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Introduction

Many results where (components of) Dirac fields are reduced
to a scalar wave equation : Fackerell-Ipser equation (’72) for
Maxwell equations, Teukolsky equation (’73) for linearized
gravity (spin 2), for linearized gravity on type D
(Aksteiner-Andersson ’10).
Recent result (Blue ’07) for Maxwell equations ; decay of the
field obtained by the control of one component of the field.

Purpose
Study Dirac fields of arbitrary spin by reducing the study to a scalar
wave equation, by methods extendible to curved space-time.
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Reference result by Christodoulou-Klaineman (90) for Maxwell
equations (spin 1) and linearized gravity (spin 2) on flat
background.
Methods by Penrose to reduce the spin fields to a wave
equation ;

Construction of a potential (spin raising ; 1965)
Using the symmetries of space-time (spin lowering ; 1975)
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Decay of solutions of the linear wave equation

Background : flat space-time.
Obtained by energy estimates (Klainerman 83-85) or by
conformal compactification (Penrose 65).
Problem : �χ = 0 + Initial data (χ0, ∂tχ) in certain weighted
Sobolev spaces.
Obtain decay estimates in two directions :

Interior decay : along time directions (t > 3r) ;
Exterior decay : along null directions ( r

3 < t < 3r).
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Decay of solutions of the linear wave equation 2

Theorem
Let s0 ≥ 2. Let u be a solution of the wave equation with initial
date in H0,k(R3)× H0,k+1(R3). Then

1 for t > 3r

|u(t, x)| ≤ ||u(0)||0,s0
(1+ t)

3
2
,

2 for r
3 < t < 3r :

|u(t, x)| ≤ ||u(t)||0,s0
(t − r)

1
2 r1

,
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Decay of solutions of the linear wave equation 3

Theorem

Let s0 ≥ 2, (j , k , l) ∈ N3. Let u be a solution of the wave equation
with data in H0,s0+j+k+l . Then

1 for t > 3r

|∇iu(t, x)| ≤
||u(0)||0,s0+j

(1+ t)
3
2+j

,

2 for r
3 < t < 3r :

|(∂u)
j(∂v )

k∇l
S2r

u(t, x)| ≤
||u(0)||0,s0+j+k+l

(t − r)
1
2+j r1+k+l

,

u = t − r and v = t + r .
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Dirac equations of arbitrary spin

Background : flat spacetime
Spinor φA of spin 1

2 : element of C2 ;
Symmetric spinor φA...F = φ(A...F ) of spin s (2s indices) ;
element of Sym

(
C2 ⊗ · · · ⊗ C2)

Dirac equation (ZRM) : first order equation for symmetric
spinors : {

∇AA′
φA...F = 0

φA...F = φ(A...F )

Spin 1 : Maxwell equations : Spin 2 ; linearized gravity
(Bianchi identity for the Weyl tensor)
Does not make sense without geometric assumption on curved
background for spin > 1
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Plan

1 Using potentials : spin raising

2 Using the symmetry of space-time : spin lowering

3 Decay of linear fields
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Using potentials : spin raising

Idea : Represent Maxwell fields with potentials :

Ex : dF = 0, d?F = 0, then F = dA with d?A = 0

Problem : introduce a second order potential : Hertz Potential
Let P be a two form satisfying the wave equation :

�P = dG + d?W ,G, W, gauge functions
Then F = dd?P satisfies (d+ d?)F = 0

These solutions cannot be charged : F cannot be a Coulomb
field.
The procedure can be done on curved space-time
(Cohen-Kegeles 76)
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Potential for linear fields – Spin raising

Purpose : do the same for spin s fields :
Spin raising : Penrose (’65), Eastwood-Penrose-Ward (’81),
Eastwood (’85) : let φA...F a solution of the Dirac equation ;
there exists a potential ξA

′...F ′
:

φA...F = ∇AA′ . . .∇FF ′ξA
′...F ′

with �ξA
′...F ′

= 0.

On flat space-time, ξA
′
, . . . , ζA′

2s-constant spinors :

φA...F =
∑

ξA
′
. . . ζF ′∇AA′ . . .∇FF ′χ where �χ = 0
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Spin lowering

Idea from Penrose (’60) : reducing the spin of the equation.
φA...F a spin-s ZRM field and ξA...C a spin r field such that :

∇AA′
φA...F = 0 and ∇(A

A′ ξ
B...E) = 0

then :
if r < s, ∇AA′ (

φA...F ξ
C ...F

)
= 0

if r = s, �
(
φA...F ξ

A...F
)
= 0
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Twistors

Consider a r -spinor satisfying the twistor equation :

∇(A
A′ ξ

B...E) = 0

for spin, 1
2 :

∇(A
A′ ξ

B) = 0

the set of solutions is described by, on flat space-time :

T =
{
(ωA, πA′)|ξA = ωA + xAA′

πA′ ,
(
ωA, πA′

)
constant spinors

}
.

where xAA′
= xa = t∂t + r∂r .

