The Calderon-Vaillancourt Theorem

What follows is a completely self contained proof of the Calderon-Vaillan court Theorem on the L^2 boundedness of pseudo-differential operators.

1 The result

Definition 1.1. The symbol class S_{00}^0 is the space of smooth functions b on $\mathbb{R}^d \times \mathbb{R}^d$ such that

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}b(x,\xi)| \le C_{\alpha\beta}, \qquad x,\xi \in \mathbb{R}^d,$$

for all $\alpha, \beta \in \mathbb{N}^d$.

For the next definition, we recall that $\widehat{\varphi}(\xi) = \int e^{-iy \cdot \xi} \varphi(y) dy$.

Definition 1.2 (Pseudo-differential operator). Given $b \in S_{00}^0$, the pseudo-differential operator of symbol b, Op(b), is the operator defined by

$$Op(b)\varphi(x) = (2\pi)^{-d} \int e^{ix\cdot\xi} b(x,\xi)\widehat{\varphi}(\xi)d\xi,$$

for all φ in the Schwartz space $\mathcal{S}(\mathbb{R}^d)$.

Theorem 1.3 (Calderon-Vaillancourt). There exists $C, N_{\text{CV}} > 0$ such that for all $b \in S_{00}^0$ and all $\varphi \in \mathcal{S}(\mathbb{R}^d)$

$$||Op(b)\varphi||_{L^2(\mathbb{R}^d)} \le C \max_{|\alpha+\beta| \le N_{\rm CV}} ||\partial_x^{\alpha} \partial_{\xi}^{\beta} b||_{L^{\infty}} ||\varphi||_{L^2(\mathbb{R}^d)}.$$
(1.1)

The next sections are devoted to the proof of this theorem.

2 The Schur estimate

Let $K \in \mathcal{S}(\mathbb{R}^{2d})$ and consider the associated operator

$$Au(x) = \int_{\mathbb{R}^d} K(x, y)u(y)dy,$$

defined for any $u \in L^p(\mathbb{R}^d)$, $p \in [1, \infty]$. Introduce the norms

$$||A||_{l-\operatorname{Schur}} := \sup_{x} \int |K(x,y)| dy, \qquad ||A||_{r-\operatorname{Schur}} := \sup_{y} \int |K(x,y)| dx$$

Proposition 2.1. For all $p \in [1, \infty]$ and all $u \in L^p(\mathbb{R}^d)$,

$$||Au||_{L^p} \le ||A||_{l-\text{Schur}}^{1-1/p} ||A||_{r-\text{Schur}}^{1/p} ||u||_{L^p},$$

with the convention that $C_1^{1-1/p}C_2^{1/p} = C_1$ if $p = \infty$.

Proof. Assume that $p < \infty$. Observe that for each $x \in \mathbb{R}^d$, Hölder's inequality yields

$$\int |K(x,y)u(y)|dy = \int |K(x,y)|^{1-1/p} |K(x,y)|^{1/p} |u(y)|dy$$

$$\leq \left(\int |K(x,y)|dy\right)^{1-1/p} \left(\int |K(x,y)||u(y)|^p dy\right)^{1/p}$$

Hence we have

$$\left(\int |K(x,y)u(y)|dy\right)^p \le ||A||_{l-\operatorname{Schur}}^{p-1} \int |K(x,y)||u(y)|^p dy.$$

By integrating this inequality with respect to x and using the Fubini Theorem, we obtain the result. If $p = \infty$, the estimate is obvious.

3 The Cotlar-Knapp-Stein criterion

Consider a countable family $(A_j)_{j\in\mathbb{N}}$ of bounded operators on $L^2(\mathbb{R}^d)$. We will actually assume that each A_j is compact, which will not be a restriction for the final application. The only reason for this (non necessary) additional condition is that the spectral theorem for self-adjoint operators is maybe more elementary, or at least more popular, for compact operators than the general theorem of Von Neumann.

For simplicity, $|| \cdot ||$ denotes the operator norm on $L^2(\mathbb{R}^d)$.

