Macroscopic superpositions in the presence of phase noise in a Bose Josephson junction

Giulia Ferrini

ATER at LKB Jussieu

Gdr «Dynamique quantique», 9th February 2012

Work done at : LPMMC, Grenoble

With : Dominique Spehner, Anna Minguzzi, Frank W.J.Hekking

Bose-Einstein Condensation

BEC first observed in 1995

Nobel prize in 2001 to Ketterle, Wieman, Cornell

Typical parameters

temperature 10 - 100 nK density $10^{13} - 10^{14} \text{ cm}^{-3}$ number of atoms 10^3 - 10^7 size $10 \ \mu \text{m}$ - 1 mm lifetime 10 s

Condensed species

⁸⁷Rb

Anderson et al., Science '95 Davis et al. PRL '95

Cold atoms

Extremely high degree of control on the experimental parameters

- Interaction strength;
- Trap geometry;
- Atomic species...

- Applications for :

 Low dimensional regimes ;
 - Non-linear physics (solitons...);
 - Quantum simulators ;
 - Quantum metrology (atomic clocks, magnetic field sensors, rotation sensors, interferometers...)

The Bose Josephson junction : N bosons in 2 modes

Ultracold atoms in a double-well potential

- E_1 , E_2 : onsite energies;
- U_1 , U_2 : interaction energies;
- K : tunneling

Heidelberg [C. Gross, M. Oberthaler]; Haifa [J. Steinhauer]; Cambridge [W. Ketterle, D. E. Pritchard];

EXTERNAL BOSE JOSEPHSON JUNCTION

The Bose Josephson junction : N bosons in 2 modes

...or atoms in two different hyperfine states

- E_1 , E_2 : hyperfine energies;
- U_1 , U_2 : interaction energies;
- U_{12} : cross-interaction energy ;
- K , K^{\star} : coupling

Heidelberg [C. Gross, M. Oberthaler]; Munich + Paris [P. Treutlein, T. Hansch, J. Reichel]; Boulder [C. E. Wieman ; E. A. Cornell];

INTERNAL BOSE JOSEPHSON JUNCTION

Mean field regime: oscillations and self-trapping

Theory : [A. Smerzi et al, PRA 79, 4951 (1997)].

n_{0}

New experiments: [Zibold et al, PRL 105, 204101 (2010)]

Why is this interesting?

Analogy with the superconducting Josephson junction
 [S. Giovanazzi et al, PRA 84, 4521 (2000),
 S. Levy et al, Nature 449, 06186 (2007)].

- Transport, chaos & entanglement
 [C. Weiss et al, PRL 100, 140408 (2008)]
- Generation of many-body entangled states
 [M. Kitagawa et al, PRL 34, 3974 (1986),
 G. Ferrini et al, PRA 78 023606 (2008)]
- Applications to metrology
 [C. Gross et al, Nature 464, 1165 (2010)
 G. Ferrini et al, PRA 84, 043628 (2011)]

Many sources of noise...

Phase noise [G.Ferrini et al, PRA 82, 033621 (2010) ; PRA 84, 043628 (2011)]

fluctuations of the energies of the two modes

- Particle losses [A. Sinatra et al, Eur. Phys. J. D 4, 247 (1998)];
- Collisions with thermal atoms [J. Anglin et al, PRL 79, 6 (1997)];

Outlines

- Introduction to the Bose Josephson junction (BJJ) in the quantum regime
- Generation of entangled states

Decoherence effects induced by phase noise

Applications in interferometry

Introduction to the Bose Josephson junction

The Bose Josephson junction

EXTERNAL BOSE JOSEPHSON

INTERNAL BOSE JOSEPHSON

- • E_1 , E_2 : onsite energies;
- U_1 , U_2 : interaction energies;
- U_{12} : cross interaction energy (only in the internal case) ;
- •K: coupling

$$\hat{H}^{(0)} = E_1 \hat{a}_1^{\dagger} \hat{a}_1 + E_2 \hat{a}_2^{\dagger} \hat{a}_2 - (K \hat{a}_1^{\dagger} \hat{a}_2 + K^* \hat{a}_2^{\dagger} \hat{a}_1) + U_1 \hat{a}_1^{\dagger} \hat{a}_1^{\dagger} \hat{a}_1 \hat{a}_1 + U_2 \hat{a}_2^{\dagger} \hat{a}_2^{\dagger} \hat{a}_2 \hat{a}_2 + U_{12} a_1^{\dagger} a_1 a_2^{\dagger} a_2$$

