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K. Mallick Quantum Fluctuation Relations far from Equilibrium



THERMODYNAMICS
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Aim and Scope of Thermodynamics

Thermodynamics describes the properties of matter at the macroscopic
scale in terms of a limited number of macroscopic variables. It derives
general relations between macroscopic observables, regardless of the
underlying atomic structure.
Traditional thermodynamics deals only with equilibrium states: time
never appears as an explicit variable.

Thermodynamics is the science of ENERGY CONVERSIONS:

• One must IDENTIFY correctly the various forms of energy involved
in a problem to establish an exhaustive book-keeping (1st Principle).

• All forms of energy are NOT EQUIVALENT. Some conversions
require compensation fees (Clausius).
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Lars Onsager (1903-1976)

‘As in other kinds of bookeeping, the trickiest questions that arise in the
application of thermodynamics deal with the proper identification and
classification of the entries; the arithmetics is straightforward’ (Onsager,
1967).
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FIRST PRINCIPLE

∆U = W + Q

THE ENERGY OF THE UNIVERSE IS CONSERVED.
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Which sphere is the hottest?
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SADI CARNOT (1796-1832)
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The Heat Engine
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THE SECOND PRINCIPLE

Clausius has defined a new concept in physics: THE ENTROPY.

S2 − S1 ≥
∫
1→2

∂Q
T

Clausius Inequality (1851)

THE ENTROPY OF THE UNIVERSE INCREASES.
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The Mistress of the World and Her Shadow

The competition between energy and entropy lies at the heart of many
daily-life phenomena (phase transitions).

A state function that embodies simultaneously both principles in many
physical situations is THE FREE ENERGY F :

F = U − TS
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Free Energy as Maximal available Work

Consider a system that evolves from a state A to a state B both at the
temperature T equal to that of the environment. Suppose that the
system exchanges heat only with the environment.
Then, the decrease of Free Energy represents the Maximum Available
Work at the given temperature T that we can extract from the system:

〈W〉 ≤ FA − FB = −∆F

AV    BV    

T T
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The work 〈W 〉 we perform on the system is the opposite of the work W
available from the system. Thus, we have

〈W 〉 ≥ FB − FA = ∆F

• First Principle : ∆E = W + Q

• Second Principle :
∫
A→B

∂Q
T ≤ SB − SA = ∆S . Therefore :

Q ≤ T∆S .

Thus

∆F = ∆E − T∆S = W + Q − T∆S ≤W

Let us define the Dissipated Work as Wdiss = W −∆F . We then have

Wdiss

T
= ∆S +

(
−Q
T

)
≡ ∆S(universe) ≥ 0

Interpretation : Wdiss/T represents the total entropy production by the
process: this quantity must be non-negative.
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FLUCTUATION RELATIONS
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Jarzynski’s Work Theorem

From classical thermodynamics, we have thus learnt that the work 〈W 〉
that we perform on the system must verify

〈W 〉 ≥ FB − FA = ∆F

There is a remarkable identity underlying this classical inequality:〈
e−

W
kT

〉
= e−

∆F
kT

Jarzynski’s Identity (1996)
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The average is taken over an ensemble of non-equilibrium processes of
duration Tf such that:

(i) At t = 0, the system starts in the equilibrium state A.

(ii) Between 0 and Tf , the operator acts on the system by changing a
control parameter λ(t) according to a fixed well-defined protocol

(iii) At Tf , the control parameter is fixed to a value λB . The system is
not at equilibrium. During the whole process, the system remains in
contact with a heat-bath at temperature T . Only after an infinite time,
will the system reach the equilibrium state B.
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1. Jarzynski’s Work Theorem yields the Classical Inequality for the
Maximum Work Available (by convexity).

2. However, this result implies that in order to have an equality, there
must be individual trajectories that do not obey the Classical Inequality,
i.e., for which

W < ∆F

‘Transient Violations of the Second Law’

3. Jarzynski’s Identity allows to measure Equilibrium Free Energy
differences by doing Non-Equilibrium experiments (single-molecule
manipulations, cf F. Ritort).