Proposition 3.1. Assume that

$$\sup_{j} \sum_{k} ||A_{j}^{*}A_{k}||^{1/2} \le M, \qquad \qquad \sup_{k} \sum_{j} ||A_{k}A_{j}^{*}||^{1/2} \le M.$$

Then, if we set

$$S_N = \sum_{j \le N} A_j,$$

we have

$$||S_N|| \le M, \qquad N \in \mathbb{N}.$$

Proof. Consider the self-adjoint (and compact) operator

$$H_N := S_N^* S_N.$$

The Spectral Theorem then yields

$$||S_N||^2 = \sup_{||\varphi||_{L^2}=1} (S_N^* S_N \varphi, \varphi) = ||H_N|| = \max \sigma(H_N)$$

as well as

$$|H_N^m|| = ||H_N||^m, \qquad m \in \mathbb{N}$$

so that

$$||S_N|| = ||H_N^m||^{1/2m}.$$
(3.1)

One then writes

$$H_N^m = \sum_{j_1} \sum_{k_1} \cdots \sum_{j_m} \sum_{k_m} A_{j_1}^* A_{k_1} \cdots A_{j_m}^* A_{k_m},$$

where all indices are taken between 0 and N-1, and observes that

$$||A_{j_1}^*A_{k_1}\cdots A_{j_m}^*A_{k_m}^*|| \le \begin{cases} ||A_{j_1}^*A_{k_1}||\cdots||A_{j_m}^*A_{k_m}||\\ \text{and}\\ ||A_{j_1}^*||||A_{k_m}||||A_{k_1}A_{j_2}^*||\cdots||A_{k_{m-1}}A_{j_m}^*|| \end{cases}$$

Therefore, since $\min(a, b) \leq (ab)^{1/2}$ for all $a, b \geq 0$ and $||A_k|| \leq M$ for all k, we have

$$\begin{split} ||H_N^m|| &\leq M \sum_{j_1} \sum_{k_1} ||A_{j_1}^* A_{k_1}||^{1/2} \sum_{j_2} ||A_{k_1} A_{j_2}^*||^{1/2} \cdots \sum_{j_m} ||A_{k_{m-1}} A_{j_m}^*||^{1/2} \sum_{k_m} ||A_{j_m}^* A_{k_m}||^{1/2} \\ &\leq M \sum_{j_1 < N} M^{2m-1}. \end{split}$$

Using (3.1), we thus have $||S_N|| \leq N^{1/2m}M$ and get the result by letting $m \to \infty$.

Phase space translations 4

For $(q, p) \in \mathbb{R}^d \times \mathbb{R}^d$ define U(q, p) by

$$U(q,p)\varphi(x) = e^{ix \cdot p}\varphi(x-q),$$

say for φ in the Schwartz space $\mathcal{S}(\mathbb{R}^d)$. These operators are obviously unitary on $L^2(\mathbb{R}^d)$. They also satisfy the relations

$$U(q,p)^* = e^{-iq \cdot p} U(-q,-p),$$
(4.1)

and

$$U(q_1, p_1)U(q_2, p_2) = e^{-ip_1 \cdot q_2}U(q_1 + q_2, p_1 + p_2),$$
(4.2)

which are both easily seen by elementary calculations.

We also define $\tau_{q,p}$ by

$$\tau_{q,p}a(x,\xi) = a(x-q,\xi-p)$$

Lemma 4.1. For all $(q, p) \in \mathbb{R}^d \times \mathbb{R}^d$ and $a \in \mathcal{S}(\mathbb{R}^{2d})$,

$$U(q, p)Op(a)U(q, p)^* = Op(\tau_{q, p}a)$$

Proof. It follows from (4.1) and the Fubini Theorem since

$$\begin{aligned} U(q,p)Op(a)U(q,p)^*\varphi(x) &= e^{ip\cdot x}(2\pi)^{-d} \iint e^{i(x-q)\cdot\xi}a(x-q,\xi)e^{-iy\cdot\xi}e^{-iq\cdot p}e^{-ip\cdot y}\varphi(y+q)dyd\xi \\ &= (2\pi)^{-d} \iint e^{i(x-z)\cdot\zeta}a(x-q,\zeta-p)\varphi(z)dzd\zeta = Op(\tau_{q,p}a)\varphi(x) \end{aligned}$$
by the change of variables $\xi = \zeta - p$ and $y+q=z$.

by the change of variables $\xi = \zeta - p$ and y + q = z.

