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Anderson localization

The dynamics of a particle moving in a material, represented by ¢ € #,
where A is a Hilbert space, [ |y|*> = 1, is governed by :

oy(t,x) = —iHY(t,x), Schridinger equation,
its temporal evolution given by

y(t,x) = e "My(0,x).

If the medium is a perfect crystal, the spectrum of H is a reunion of bands of
a.c. spectrum (extended states).

1958 P.W. Anderson “Absence of diffusion in certain random lattices”
(Phys. Rev.) (Nobel 1977)

Anderson Localization : absence of diffusion of waves in a solid with
impurities (ex. alloys, amorphous solids)
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Dynamical Localization

The Anderson Model :
Hy=Hy+\Vy on P(Z%or L*(RY),

where Hy = —A and V(x) = Z ®ju(x —j), ®; i.i.d. random variables.
jezd

Anderson Localization : p.p. spectrum with exponentially decaying
eigenfunctions.

Dynamical Localization : moments of wave packets stay spatially
localized in time.

We say E € Xp; C R (region of Dynamical Localization, DL) if H
exhibits strong DL in a neighborhood 7 of E, that is, if for all X € G, () we
have

sup E (sup (X — u>”/2ei’H°’X(Hw)xu||%) <o foreveryp >0
uez? teR
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Quasicrystals

1984 (°82) D. Shechtman, 1. Blech, D. Gratias, J.W. Cahn, “Metallic phase
with long-range orientational order and no translation symmetry”, Phys.
Rev. Letters.

Diffraction patterns

crystal quasicrystal

A Delone set D of parameters (r,R) is a pure point set in R, uniformly
discrete (r) and relatively dense (R).
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Delone sets

Delone set Penrose tiling lattice

Delone operators ~ Delone dynamical systems : Q= {D+1:1 € R4},
o € Q a Delone set,

H(w) =~A+ ) f(-—7)

YE®

@ The spectrum of H(®) is generically purely singular continuous.
@ Discontinuity in the Integrated Density of States due to compactly
supported eigenfunctions

’90, ’00’s : A. Hof, R. Moody, J.C. Lagarias, B. Solomyak, D. Lenz- P.Stollmann, P.
Muller-C. Richard.
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Delone-Anderson operators

Consider the operator Hy, = Hy + AV, on Lz(Rd ), where A > 0,
i) Hy=—A

ii) Hy is the Landau Hamiltonian Hp, of constant magnetic field B > 0,

. B
Hp:=(—iV—A)?, A= E(xz, —x1)

o Vy(x)= Z Oyu(x—7),
=)

e Disa (r,R)-Delone set
o {wy} iid r.v. with continuous prob. density y, suppu = [—m,M], 0 < m, M.
o In case (ii), u € CZ(RY)

Let 6, be its spectrum , ® € Q.
(FE) (No ergodicity) A priori, there does not exist a family of unitary
operators {Uy} associated to an ergodic group of translations Ty acting

on Q s.t.
Hey (o) = UyHoUy
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Finite-volume properties

Finite volume operators : He 1, = Ho 1+ AV on L?(A, 1), of spectrum
O,x,.- For the ergodic setting take x = 0.

(UWE) H,, satisfies a uniform Wegner estimate in an open interval I, with
Holder exponent s, if for every E € I, there exists a constant Qy,
bounded on compact subsets of / and 0 < s < 1 s.t.

sup P{dist (Gpr.,E) <M} < Own*L?

x€ERY
Other structural properties :
(SLI) Simon-Lieb type inequality, (NE) Number of eigenvalues, (GEE)

Generalized Eigenfunction Expansion, (EDI) Eigenfunction decay
inequality.
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The Multiscale Analysis (MSA)

Goal : Prove localization by studying the decay of the finite-volume
resolvent from the center of the box to its boundary as measured by

T LRoxL (E)Xx,L/3 .2

(ILSE) Initial Length Scale Estimate : For 6 > d /s, there exists Lg(E) s.t. for
L > Ly(E) we have

1
8414

x€zd

. 1
inf P { ||FX,LRG)7X,L(E)XX,L/3||XA,L < Le} >1

Yusa = {E € R: Hy satisfies (UWE) and (ILSE) in E }

Theorem (Germinet-Klein’98, R.-M. ’11)

For Hy a Delone-Anderson operator, Xysa C Xpr.
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Quantitative unique continuation principles

@ H satisfies a unique continuation property (UCP) if for any E € R and
any @ € D(Hy), if ¢ satisfies (Hy — E)@ = 0 and it vanishes on some
open set, then ¢ = 0.

o Quantitative UCP (QUCP) : Let Ap = Ay 1, Por(I) = xs(Ho,) and
D a lattice. There exists a constant Cycp(u,1,d) > 0 such that

Por(I) Y, u(x—y)Por(I) > Cycp(u,1,d)PoL(I)
YEDNAL

that is, if ¢ € Ran Py (I) and D is a lattice, then

Y 19ll5s) = Cuce(l,d) |lolI3,
YEDNAL

Proof : Floquet decomposition of Hy.

