Dynamical Localization for Delone-Anderson operators

Constanza ROJAS-MOLINA Laboratoire AGM, Université de Cergy-Pontoise

Joint work with F. Germinet (U. de Cergy-Pontoise) and P. Müller (LMU Munich), and joint work with I. Veselic' (TU Chemnitz).

> 4th Meeting of the GDR Dynamique Quantique Université Paul Sabatier, Toulouse - February 2012

Outline

- Introduction
 - Anderson model and Dynamical Localization
 - Non-ergodic models : Quasicrystals and Delone sets
 - Multiscale Analysis (MSA) : Wegner estimates and initial step
- Quantitative unique continuation principles (QUCP)
 - QUCP for free background operators
 - QUCP for arbitrary background operators
- Integrated Density of States
 - Existence
 - Lifshitz Tails
- Localization

Anderson localization

The dynamics of a particle moving in a material, represented by $\psi \in \mathcal{H}$, where \mathcal{H} is a Hilbert space, $\int |\psi|^2 = 1$, is governed by :

 $\partial_t \psi(t,x) = -iH\psi(t,x)$, Schrödinger equation,

its temporal evolution given by

 $\Psi(t,x)=e^{-itH}\Psi(0,x).$

If the medium is a perfect crystal, the spectrum of *H* is a reunion of bands of a.c. spectrum (*extended states*).

1958 P.W. Anderson "*Absence of diffusion in certain random lattices*" (Phys. Rev.) (Nobel 1977) *Anderson Localization :* absence of diffusion of waves in a solid with impurities (ex. alloys, amorphous solids)

Dynamical Localization

The Anderson Model:

$$H_{\omega} = H_0 + \lambda V_{\omega}$$
 on $l^2(\mathbb{Z}^d)$ or $L^2(\mathbb{R}^d)$,

where $H_0 = -\Delta$ and $V_{\omega}(x) = \sum_{j \in \mathbb{Z}^d} \omega_j u(x-j)$, ω_j i.i.d. random variables.

Anderson Localization : p.p. spectrum with exponentially decaying eigenfunctions.

Dynamical Localization : moments of wave packets stay spatially localized in time.

We say $E \in \Sigma_{DL} \subset \mathbb{R}$ (region of *Dynamical Localization*, **DL**) if H_{ω} exhibits strong **DL** in a neighborhood *I* of *E*, that is, if for all $\mathcal{X} \in C_{c,+}^{\infty}(I)$ we have

$$\sup_{u\in\mathbb{Z}^2} \mathbb{E}\left(\sup_{t\in\mathbb{R}} \|\langle X-u\rangle^{p/2} e^{-itH_{\omega}} \mathcal{X}(H_{\omega})\chi_u\|_2^2\right) < \infty \quad \text{ for every } p \ge 0$$

Quasicrystals

1984 ('82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, "*Metallic phase with long-range orientational order and no translation symmetry*", Phys. Rev. Letters.

A *Delone* set *D* of parameters (r, R) is a pure point set in \mathbb{R}^d , uniformly discrete (r) and relatively dense (R).

5/21

Delone sets

Delone operators ~ Delone dynamical systems : $\Omega = \overline{\{D+t : t \in \mathbb{R}^d\}}, \omega \in \Omega$ a Delone set,

$$H(\mathbf{\omega}) = -\Delta + \sum_{\mathbf{\gamma} \in \mathbf{\omega}} f(\mathbf{\cdot} - \mathbf{\gamma})$$

- The spectrum of $H(\omega)$ is generically purely singular continuous.
- Discontinuity in the Integrated Density of States due to compactly supported eigenfunctions

'90, '00's : A. Hof, R. Moody, J.C. Lagarias, B. Solomyak, D. Lenz- P.Stollmann, P. Muller-C. Richard.

