

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Nonlinearity and interactions in bosonic systems

Jean-Claude Garreau

GDR « Dynamique Quantique » Toulouse, 8/2/2012

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Laboratoire de Physique des Lasers, Atomes et Molécules Lille

Benoît Vermersch Maxence Lepers Quentin Thommen Véronique Zehnlé JCG

Interactions and chaos in quantum systems

Linear quantum mechanics x nonlinear classical mechanics

Schrödinger

Newton

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left(\frac{P^2}{2M} + V(x)\right)\psi(x,t)$$

- ψ dynamical variable
- x parameter of the potential

 $V(x) \propto x^n \quad n \ge 3$ is **linear**

No sensitivity to initial conditions \rightarrow no chaos in the classical sense

$$M\frac{d^2x(t)}{dt^2} = -\frac{dV(x(t))}{dx}$$

x is the parameter of the potential *and* the dynamical variable

 $V(x) \propto x^n \quad n \ge 3$

is **nonlinear**

Sensitivity to initial conditions \rightarrow chaos

Many-body quantum mechanics

n identical particles

$$i\hbar \frac{\partial \Psi(x_1, \dots, x_n, t)}{\partial t} = \left(\frac{{P_1}^2}{2M} + \dots + \frac{{P_n}^2}{2M} + V(x_1, \dots, x_n)\right) \Psi(x_1, \dots, x_n, t)$$
$$\Psi(x_1, \dots, x_n, t)$$

symmetric (bosons) or asymmetric (fermions) combination of

 $\psi_1(x_1,t)\dots\psi_n(x_n,t)$

is still **linear**, but very hard to solve

For fermions: no "simple" approximation

For bosons: "mean-field" approach

Model the effect of particle-particle interactions on a "typical" particle by its mean effect as a potential acting on the typical particle

The Gross-Pitaevskii equation

$$i\frac{\partial\psi(x,t)}{\partial t} = \left(\frac{P^2}{2} + V(x) + g|\psi(x,t)|^2\right)\psi(x,t)$$

Mean-field term is **nonlinea**r

Sensitivity to initial conditions \rightarrow **chaos** in the classical sense???

Classical chaos in a tilted lattice

. Lepers et al., Tracking Quasiclassical Chaos in Ultracold Boson Gases, Phys. Rev. Lett. 101, 144103 (2008)

Poincaré section

 $I_{-1} \ I_0 \ I_1$ $\theta_{-1} \theta_0 \theta_1$

 $I_{-1} = 0.1; \theta_{-1} = \theta_0$

$$H = \frac{P^2}{2} + V_0 \cos x + Fx + g |\psi|^2$$
$$H = H_0(I) + \epsilon \sum_n (V_n(I) + \cos(\theta_{n+1} - \theta_n))$$

• "KAM" form

"Quasi-classical" chaos

9/29. Thommen *et al., Classical Chaos with Bose-Einstein Condensates in Tilted Optical Lattices*, Phys. Rev. Lett. **91**, 210405 (2003). "Traditional" definition of quantum chaos: *Quantum* systems whose *classical* counterpart is chaotic \rightarrow no S.I.C. (no "real" chaos)

Quantum "chaotic" kicked rotor

classical chaos (KAM) in the kicked rotor

KAM chaos in a (quantum) BEC

Interactions and disorder in quantum systems

Quantum dynamics in (perfect) lattices

Perfect crystal: Delocalized Bloch waves \rightarrow diffusive dynamics

Conducteur

Quantum dynamics in disordered lattices

Disordered crystal

Insulator

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON Bell Telephone Laboratories, Murray Hill, New Jersey (Received October 10, 1957)

"Tight-binding" model of a quantum lattice

$$Hu_n = V_n u_n + T_n u_{n+1} + T_n u_{n-1}$$

"Diagonal" disorder
$$-\frac{W}{2} < V_n < \frac{W}{2}$$

Consequences of the Anderson model

• 1D : Exponential localization of the eigenfunctions

$$\psi \sim \exp(|x - x_0|/\ell)$$

- Suppression of the diffusion \rightarrow Insulator
- $3D \rightarrow \ll$ Mobility edge $\gg \rightarrow$ Metal-insulator transition

Limitations of the Anderson model

- "One-particle" model \rightarrow No particle interactions
- Zero-temperature
- Oversimplified description of a crystal lattice

Experiments in condensed-matter and ultracold atoms

Condensed matter

- Decoherence (ill-defined quantum phases)
- No access to the wave function
- Electron-electron coulombian interactions

Ultracold atoms

- Control of decoherence
- Access to probability distributions (and even the full wavefunction)
- Control of interactions (Feschbach resonance)

