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Anderson localization

The dynamics of a particle moving in a material, represented by ψ ∈H ,
where H is a Hilbert space,

R
|ψ|2 = 1, is governed by :

∂tψ(t,x) =−iHψ(t,x), Schrödinger equation,

its temporal evolution given by

ψ(t,x) = e−itH
ψ(0,x).

If the medium is a perfect crystal, the spectrum of H is a reunion of bands of
a.c. spectrum (extended states).
1958 P.W. Anderson “Absence of diffusion in certain random lattices”
(Phys. Rev.) (Nobel 1977)
Anderson Localization : absence of diffusion of waves in a solid with
impurities (ex. alloys, amorphous solids)
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Dynamical Localization

The Anderson Model :

Hω = H0 +λVω on l2(Zd)or L2(Rd),

where H0 =−∆ and Vω(x) = ∑
j∈Zd

ωju(x− j), ωj i.i.d. random variables.

Anderson Localization : p.p. spectrum with exponentially decaying
eigenfunctions.

Dynamical Localization : moments of wave packets stay spatially
localized in time.

We say E ∈ ΣDL ⊂ R (region of Dynamical Localization, DL) if Hω

exhibits strong DL in a neighborhood I of E, that is, if for all X ∈ C ∞
c,+(I) we

have

sup
u∈Z2

E
(

sup
t∈R
‖〈X−u〉p/2e−itHω X (Hω)χu‖2

2

)
< ∞ for every p≥ 0
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Quasicrystals

1984 (’82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, “Metallic phase
with long-range orientational order and no translation symmetry”, Phys.
Rev. Letters.

A Delone set D of parameters (r,R) is a pure point set in Rd, uniformly
discrete (r) and relatively dense (R).
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Delone sets

Delone set Penrose tiling lattice

Delone operators ∼ Delone dynamical systems : Ω = {D+ t : t ∈ Rd},
ω ∈Ω a Delone set,

H(ω) =−∆+ ∑
γ∈ω

f (·− γ)

The spectrum of H(ω) is generically purely singular continuous.
Discontinuity in the Integrated Density of States due to compactly
supported eigenfunctions

’90, ’00’s : A. Hof, R. Moody, J.C. Lagarias, B. Solomyak, D. Lenz- P.Stollmann, P.
Muller-C. Richard.
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Delone-Anderson operators

Consider the operator Hω = H0 +λVω, on L2(Rd), where λ > 0,

i) H0 =−∆

ii) H0 is the Landau Hamiltonian HB, of constant magnetic field B > 0,

HB := (−i∇−A)2, A =
B
2

(x2,−x1)

Vω(x) = ∑
γ∈D

ωγu(x− γ),

D is a (r,R)-Delone set
{ωγ} iid r.v. with continuous prob. density µ, suppµ = [−m,M], 0≤ m,M.
In case (ii), u ∈ C 2

c (Rd)

Let σω be its spectrum , ω ∈Ω.

(@E) (No ergodicity) A priori, there does not exist a family of unitary
operators {Uγ} associated to an ergodic group of translations τγ acting
on Ω s.t.

Hτγ(ω) = UγHωU∗γ
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Finite-volume properties

Finite volume operators : Hω,x,L = H0,x,L +λVω,x,L on L2(Λx,L), of spectrum
σω,x,L. For the ergodic setting take x = 0.

(UWE) Hω satisfies a uniform Wegner estimate in an open interval I, with
Hölder exponent s, if for every E ∈ I, there exists a constant QW ,
bounded on compact subsets of I and 0 < s≤ 1 s.t.

sup
x∈Rd

P{dist (σω,x,L,E)≤ η} ≤ QWη
sLd

Other structural properties :
(SLI) Simon-Lieb type inequality, (NE) Number of eigenvalues, (GEE)
Generalized Eigenfunction Expansion, (EDI) Eigenfunction decay
inequality.
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The Multiscale Analysis (MSA)

Goal : Prove localization by studying the decay of the finite-volume
resolvent from the center of the box to its boundary as measured by

