\psi, O p\left(a^{*}\right) \varphi\right)_{L^{2}}, \quad \psi, \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

and continuous in the sense that for all $N_{1} \in \mathbb{N}$ there exists $C>0$ and $N_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|a^{*}\right\|_{N_{1}, \mathcal{S}} \leq C\|a\|_{N_{2}, \mathcal{S}} . \tag{5.4}
\end{equation*}
$$

Proof. By (5.2), we look for a Schwartz function a^{*} such that

$$
\widehat{a^{*}}(x, y-x)=\overline{\widehat{a}}(y, x-y),
$$

ie $\widehat{a^{*}}(x, z)=\overline{\widehat{a}}(x+z,-z)=\widehat{\bar{a}}(x+z, z)$. Taking the inverse Fourier transform, we get

$$
a^{*}(x, \xi)=(2 \pi)^{-d} \int e^{i \xi \cdot z} \overline{\bar{a}}(x+z, z) d z
$$

This function depends continuously on a in the Schwartz space since, by expanding $x^{\delta}=(x+z-z)^{\delta}$ by the binomial formula, one easily checks that $x^{\delta} \xi^{\mu} \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a^{*}$ is a linear combination of

$$
\int e^{i \xi \cdot z} z^{\delta^{\prime}}(x+z)^{\delta^{\prime \prime}} \partial_{z}^{\mu}\left(z^{\beta} \partial_{x}^{\alpha} \widehat{\bar{a}}(x+z, z)\right) d z
$$

with $\delta^{\prime}+\delta^{\prime \prime}=\delta$. This implies that $\left\|x^{\delta} \xi^{\mu} \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a^{*}\right\|_{L^{\infty}}$ is bounded by some seminorm of $\widehat{\bar{a}}$ in $\mathcal{S}\left(\mathbb{R}^{2 d}\right)$ hence by some seminorm of a.

6 Proof of the theorem

Using Lemma 4.2, we write first

$$
\begin{equation*}
b=\sum_{(q, p) \in \mathbb{Z}^{2 d}} b \tau_{q, p} \chi=\sum_{(q, p)} \tau_{q, p}\left(\chi \tau_{-q,-p} b\right) . \tag{6.1}
\end{equation*}
$$

For simplicity, we set

$$
b_{q, p}=\chi \tau_{-q,-p} b
$$

We also introduce

$$
\begin{align*}
B_{q, p} & :=O p\left(b \tau_{q, p} \chi\right) \tag{6.2}\\
& =U(q, p) O p\left(b_{q, p}\right) U(q, p)^{*} \tag{6.3}
\end{align*}
$$

the second line being a consequence of Lemma 4.1.
To be in position to use the Cotlar-Knapp-Stein criterion, we mainly need the following result.
Proposition 6.1. There exist $C>0$ and $N_{\mathrm{CV}}>0$ such that, for all $\left(q_{1}, p_{1}\right),\left(q_{2}, p_{2}\right) \in \mathbb{Z}^{2 d}$ and all $b \in S_{00}^{0}$, we have

$$
\begin{equation*}
\left\|B_{q_{1}, p_{1}} B_{q_{2}, p_{2}}^{*}\right\|_{L^{2} \rightarrow L^{2}} \leq C\left\langle q_{1}-q_{2}\right\rangle^{-2 d-2}\left\langle p_{1}-p_{2}\right\rangle^{-2 d-2} \max _{|\alpha+\beta| \leq N_{\mathrm{CV}}}\left\|\partial_{x}^{\alpha} \partial_{\xi} b\right\|_{L^{\infty}}^{2}, \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|B_{q_{1}, p_{1}}^{*} B_{q_{2}, p_{2}}\right\|_{L^{2} \rightarrow L^{2}} \leq C\left\langle q_{1}-q_{2}\right\rangle^{-2 d-2}\left\langle p_{1}-p_{2}\right\rangle^{-2 d-2} \max _{|\alpha+\beta| \leq N_{\mathrm{CV}}}\left\|\partial_{x}^{\alpha} \partial_{\xi} b\right\|_{L^{\infty}}^{2} \tag{6.5}
\end{equation*}
$$

The proof goes in two steps. The first remark is that the family $\left(b_{q, p}\right)_{(q, p) \in \mathbb{Z}^{2 d}}$ is bounded in $\mathcal{S}\left(\mathbb{R}^{2 d}\right)$. To state this property more precisely, we use the notation (5.3).
Lemma 6.2. For all $N \in \mathbb{N}$, there exists $C>0$ such that, for all $(q, p) \in \mathbb{Z}^{2 d}$ and all $b \in S_{00}^{0}$,

$$
\begin{equation*}
\left\|b_{q, p}\right\|_{N, \mathcal{S}} \leq C \max _{|\alpha+\beta| \leq N}\left\|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b\right\|_{L^{\infty}} \tag{6.6}
\end{equation*}
$$

Proof. It is an easy consequence of the Leibniz rule, using that $\langle x\rangle^{N}\langle\xi\rangle^{N}$ is bounded on the support of χ.