Experiments with ultracold atoms

1D: J. Billy *et al.*, *Direct observation of Anderson localization of matter-waves in a controlled disorder*, Nature 453, 891 (2008)

"3D" : F. Jendrzejewski *et al., Three-dimensional localization of ultracold atoms in an optical disordered potential,* arXiv/1108.0137 (2011)

"**3D**": S. S. Kondov *et al., Three-Dimensional Anderson Localization of Ultracold Fermionic Matter*, Science 334, 66 (2011)

Experiments with the quasiperiodic kicked rotor

The quasiperiodic kicked rotor is a "quantum simulator" for the Anderson model

Direct measurement of probability distributions

I. Chabé et al., Experimental Observation of the Anderson Metal-Insulator Transition with Atomic Matter Waves, Phys. Rev. Lett. 101, 255702 (2008)
G. Lemarié et al., Critical State of the Anderson Transition: Between a Metal and an Insulator, Phys. Rev. Lett. 105, 090601 (2010)
M. Lopez et al., Experimental Test of Universality of the Anderson Transition, arXiv/1108.0630v1 (2011) (in press)

19/29

Adding particle-particle interactions

$$i\frac{\partial u_n}{\partial t} = u_{n+1} + u_{n-1} + V_n u_n + g|u_n|^2 u_n$$
$$(V_n + g|u_n|^2) u_n$$

« DANSE » : Discrete Anderson Nonlinear Schrödinger Equation

 $g \sim W$ $(V_n + g|u_n|^2)u_n$

• Nonlinearity and disorder can (partially) compensate each other!

Lattice site

• (Sub-)diffusion induced by interactions

Nonlinear effects

Effects of the nonlinearity: Nonlinear trapping (self-trapping)

 $g \gg W \qquad (V_n + g |u_n|^2) u_n$

• Large population difference decouples neighbor sites

• Diffusion inhibited by interactions

Literature ≥ 2008

PRL 100, 084103 (2008)

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS

week ending 29 FEBRUARY 2008

week ending

Absence of Wave Packet Diffusion in Disordered Nonlinear Systems

G. Kopidakis,^{1,2} S. Komineas,¹ S. Flach,¹ and S. Aubry^{1,3}

¹Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany ²Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece ³Laboratoire Léon Brillouin (CEA-CNRS), CEA Saclay, 91191-Gif-sur-Yvette, France (Received 11 October 2007; published 27 February 2008)

PRL 102, 024101 (2009)

PHYSICAL REVIEW LETTERS

Universal Spreading of Wave Packets in Disordered Nonlinear Systems

S. Flach, D.O. Krimer, and Ch. Skokos

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany (Received 30 May 2008; published 14 January 2009)

A Letters Journal Exploring the Frontiers of Physics

EPL, **91** (2010) 30001 doi: 10.1209/0295-5075/91/30001 www.epljournal.org

August 2010

The crossover from strong to weak chaos for nonlinear waves in disordered systems

T. V. LAPTYEVA, J. D. BODYFELT^(a), D. O. KRIMER, CH. SKOKOS and S. FLACH

Max Planck Institute for the Physics of Complex Systems - Nöthnitzer Straße 38, D-01187 Dresden, Germany, EU

received 14 June 2010; accepted in final form 20 July 2010 published online 16 August 2010 $\,$

Literature ≥ 2008

Valid for a given initial state Nonlinearity \rightarrow sensitivity to the initial state

- Smooth initial state favors chaos and thus diffusion
- Peaked initial state favors self-trapping

DANSE in an finite lattice

Initial state occupies uniformly L_0 sites with random phases

Scaling

For moderate values of the disorder, one can find an "effective localization length"...

... which obeys a scaling law

"Phase diagram"

~ Independent of the initial state!

28/29 Vermersch and J. C. Garreau, *Sensitivity to the initial state of interacting ultracold bosons in disordered lattices*, arXiv/1111.4081 (2011)

- Bose-Einstein condensation opens the way to experimentally realizable nonlinear quantum systems
- Quantum systems displaying sensitivity to initial conditions \rightarrow "quasiclassical" chaos
- Dynamics much more dependent on the initial state than in the linear case
- We probably need some "rewording" to adapt to nonlinear quantum dynamics (*fundamental principles are not challenged*)
- Combination of non local quantum effects and quasiclassical chaos

$$\Psi(t = 0) = \psi_1(x_1)\psi_2(x_2) + \psi_1(x_2)\psi_2(x_1)$$

$$\Psi(t) = ?$$

How entanglement evolves under chaotic dynamics?