Mapping into a spin problem

$$N = a_{1}^{\dagger}a_{1} + a_{2}^{\dagger}a_{2} \qquad J^{2} = N/2(N/2 + 1)$$

$$\hat{J}_{z} = \frac{1}{2}(\hat{a}_{1}^{\dagger}\hat{a}_{1} - \hat{a}_{2}^{\dagger}\hat{a}_{2}) \equiv \hat{n} \qquad \text{Number imbalance}$$

$$\hat{J}_{y} = -i\frac{1}{2}(\hat{a}_{1}^{\dagger}\hat{a}_{2} - \hat{a}_{2}^{\dagger}\hat{a}_{1}) \qquad \text{Current}$$

$$\hat{J}_{x} = \frac{1}{2}(\hat{a}_{1}^{\dagger}\hat{a}_{2} + \hat{a}_{2}^{\dagger}\hat{a}_{1}) \qquad \text{Tunneling}$$

$$\hat{H}^{(0)} = \chi \hat{J}_{z}^{2} - \lambda \hat{J}_{z} - 2K\hat{J}_{x}$$

with
$$\lambda = (E_1 - E_2) + (N - 1)\frac{U_1 - U_2}{2}$$

 $\chi = U_1 + U_2$ external BJJ $\chi = U_1 + U_2 - 2U_{12}$ internal BJJ

[G.Milburn et al, PRA 55, 4318 (1997)].

Possible basis

Fock states

$$|N_1, N_2\rangle \equiv |n = \frac{N_1 - N_2}{2}\rangle$$

$$\hat{J}_z |n\rangle = n|n\rangle \qquad -N/2 \le n \le N/2$$

• SU(2) coherent states

$$\begin{aligned} |\theta,\phi\rangle &= \frac{1}{2^{\frac{N}{2}}} \sum_{n=-N/2}^{N/2} \binom{N}{\frac{N}{2}+n}^{\frac{1}{2}} \alpha^{(\frac{N}{2}+n)} |n\rangle \\ &= \frac{(\cos\frac{\theta}{2}a_1^{\dagger} + \sin\frac{\theta}{2}e^{-i\phi}a_2^{\dagger})^N}{\sqrt{N!}} |0\rangle \equiv |\alpha\rangle \end{aligned}$$

> phase states : $|\phi\rangle\equiv|\theta=\frac{\pi}{2},\phi
angle$

on the equator

Ground state of a Bose Josephson junction

$$\hat{H}^{(0)} = \chi \hat{J}_z^2 - \lambda \hat{J}_z - 2K\hat{J}_x = \chi (\hat{J}_z - \frac{\lambda}{2\chi})^2 - 2K\hat{J}_x$$

 $\chi \gg KN$ Fock regime

$$\chi N \ll K$$
 Rabi regime

 $|\psi_{GS}
angle = |n
angle$ Fock state $|\psi_{GS}
angle = |\phi = 0
angle$

[A. J. Leggett, Rev Mod Phys 73, 307 (2001)]

number fluctuations diagram

$$\langle \psi_{GS} | \Delta^2 n | \psi_{GS} \rangle$$

 $n = \operatorname{Int} \left[\lambda / (2\chi) \right]$

[G.Ferrini et al, PRA 78, 023606 (2008)].

Entangled states in a BJJ

From a coherent state to...

Macroscopic superpositions of coherent states

e.g.

Phase-cat state

$$|\psi
angle = rac{1}{\sqrt{2}} \left(|arphi = 0
angle + e^{i\gamma} |arphi = \pi
angle
ight)$$

Squeezed states

Generally speaking : ρ entangled if it cannot be written as

$$\boldsymbol{\rho} = \sum_{k} P_{k} \boldsymbol{\rho}_{k}^{(1)} \otimes \boldsymbol{\rho}_{k}^{(2)} \otimes \ldots \otimes \boldsymbol{\rho}_{k}^{(N)}$$

Creation of entangled states

Quenched dynamics

$$ullet$$
 Initial state : phase state $\ket{\psi(t=0)}=\ket{\phi}$

- Quench : set K = 0
 - Internal BJJ : switch-off the coupling
 - External BJJ : suddenly raise the barrier
- Short times $t \sim 1/(\chi N^{\frac{2}{3}})$: squeezed state [M. Kitagawa et al, PRL **34**, 3974 (1986)].

