Decay of linear fields using spin lowering and spin raising processes

Jérémie Joudioux
Max-Planck-Institut für Gravitationsphysik
Albert-Einstein-Institute

february, 9th. 2012

4ème Rencontre du GDR CNRS « Dynamique quantique» Toulouse

Introduction

- Many results where (components of) Dirac fields are reduced to a scalar wave equation : Fackerell-Ipser equation ('72) for Maxwell equations, Teukolsky equation ('73) for linearized gravity (spin 2), for linearized gravity on type D (Aksteiner-Andersson '10).
- Recent result (Blue '07) for Maxwell equations; decay of the field obtained by the control of one component of the field.

Purpose

Study Dirac fields of arbitrary spin by reducing the study to a scalar wave equation, by methods extendible to curved space-time.

- Reference result by Christodoulou-Klaineman (90) for Maxwell equations (spin 1) and linearized gravity (spin 2) on flat background.
- Methods by Penrose to reduce the spin fields to a wave equation ;
- Construction of a potential (spin raising ; 1965)
- Using the symmetries of space-time (spin lowering ; 1975)

Decay of solutions of the linear wave equation

- Background : flat space-time.
- Obtained by energy estimates (Klainerman 83-85) or by conformal compactification (Penrose 65).
- Problem: $\square \chi=0+$ Initial data $\left(\chi_{0}, \partial_{t} \chi\right)$ in certain weighted Sobolev spaces.
- Obtain decay estimates in two directions:
- Interior decay : along time directions ($t>3 r$);
- Exterior decay : along null directions ($\frac{r}{3}<t<3 r$).

Decay of solutions of the linear wave equation 2

Theorem

Let $s_{0} \geq 2$. Let u be a solution of the wave equation with initial date in $H_{0, k}\left(\mathbb{R}^{3}\right) \times H_{0, k+1}\left(\mathbb{R}^{3}\right)$. Then
(1) for $t>3 r$

$$
|u(t, x)| \leq \frac{\|u(0)\|_{0, s_{0}}}{(1+t)^{\frac{3}{2}}},
$$

(2) for $\frac{r}{3}<t<3 r$:

$$
|u(t, x)| \leq \frac{\|u(t)\|_{0, s_{0}}}{(t-r)^{\frac{1}{2}} r^{1}},
$$

Decay of solutions of the linear wave equation 3

Theorem

Let $s_{0} \geq 2,(j, k, l) \in \mathbb{N}^{3}$. Let u be a solution of the wave equation with data in $H_{0, s_{0}+j+k+1}$. Then
(1) for $t>3 r$

$$
\left|\nabla^{i} u(t, x)\right| \leq \frac{\|u(0)\|_{0, s_{0}+j}}{(1+t)^{\frac{3}{2}+j}},
$$

(2) for $\frac{r}{3}<t<3 r$:

$$
\left|\left(\partial_{u}\right)^{j}\left(\partial_{v}\right)^{k} \nabla_{\mathbb{S}_{r}^{2}}^{\prime} u(t, x)\right| \leq \frac{\|u(0)\|_{0, s_{0}+j+k+1}}{(t-r)^{\frac{1}{2}+j} r^{1+k+l}},
$$

$$
u=t-r \text { and } v=t+r .
$$

Dirac equations of arbitrary spin

- Background : flat spacetime
- Spinor ϕ_{A} of spin $\frac{1}{2}$: element of \mathbb{C}^{2};
- Symmetric spinor $\phi_{A \ldots F}=\phi_{\left(A_{\ldots} \ldots\right)}$ of spin s ($2 s$ indices); element of $\operatorname{Sym}\left(\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}\right)$
- Dirac equation (ZRM) : first order equation for symmetric spinors :

$$
\left\{\begin{array}{l}
\nabla^{A A^{\prime}} \phi_{A \ldots F}=0 \\
\phi_{A \ldots F}=\phi_{(A \ldots F)}
\end{array}\right.
$$