‖Γx,LRω,x,L(E)χx,L/3‖x,L

(ILSE) Initial Length Scale Estimate : For θ > d/s, there exists Lθ(E) s.t. for
L > Lθ(E) we have

inf
x∈Zd

P
{
‖Γx,LRω,x,L(E)χx,L/3‖x,L ≤

1
Lθ

}
> 1− 1

841d

ΣMSA = {E ∈ R : Hω satisfies (UWE) and (ILSE) in E }

Theorem (Germinet-Klein’98, R.-M. ’11)

For Hω a Delone-Anderson operator, ΣMSA ⊂ ΣDL.
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Quantitative unique continuation principles

H0 satisfies a unique continuation property (UCP) if for any E ∈R and
any ϕ ∈D(H0), if ϕ satisfies (H0−E)ϕ = 0 and it vanishes on some
open set, then ϕ≡ 0.
Quantitative UCP (QUCP) : Let ΛL = Λx,L, P0,L(I) = χI(H0,L) and
D a lattice. There exists a constant CUCP(u, I,d) > 0 such that

P0,L(I) ∑
γ∈D∩ΛL

u(x− γ)P0,L(I)≥ CUCP(u, I,d)P0,L(I)

that is, if ϕ ∈ Ran P0,L(I) and D is a lattice, then

∑
γ∈D∩ΛL

‖ϕ‖2
B(γ,δ) ≥ CUCP(I,d)‖ϕ‖2

ΛL

Proof : Floquet decomposition of H0.
Applications : Wegner estimates (Combes-Hislop-Klopp’03,
Combes-Hislop-Klopp’07). Anderson and Dynamical localization
(Bourgain-Kenig’05, Germinet-Klein’11). Perturbation of the ground state
energy (Boutet de Monvel-Lenz-Stollmann’09).
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QUCP for kinetic energy operators

i. Spatial averaging for H0 =−∆

As in Bourgain-Kenig ’05, Germinet-Klein-Hislop ’07. Compare the
potential VL to the averaged V̄L, given by

V̄L(·) :=
1

Rd

Z
ΛR(0)

VL(·−a)da≥ Cu

Rd χΛL(·)

V̄ is a good approximation of V in the bottom of the spectrum of −∆.

ii. Enlargement of obstacles for H0 = (−i∇−A)2.
Adapt Combes-Hislop-Klopp-Raikov ’04 : for each n ∈ N, 0 < ε < K,
δ > 1 and η > 0 there exists a constant C0 such that

P0,nχΛε
P0,n ≥ C0(P0,nχΛK P0,n−ηP0,nχΛδK P0,n).

obtain finite volume version + exponentially small error as in
Germinet-Klein-Schenker ’07.
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Theorem (Germinet–Müller–R.-M.’12, R.-M. ’11)

i. For d ≥ 1, let H0 =−∆ and supp µ = [0,1]. There exists E∗(R) > 0
(uniform in λ) s.t. for any subinterval [E−η,E +η]⊂ [0,E∗(R)] there
exists a constant QW = QW(λ,R,r,u,d) and a finite scale L∗ = L∗(R)
s.t. for L > L∗ we have

sup
x

P{dist(σω,x,L,E)≤ η} ≤ QW‖µ‖∞ηLd.

ii. For d = 2, let H0 be the Landau Hamiltonian and supp µ = [−M,M],
M > 0. For any energy E ∈ R and η < 1/2 there exist a constant
QW = QW(B,λ,R,r, I0,u) and a finite scale L∗ s.t. for and L > L∗, the
same result holds.