Delone-Anderson operators

Consider the operator $H_{\omega} = H_0 + \lambda V_{\omega}$, on $L^2(\mathbb{R}^d)$, where $\lambda > 0$,

i)
$$H_0 = -\Delta$$

ii) H_0 is the Landau Hamiltonian H_B , of constant magnetic field B > 0,

$$H_B := (-i\nabla - \mathbf{A})^2, \quad \mathbf{A} = \frac{B}{2}(x_2, -x_1)$$

•
$$V_{\omega}(x) = \sum_{\gamma \in D} \omega_{\gamma} u(x - \gamma),$$

- *D* is a (*r*,*R*)-*Delone* set
- $\{\omega_{\gamma}\}$ iid r.v. with continuous prob. density μ , supp $\mu = [-m, M], 0 \le m, M$.
- In case (ii), $u \in C_c^2(\mathbb{R}^d)$

Let σ_ω be its spectrum , $\omega\in\Omega.$

($\nexists E$) (No ergodicity) A priori, *there does not exist* a family of unitary operators $\{U_{\gamma}\}$ associated to an ergodic group of translations τ_{γ} acting on Ω s.t.

$$H_{ au_{oldsymbol{\gamma}}(oldsymbol{\omega})} = U_{oldsymbol{\gamma}} H_{oldsymbol{\omega}} U_{oldsymbol{\gamma}}^*$$

Finite-volume properties

Finite volume operators : $H_{\omega,x,L} = H_{0,x,L} + \lambda V_{\omega,x,L}$ on $L^2(\Lambda_{x,L})$, of spectrum $\sigma_{\omega,x,L}$. For the ergodic setting take x = 0.

(UWE) H_{ω} satisfies a *uniform Wegner estimate* in an open interval *I*, with Hölder exponent *s*, if for every $E \in I$, there exists a constant Q_W , bounded on compact subsets of *I* and $0 < s \le 1$ s.t.

$$\sup_{x\in\mathbb{R}^d}\mathbb{P}\{\text{dist }(\sigma_{\omega,x,L},E)\leq\eta\}\leq Q_W\eta^sL^d$$

Other *structural* properties :

(SLI) Simon-Lieb type inequality, (NE) Number of eigenvalues, (GEE) Generalized Eigenfunction Expansion, (EDI) Eigenfunction decay inequality.

The Multiscale Analysis (MSA)

Goal : Prove localization by studying the decay of the finite-volume resolvent from the center of the box to its boundary as measured by

 $\|\Gamma_{x,L}R_{\omega,x,L}(E)\chi_{x,L/3}\|_{x,L}$

(ILSE) *Initial Length Scale Estimate* : For $\theta > d/s$, there exists $\mathcal{L}_{\theta}(E)$ s.t. for $\mathcal{L} > \mathcal{L}_{\theta}(E)$ we have

$$\inf_{x\in\mathbb{Z}^d}\mathbb{P}\left\{\|\Gamma_{x,L}R_{\omega,x,L}(E)\chi_{x,L/3}\|_{x,L}\leq\frac{1}{L^{\theta}}\right\}>1-\frac{1}{841^d}$$

 $\Sigma_{MSA} = \{E \in \mathbb{R} : H_{\omega} \text{ satisfies (UWE) and (ILSE) in } E\}$

Theorem (Germinet-Klein'98, R.-M. '11)

For H_{ω} a Delone-Anderson operator, $\Sigma_{MSA} \subset \Sigma_{DL}$.

Quantitative unique continuation principles

- H_0 satisfies a *unique continuation property* (UCP) if for any $E \in \mathbb{R}$ and any $\varphi \in \mathcal{D}(H_0)$, if φ satisfies $(H_0 E)\varphi = 0$ and it vanishes on some open set, then $\varphi \equiv 0$.
- *Quantitative UCP* (QUCP) : Let $\Lambda_L = \Lambda_{x,L}$, $P_{0,L}(I) = \chi_I(H_{0,L})$ and **D a lattice**. There exists a constant $C_{UCP}(u, I, d) > 0$ such that

$$P_{0,L}(I)\sum_{\gamma\in D\cap\Lambda_L}u(x-\gamma)P_{0,L}(I)\geq C_{UCP}(u,I,d)P_{0,L}(I)$$

that is, if $\phi \in \operatorname{Ran} P_{0,L}(I)$ and **D** is a lattice, then

$$\sum_{\mathbf{\gamma} \in D \cap \Lambda_L} \left\| \mathbf{\phi} \right\|_{B(\mathbf{\gamma}, \delta)}^2 \geq C_{UCP}(I, d) \left\| \mathbf{\phi} \right\|_{\Lambda_L}^2$$