- Spin 1 : Maxwell equations: Spin 2 ; linearized gravity (Bianchi identity for the Weyl tensor)
- Does not make sense without geometric assumption on curved background for spin >1

Plan

(1) Using potentials: spin raising
(2) Using the symmetry of space-time: spin lowering
(3) Decay of linear fields

Using potentials : spin raising

- Idea : Represent Maxwell fields with potentials :

$$
\text { Ex: } \mathrm{d} F=0, \mathrm{~d}^{\star} F=0, \text { then } F=\mathrm{d} A \text { with } \mathrm{d}^{\star} A=0
$$

- Problem : introduce a second order potential : Hertz Potential Let P be a two form satisfying the wave equation :

$$
\begin{aligned}
& \square P=\mathrm{d} G+\mathrm{d}^{\star} W, \mathrm{G}, \mathrm{~W} \text {, gauge functions } \\
& \text { Then } F=\mathrm{dd}^{\star} P \text { satisfies }\left(\mathrm{d}+\mathrm{d}^{\star}\right) F=0
\end{aligned}
$$

- These solutions cannot be charged : F cannot be a Coulomb field.
- The procedure can be done on curved space-time (Cohen-Kegeles 76)

Potential for linear fields - Spin raising

- Purpose : do the same for spin s fields:
- Spin raising : Penrose ('65), Eastwood-Penrose-Ward ('81), Eastwood ('85) : let $\phi_{A \ldots F}$ a solution of the Dirac equation; there exists a potential $\xi^{A^{\prime} \ldots F^{\prime}}$:

$$
\begin{gathered}
\phi_{A \ldots F}=\nabla_{A A^{\prime} \ldots \nabla_{F F^{\prime}} \xi^{A^{\prime} \ldots F^{\prime}}}^{\text {with } \square \xi^{A^{\prime} \ldots F^{\prime}}=0} .
\end{gathered}
$$

- On flat space-time, $\xi^{A^{\prime}}, \ldots, \zeta^{A^{\prime}} 2 \mathrm{~s}$-constant spinors :

$$
\phi_{A \ldots F}=\sum \xi^{A^{\prime}} \ldots \zeta^{F^{\prime}} \nabla_{A A^{\prime}} \ldots \nabla_{F F^{\prime}} \chi \text { where } \square \chi=0
$$

Spin lowering

- Idea from Penrose ('60) : reducing the spin of the equation.
- $\phi_{A \ldots \ldots}$ a spin-s ZRM field and $\xi^{A \ldots C}$ a spin r field such that :

$$
\nabla^{A A^{\prime}} \phi_{A \ldots F}=0 \text { and } \nabla_{A^{\prime}}^{\left({ }^{\prime}\right.}{ }^{B \ldots E)}=0
$$

then :

- if $r<s, \nabla^{A A^{\prime}}\left(\phi_{A \ldots} \xi^{C \ldots F}\right)=0$
- if $r=s, \square\left(\phi_{A \ldots F} \xi^{A \ldots F}\right)=0$

Twistors

- Consider a r-spinor satisfying the twistor equation :

$$
\nabla_{A^{\prime}}^{(A} \xi^{B \ldots E)}=0
$$

- for spin, $\frac{1}{2}$:

$$
\nabla_{A^{\prime}}^{(A} \xi^{B)}=0
$$

the set of solutions is described by, on flat space-time :
$\mathbb{T}=\left\{\left(\omega^{A}, \pi_{A^{\prime}}\right) \mid \xi^{A}=\omega^{A}+x^{A A^{\prime}} \pi_{A^{\prime}},\left(\omega^{A}, \pi_{A^{\prime}}\right)\right.$ constant spinors $\}$.
where $x^{A A^{\prime}}=x^{a}=t \partial_{t}+r \partial_{r}$.

- This equation has geometrical constraints: conformally flat (Petrov type O) or Petrov type N.

Newman-Penrose tetrad.