•
$$t=T=2\pi/\chi$$
 : initial coherent state

Creation of macroscopic superpositions

•
$$t_q \equiv \frac{\pi}{\chi q} \equiv \frac{T}{2q}$$
:

$$|\psi^{(0)}(t_q)\rangle = \sum_{k=0}^{q-1} c_k |\phi_k\rangle \qquad c_k = 1/q \sum_{q-1}^{m=0} e^{i\frac{\pi k(N+k)}{q}} e^{-i\frac{\pi m^2}{q}}$$

q-component macroscopic superposition

The first one:
$$q_{\max} \sim \frac{2\pi (N/2)}{\sqrt{N}/2} \sim \sqrt{N}$$
 components, at time: $t_{q_{max}} \sim \frac{T}{\sqrt{N}}$

[G. Ferrini et al, PRA 78 023606 (2008); F. Piazza et al, PRA 78 051601 (2008)].

Decoherence

What if noise is disturbing the quenched dynamics?

Phase noise: fluctuations of the energies of the two modes

noise hamiltonian commutes with the unitary part

Phase noise during the quenched dynamics

At each realization

$$|\psi(t)\rangle = e^{i\int_0^t d\tau \lambda(\tau)\hat{J}_z} |\psi^{(0)}(t)\rangle = e^{-i\phi(t)\hat{J}_z} |\psi^{(0)}(t)\rangle$$

$$Potation of the quantum state by $\phi(t) = -\int_0^t d\tau \lambda(\tau)$$$

Phase noise during the quenched dynamics

Then: average over the realizations

 $\hat{\rho}(t) = \overline{|\psi(t)\rangle\langle\psi(t)|} = \int dP \left[\lambda\right] |\psi(t)\rangle\langle\psi(t)|$

Density matrix of a macroscopic superposition

Effect of noise on macroscopic superpositions

Effect of noise on macroscopic superpositions

Why the «same» rate for decoherence and relaxation?

Pictorial interpretation: $\hat{H}_{int} = -\lambda(t)\hat{J}_z$

Noise acts perpendicularly to the plane of the superpositions

See also : [R. Chaves et al, arXiv:1112.2645 (2011)]

Consequences for interferometry

BJJ as an interferometer

Goal: to estimate a phase shift Θ with the highest possible precision.

Interferometer = *ROTATION OF THE INPUT STATE*

$$|\psi\rangle_{out} = e^{-iJ_y\frac{\pi}{2}}e^{iJ_z\theta}e^{iJ_y\frac{\pi}{2}}|n = -\frac{N}{2}\rangle$$

= $e^{-iJ_x\theta}|n = -\frac{N}{2}\rangle$
Estimate Θ from: $\langle \hat{J}_z \rangle_{out} = \frac{N}{2}\cos\theta$

Ramsey fringes

Limits on the precision and useful states

General interferometer: $|\psi\rangle_{out} = e^{-i\theta J_{\vec{n}}} |\psi\rangle_{in}$

General bound on the phase sensitivity : Cramer-Rao lower bound (single measure)

$$\Delta \theta \ge \frac{1}{\sqrt{F_Q[|\psi\rangle_{in}, \hat{J}_n]}} \equiv \Delta \theta_{\text{best}}$$

 $F_Q[\psi, \hat{J}_n] = 4\langle \psi | \Delta^2 \hat{J}_{\vec{n}} | \psi \rangle$ (pure states) QUANTUM FISHER INFORMATION

defines the degree of usefulness of a quantum states for interferometry

$$\begin{array}{|c|c|} \Delta\theta \langle \Delta \hat{J}_{\vec{n}} \rangle \geq 1/2 \end{array} & \textit{generalized uncertainty principle} \\ |\psi\rangle = |\phi\rangle & F_Q = N \implies \Delta\theta_{\text{best}} = 1/\sqrt{N} \equiv \Delta\theta_{\text{SN}} \\ & \text{Shot noise limit} \\ |\psi\rangle = (|\phi\rangle + |-\phi\rangle)/\sqrt{2} & F_Q = N^2 \implies \Delta\theta_{\text{best}} = 1/N \equiv \Delta\theta_{\text{HL}} \\ & \text{Heisenberg limit} \end{aligned}$$

[Braunstein et al, PRL 72 3439 (1994), L. Pezzé et al, PRL 102 100401 (2009)].