Proof : Floquet decomposition of *H*₀. Applications : *Wegner estimates* (Combes-Hislop-Klopp'03, Combes-Hislop-Klopp'07). *Anderson and Dynamical localization* (Bourgain-Kenig'05, Germinet-Klein'11). *Perturbation of the ground state energy* (Boutet de Monvel-Lenz-Stollmann'09).

QUCP for kinetic energy operators

i. Spatial averaging for $H_0 = -\Delta$ As in Bourgain-Kenig '05, Germinet-Klein-Hislop '07. Compare the potential V_L to the averaged \bar{V}_L , given by

$$ar{V}_L(\cdot) := rac{1}{R^d} \int_{\Lambda_R(0)} V_L(\cdot - a) da \ge rac{C_u}{R^d} \chi_{\Lambda_L}(\cdot)$$

 \overline{V} is a good approximation of V in the bottom of the spectrum of $-\Delta$.

ii. Enlargement of obstacles for $H_0 = (-i\nabla - \mathbf{A})^2$. Adapt Combes-Hislop-Klopp-Raikov '04 : for each $n \in \mathbb{N}$, $0 < \varepsilon < K$, $\delta > 1$ and $\eta > 0$ there exists a constant C_0 such that

$$P_{0,n}\chi_{\Lambda_{\varepsilon}}P_{0,n}\geq C_0(P_{0,n}\chi_{\Lambda_K}P_{0,n}-\eta P_{0,n}\chi_{\Lambda_{\delta K}}P_{0,n}).$$

obtain finite volume version + exponentially small error as in Germinet-Klein-Schenker '07.

Theorem (Germinet–Müller–R.-M.'12, R.-M. '11)

i. For $d \ge 1$, let $H_0 = -\Delta$ and supp $\mu = [0, 1]$. There exists $E^*(R) > 0$ (uniform in λ) s.t. for any subinterval $[E - \eta, E + \eta] \subset [0, E^*(R)]$ there exists a constant $Q_W = Q_W(\lambda, R, r, u, d)$ and a finite scale $\mathcal{L}_* = \mathcal{L}_*(R)$ s.t. for $L > \mathcal{L}_*$ we have

$$\sup_{x} \mathbb{P}\{\operatorname{dist}(\sigma_{\omega,x,L}, E) \leq \eta\} \leq Q_{W} \|\mu\|_{\infty} \eta L^{d}.$$

ii. For d = 2, let H_0 be the Landau Hamiltonian and supp $\mu = [-M, M]$, M > 0. For any energy $E \in \mathbb{R}$ and $\eta < 1/2$ there exist a constant $Q_W = Q_W(B, \lambda, R, r, I_0, u)$ and a finite scale \mathcal{L}_* s.t. for and $L > \mathcal{L}_*$, the same result holds.

Proof : Follow Combes-Hislop-Klopp '07. Take \tilde{I} so that $I \subset \tilde{I} \subset \mathbb{R}$, and decompose :

$$\operatorname{tr} P_{\omega,L}(I) = \operatorname{tr} P_{\omega,L}(I) P_{0,L}(\tilde{I}^c) + \operatorname{tr} P_{\omega,L}(I) P_{0,L}(\tilde{I})$$

Use Combes-Thomas esimates in the first term of the r.h.s., as for the second, use QUCP.