4. There is a Fluctuation-type Relation underlying Jarzynski’s Identity at
the level of Work Probability Distributions:

PF (W )

PR (−W )
= e

W−∆F
kT

(Crooks, 1999)
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∆F W
F

−W
R

P(−W)
R

F
P(W)

Crooks’ Relation allows to quantify precisely the transient violations of
the Second Law and to perform more precise measurements.
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Framework: Classical Dynamical Systems

There exists a finer identity that implies Jarzynski’s and Crooks’ relations.
Consider a system that evolves according to a given dynamics, that can
be Deterministic (Hamiltonian; Coupled to a thermostat: Nosé-Hoover...)
or Stochastic (Langevin; Markov...).
Typically, this evolution can be described as a first-order differential
equation for the distribution function ρ(z , t) at time t of the system
amongst its microstates z :

∂ρ
∂t = L.ρ

where the generator L depends on which type of evolution is considered.

• Hamiltonian case: z is a point in phase space and L is the Poisson
Bracket L.ρ = −{H, ρ}.

• Langevin equation: L is the Fokker-Planck operator (parabolic PDE:
Brownian Motion → Heat Equation).

• Markov chain: L is a stochastic matrix and z is a configuration of
the system.
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Suppose that the dynamics of the system depends on a set of parameters
λ that can be monitored by an external operator: i.e., the generator Lλ
depends on λ. For a given and fixed value of λ, we assume that the
Gibbs-Boltzmann distribution is stationary under the evolution, i.e.

Lλ.
e−βHλ(z)

Zλ
= 0

Prepare the system at t = 0 in the Gibbs-Boltzmann state with H0 and
vary the external parameters λ according to a well-defined protocol λ(t).
Note that the time-dependent Gibbs-Boltzmann distribution DOES NOT
satisfy the fundamental evolution equation.
However, we have

〈δ(z − z(t))e−βW (t)〉path = 1
Z0
e−βHλ(t)(z)

where the ‘Jarzynski Work’ is defined as:

W (t) =

∫ t

0

λ̇(τ)
∂Hλ(τ)(z(τ))

∂λ
dτ .
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Consequences

• Work Relation by summing over z : 〈e−βW (t)〉path =
Zλ(t)

Z0
= e−β∆F .

• For any observable A(z):
〈A(z(t))e−βW (t)〉path = e−β∆F 〈A(z)〉Equil. atλ(t)

• A Generalized Crook’s identity that implies all the previous relations:
Let F(z , λ) be an observable that depends on the whole path, then

〈F [c , λ]e−βW (t)〉path = 〈F̃ [c , λ]〉Rpath
where the tilde and the exponent R denote an average with respect
to time-reversed paths. Here, a covariance property under time
reversal (Generalized Detailed Balance) must be used.

• Kubo’s fluctuation-dissipation relation: Apply the Jarzysnki identity
to a family of Hamiltonians H0 − λ(t)O and take the functional
derivative w.r.t. λ(t) at t = s.
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A Sketch of the Proof

Consider the joint probability distribution Pt(z ,W ) for the system to be
in the microstate z and to have ’accumulated’ the work W at time t:

Pt(z ,W ) = 〈δ(z − z(t))δ(W −W (t))〉path

The marginal of Pt(z ,W ) is ρ(z , t) that satisfies the fundamental
evolution equation with generator L.
The Laplace transform of Pt(z ,W ), P̂t(z , γ) =

∫
dWPt(z ,W )e−γβW ,

satisfies a dynamics similar to that of ρ(z , t) but with a γ-deformed
generator Lγ :

∂P̂t

∂t = Lγ .P̂t

The deformed generator is given by

Lγ = L − γβλ̇∂Hλ(z)
∂λ

Hence, weighing the correlators with e−γβW leads to a γ-deformed
dynamics.
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The work identities result from algebraic properties of the operators Lγ .
(1) The time-dependent Gibbs-Boltzmann distribution e−βHλ(z) IS A
SOLUTION of the deformed evolution equation with γ = 1 for all times:

∂e−βHλ(z)

∂t = Lγ .e−βHλ(z)

This is equivalent to

P̂t(z , γ = 1) = e−βHλ(z)

which is nothing but the generalized Jarzynski Relation.
(2) Using detailed balance, one can prove a similarity relation of the type:

(Lγ)† ' L1−γ

This implies Crooks identity between the direct process and the
time-reversed dynamics.
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The Kubo Formula

Consider a (classical) system at thermal equilibrium and governed by the
time-independent Hamiltonian H0. Suppose that this system is subject to
a time-dependent perturbation H0 − λ(t)O from time s on.