This equation has geometrical constraints : conformally flat
(Petrov type O) or Petrov type N.
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Newman-Penrose tetrad.

Newman-Penrose tetrad :

la = 1√
2
(∂t + ∂r ) na = 1√

2
(∂t − ∂r )

ma = 1
r
√

2

(
∂θ +

i
sin(θ)∂ψ

)
ma = 1

r
√

2

(
∂θ − i

sin(θ)∂ψ

)
.

for the metric η = dt2 − dr2 − r2dωS2 , la, na,ma are null
vectors and :

ηablanb = 1 , ηabmamb = −1 , (la, na)⊥(ma,ma)

(oA, ιA) : normalized dyad arising from (la, na,ma,ma) :

la = oAoA′
ma = oAιA

′

na = ιAιA
′

ma = ιAoA′

oAι
A = 1
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Twistor and contraction with a field

φA...F a symmetric field of valence s :

φA...F =
2s∑
i=0

φi o(A . . . oC︸ ︷︷ ︸
i times

ιD . . . ιF )︸ ︷︷ ︸
2s−i times

, φi ∈ C.

πA′ = αoA′ + βιA′

Contraction of φA...F with the twistor
xAA′

πA′ = 1√
2

(
β(t + r)oA − α(t − r)ιA

)
:

xAA′
πA′ . . . xFF ′

πF ′φA...F =
2s∑
i=0

ciα
2s−iβi (t + r)2s−i (t − r)iφi
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Extension to curved space-time

Existence of 1-twistors implies geometrical constraints : no
extension to curved background.
On type D background (Kerr background), there exists a
2-twistor (Killing spinor) :

κAB ∝ oAιB

gives control on one component (spin weight zero component).
Use symmetry operators to control other components.
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Peeling

Obtained by Sachs (’61) and Newman-Penrose (’62).
Idea : all components in null directions of a ZRM field does
not decay at the same rate.

φA...F =
2s∑
i=0

φi o(A . . . oC︸ ︷︷ ︸
i times

ιD . . . ιF )︸ ︷︷ ︸
2s−i times

, φi ∈ C.

then, along any null directions,

φi ∼
1

r1+2s−i

where r is an affine parameter along null rays.
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Decay result for linear fields

Consider the Cauchy problem for spin s > 0 :{
∇AA′

φA...F = 0
φA...F |t=0 ∈ Hδ,k(R3)

where k ≥ 2

||φ||2δ,k =
k∑

l=0

∫
{t=0}

(1+ r2)δ+l |∇lφ|2d3x

The decay is obtained by using the decay of the scalar wave
equation and, separately, spin raising and spin lowering.
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Potential and initial data

Starting from Cauchy data for the Cauchy problem :{
∇AA′

φA...F = 0
φA...F |t=0 ∈ Hδ,s

Regularity of the potential on the initial time slice t = 0 :
Hertz potential, assuming that it exists :

A1 ||φA...F ||δ,k . ||χA′...F ′
||δ,k+2s .

Contraction with 2s twistors :

A2 ||ξA . . . ζFφA...F ||δ,k . ||φA...F ||δ+2s,k.

Criteria on the potentials to have decay, for k ≥ 2 :

||χA′...F ′ ||0,k <∞ or ||ξA . . . ζF ′
φA′...F ′ ||0,k <∞
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Decay for linear fields

Proposition : time decay and
Assume that the initial data satisfy the constraints equations and
A1 or A2 :

Interior decay (t > 3r) :

|φi | ≤
C

(1+ t)
3
2+2s

Exterior decay (3r > t > r
3) :

|φi | ≤
C

(1+ |t − r |)1+i r
1
2+2s−i
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Decay for linear fields 2

Proposition : time decay and peeling

Let (j , k , l) ∈ N3 :
Interior decay (t > 3r) :

|∇jφi | ≤
C

(1+ t)
3
2+2s+j

Exterior decay (3r > t > r
3) :

|(∂u)
j(∂v )

k∇l
S2r
φi | ≤

C

(1+ |t − r |)1+i+j r
1
2+2s−i+k+l
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Outlook : Flat space-time

Finish the energy estimates between the potentials and the
field.
Optimality of the decay result : regularity, decay of initial data,
decay along timelike curves.
Add charges on flat space-time : can one split the solution as :

static part + radiating part represented with a potential ?
Describe in this context all the charges and Coulomb solutions
of the fields.
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Outlook : Kerr background

Represent uncharged field with a potential.
Obtain decay for the 0-spin weight component of the integer
spin field using the contraction with the Killing spinor, for spin
1 and spin 2.
Using symmetry operators (combining both methods),
represent uncharged fields with a potential.
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