- Newman-Penrose tetrad :

$$
\begin{array}{cc}
\rho^{a}=\frac{1}{\sqrt{2}}\left(\partial_{t}+\partial_{r}\right) & n^{a}=\frac{1}{\sqrt{2}}\left(\partial_{t}-\partial_{r}\right) \\
m^{a}=\frac{1}{r \sqrt{2}}\left(\partial_{\theta}+\frac{i}{\sin (\theta)} \partial_{\psi}\right) & \bar{m}^{a}=\frac{1}{r \sqrt{2}}\left(\partial_{\theta}-\frac{i}{\sin (\theta)} \partial_{\psi}\right) .
\end{array}
$$

- for the metric $\eta=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2} \mathrm{~d} \omega_{\mathbb{S}^{2}}, I^{a}, n^{a}, m^{a}$ are null vectors and :

$$
\eta_{a b} I^{a} n^{b}=1, \eta_{a b} m^{a} \bar{m}^{b}=-1,\left(I^{a}, n^{a}\right) \perp\left(m^{a}, \bar{m}^{a}\right)
$$

- $\left(o^{A}, \iota^{A}\right)$: normalized dyad arising from $\left(I^{a}, n^{a}, m^{a}, \bar{m}^{a}\right)$:

$$
\begin{gathered}
l^{a}=o^{A} \bar{o}^{A^{\prime}} \quad m^{a}=o^{A} \bar{\iota}^{A^{\prime}} \\
n^{a}=\iota^{A} \bar{\iota}^{A^{\prime}} \quad \bar{m}^{a}=\iota^{A} \bar{o}^{A^{\prime}} \\
o o_{A} \iota^{A}=1
\end{gathered}
$$

Twistor and contraction with a field

- $\phi_{A \ldots F}$ a symmetric field of valence s :

$$
\phi_{A \ldots F}=\sum_{i=0}^{2 s} \phi_{i} \underbrace{O_{\left(A \ldots O_{C}\right.}^{\iota_{A}} \underbrace{\iota_{D} \ldots \iota_{F)}}_{2 s-i \text { times }},}_{i \text { times }} \phi_{i} \in \mathbb{C} .
$$

- $\pi_{A^{\prime}}=\alpha \bar{o}_{A^{\prime}}+\beta \bar{\iota}_{A^{\prime}}$
- Contraction of $\phi_{A \ldots F}$ with the twistor

$$
\begin{aligned}
& x^{A A^{\prime}} \pi_{A^{\prime}}=\frac{1}{\sqrt{2}}\left(\beta(t+r) o^{A}-\alpha(t-r) \iota^{A}\right): \\
& x^{A A^{\prime}} \pi_{A^{\prime}} \ldots x^{F F^{\prime}} \pi_{F^{\prime}} \phi_{A \ldots F}=\sum_{i=0}^{2 s} c_{i} \alpha^{2 s-i} \beta^{i}(t+r)^{2 s-i}(t-r)^{i} \phi_{i}
\end{aligned}
$$

Extension to curved space-time

- Existence of 1-twistors implies geometrical constraints : no extension to curved background.
- On type D background (Kerr background), there exists a 2-twistor (Killing spinor) :

$$
\kappa_{A B} \propto o_{A} \iota_{B}
$$

- gives control on one component (spin weight zero component).
- Use symmetry operators to control other components.

Peeling

- Obtained by Sachs ('61) and Newman-Penrose ('62).
- Idea : all components in null directions of a ZRM field does not decay at the same rate.
$-$

$$
\phi_{A \ldots F}=\sum_{i=0}^{2 s} \phi_{i} \underbrace{O_{\left(A \cdots O_{C}\right.}^{\iota_{D}} \underbrace{\left.\iota_{D} \cdots{ }^{\iota} F\right)}_{2 s-i \text { times }}}_{i \text { times }}, \phi_{i} \in \mathbb{C} .
$$

then, along any null directions,

$$
\phi_{i} \sim \frac{1}{r^{1+2 s-i}}
$$

where r is an affine parameter along null rays.