Then the mean-value of a dynamic observable A(t) at time t > s over all
path trajectories, 〈A(t)〉path, satisfies at first order in λ:

Req(t, s) =
δ〈A(t)〉path
δλ(s)

= β
d

ds
〈O(s)A(t)〉eq

where β = 1/(kT ) is the inverse temperature.
Note that the correlation function in the rhs is evaluated at equilibrium.

This relation (Kubo, 1966) is a fundamental tool in condensed matter
physics: it allows, e.g., to extract linear response transport coefficients
from an equilibrium situation.
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THE QUANTUM CASE
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CAVEATS

Major difficulties to define the quantities involved in the work identities:

• NO PATHS, NO TRAJECTORIES!

• NO WORK!

Various attempts:

• Closed Quantum system: Define the work as the difference of the
energies measured at time 0 and at the final time. Jarzynski’s
Identity follows from the unitarity of the evolution (Tasaki 2000;
Kurchan 2001; Andrieux, Gaspard 2009).

• Open Quantum System: Embed it into a larger closed system, write
Jarzynski’s Identity for the global system and integrate out the
environmental degrees of freedom (Campisi, Hanggi, Talkner 2009)

• Try to define a Quantum Work operator: Jarzynski’s Identity fails.

• By multiple successive measurements, define an Effective Trajectory
for the quantum system (S. Mukamel 2003-2008).
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Density Matrix

A Quantum Statistical System is described via an operator, the Density
Matrix ρt . A closed system prepared at temperature T has a canonical
Density Matrix given by

π0 =
1

Z

∑
n

e−βEn |ψn〉〈ψn|

assuming that the Hamiltonian H0 has a discrete set of eigenvalues En

with normalized eigenvectors |ψn〉.
The Density Matrix of a closed system satisfies the Quantum Liouville
equation:

∂ρt
∂t = − i

~ [H0, ρt ] = L.ρt

The generator of the dynamics L is now a Super-Operator because it
induces a mapping amongst density operators.
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Lindblad Evolution

We consider a ’small’ open system interacting with a large environment:
there exists a Quantum Markov Equation, widely used in Quantum
Optics, satisfied by the density matrix of the small system, the Lindblad
Equation:

∂ρt
∂t

= − i

~
[H0, ρt ] +

I∑
i=1

(
AiρtAi

† − 1

2
Ai
†Aiρt −

1

2
ρtAi

†Ai

)
The Kraus operators Ai ’s are non-hermitian operators that may depend
explicitly on time; they model the interactions with the environment
(dissipation and decoherence effects).

• The density matrix of a system driven by a Schrödinger-Langevin
equation satisfies a Lindblad equation. Such an equation appears if
you model a two-level system (spin 1/2) in interaction with an
infinite chain of harmonic oscillators.

• Abstract derivation: Under some general assumptions (Linearity,
Trace Conservation, Strict Positivity + Markov) it is possible to
prove that the Lindblad Equation is generic.

K. Mallick Quantum Fluctuation Relations far from Equilibrium



Lindblad Evolution

We consider a ’small’ open system interacting with a large environment:
there exists a Quantum Markov Equation, widely used in Quantum
Optics, satisfied by the density matrix of the small system, the Lindblad
Equation:

∂ρt
∂t

= − i

~
[H0, ρt ] +

I∑
i=1

(
AiρtAi

† − 1

2
Ai
†Aiρt −

1

2
ρtAi

†Ai

)
The Kraus operators Ai ’s are non-hermitian operators that may depend
explicitly on time; they model the interactions with the environment
(dissipation and decoherence effects).

• The density matrix of a system driven by a Schrödinger-Langevin
equation satisfies a Lindblad equation. Such an equation appears if
you model a two-level system (spin 1/2) in interaction with an
infinite chain of harmonic oscillators.

• Abstract derivation: Under some general assumptions (Linearity,
Trace Conservation, Strict Positivity + Markov) it is possible to
prove that the Lindblad Equation is generic.

K. Mallick Quantum Fluctuation Relations far from Equilibrium



Strategy for deriving the Quantum Fluctuation
Relation

1. We do not define work or trajectories. We write the simplest
deformation of the Lindblad Equation such that the time-dependent
Gibbs-Boltzmann density matrix becomes an exact solution of the
deformed evolution equation.