Lemma 6.3. For all $D>0$, there exist $C>0$ and $N>0$ such that,

$$
\left\|O p\left(a_{1}\right) U(q, p) O p\left(a_{2}\right) U(q, p)^{*}\right\| \leq C\langle q\rangle^{-D}\langle p\rangle^{-D}\left\|a_{1}\right\|_{N, \mathcal{S}}\left\|a_{2}\right\|_{N, \mathcal{S}},
$$

for all $a_{1}, a_{2} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and all $q, p \in \mathbb{Z}^{d}$.
Proof. By Lemma 4.1, we have $U(q, p) O p\left(a_{2}\right) U(q, p)^{*}=O p\left(\tau_{q, p}\left(a_{2}\right)\right)$ so the kernel $K_{q, p}$ of the operator $O p\left(a_{1}\right) U(q, p) O p\left(a_{2}\right) U(q, p)^{*}$ is given by

$$
\begin{aligned}
K_{q, p}(x, y) & =(2 \pi)^{-2 d} \int \widehat{a}_{1}(x, z-x){\widehat{\tau_{q, p}} a_{2}}(z, y-z) d z \\
& =(2 \pi)^{-2 d} \int \widehat{a}_{1}(x, z-x) e^{i p \cdot(z-y)} \widehat{a}_{2}(z-q, y-z) d z
\end{aligned}
$$

and it is not hard to check that it is a Schwartz function. By Proposition 2.1, it is then sufficient to show that

$$
\left|K_{q, p}(x, y)\right| \leq C_{D}\langle q\rangle^{-D}\langle p\rangle^{-D}\langle x-y\rangle^{-d-1}\left\|a_{1}\right\|_{N, \mathcal{S}}\left\|a_{2}\right\|_{N, \mathcal{S}}
$$

To get the latter, we compute $(x-y)^{\alpha} q^{\beta} p^{\gamma} K_{q, p}$ by expanding

$$
q^{\beta}=(q-z+z-x+x)^{\beta}, \quad(x-y)^{\alpha}=(x-z+z-y)^{\alpha}
$$

using the binomial law, and integrations by part to handle the term p^{γ}. We obtain a linear combination of integrals of the form

$$
\int e^{i p \cdot z} \partial_{z}^{\gamma}\left(x^{\beta^{\prime}}(z-x)^{\beta^{\prime \prime}+\alpha^{\prime}} \widehat{a}_{1}(x, z-x)(y-z)^{\alpha^{\prime \prime}}(z-q)^{\beta^{\prime \prime \prime}} \widehat{a}_{2}(z-q, y-z)\right) d z
$$

with $\beta^{\prime}+\beta^{\prime \prime}+\beta^{\prime \prime \prime}=\beta$ and $\alpha^{\prime}+\alpha^{\prime \prime}$. These integrals are bounded by seminorms of a_{1} and a_{2} (uniformly with respect to $(x-y), q, p)$ and the result follows then easily.

Proof of Proposition 6.1. We have

$$
\begin{aligned}
\left\|B_{q_{1}, p_{1}} B_{q_{2}, p_{2}}^{*}\right\|_{L^{2} \rightarrow L^{2}} & =\left\|U\left(q_{1}, p_{1}\right) O p\left(b_{q_{1}, p_{1}}\right) U\left(q_{1}, p_{1}\right)^{*} U\left(q_{2}, p_{2}\right) O p\left(b_{q_{2}, p_{2}}\right)^{*} U\left(q_{2}, p_{2}\right)\right\|_{L^{2} \rightarrow L^{2}} \\
& =\left\|O p\left(b_{q_{1}, p_{1}}\right) U\left(q_{1}, p_{1}\right)^{*} U\left(q_{2}, p_{2}\right) \operatorname{Op}\left(b_{q_{2}, p_{2}}\right)^{*} U\left(q_{2}, p_{2}\right)^{*} U\left(q_{1}, p_{1}\right)\right\|_{L^{2} \rightarrow L^{2}} \\
& =\left\|O p\left(b_{q_{1}, p_{1}}\right) U\left(q_{2}-q_{1}, p_{2}-p_{1}\right) O p\left(b_{q_{2}, p_{2}}\right)^{*} U\left(q_{2}-q_{1}, p_{2}-p_{1}\right)^{*}\right\|_{L^{2} \rightarrow L^{2}}
\end{aligned}
$$