Decay result for linear fields

- Consider the Cauchy problem for spin $s>0$:

$$
\left\{\begin{array}{c}
\nabla^{A A^{\prime}} \phi_{A \ldots F}=0 \\
\left.\phi_{A \ldots F}\right|_{t=0} \in H_{\delta, k}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

where $k \geq 2$

$$
\|\phi\|_{\delta, k}^{2}=\sum_{l=0}^{k} \int_{\{t=0\}}\left(1+r^{2}\right)^{\delta+l}\left|\nabla^{\prime} \phi\right|^{2} \mathrm{~d}^{3} x
$$

- The decay is obtained by using the decay of the scalar wave equation and, separately, spin raising and spin lowering.

Potential and initial data

- Starting from Cauchy data for the Cauchy problem :

$$
\left\{\begin{array}{l}
\nabla^{A A^{\prime}} \phi_{A \ldots F}=0 \\
\left.\phi_{A \ldots F} \ldots\right|_{t=0} \in H_{\delta, s}
\end{array}\right.
$$

- Regularity of the potential on the initial time slice $t=0$:
- Hertz potential, assuming that it exists :

$$
\mathbf{A 1}\left\|\phi_{A \ldots F}\right\|_{\delta, k} \lesssim\left\|\chi^{A^{\prime} \ldots F^{\prime}}\right\|_{\delta, k+2 s} .
$$

- Contraction with $2 s$ twistors :

$$
\mathbf{A} 2\left\|\xi^{A} \ldots \zeta^{F} \phi_{A \ldots F}\right\|_{\delta, k} \lesssim\left\|\phi_{A \ldots F}\right\|_{\delta+2 s, k} .
$$

- Criteria on the potentials to have decay, for $k \geq 2$:

$$
\left\|\chi^{A^{\prime} \ldots F^{\prime}}\right\|_{0, k}<\infty \text { or }\left\|\xi^{A} \ldots \zeta^{F^{\prime}} \phi_{A^{\prime} \ldots F^{\prime}}\right\|_{0, k}<\infty
$$

Decay for linear fields

Proposition : time decay and

Assume that the initial data satisfy the constraints equations and A1 or A2 :

- Interior decay $(t>3 r)$:

$$
\left|\phi_{i}\right| \leq \frac{C}{(1+t)^{\frac{3}{2}+2 s}}
$$

- Exterior decay $\left(3 r>t>\frac{r}{3}\right)$:

$$
\left|\phi_{i}\right| \leq \frac{C}{(1+|t-r|)^{1+i} r^{\frac{1}{2}+2 s-i}}
$$

Decay for linear fields 2

Proposition : time decay and peeling

Let $(j, k, l) \in \mathbb{N}^{3}$:

- Interior decay $(t>3 r)$:

$$
\left|\nabla^{j} \phi_{i}\right| \leq \frac{C}{(1+t)^{\frac{3}{2}+2 s+j}}
$$

- Exterior decay $\left(3 r>t>\frac{r}{3}\right)$:

$$
\left|\left(\partial_{u}\right)^{j}\left(\partial_{v}\right)^{k} \nabla_{\mathbb{S}_{r}^{\prime}}^{\prime} \phi_{i}\right| \leq \frac{C}{(1+|t-r|)^{1+i+j} r_{r}^{\frac{1}{2}+2 s-i+k+1}}
$$

Outlook : Flat space-time

- Finish the energy estimates between the potentials and the field.
- Optimality of the decay result : regularity, decay of initial data, decay along timelike curves.
- Add charges on flat space-time : can one split the solution as : static part + radiating part represented with a potential ?
- Describe in this context all the charges and Coulomb solutions of the fields.

Outlook : Kerr background

- Represent uncharged field with a potential.
- Obtain decay for the 0-spin weight component of the integer spin field using the contraction with the Killing spinor, for spin 1 and spin 2.
- Using symmetry operators (combining both methods), represent uncharged fields with a potential.