Applications : Wegner estimates (Combes-Hislop-Klopp’03,
Combes-Hislop-Klopp’07). Anderson and Dynamical localization
(Bourgain-Kenig’05, Germinet-Klein’ 11). Perturbation of the ground state
energy (Boutet de Monvel-Lenz-Stollmann’09).
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QUCP for kinetic energy operators

i

ii.

Spatial averaging for Hy = —A
As in Bourgain-Kenig *05, Germinet-Klein-Hislop *07. Compare the
potential V; to the averaged V, given by

_ 1

Cy
3= o > Zhy (-
Vi(-) =l /AR(O) Vi(-—a)da > RdXAL( )

V is a good approximation of V in the bottom of the spectrum of —A.

Enlargement of obstacles for Hy = (—iV — A)?.
Adapt Combes-Hislop-Klopp-Raikov ’04 : foreachn € N, 0 < € < K,
d > 1 and n > O there exists a constant Cy such that

Po.nXaePon = Co(PonXagPon —MPoaXAs Pon)-

obtain finite volume version + exponentially small error as in
Germinet-Klein-Schenker 07.
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Theorem (Germinet—Miiller—R.-M.”12, R.-M. '11)

i. Ford > 1, let Hy= —A and supp u= 0, 1]. There exists E*(R) > 0
(uniform in \) s.t. for any subinterval [E —n,E+n] C [0,E*(R)] there
exists a constant Qw = Qw (A, R, r,u,d) and a finite scale L, = L,(R)
s.t. for L > L, we have

supP{dist(Co.x2. E) <M} < QwlluflnL”.
X

ii. Ford =2, let Hy be the Landau Hamiltonian and supp u= [—M, M|,
M > 0. For any energy E € R and M < 1/2 there exist a constant
Ow = Ow(B,\,R,r,Io,u) and a finite scale L, s.t. for and L > L,, the
same result holds.

Proof : Follow Combes-Hislop-Klopp *07. Take 7 so that I T C R, and
decompose :

tr Po.r(I) = tr P r.(I)Po.r(I) +tr Py (I)Por(T)

Use Combes-Thomas esimates in the first term of the r.h.s., as for the
second, use QUCP. O
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QUCP for Hy = —A+ V)

Let Hyr = —Ar + Vo1 with V bounded, and Ey, = infc(Hy)

Theorem (R.-M- Veselic’ *12)

If @ is an eigenfunction of the operator Hy 1, in an interval I, and D is a
Delone set, we have

Y. l0l345 = Cuce(L,d) |9,
YEDNAL

i) Uniform Wegner estimate for all energies : for each E, € R there exists
a constant Cy such that, for all E < E, andm < 1/2

supP{dist(Gu.x.,E) <N} < Cw |- [log n|L!
X

ii) Perturbation of the bottom of the spectrum : denote by
AL(t) = info(Hy 1) the bottom of the spectrum of
H = —Ar+ Vo1 +1Vp on Ar(x) with Dirichlet boundary conditions.
Then
Ve (0,1]: AE(r) > AL(0)+ Cucp(u,I,d) -t
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Proof : Local estimate (Germinet-Klein’11) : Let ¢ satisfy an eigenfunction
eq.on G C RY, R := dist(x,®), with B(x,d), ® and B(x, I2R) in G, then

ol 2
ol > € (R 121 ) o] m
Bx®) lolle ©
Decompose Ay, = UA1 (k). We say Aj (k) is a dominant box (site) if
k
2 2
19117, vy = Cr lI9llaz (x) -
Then ||(p||,2\L <2 Z H(p||/2\1(k), so it is enought to obtain QUCP for

dominant sites
dominant unit boxes. We split a dominant box into (10)? boxes of side
(1/10), there exists at least one maximal box Ay 1o, such that

2 1 2
||(PHAI/10 2 (10)4 ollA, )
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Now, consider a belt A at a distance 1/10 from A /1o such that for any
B(x,8) C A, we can apply (1) with G = Az (k), ® = Ay 10, R € [1/10,Vd] :