Proof : Follow Combes-Hislop-Klopp ’07. Take Ĩ so that I ⊂ Ĩ ⊂ R, and
decompose :

tr Pω,L(I) = tr Pω,L(I)P0,L(Ĩc)+ tr Pω,L(I)P0,L(Ĩ)

Use Combes-Thomas esimates in the first term of the r.h.s., as for the
second, use QUCP.
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QUCP for H0 =−∆+V0

Let H0,L =−∆L +V0,L with V0 bounded, and E0 = infσ(H0)

Theorem (R.-M– Veselic’ ’12)

If ϕ is an eigenfunction of the operator H0,L in an interval I, and D is a
Delone set, we have

∑
γ∈D∩ΛL

‖ϕ‖2
B(γ,δ) ≥ CUCP(I,d)‖ϕ‖2

ΛL

i) Uniform Wegner estimate for all energies : for each E∗ ∈ R there exists
a constant CW such that, for all E ≤ E∗ and η≤ 1/2

sup
x

P{dist(σω,x,L,E)≤ η} ≤ CW ‖µ‖∞ η | log η|d Ld

ii) Perturbation of the bottom of the spectrum : denote by
λL(t) = infσ(Ht,L) the bottom of the spectrum of
Ht,L :=−∆L +V0,L + tVL on ΛL(x) with Dirichlet boundary conditions.
Then

∀ t ∈ (0,1] : λ
L(t)≥ λ

L(0)+CUCP(u, I,d) · t
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Proof : Local estimate (Germinet-Klein’11) : Let ϕ satisfy an eigenfunction
eq. on G⊂ Rd, R := dist(x,Θ), with B(x,δ), Θ and B(x,12R) in G, then

‖ϕ‖2
B(x,δ) ≥ C

(
R,
‖ϕ‖G
‖ϕ‖

Θ

)
‖ϕ‖2

Θ
(1)

Decompose ΛL =
[
k

Λ1(k). We say Λ1(k) is a dominant box (site) if

‖ϕ‖2
Λ1(x) ≥ CT ‖ϕ‖2

ΛT (k) .

Then ‖ϕ‖2
ΛL

< 2 ∑
dominant sites

‖ϕ‖2
Λ1(k), so it is enought to obtain QUCP for

dominant unit boxes. We split a dominant box into (10)d boxes of side
(1/10), there exists at least one maximal box Λ1/10, such that

‖ϕ‖2
Λ1/10

≥ 1
(10)d ‖ϕ‖

2
Λ1(k)
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Now, consider a belt A at a distance 1/10 from Λ1/10 such that for any
B(x,δ)⊂ A, we can apply (1) with G = ΛT(k), Θ = Λ1/10, R ∈ [1/10,

√
d] :

‖ϕ‖2
B(x,δ) ≥ C

(
R, ‖ϕ‖

ΛT (k) /‖ϕ‖Λ1/10

)
‖ϕ‖2

Λ1/10

By the definition of maximal box, we get

‖ϕ‖2
B(x,δ) ≥ C (d,CT)‖ϕ‖2

Λ1(k) (2)

In particular, by the definition of a dominant box, ‖ϕ‖2
B(x,δ) ≥ C′ ‖ϕ‖2

ΛT (k).
It remains the case B(x,δ) ∈ AcΛ1(k)\A. For any cube of side 1/10 in A that
is at a distance at least 1/10 from Ac, (2) holds. Pick one, call it Λ′1/10. Then
for B(x,δ)⊂ Ac, we can apply (1) with G = ΛT(k), Θ = Λ′1/10 and

R ∈ [1/10,
√

d]. Then

‖ϕ‖2
B(x,δ) ≥ C

(
R, ‖ϕ‖

ΛT (k) /‖ϕ‖Λ′1/10

)
‖ϕ‖2

Λ′1/10

Since in Λ′1/10 (2) holds, we have

‖ϕ‖2
B(x,δ) ≥ C′(d,CT)‖ϕ‖2

Λ1(k) . (3)

.
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ILSE for Delone-Bernoulli model

Let Hω =−∆+V0 +Vω, with V0 bounded, Vω = ∑
γ∈D

ωγu(x− γ), where

ωγ ∈ {0,1} Bernoulli r.v., infσ(Hω) = infσ(H0) = E0 a.s.
Decompose ΛL =

S
j ΛK(j), consider the probability of finding at least one

ωγj = 1 in each cube ΛK(j) :

if K = (logL)1/d and VL = ∑
γj∈ΛK(j)

u(x− γj) =⇒ P(Vω,L ≥ VL)≥ 1−L−p

λL(t) = infσ(Ht,L), then infσ(Hω,L)≥ λL(1) with probability 1−L−p.
By QUCP (ii) :