2. We add a parameter γ in order to define a one-parameter family of
deformed Lindbladian superoperators Lγ that interpolate between the
original Lindbladian and the fully deformed operator:

Lt(γ).ρ = (Lt − γWt) .ρ

where the operator Wt , defined as

Wt = −(πt)
−1∂tπt ,

will play in the quantum context a role analogous to Jarzynski’s work.

K. Mallick Quantum Fluctuation Relations far from Equilibrium



Strategy for deriving the Quantum Fluctuation
Relation

1. We do not define work or trajectories. We write the simplest
deformation of the Lindblad Equation such that the time-dependent
Gibbs-Boltzmann density matrix becomes an exact solution of the
deformed evolution equation.
2. We add a parameter γ in order to define a one-parameter family of
deformed Lindbladian superoperators Lγ that interpolate between the
original Lindbladian and the fully deformed operator:

Lt(γ).ρ = (Lt − γWt) .ρ

where the operator Wt , defined as

Wt = −(πt)
−1∂tπt ,

will play in the quantum context a role analogous to Jarzynski’s work.

K. Mallick Quantum Fluctuation Relations far from Equilibrium



3. We prove a key similarity relation between (Lγ)† and L1−γ . More
precisely, we define a conjugate Lindbladian as

LRTf−t = Kπ−1
t L†tπtK

where K is the time-reversal operator. Then, the evolution
(super)-operators associated with Lt and LRt satisfy

π0P
Tf
0 (γ) =

[
πTf

KPTf ,R
0 (1− γ)K

]†
where P t

s (γ) = −→exp
(∫ t

s
du Lu(γ)

)
and P t,R

s (γ) = −→exp
(∫ t

s
du LRu (γ)

)
.

4. Applying this fundamental identity to two arbitrary observables A and
B leads to

Tr
(
B†π0P

Tf
0 (γ).A

)
= Tr

((
K .A†

)
πR

0 P
Tf ,R
0 (1− γ). (K .B)

)
Writing this relation explicitly yields the Quantum Fluctuation Identity.
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The Quantum Fluctuation Relation

Consider a quantum dynamical system S, initially isolated, and prepared
at time t = 0 in thermal equilibrium with a canonical density matrix π0,
which corresponds to a Hamiltonian H0.
For 0 ≤ t ≤ Tf , the Hamiltonian Ht that governs S becomes time
dependent due to the change of some external control parameter(s).
Besides, the system interacts with its environment.

Let A and B be two arbitrary observables and 0 ≤ γ ≤ 1. Then, the
following Quantum Fluctuation Relation is satisfied:〈(

π0Bπ
−1
0

)†
(0)−→exp

(
−γ
∫ Tf

0

duWu

)
A(Tf )

〉
=

〈(
πR

0 (K .A)
(
πR

0

)−1
)†

(0)−→exp

(
−(1− γ)

∫ Tf

0

duW R
u

)
(K .B) (Tf )

〉R
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Consequences

• Taking A = B = 1 and γ = 1, leads to the Quantum analog of J. E.〈
−→exp

(
−
∫ Tf

0

duWu

)〉
= 1

• For a closed system, the previous results of Kurchan et al. are
recovered.

• For ~ = 0, the classical identities are retrieved.

• By taking a first order derivative of the Quantum Fluctuation
Identity, the Quantum Fluctuation-Dissipation Relation is obtained
(This quantum analog of Kubo’s relation is known as the
Callen-Welton relation ).
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Conclusion

We have used a general mathematical framework to derive quantum
analogs to the classical work relations. These relations stem from
algebraic identities satisfied by the evolution operators. This provides us
with an unified view on the work relations, whether applied to classical or
quantum systems, to deterministic or stochastic models.

From technical point of view, the proof of the quantum work theorem
requires an extension of the Feynman-Kac formula for Quantum Markov
semi-groups.

The quantum fluctuation relations imply the Fluctuation-Dissipation
Relation of Callen and Welton. They also imply higher order identities.
They can in fact be viewed as book-keeping devices or generating
functions for correlation identities at all-orders.

Beyond the present formal study:
(i) Consequences for simple solvable models?
(ii) Applications to experimental situations?
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