Lemma 4.2. There exists $\chi \in C_0^{\infty}(\mathbb{R}^{2d})$ such that

$$\sum_{(q,p)\in\mathbb{Z}^{2d}}\tau_{q,p}\chi\equiv 1.$$

Proof. The result has nothing to do with the dimension and easily follows from the existence of $\theta \in C_0^{\infty}(\mathbb{R})$ such that $1 = \sum_{j \in \mathbb{Z}} \theta(x-j)$. We can construct the latter by choosing $\theta_0 \in C_0^{\infty}(\mathbb{R})$ such that $\theta \ge 0$ and $\theta \equiv 1$ on [0, 1] so that the following smooth and 1 periodic function

$$\Theta(x) := \sum_{j \in \mathbb{N}} \theta_0(x-j)$$

is bounded from below by 1 since x - j belongs to [0, 1] for some j. One then obtains θ by considering $\theta = \theta_0 / \Theta$ and then χ with $\chi = \theta \otimes \cdots \otimes \theta$.

5 Elementary symbolic calculus

In this section we give the minimal symbolic calculus properties required for the proof of the Calderon-Vaillancourt Theorem.

We start by observing that, if $a \in \mathcal{S}(\mathbb{R}^{2d})$, the operator Op(a) (see Definition 1.2) has a kernel

$$K_{Op(a)}(x,y) = (2\pi)^{-d} \widehat{a}(x,y-x),, \qquad (5.1)$$

where \hat{a} denotes the Fourier transform of a with respect to ξ . This follows from the Fubini theorem by expanding $\hat{\varphi}(\xi)$ into $\int e^{-iy \cdot \xi} \varphi(y) dy$ in the definition of $Op(a)\varphi$.

Clearly, this kernel belongs to $\mathcal{S}(\mathbb{R}^{2d})$ and thus so does the kernel of $Op(a)^*$ which is given by

$$K_{Op(a)^*}(x,y) = (2\pi)^{-d}\overline{\hat{a}}(y,x-y).$$
(5.2)

It will be sufficient for the present purpose to show that $Op(a)^*$ is of the form $Op(a^*)$ for some Schwartz function a^* depending continuously on a in the Schwartz space. To describe this continuity, we introduce the (semi)norms of the Schwartz space,

$$||a||_{N,\mathcal{S}} := \max_{|\alpha+\beta| \le N} ||\langle x \rangle^N \langle \xi \rangle^N \partial_x^\alpha \partial_\xi^\beta a||_{L^{\infty}},$$
(5.3)

where $N \in \mathbb{N}$.

Proposition 5.1 (Stablity of $Op(\mathcal{S}(\mathbb{R}^{2d}))$ by adjunction). There exists an antilinear map $a \mapsto a^*$ on $\mathcal{S}(\mathbb{R}^{2d})$ such that

$$(Op(a)^*\psi,\varphi)_{L^2} = (\psi, Op(a^*)\varphi)_{L^2}, \qquad \psi, \varphi \in \mathcal{S}(\mathbb{R}^d)$$

and continuous in the sense that for all $N_1 \in \mathbb{N}$ there exists C > 0 and $N_2 \in \mathbb{N}$ such that

$$||a^*||_{N_1,\mathcal{S}} \le C||a||_{N_2,\mathcal{S}}.$$
 (5.4)

