Almost global existence for Klein-Gordon equations with small Cauchy data on a Toeplitz structure

Rafik Imekraz

Université Cergy-Pontoise 2012 GDR Quantum Dynamics Bourgain and Bambusi study the following equation

$$(\partial_t^2 - \partial_x^2 + m^2)v = \partial_v f(v), \quad x \in S^1$$

 almost global existence for small solutions : for generic m > 0, ∀r > 1 ∀s ≫ 1 if ||v(0, ·)||_{H^s} + ||∂_tv(0, ·)||_{H^{s-1}} = ε ≪ 1 then

 $\forall t \in [-C\varepsilon^{-r}, C\varepsilon^{-r}] \quad ||v(t, \cdot)||_{H^s} + ||\partial_t v(t, \cdot)||_{H^{s-1}} \le 2\varepsilon$

Sobolev norms of solutions have weak growth for long time

Previous works 2/2

 Bambusi-Grébert's generalization for wave equation with potential

$$(\partial_t^2 - \partial_x^2 + V(x))v = \partial_v f(v), \quad x \in S^1$$

here V is a **generic** potential (instead of m^2)

Delort-Szeftel study the following non-hamiltonian equation

$$(\partial_t^2 - \Delta + V(x) + m^2)v = f(x, v, \partial_t v), \quad x \in S^d$$

solution bounded by 2ε in a time existence of order ε^{-p} where p = p(f)

- "Tour de force" by Delort-Szeftel : $S^d \Rightarrow$ Zoll manifold X
- Bambusi-Delort-Grébert-Szeftel prove the almost global existence for Zoll manifolds

$$(\partial_t^2 - \Delta + V(x) + m^2)v = \partial_v f(v), \quad x \in X$$

 Grébert-R.I.-Paturel show the almost global existence for the harmonic oscillator

$$i\partial_t \psi = (-\Delta + ||\mathbf{x}||^2 + \mathbf{M})\psi + \partial_{\overline{\psi}}f(\psi), \quad \mathbf{x} \in \mathbb{R}^d$$

• R.I. for the quartic oscillator

$$i\partial_t \psi = (-\partial_x^2 + x^4 + M)\psi + \partial_{\overline{\psi}}f(\psi), \quad x \in \mathbb{R}$$

in both cases, M : L²(ℝ^d) → L²(ℝ^d) is a "generic" compact operator (instead of the parameter m² in the Klein-Gordon equation)

Understand the spectral analysis of the linear part :

- good knowledge of spectrum of $\sqrt{-\Delta + V}$, roughly we want that two eigenvalues are uniformly separated (see later)
- good multlinear estimates on eigenfunctions

6

• The Szegö projector on $L^2(S^1)$:

$$\pi\left(\sum_{n\in\mathbb{Z}}a_{n}e^{in\bullet}\right)=\sum_{n\geq0}a_{n}e^{in\bullet}$$

appears in the Szegö equation $i\partial_t \psi = \pi(|\psi|^2 \psi)$ (see Gérard-Grellier's papers)

- A version of π on the real line R appears in the nonlinearities of PDE studied in Pocovnicu's thesis (2011)
- Motivation : understand dynamics of solutions of analogue equations in the Heisenberg group

7

 Almost global existence for Klein-Gordon equations which deal with Szegö projectors in nonlinearities, for instance

$$(\partial_t^2 - \Delta_{\mathcal{S}^{2d-1}} + m^2) v = \pi(|v|^2 v), \qquad x \in \mathcal{S}^{2d-1}$$

where $\pi: L^2(S^{2d-1}) \to L^2(S^{2d-1})$ is the orthogonal projector on the Hardy space, i.e. the space of functions which have holomorphic extension on the unit ball of \mathbb{C}^d

equation	Klein-Gordon	Schrödinger	Schrödinger
manifold X	S ^d	\mathbb{R}^{d}	$\mathbb R$
pdo T	$\sqrt{-\Delta}$	$-\Delta + x ^2$	$(-\partial_x^2+x^4)^{3/4}$
$\operatorname{Sp}(T): \lambda_k$	$\sqrt{k(k+d-1)}$	2k + d	$\simeq k$
bicar. flow	geodesics	circles	curves
on <i>T</i> * <i>X</i>		centred in (0,0)	$\xi^2 + x^4 = C$

- the manifold T^{*}X is naturally symplectic
- the bicaracteristic flow is the hamiltonian flow of the principal symbol of T on T*X
- for instance $\sigma(-\partial_x^2 + x^2)(x,\xi) = \xi^2 + x^2$

If *T* is a pdo of order 1, self-adjoint and elliptic on a manifold *X* and $\sigma(T) : T^*X \to \mathbb{C}$ is the principal symbol of *T*, then we have the equivalence

- the hamiltonian flow of $\sigma(T)$ is simply periodic of period τ
- the spectrum of *T* approximate an arithmetic sequence in the following sense

$$\mathsf{sp}(T) \subset \bigcup_{k \geq 1} \left[\frac{2\pi}{\tau} \mathbf{k} + \alpha - \frac{\beta}{\mathbf{k}}, \frac{2\pi}{\tau} \mathbf{k} + \alpha + \frac{\beta}{\mathbf{k}}
ight]$$

- the number of eigenvalues in the packet of order k is a polynomial of degree $\dim(X) 1$ if $k \gg 1$
- General ref : Colin de Verdière, Guillemin, Weinstein, Helffer-Robert,...