Squeezed states as input states of an interferometer

$$F_Q \sim N^{5/3} \implies \Delta \theta_{\text{best}} < \Delta \theta_{SN}$$

Recent experiments beating the shot noise limit with squeezed states

[C. Gross et al, Nature 464, 1165 (2010)]

Fisher information during the quenched dynamics

Fisher information during the noisy quenched dynamics

Effect of phase noise on the Fisher information

20000 N^2 $F_{Q_{max}} \sim \mathrm{cost} N^{\beta}$ 15000 10000 $F_{Q_{max}}$ 5000 N50 150 200 100 13 2.0 t/71.5 0.3 0.1 0.2 0.4 0.5 1.0 \mathcal{O} $\Delta\lambda$ 0.5 $\log F_{Q_{max}} \propto \beta \log N$ 0.0 3 12 6 9 15

Better than the shot noise limit at intermediate noise strength

Scaling of $F_Q(t_{q_{max}} \sim T/\sqrt{N})$

 $0 < \Delta \lambda \lesssim 10 \text{Hz} \quad (\chi = \pi \text{Hz})$

Conclusions

Creation of macroscopic superpositions by the quenched dynamics of a BJJ

Phase cat states are robust under phase noise!

Decoherence rate does not depend on the number of particles

- Quantum Fisher information during the quenched dynamics
 - Application to interferometry : at intermediate noise strength quantum correlations useful for interferometry survive BEYOND THE SPIN SQUEEZING REGIME

THANK YOU FOR YOUR ATTENTION!

Usefulness of the quantum state during the quenched dynamics

To assign an intrinsic degree of useful correlations : optimized quantum Fisher information

$$F_Q\left[\hat{\rho}_{\rm in}\right] \equiv \max_{\hat{n}} F_Q\left[\hat{\rho}_{\rm in}, \hat{J}_n\right] = 4\gamma_{\rm max}$$

with γ_{\max} the largest eigenvalue of the covariance matrix

$$\gamma_{ij}\left[\hat{\rho}_{in}\right] = \frac{1}{2} \sum_{l,m,p_l+p_m>0} \frac{(p_l - p_m)^2}{p_l + p_m} \Re e \left[\langle l | \hat{J}_i | m \rangle \langle m | \hat{J}_j | l \rangle \right]$$

[P. Hyllus et al, PRA 82 012337 (2010)].

Effect of phase noise on spin squeezing

Which states produced during the quenched dynamics are useful for interferometry ?

Squeezing as a function of time

$$t \sim 1/(\chi N^{\frac{2}{3}}) \implies \xi^2 \approx \frac{1}{2} \frac{3}{N}^{\frac{2}{3}}$$

[Kitagawa et al, PRA 47, 5138 (1993)]

Angle of rotation of the optimizing direction

$$\hat{J}_{\vec{n}} = \cos \alpha \hat{J}_y + \sin \alpha \hat{J}_z$$

$$\overline{\alpha} = \frac{1}{2} \arctan \frac{\langle \hat{J}_y, \hat{J}_z \rangle}{\langle \hat{J}_y^2 \rangle - \langle \hat{J}_z^2 \rangle} + k \frac{\pi}{2}$$

 $N = 400; \quad \chi = 0.13 \pi \text{Hz}$

BJJ as an interferometer

Goal: to estimate a phase shift Θ with the highest possible precision.