[@l3ce5) = € (R 10layey /1011, 1) 013, g

By the definition of maximal box, we get
2 2
[9ll55) = € (d,Cr) 9ll5, ) @

In particular, by the definition of a dominant box, ||(P||123(x 5 =C ”(P”f\r(k)'
It remains the case B(x,8) € A°A;(k) \ A. For any cube of side 1/10 in A that
is at a distance at least 1/10 from A€, (2) holds. Pick one, call it A’1 /10" Then

for B(x,8) C A, we can apply (1) with G = Ar(k), ® = AII/lO and
R € [1/10,/d]. Then

2 2

19000 = € (R 1910/ Il ) 01

Since in A /10 (2) holds, we have

19l[30.5) > C'(d, Cr) lolIR, o - (€)
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ILSE for Delone-Bernoulli model

Let Hy, = —A+ Vy+ Vi, with V bounded, V, = Z oyu(x —7), where
¥eD
oy € {0,1} Bernoulli r.v., infc(Hy) = info(Hy) = Ep a.s.
Decompose A = UJ; Ak(j), consider the probability of finding at least one
©y, = 1 in each cube Ak (j) :

if K= (logL)/and V, = ¥ u(x—7)=P(Vor>V,)>1-LP
vEAK()
Ar(t) =info(H; 1), then inf6(Hg,r) > Az (1) with probability 1 —L™7.
By QUCP (ii) :
P (infG(Hm,L) >Ey+Cycp(L))>1-L7"
Cucp(L)

Applying Combes-Thomas estimate in an interval [Ep, Eg + ~Y5~=] gives a
decay of the local resolvent of order

4

—Cycp(L)-L=—(logL) 11 . L

ILSE if d > 2. Germinet-Klein’ 11 gives Localization.
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Integrated Density of States (IDS) for

(UE) Assumption on D : Xp is uniquely ergodic. For example, D is linearly
repetitive.

Definition (Eigenvalue counting function)

Let {Ay}ren be a sequence of concentric cubes in R4. We define for any
energy E € R,
1

VL(E) = |AL|

f{e.v.of Hy; < E}

Theorem (Existence of IDS, Germinet—Miiller—R.-M.’12)

Forevery EE R, V(E) := gim Vi(E) exists for a.e. ® € Q.

Proof : Application of Ergodic Theorem in Ergodic properties of randomly
coloured point sets by Miiller-Richard ’11.



IDS Existence Coloured Delone sets  Lifshitz Tails

Proof : Coloured point sets

Consider the base space I' = R? and the group T = R acting on I"as a
translation. Given a Delone set D C T, take its closed T-orbit

Xp={x+D:x€T}>P

Consider the colour space A = [—m,M] and define the probability space
(Qp,ﬂp,]P’P) where
Qr=QA

yep

Then P® = {(y,®y) : Y € P} is the coloured point set P® with colour
realization ® € Qp.

The closed T-orbit of D® in the space I x A is given by
Xp={x+D®:xeT}
For any element P® € Xp, the action is given by the translations
x+P®=(x+P)"®

where T, : Qp — Q. p is defined as T,®(x+p) = 0(p) forall p € P. O
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Lifshitz tails for Hy = —A

Dirichlet-Neumann bracketing : For every fixed L we have

[ Eay (R, po (E)du(P) V(E) < [ By (v, po(E))du(P)

Lemma (Germinet—Miiller-R.-M.’12)

There exist constants Cqp ¢ such that for L = [BE’1/2], B > 0, we have for
L big enough :

EQP (VRL,P‘” (E)) > C&r’dEd/ze*Cﬁ,mr,dEfd/z InE

Ea, (VY pa(E)) < Ce~Conral ™"

where the bounds are uniform for all P € Xp.

We obtain Lifshitz tails for energies £~ 0 :

lim In|In(v(E))| _ d
N0 In(E) 2
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Localization for Delone-Anderson operators

Recall Hy = Hy + AV, on L2(R?) with A > 0, Vi (x) = Z oyu(x—7y):
1€D

e Disa (r,R)-Delone set,

e {m,} iid random variables with probability density .

Theorem (Germinet—Miiller—R.-M.’12, R.-M.’11)

i. Ford>1and Hy= —A, supp u=1[0,1] :
Dynamical localization at the bottom of the spectrum [0,E*(R,\)],
where E*(R,L) = C;3R~4+2) (InR)~%/? > 0.

il. Ford>?2and Hy=—A+Vy, and supp u={0,1}.
Dynamical localization at the bottom of the spectrum
[Eo, Eo +E*(R,1)].

ii. For d =2 and Hp the Landau Hamiltonian, B > 0, supp u = [—M, M),
M>0:
Dynamical localization in the band edges of the n-th Landau band.
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