イロト イポト イヨト イヨト

The Toeplitz pseudo-differential theory in the sense of Boutet de Monvel and Guillemin is well adapted to study equations

$$(\partial_t^2 - \Delta_{\mathcal{S}^{2n-1}} + m^2)v = \pi(|v|^2v)$$

because it takes care about Szegö projectors and involves a bicaracteristic principle.

Consider X a compact manifold (not necessarily riemannian), and $\Sigma \subset T^*X$ a symplectic cone

- if $(x, \xi^*) \in \Sigma$ then $(x, t\xi^*) \in \Sigma$ for all t > 0
- the natural symplectic form of *T*^{*}*X* is non-degenerate on Σ

Boutet de Monvel and Guillemin prove that there is an orthogonal projector, called the Szegö projector,

$$\pi: L^2(X,\mathbb{C}) \to L^2(X,\mathbb{C})$$

which satisfies some microlocally features about Σ (see the book "The spectral theory of Toeplitz Operators"). The triple (X, Σ, π) is called a Toeplitz structure in the sense of Boutet de Monvel and Guillemin. The exact definition of π will not be necessary. Here are the two simplest examples :

• if
$$\Sigma = T^*X$$
 then $\pi = \mathsf{Id}$

② if $X = S^{2d-1}$, then there is Σ ⊂ T^*X such that π is the usual Szegö projector on the Hardy space of $L^2(S^{2d-1}, \mathbb{C})$

The first case allows us to generalize Bambusi-Delort-Grébert-Szeftel's result on Zoll manifold. Whereas the second case allows us to deal with Klein-Gordon equations involving Szegö projectors in nonlinearities. A Toeplitz pdo *T* on (X, Σ, π) is a linear operator of the form $T = \pi Q \pi$ where *Q* is a classic pdo on *X* :

$$\forall \phi \in \pi(\mathcal{C}^{\infty}(X,\mathbb{C})) \qquad T(\phi) := \pi(\mathcal{Q}(\phi))$$

Examples :

•
$$T = \sqrt{-\Delta}$$
 on (X, T^*X, Id)

•
$$T = \sqrt{-\Delta}$$
 on (S^{2d-1}, Σ, π)

One can define ellipticity, self-adjointness, principal symbol,...

Example of principal symbol. If Q_1 and Q_2 are pdo on X such that $T = \pi Q_1 \pi = \pi Q_2 \pi$ then $\sigma(Q_1)|_{\Sigma} = \sigma(Q_2)|_{\Sigma}$. This allows to define $\sigma(T) = \sigma(Q_i)|_{\Sigma}$.

Let *T* be a Toeplitz pdo of order 1, self-adjoint, elliptic, on (X, Σ, π) , if the Hamiltonian flow of $\sigma(T) : \Sigma \to \mathbb{C}$ is simply periodic then

$$\mathsf{sp}(\mathcal{T}) \subset \bigcup_{k \geq 1} \left[\frac{2\pi}{\tau} \mathbf{k} + \alpha - \frac{\beta}{\mathbf{k}}, \frac{2\pi}{\tau} \mathbf{k} + \alpha + \frac{\beta}{\mathbf{k}}
ight]$$

I, the number of eigenvalues in the kth packet is polynomial of degree ¹/₂(dim Σ) − 1

Remark : this generalizes the classic situation when $\Sigma = T^*X$ and $\pi = Id$.

1

Sobolev spaces on (X, Σ, π) are given by

$$H^{s}_{\pi}(X,\mathbb{C}) := \pi(H^{s}(X,\mathbb{C}))$$

- the Szegö projector π satisfies H^s_π(X, C) ⊂ H^s(X, C)
- one defines $||\phi||_{H^s_{\pi}} := ||\phi||_{H^s}$ for all $\phi \in \pi(H^s(X, \mathbb{C}))$
- for instance, in the case (S^1, Σ, π) one has

$$\mathcal{H}^{s}_{\pi}(\mathcal{S}^{1},\mathbb{C})=\left\{\sum_{n\geq 0}a_{n}e^{inullet},\quad \sum(1+n)^{2s}|a_{n}|^{2}<+\infty
ight\}$$