Proof. By (5.2), we look for a Schwartz function a^* such that

$$\widehat{a^*}(x, y - x) = \overline{\widehat{a}}(y, x - y)$$

ie $\widehat{a^*}(x,z) = \overline{\widehat{a}}(x+z,-z) = \widehat{\overline{a}}(x+z,z)$. Taking the inverse Fourier transform, we get

$$a^*(x,\xi) = (2\pi)^{-d} \int e^{i\xi \cdot z} \widehat{\overline{a}}(x+z,z) dz$$

This function depends continuously on a in the Schwartz space since, by expanding $x^{\delta} = (x+z-z)^{\delta}$ by the binomial formula, one easily checks that $x^{\delta}\xi^{\mu}\partial_x^{\alpha}\partial_{\xi}^{\beta}a^*$ is a linear combination of

$$\int e^{i\xi \cdot z} z^{\delta'} (x+z)^{\delta''} \partial_z^{\mu} \left(z^{\beta} \partial_x^{\alpha} \widehat{\overline{a}}(x+z,z) \right) dz,$$

with $\delta' + \delta'' = \delta$. This implies that $||x^{\delta}\xi^{\mu}\partial_x^{\alpha}\partial_{\xi}^{\beta}a^*||_{L^{\infty}}$ is bounded by some seminorm of $\hat{\overline{a}}$ in $\mathcal{S}(\mathbb{R}^{2d})$ hence by some seminorm of a.

6 Proof of the theorem

Using Lemma 4.2, we write first

$$b = \sum_{(q,p) \in \mathbb{Z}^{2d}} b\tau_{q,p} \chi = \sum_{(q,p)} \tau_{q,p} \left(\chi \tau_{-q,-p} b \right).$$
(6.1)

For simplicity, we set

$$b_{q,p} = \chi \tau_{-q,-p} b.$$

We also introduce

$$B_{q,p} := Op(b\tau_{q,p}\chi)$$
(6.2)

$$= U(q, p)Op(b_{q, p})U(q, p)^*.$$
(6.3)

the second line being a consequence of Lemma 4.1.

To be in position to use the Cotlar-Knapp-Stein criterion, we mainly need the following result.

Proposition 6.1. There exist C > 0 and $N_{CV} > 0$ such that, for all $(q_1, p_1), (q_2, p_2) \in \mathbb{Z}^{2d}$ and all $b \in S_{00}^0$, we have

$$|B_{q_1,p_1}B^*_{q_2,p_2}||_{L^2 \to L^2} \le C\langle q_1 - q_2 \rangle^{-2d-2} \langle p_1 - p_2 \rangle^{-2d-2} \max_{|\alpha + \beta| \le N_{\rm CV}} ||\partial_x^{\alpha} \partial_{\xi} b||_{L^{\infty}}^2, \tag{6.4}$$

and

$$||B_{q_1,p_1}^*B_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} \langle p_1 - p_2 \rangle^{-2d-2} \max_{|\alpha + \beta| \le N_{\rm CV}} ||\partial_x^{\alpha} \partial_{\xi} b||_{L^{\infty}}^2.$$
(6.5)

The proof goes in two steps. The first remark is that the family $(b_{q,p})_{(q,p)\in\mathbb{Z}^{2d}}$ is bounded in $\mathcal{S}(\mathbb{R}^{2d})$. To state this property more precisely, we use the notation (5.3).

Lemma 6.2. For all $N \in \mathbb{N}$, there exists C > 0 such that, for all $(q, p) \in \mathbb{Z}^{2d}$ and all $b \in S_{00}^0$,

$$||b_{q,p}||_{N,\mathcal{S}} \le C \max_{|\alpha+\beta| \le N} ||\partial_x^{\alpha} \partial_{\xi}^{\beta} b||_{L^{\infty}}.$$
(6.6)

Proof. It is an easy consequence of the Leibniz rule, using that $\langle x \rangle^N \langle \xi \rangle^N$ is bounded on the support of χ .