using the unitarity of $U\left(q_{1}, p_{1}\right)$ to get the second line and the identities (4.1) and (4.2) to get the third one. Then, by writing $O p\left(b_{q_{2}, p_{2}}\right)^{*}=O p\left(b_{q_{2}, p_{2}}^{*}\right)$ according to Proposition 5.1, Lemma 6.3 gives the estimate

$$
\left\|B_{q_{1}, p_{1}} B_{q_{2}, p_{2}}^{*}\right\|_{L^{2} \rightarrow L^{2}} \leq C\left\langle q_{1}-q_{2}\right\rangle^{-2 d-2}\left\langle p_{1}-p_{2}\right\rangle^{-2 d-2}\left\|b_{q_{1}, p_{1}}\right\|_{N_{1}, \mathcal{S}}\left\|b_{q_{2}, p_{2}}^{*}\right\|_{N_{1}, \mathcal{S}}
$$

for some N_{1} depending only on d. Using (5.4) and (6.6), the seminorms in the right hand side can be replaced by $\max _{|\alpha+\beta| \leq N_{2}}\left\|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b\right\|_{L^{\infty}}^{2}$ and we get (6.4). The proof of (6.5) is similar.

We recall that we assumed that the operators A_{j} in Proposition 3.1 were compact ${ }^{1}$. This condition is fullfilled by the operators $B_{q, p}$.

Proposition 6.4. For all $(q, p) \in \mathbb{Z}^{2 d}, B_{q, p}$ is compact on $L^{2}\left(\mathbb{R}^{d}\right)$.

[^0]Proof. Recall that $B_{q, p}$ is given by (6.3). Since $b_{q, p}$ belongs to $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, the kernel of $O p\left(b_{q, p}\right)$ belongs to the Schwartz class (see (5.1)), hence to $L^{2}\left(\mathbb{R}^{2 d}\right)$, and thus is Hilbert-Schmidt.

Set now $b_{N}=\sum_{|q|+|p|} b \tau_{q, p} \chi$ so that

$$
O p\left(b_{N}\right)=\sum_{|q|+|p| \leq N} B_{q, p} .
$$

Lemma 6.5. For all $\psi, \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
\left(\psi, O p\left(b_{N}\right) \varphi\right)_{L^{2}} \rightarrow(\psi, O p(b) \varphi)_{L^{2}}, \quad N \rightarrow \infty
$$

Proof. It suffices to observe that

$$
\begin{aligned}
\left(\psi, O p\left(b_{N}\right) \varphi\right)_{L^{2}} & =(2 \pi)^{-d} \iint e^{i x \cdot \xi} \overline{\psi(x)} b_{N}(x, \xi) \widehat{\varphi}(\xi) d \xi d x \\
& \rightarrow(2 \pi)^{-d} \iint e^{i x \cdot \xi} \overline{\psi(x)} b(x, \xi) \widehat{\varphi}(\xi) d \xi d x
\end{aligned}
$$

where the first line follows from Fubini's Theorem and the second one by dominated convergence since $b_{N} \rightarrow b$ pointwise with $\left\|b_{N}\right\|_{\infty}$ bounded.

Proof of Theorem 1.3. By Propositions 3.1, 6.1 and 6.4 , there exists $C>0$ and N_{CV} such that, for all N and all b

$$
\left\|O p\left(b_{N}\right)\right\|_{L^{2} \rightarrow L^{2}} \leq C \max _{|\alpha+\beta| \leq N_{\mathrm{CV}}}\left\|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b\right\|_{L^{\infty}}
$$

Thus, for all $\psi, \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, the Cauchy-Schwarz inequality yields

$$
\begin{equation*}
\left|\left(\psi, O p\left(b_{N}\right) \varphi\right)_{L^{2}}\right| \leq C \max _{|\alpha+\beta| \leq N_{\mathrm{CV}}}\left\|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b\right\|_{L^{\infty}}\|\varphi\|_{L^{2}\left(\mathbb{R}^{d}\right)}\|\psi\|_{L^{2}\left(\mathbb{R}^{d}\right)} \tag{6.7}
\end{equation*}
$$

By Lemma 6.5 , we can let N go to ∞ and thus replace b_{N} by b in the left hand side of (6.7). Taking then the supremum over those ψ such that $\|\psi\|_{L^{2}}=1$, we get the result.

[^0]: ${ }^{1}$ we recall that is assumption is only for simplicity and can be removed