15

General theorem

Consider a Toeplitz pdo *T* of order 1, self-adjoint, elliptic on (X, Σ, π) , we add the assumption that the Hamiltonian flow of $\sigma(T) : \Sigma \to \mathbb{C}$ is simply periodic. The Klein-Gordon equation is

$$(\partial_t^2 + T^2 + m^2)\mathbf{v} = \pi(|\mathbf{v}|^2\mathbf{v}), \qquad (t, x) \in \mathbb{R} \times X$$
 (1)

$$(v(0,\cdot),\partial_t v(0,\cdot)) = (\varepsilon v_0, \varepsilon v_1) \in H^s_{\pi}(X, \mathbb{C}) \oplus H^{s-1}_{\pi}(X, \mathbb{C})$$
$$||v_0||_{H^s} + ||v_1||_{H^{s-1}} = 1$$

For generic m > 0, one has

$$\forall r \geq 1, \quad \forall s \gg 1, \quad \exists C, K \geq 1, \quad \forall \varepsilon \ll 1$$

$$\exists ! v \in \mathcal{C}^{0}([-\mathcal{C}\varepsilon^{-r}, \mathcal{C}\varepsilon^{-r}], H^{s}_{\pi}(X, \mathbb{C})) \\ \in \mathcal{C}^{1}([-\mathcal{C}\varepsilon^{-r}, \mathcal{C}\varepsilon^{-r}], H^{s-1}_{\pi}(X, \mathbb{C}))$$

 $\forall t \in [-C\varepsilon^{-r}, +C\varepsilon^{-r}] \quad ||v(t, \cdot)||_{H^s} + ||\partial_t v(t, \cdot)||_{H^{s-1}} \le K\varepsilon$

One endows $H^s_{\pi}(X, \mathbb{C})^2$ with the "natural" symplectic form

$$\omega((p_1, q_1), (p_2, q_2)) = = \operatorname{Re}\left(\int_X q_1 \overline{p_2} - p_1 \overline{q_2} dx\right)$$
$$= \operatorname{Re}(\langle q_1, p_2 \rangle - \langle p_1, q_2 \rangle)$$

This leads to define symplectic gradient and Poisson Bracket.

 $H: H^s_{\pi}(X, \mathbb{C}^2) \to \mathbb{R}$ admits a symplectic gradient if $\forall (p, q), (h, k) \in H^s_{\pi}(X, \mathbb{C}^2)$ $H(p+h, q+k) - H(p, q) = \omega (X_H(p, q), (h, k)) + \text{Remainder}$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

Setting $\Lambda = \sqrt{T^2 + m^2}$, the equation becomes $(\partial_t^2 + \Lambda^2) v = \pi(|v|^2 v)$ (2)

Let us introduce the following notations

u(t) = (p(t), q(t)), $(p(t), q(t)) = (\Lambda^{-1/2} \partial_t v, \Lambda^{1/2} v)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Consider the following maps on $H^s_{\pi}(X, \mathbb{C})^2$

$$H_0(p,q) = \frac{1}{2} \int_X |\Lambda^{1/2}p|^2 + |\Lambda^{1/2}q|^2 dx$$

$$H_{NL}(p,q) = -\frac{1}{4} \int_X |\Lambda^{-1/2}q(x)|^4 dx$$

One checks that

$$(\partial_t^2 + \Lambda^2) v = \pi(|v|^2 v)$$

is equivalent to

$$u'(t) = X_{H_0+H_{NL}}(u(t))$$

프 > 프

A D > A P > A

After the bicaracteristic principle, one has

$$\mathsf{sp}(T) \subset \bigcup_{k \geq 1} \left[\frac{2\pi}{\tau} k + \alpha - \frac{\beta}{k}, \frac{2\pi}{\tau} k + \alpha + \frac{\beta}{k}
ight]$$

For the purpose of the talk, we suppose that the *k*-th spectral packet has only one eigenvalue λ_k . Le Π_k be the *k*-th spectral projector. Remind that $\Lambda = \sqrt{T^2 + m^2}$, thus

$$H_{0}(p,q) = \frac{1}{2} \int_{X} |\Lambda^{1/2}p|^{2} + |\Lambda^{1/2}q|^{2} dx$$

= $\frac{1}{2} \sum_{k \ge 1} \sqrt{\lambda_{k}^{2} + m^{2}} \underbrace{\left(||\Pi_{k}p||_{L^{2}}^{2} + ||\Pi_{k}q||_{L^{2}}^{2} \right)}_{J_{k}(p,q)}$

Remark : $\{J_k, J_\ell\} = 0$ for all k, ℓ

We will say that the spectrum (λ_k) is nonresonant if

$$\forall n \geq 3 \quad \forall r \in [[1, n-1]] \quad \forall k_1, \ldots, k_n \geq 1$$

$$|\lambda_{k_1} + \cdots + \lambda_{k_r} - \lambda_{k_{r+1}} - \cdots - \lambda_{k_n}| \neq \mathbf{0}$$

To be honnest, the definition is more complicated but implies the previous relation (see works of Bambusi, Grébert, Paturel, Delort, Szeftel,...).