P(infσ(Hω,L)≥ E0 +CUCP(L))≥ 1−L−p

Applying Combes-Thomas estimate in an interval [E0,E0 + CUCP(L)
2 ] gives a

decay of the local resolvent of order

−CUCP(L) ·L =−(logL)−(logL)
4

3d ·L

ILSE if d ≥ 2. Germinet-Klein’11 gives Localization.
16 / 21



Introduction QUCP IDS Localization Existence Coloured Delone sets Lifshitz Tails

Integrated Density of States (IDS) for Hω

(UE) Assumption on D : XD is uniquely ergodic. For example, D is linearly
repetitive.

Definition (Eigenvalue counting function)

Let {ΛL}L∈N be a sequence of concentric cubes in Rd. We define for any
energy E ∈ R,

νL(E) =
1
|ΛL|

]{e.v. of Hω,L ≤ E}

Theorem (Existence of IDS, Germinet–Müller–R.-M.’12)

For every E ∈ R, ν(E) := lim
L→∞

νL(E) exists for a.e. ω ∈Ω.

Proof : Application of Ergodic Theorem in Ergodic properties of randomly
coloured point sets by Müller-Richard ’11.
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Proof : Coloured point sets

Consider the base space Γ = Rd and the group T = Rd acting on Γ as a
translation. Given a Delone set D⊂ Γ, take its closed T-orbit

XD = {x+D : x ∈ T} 3 P

Consider the colour space A = [−m,M] and define the probability space
(ΩP,AP,PP) where

ΩP =
O
γ∈P

A

Then Pω = {(γ,ωγ) : γ ∈ P} is the coloured point set Pω with colour
realization ω ∈ΩP.

The closed T-orbit of Dω in the space Γ×A is given by

X̂D = {x+Dω : x ∈ T}
For any element Pω ∈ X̂D the action is given by the translations

x+Pω = (x+P)τxω

where τx : ΩP→Ωx+P is defined as τxω(x+p) = ω(p) for all p ∈ P.
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Lifshitz tails for H0 =−∆

Dirichlet-Neumann bracketing : For every fixed L we haveZ
XP

EΩP(νD
ΛL,Pω(E))dµ(P)≤ ν(E)≤

Z
XP

EΩP(νN
ΛL,Pω(E))dµ(P)

Lemma (Germinet–Müller–R.-M.’12)

There exist constants Ca,b,c,... such that for L = [βE−1/2], β > 0, we have for
L big enough :

EΩP(νD
ΛL,Pω(E))≥ Cβ,r,dEd/2e−Cβ,α,r,dE−d/2 lnE

EΩP(νN
ΛL,Pω(E))≤ Ce−Cβ,R,r,dE−d/2

where the bounds are uniform for all P ∈ XD.

We obtain Lifshitz tails for energies E ≈ 0 :

lim
E↘0

ln | ln(ν(E))|
ln(E)

=−d
2
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Localization for Delone-Anderson operators

Recall Hω = H0 +λVω on L2(Rd) with λ > 0, Vω(x) = ∑
γ∈D

ωγu(x− γ) :

• D is a (r,R)-Delone set,
• {ωγ} iid random variables with probability density µ.

Theorem (Germinet–Müller–R.-M.’12, R.-M.’11)

i. For d ≥ 1 and H0 =−∆, supp µ = [0,1] :
Dynamical localization at the bottom of the spectrum [0,E∗(R,λ)],
where E∗(R,λ) = Cd,λR−(2d+2)(lnR)−2/d > 0.

ii. For d ≥ 2 and H0 =−∆+V0, and supp µ = {0,1}.
Dynamical localization at the bottom of the spectrum
[E0,E0 +E∗(R,λ)].

ii. For d = 2 and HB the Landau Hamiltonian, B > 0, supp µ = [−M,M],
M > 0 :
Dynamical localization in the band edges of the n-th Landau band.
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