Lemma 6.3. For all D > 0, there exist C > 0 and N > 0 such that,

$$||Op(a_1)U(q,p)Op(a_2)U(q,p)^*|| \le C\langle q \rangle^{-D} \langle p \rangle^{-D} ||a_1||_{N,\mathcal{S}} ||a_2||_{N,\mathcal{S}},$$

for all $a_1, a_2 \in \mathcal{S}(\mathbb{R}^d)$ and all $q, p \in \mathbb{Z}^d$.

Proof. By Lemma 4.1, we have $U(q,p)Op(a_2)U(q,p)^* = Op(\tau_{q,p}(a_2))$ so the kernel $K_{q,p}$ of the operator $Op(a_1)U(q,p)Op(a_2)U(q,p)^*$ is given by

$$K_{q,p}(x,y) = (2\pi)^{-2d} \int \widehat{a}_1(x,z-x)\widehat{\tau_{q,p}a}_2(z,y-z)dz$$

= $(2\pi)^{-2d} \int \widehat{a}_1(x,z-x)e^{ip\cdot(z-y)}\widehat{a}_2(z-q,y-z)dz$

and it is not hard to check that it is a Schwartz function. By Proposition 2.1, it is then sufficient to show that

$$|K_{q,p}(x,y)| \le C_D \langle q \rangle^{-D} \langle p \rangle^{-D} \langle x-y \rangle^{-d-1} ||a_1||_{N,\mathcal{S}} ||a_2||_{N,\mathcal{S}}.$$

To get the latter, we compute $(x-y)^{\alpha}q^{\beta}p^{\gamma}K_{q,p}$ by expanding

$$q^{\beta} = (q - z + z - x + x)^{\beta}, \qquad (x - y)^{\alpha} = (x - z + z - y)^{\epsilon}$$

using the binomial law, and integrations by part to handle the term p^{γ} . We obtain a linear combination of integrals of the form

$$\int e^{ip\cdot z} \partial_z^{\gamma} \left(x^{\beta'} (z-x)^{\beta''+\alpha'} \widehat{a}_1(x,z-x) (y-z)^{\alpha''} (z-q)^{\beta'''} \widehat{a}_2(z-q,y-z) \right) dz,$$

with $\beta' + \beta'' + \beta''' = \beta$ and $\alpha' + \alpha''$. These integrals are bounded by seminorms of a_1 and a_2 (uniformly with respect to (x - y), q, p) and the result follows then easily.

Proof of Proposition 6.1. We have

$$\begin{split} ||B_{q_1,p_1}B^*_{q_2,p_2}||_{L^2 \to L^2} &= ||U(q_1,p_1)Op(b_{q_1,p_1})U(q_1,p_1)^*U(q_2,p_2)Op(b_{q_2,p_2})^*U(q_2,p_2)||_{L^2 \to L^2} \\ &= ||Op(b_{q_1,p_1})U(q_1,p_1)^*U(q_2,p_2)Op(b_{q_2,p_2})^*U(q_2,p_2)^*U(q_1,p_1)||_{L^2 \to L^2} \\ &= ||Op(b_{q_1,p_1})U(q_2-q_1,p_2-p_1)Op(b_{q_2,p_2})^*U(q_2-q_1,p_2-p_1)^*||_{L^2 \to L^2} \end{split}$$

using the unitarity of $U(q_1, p_1)$ to get the second line and the identities (4.1) and (4.2) to get the third one. Then, by writing $Op(b_{q_2,p_2})^* = Op(b_{q_2,p_2}^*)$ according to Proposition 5.1, Lemma 6.3 gives the estimate