QUCP for $H_0 = -\Delta + V_0$

Let $H_{0,L} = -\Delta_L + V_{0,L}$ with V_0 bounded, and $E_0 = \inf \sigma(H_0)$

Theorem (R.-M- Veselic' '12)

If ϕ is an eigenfunction of the operator $H_{0,L}$ in an interval I, and D is a Delone set, we have

$$\sum_{\in D \cap \Lambda_L} \|\varphi\|_{B(\gamma,\delta)}^2 \ge C_{UCP}(I,d) \, \|\varphi\|_{\Lambda_L}^2$$

i) Uniform Wegner estimate for all energies : for each $E_* \in \mathbb{R}$ there exists a constant C_W such that, for all $E \leq E_*$ and $\eta \leq 1/2$

$$\sup_{x} \mathbb{P}\{\operatorname{dist}(\sigma_{\omega,x,L},E) \leq \eta\} \leq C_{W} \|\mu\|_{\infty} \eta |\log \eta|^{d} L^{d}$$

ii) Perturbation of the bottom of the spectrum : denote by $\lambda^L(t) = \inf \sigma(H_{t,L})$ the bottom of the spectrum of $H_{t,L} := -\Delta_L + V_{0,L} + tV_L$ on $\Lambda_L(x)$ with Dirichlet boundary conditions. Then

$$\forall t \in (0,1]: \quad \lambda^{L}(t) \ge \lambda^{L}(0) + C_{UCP}(u,I,d) \cdot t$$

Proof : Local estimate (Germinet-Klein'11) : Let φ satisfy an eigenfunction eq. on $G \subset \mathbb{R}^d$, $R := \text{dist}(x, \Theta)$, with $B(x, \delta)$, Θ and B(x, 12R) in G, then

$$\|\varphi\|_{B(x,\delta)}^2 \ge C\left(R, \frac{\|\varphi\|_G}{\|\varphi\|_{\Theta}}\right) \|\varphi\|_{\Theta}^2 \tag{1}$$

Decompose $\Lambda_L = \bigcup_k \Lambda_1(k)$. We say $\Lambda_1(k)$ is a *dominant* box (site) if

$$\|\boldsymbol{\varphi}\|_{\Lambda_1(x)}^2 \geq C_T \|\boldsymbol{\varphi}\|_{\Lambda_T(k)}^2.$$

Then $\|\varphi\|_{\Lambda_L}^2 < 2 \sum_{\text{dominant sites}} \|\varphi\|_{\Lambda_1(k)}^2$, so it is enought to obtain QUCP for dominant unit boxes. We split a dominant box into $(10)^d$ boxes of side (1/10), there exists at least one *maximal* box $\Lambda_{1/10}$, such that

$$\|\phi\|_{\Lambda_{1/10}}^2 \ge \frac{1}{(10)^d} \|\phi\|_{\Lambda_1(k)}^2$$

Now, consider a belt *A* at a distance 1/10 from $\Lambda_{1/10}$ such that for any $B(x, \delta) \subset A$, we can apply (1) with $G = \Lambda_T(k)$, $\Theta = \Lambda_{1/10}$, $R \in [1/10, \sqrt{d}]$:

$$\|\varphi\|_{B(x,\delta)}^{2} \ge C\left(R, \|\varphi\|_{\Lambda_{T}(k)} / \|\varphi\|_{\Lambda_{1/10}}\right) \|\varphi\|_{\Lambda_{1/10}}^{2}$$

By the definition of maximal box, we get

$$\|\boldsymbol{\varphi}\|_{B(\boldsymbol{x},\boldsymbol{\delta})}^{2} \geq C(\boldsymbol{d},C_{T}) \|\boldsymbol{\varphi}\|_{\Lambda_{1}(\boldsymbol{k})}^{2}$$

$$\tag{2}$$

In particular, by the definition of a dominant box, $\|\varphi\|_{B(x,\delta)}^2 \ge C' \|\varphi\|_{\Lambda_T(k)}^2$. It remains the case $B(x,\delta) \in A^c \Lambda_1(k) \setminus A$. For any cube of side 1/10 in A that is at a distance at least 1/10 from A^c , (2) holds. Pick one, call it $\Lambda'_{1/10}$. Then for $B(x,\delta) \subset A^c$, we can apply (1) with $G = \Lambda_T(k)$, $\Theta = \Lambda'_{1/10}$ and $R \in [1/10, \sqrt{d}]$. Then

$$\|\varphi\|_{B(x,\delta)}^{2} \ge C\left(R, \|\varphi\|_{\Lambda_{T}(k)} / \|\varphi\|_{\Lambda_{1/10}}\right) \|\varphi\|_{\Lambda_{1/10}}^{2}$$