Interferometer = ROTATION OF THE INPUT STATE

$$\langle \psi \rangle_{out} = e^{-iJ_y \frac{\pi}{2}} e^{iJ_z \theta} e^{iJ_y \frac{\pi}{2}} |n = -\frac{N}{2} \rangle = e^{-iJ_x \theta} |n = -\frac{N}{2} \rangle$$

Estimate Θ from: $\langle \hat{J}_z \rangle_{out} = \frac{N}{2} \cos \theta$

With which precision? $\Delta \theta = \frac{\Delta \hat{J}_{z_{out}}}{|\partial \langle \hat{J}_{z_{out}} \rangle / \partial \theta|}$

input COHERENT STATE

 $\Delta \hat{J}_{z\,out} = \sqrt{N}/2$

BJJ as an interferometer

Goal: to estimate a phase shift Θ with the highest possible precision.

Interferometer = ROTATION OF THE INPUT STATE

$$\psi\rangle_{out} = e^{-iJ_y\frac{\pi}{2}}e^{iJ_z\theta}e^{iJ_y\frac{\pi}{2}}|n = -\frac{N}{2}\rangle = e^{-iJ_x\theta}|n = -\frac{N}{2}\rangle$$

Estimate Θ from: $\langle \hat{J}_z \rangle_{out} = \frac{N}{2} \cos \theta$

With which precision? $\Delta \theta = \frac{\Delta \hat{J}_{z_{out}}}{|\partial \langle \hat{J}_{z_{out}} \rangle / \partial \theta|}$

input SQUEEZED STATE $\Delta \hat{J}_{zout} < \sqrt{N}/2$

[Wineland et al, PRA 50 67 (1994)].

Best possible sensitivity:

$$\Delta \theta_{\rm best} < \Delta \theta_{SN}$$

Better that the shot noise limit !

0 0

BJJ as an interferometer : experiment

SQUEEZED STATE: $\xi \equiv \Delta \theta / \Delta \theta_{SN} \simeq 0.87$ (15% precision enhancement)

[C. Gross et al, Nature 464, 1165 (2010)]

Effect of phase noise on the Fisher information

- **★** Two component cat state $t = t_2 = T/4$
- O Multicomponent cat states $t = t_{\text{max}} \simeq T/\sqrt{N}$
- X Squeezed states $t = t_{\rm squ} \sim T/N^{2/3}$

Particle losses

Master equation :
$$\partial_t \hat{\rho} = -\frac{i}{\hbar} \left[H^{(0)}, \hat{\rho} \right] + \gamma \sum_{k=1}^2 \left(\left[\hat{a}_k, \hat{\rho} \hat{a}_k^{\dagger} \right] + \left[\hat{a}_k \hat{\rho}, \hat{a}_k^{\dagger} \right] \right)$$

Solution : following K. Pawlovski et al, PRA 81 013620 (2010)

Particle losses + phase noise :

$$\hat{\rho}_{k,m-k}^{k+r,m-(k+r)}(t) = e^{i\overline{\Lambda}rt}e^{-\frac{a(t)^2r^2}{2}}\frac{N!e^{-2\gamma mt}}{2^{(N-m)}(N-m)!} \left[\frac{1-e^{-2\gamma t}e^{iU_1rt}}{1-iU_1r/(2\gamma)} + \frac{1-e^{-2\gamma t}e^{-iU_2rt}}{1+iU_2r/(2\gamma)}\right]^{(N-m)} \times \hat{\rho}_{k,m-k}^{(0)\ k+r,m-(k+r)}(t),$$

Visibility decay in the presence of noise

$$\tau_{noise} \equiv \frac{1}{\Delta E(0)} = \left(\frac{1}{\tau_{deph}^2} - (N-1)\chi^2\right)^{-\frac{1}{2}}$$

χ (Hz)	τ_{deph} (ms)	$\tau_{noise} (ms)$
$\pi \cdot 0.05 \; (B = 9.2G)$	109.573	119.769
$\pi \cdot 0.075 \; (B = 9.16G)$	73.7729	82.4899
$\pi \cdot 0.13 \; (B = 9.13G)$	66.9390	93.2656
$\pi \cdot 0.25 \; (B = 9.11G)$	32.0688	37.0688

Particle losses

Classical noise vs particle losses

Fit of experimental data

Fit of experimental data with Sinatra-Castin model for losses of particles

Fit of experimental data our model for the phase noise

N = 400;