$$||B_{q_1,p_1}B^*_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} \langle p_1 - p_2 \rangle^{-2d-2} ||b_{q_1,p_1}||_{N_1,\mathcal{S}} ||b^*_{q_2,p_2}||_{N_1,\mathcal{S}} ||b_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} \langle p_1 - p_2 \rangle^{-2d-2} ||b_{q_1,p_1}||_{N_1,\mathcal{S}} ||b^*_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} \langle p_1 - p_2 \rangle^{-2d-2} ||b_{q_1,p_1}||_{N_1,\mathcal{S}} ||b^*_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} \langle p_1 - p_2 \rangle^{-2d-2} ||b_{q_1,p_1}||_{N_1,\mathcal{S}} ||b^*_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b_{q_1,p_1}||_{N_1,\mathcal{S}} ||b^*_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b_{q_1,p_1}||_{N_1,\mathcal{S}} ||b^*_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b_{q_1,p_1}||_{N_1,\mathcal{S}} ||b^*_{q_2,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,p_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} \le C \langle q_1 - q_2 \rangle^{-2d-2} ||b^*_{q_1,q_2}||_{L^2 \to L^2} ||b$$

for some N_1 depending only on d. Using (5.4) and (6.6), the seminorms in the right hand side can be replaced by $\max_{|\alpha+\beta|\leq N_2} ||\partial_x^{\alpha}\partial_{\xi}^{\beta}b||_{L^{\infty}}^2$ and we get (6.4). The proof of (6.5) is similar.

We recall that we assumed that the operators A_j in Proposition 3.1 were compact¹. This condition is fullfilled by the operators $B_{q,p}$.

Proposition 6.4. For all $(q, p) \in \mathbb{Z}^{2d}$, $B_{q,p}$ is compact on $L^2(\mathbb{R}^d)$.

¹we recall that is assumption is only for simplicity and can be removed

Proof. Recall that $B_{q,p}$ is given by (6.3). Since $b_{q,p}$ belongs to $C_0^{\infty}(\mathbb{R}^d)$, the kernel of $Op(b_{q,p})$ belongs to the Schwartz class (see (5.1)), hence to $L^2(\mathbb{R}^{2d})$, and thus is Hilbert-Schmidt.

Set now $b_N = \sum_{|q|+|p|} b\tau_{q,p}\chi$ so that

$$Op(b_N) = \sum_{|q|+|p| \le N} B_{q,p}.$$

Lemma 6.5. For all $\psi, \varphi \in \mathcal{S}(\mathbb{R}^d)$,

$$(\psi, Op(b_N)\varphi)_{L^2} \to (\psi, Op(b)\varphi)_{L^2}, \qquad N \to \infty.$$

Proof. It suffices to observe that

$$(\psi, Op(b_N)\varphi)_{L^2} = (2\pi)^{-d} \iint e^{ix \cdot \xi} \overline{\psi(x)} b_N(x,\xi) \widehat{\varphi}(\xi) d\xi dx$$

$$\to (2\pi)^{-d} \iint e^{ix \cdot \xi} \overline{\psi(x)} b(x,\xi) \widehat{\varphi}(\xi) d\xi dx,$$

where the first line follows from Fubini's Theorem and the second one by dominated convergence since $b_N \to b$ pointwise with $||b_N||_{\infty}$ bounded.

Proof of Theorem 1.3. By Propositions 3.1, 6.1 and 6.4, there exists C > 0 and $N_{\rm CV}$ such that, for all N and all b

$$||Op(b_N)||_{L^2 \to L^2} \le C \max_{|\alpha+\beta| \le N_{\rm CV}} ||\partial_x^{\alpha} \partial_{\xi}^{\beta} b||_{L^{\infty}}.$$

Thus, for all $\psi, \varphi \in \mathcal{S}(\mathbb{R}^d)$, the Cauchy-Schwarz inequality yields

$$|(\psi, Op(b_N)\varphi)_{L^2}| \le C \max_{|\alpha+\beta|\le N_{\rm CV}} ||\partial_x^{\alpha}\partial_\xi^{\beta}b||_{L^{\infty}} ||\varphi||_{L^2(\mathbb{R}^d)} ||\psi||_{L^2(\mathbb{R}^d)}.$$
(6.7)

By Lemma 6.5, we can let N go to ∞ and thus replace b_N by b in the left hand side of (6.7). Taking then the supremum over those ψ such that $||\psi||_{L^2} = 1$, we get the result.