Since in $\Lambda'_{1/10}$ (2) holds, we have

$$\|\boldsymbol{\varphi}\|_{B(x,\delta)}^2 \ge C'(d, C_T) \|\boldsymbol{\varphi}\|_{\Lambda_1(k)}^2.$$
(3)

ILSE for Delone-Bernoulli model

Let $H_{\omega} = -\Delta + V_0 + V_{\omega}$, with V_0 bounded, $V_{\omega} = \sum_{\gamma \in D} \omega_{\gamma} u(x - \gamma)$, where

 $\omega_{\gamma} \in \{0,1\}$ **Bernoulli r.v.**, $\inf \sigma(H_{\omega}) = \inf \sigma(H_0) = E_0$ a.s. Decompose $\Lambda_L = \bigcup_j \Lambda_K(j)$, consider the probability of finding at least one $\omega_{\gamma_j} = 1$ in each cube $\Lambda_K(j)$:

if
$$K = (\log L)^{1/d}$$
 and $V_L = \sum_{\gamma_j \in \Lambda_K(j)} u(x - \gamma_j) \Longrightarrow \mathbb{P}(V_{\omega,L} \ge V_L) \ge 1 - L^{-\mathbf{p}}$

 $\lambda_L(t) = \inf \sigma(H_{t,L})$, then $\inf \sigma(H_{\omega,L}) \ge \lambda_L(1)$ with probability $1 - L^{-p}$. • By QUCP (*ii*) :

$$\mathbb{P}\left(\inf\sigma(H_{\omega,L}) \geq E_0 + C_{UCP}(L)\right) \geq 1 - L^{-p}$$

Applying Combes-Thomas estimate in an interval $[E_0, E_0 + \frac{C_{UCP}(L)}{2}]$ gives a decay of the local resolvent of order

$$-C_{UCP}(L) \cdot L = -(\log L)^{-(\log L)^{\frac{4}{3d}}} \cdot L$$

ILSE if $d \ge 2$. Germinet-Klein'11 gives Localization.

Integrated Density of States (IDS) for H_{ω}

(UE) Assumption on $D : X_D$ is *uniquely ergodic*. For example, D is linearly repetitive.

Definition (Eigenvalue counting function)

Let $\{\Lambda_L\}_{L\in\mathbb{N}}$ be a sequence of concentric cubes in \mathbb{R}^d . We define for any energy $E \in \mathbb{R}$,

$$\mathbf{v}_L(E) = \frac{1}{|\Lambda_L|} \sharp \{ \text{e.v. of } H_{\omega,L} \le E \}$$

Theorem (Existence of IDS, Germinet–Müller–R.-M.'12)

For every $E \in \mathbb{R}$, $v(E) := \lim_{L \to \infty} v_L(E)$ exists for a.e. $\omega \in \Omega$.

Proof : Application of Ergodic Theorem in *Ergodic properties of randomly coloured point sets* by Müller-Richard '11.

Proof: Coloured point sets

Consider the base space $\Gamma = \mathbb{R}^d$ and the group $T = \mathbb{R}^d$ acting on Γ as a translation. Given a Delone set $D \subset \Gamma$, take its closed *T*-orbit

$$\mathcal{X}_D = \overline{\{x + D : x \in T\}} \ni P$$

Consider the *colour space* $\mathbb{A} = [-m, M]$ and define the probability space $(\Omega_P, \mathcal{A}_P, \mathbb{P}_P)$ where

$$\Omega_P = \bigotimes_{\gamma \in P} \mathbb{A}$$

Then $P^{\omega} = \{(\gamma, \omega_{\gamma}) : \gamma \in P\}$ is the coloured point set P^{ω} with colour realization $\omega \in \Omega_P$.