After a Delort-Szeftel's "Tour de force", the spectrum of $\Lambda = \sqrt{T^2 + m^2}$ is nonresonant for generic m > 0.

$$H_0(p,q)=rac{1}{2}\sum_{k\geq 1}\sqrt{\lambda_k^2+m^2}J_k(p,q)$$

21

For generic m > 0, for all $r \ge 3$ and $s \gg 1$, there is a canonic map Φ in the neighborhood of the origin of $H^s_{\pi}(X, \mathbb{C})^2$ such that

i)
$$(H_0 + H_{NL}) \circ \Phi = H_0 + Z + R$$

ii)
$$\{Z, J_k\} = 0$$
 for all $k \ge 1$

iii) $||X_R(p,q)||_{H^s} \leq C||(p,q)||_{H^s}^r$

Consider $w(t) = \Phi^{-1}(u(t))$, as Φ is canonic we have

$$u'(t) = X_{H_0+H_{NL}}(u(t)) \quad \Leftrightarrow \quad w'(t) = X_{H_0+Z+R}(w(t))$$

 \Rightarrow we will study the almost global existence of w(t)

Remark $(H_0 + H_{NL})(u(t)) = (H_0 + Z + R)(w(t)) = CST$

Remind $(H_0 + H_{NL}) \circ \Phi = H_0 + Z + R$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

An equivalent norm on $H^s_{\pi}(X, \mathbb{C})^2$ is

$$E_{s}(w) := \sum_{k \geq 1} \lambda_{k}^{2s} ||\Pi_{k}(w)||_{L^{2}}^{2} = \sum_{k \geq 1} \lambda_{k}^{2s} J_{k}(w) = ||T^{s}w||_{L^{2}}^{2}$$

because T is a pdo of order 1

We want to prove that $E_s(w(t))$ has a weak growth. As

$$w'(t) = X_{H_0+Z+R}(w(t))$$

we have

$$\frac{d}{dt}E_s(w(t)) = \{E_s, H_0 + Z + R\}w(t)$$

Almost global existence 2/3

$$\{E_{s}, H_{0}\} = \frac{1}{2} \sum_{k,\ell \ge 1} \sum_{k \ge 1} \lambda_{k}^{2s} \sqrt{\lambda_{\ell}^{2} + m^{2}} \{J_{k}, J_{\ell}\} = 0$$

$$\{E_{s}, Z\} = \sum_{k \ge 1} \lambda_{k}^{2s} \{J_{k}, Z\} = 0$$

Thus

$$\frac{d}{dt}E_{s}(w(t)) = \{E_{s}, H_{0} + Z + R\}w(t)$$

= $\{E_{s}, H_{0}\}w(t) + \{E_{s}, Z\}w(t) + \{E_{s}, R\}w(t)$
= $\{E_{s}, R\}w(t)$

$$\leq C||w(t)||_{H^s}^{r+1}$$

æ

ヘロト 人間 とくほとく ほとう

Then, by integration

$$E_{s}(w(t)) - E_{s}(w(0)) \leq Ct \sup_{0 \leq \tau \leq t} ||w(t)||_{H^{s}}^{r+1}$$
$$||w(t)||_{H^{s}}^{2} - ||w(0)||_{H^{s}}^{2} \leq Ct \sup_{0 \leq \tau \leq t} ||w(t)||_{H^{s}}^{r+1}$$

That gives $||w(t)||_{H^s} \leq K\varepsilon$ if $||w(0)||_{H^s} = \varepsilon$ and $t \leq C\varepsilon^{-r+1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

On a Toeplitz structure (X, Σ, π) with hypothesis on the periodicity of bicaracteristic curves, one consider

$$(\partial_t^2 + \Lambda^2) \mathbf{v} = \pi(|\mathbf{v}|^2 \mathbf{v}) \tag{3}$$

The new variable $u = (\Lambda^{-1/2} \partial_t v, \Lambda^{1/2} v)$ satisfies the Hamiltonian equation

$$u'(t) = X_{H_0+H_{NL}}(u(t))$$
 $u(t) \in H^s_{\pi}(X, \mathbb{C}^2)$

For almost all m > 0, spectrum of $\Lambda = \sqrt{T^2 + m^2}$ is nonresonant. A normal form procedure is possible

$$H_0 + H_{NL} \longrightarrow H_0 + Z + R$$

Finally, weak growth of Sobolev norms for long time.

Thank you.

・ロン ・四 ・ ・ ヨン ・ ヨン