The closed T-orbit of D^{ω} in the space $\Gamma \times \mathbb{A}$ is given by

$$\hat{X}_D = \{x + D^\omega : x \in T\}$$

For any element $P^{\omega} \in \hat{X}_D$ the action is given by the translations

$$x+P^{\omega}=(x+P)^{\tau_x\omega}$$

where $\tau_x : \Omega_P \to \Omega_{x+P}$ is defined as $\tau_x \omega(x+p) = \omega(p)$ for all $p \in P$.

Lifshitz tails for $H_0 = -\Delta$

Dirichlet-Neumann bracketing : For every fixed L we have

$$\int_{\mathcal{X}_{P}} \mathbb{E}_{\Omega_{P}}(\mathbf{v}_{\Lambda_{L},P^{\mathrm{co}}}^{D}(E)) d\mu(P) \leq \mathbf{v}(E) \leq \int_{\mathcal{X}_{P}} \mathbb{E}_{\Omega_{P}}(\mathbf{v}_{\Lambda_{L},P^{\mathrm{co}}}^{N}(E)) d\mu(P)$$

Lemma (Germinet–Müller–R.-M.'12)

There exist constants $C_{a,b,c,...}$ such that for $L = [\beta E^{-1/2}]$, $\beta > 0$, we have for *L* big enough :

$$\begin{split} \mathbb{E}_{\Omega_{P}}(\mathsf{v}^{D}_{\Lambda_{L},P^{\varpi}}(E)) &\geq C_{\beta,r,d}E^{d/2}e^{-C_{\beta,\alpha,r,d}E^{-d/2}\ln E}\\ \mathbb{E}_{\Omega_{P}}(\mathsf{v}^{N}_{\Lambda_{L},P^{\varpi}}(E)) &\leq Ce^{-C_{\beta,R,r,d}E^{-d/2}} \end{split}$$

where the bounds are uniform for all $P \in X_D$.

We obtain Lifshitz tails for energies $E \approx 0$:

$$\lim_{E \searrow 0} \frac{\ln|\ln(\nu(E))|}{\ln(E)} = -\frac{d}{2}$$

Localization for Delone-Anderson operators

Recall
$$H_{\omega} = H_0 + \lambda V_{\omega}$$
 on $L^2(\mathbb{R}^d)$ with $\lambda > 0$, $V_{\omega}(x) = \sum_{\gamma \in D} \omega_{\gamma} u(x - \gamma)$:

- D is a (r, R)-Delone set,
- $\{\omega_{\gamma}\}$ iid random variables with probability density μ .

Theorem (Germinet–Müller–R.-M.'12, R.-M.'11)

- i. For $d \ge 1$ and $H_0 = -\Delta$, supp $\mu = [0, 1]$: Dynamical localization at the bottom of the spectrum $[0, E^*(R, \lambda)]$, where $E^*(R, \lambda) = C_{d,\lambda} R^{-(2d+2)} (\ln R)^{-2/d} > 0$.
- ii. For $d \ge 2$ and $H_0 = -\Delta + V_0$, and supp $\mu = \{0, 1\}$. Dynamical localization at the bottom of the spectrum $[E_0, E_0 + E^*(R, \lambda)]$.
- ii. For d = 2 and H_B the Landau Hamiltonian, B > 0, supp $\mu = [-M, M]$, M > 0:

Dynamical localization in the band edges of the n-th Landau band.

References

- F. Germinet, P. Müller, C. Rojas-Molina, Dynamical localization for Delone-Anderson operators. In preparation.
- C. Rojas-Molina, I. Veselic, Scale-free unique continuation estimates and applications to random Schrödinger operators. To be submitted.
- C. Rojas-Molina, Characterization of the Anderson metal-insulator transition for non ergodic operators and application, *to appear in Annales Henri Poincaré*, arXiv :1110.4652v2.
- P. Müller, C. Richard, Ergodic properties of randomly coloured point sets, *to appear in Can. J. Math.*, arXiv :1005.4884v2.
- F. Germinet, A. Klein, A comprehensive proof of localization for continuous anderson models with singular random potentials (2011). To appear in J. Europ. Math. Soc.
- F. Germinet, A. Klein, Bootstrap multiscale analysis and localization in random media, *Comm. Math. Phys.* 222, 415-448 (1998).