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Anosov map
Let (M,ω) a symplectic compact manifold, dimM = 2d ,
f : M→M a smooth symplectic Anosov diffeom.: there exists a Df -invariant
decomposition TM = Es ⊕Eu, λ > 1,∥∥Df/Es

∥∥≤ 1
λ
,

∥∥∥Df −1
/Eu

∥∥∥≤ 1
λ
,

Examples

Arnold Cat map: f0 :

(
q
p

)
→
(

2 1
1 1

)(
q
p

)
on T2 = (R/Z)2

and its perturbations f = g ◦ f0, ‖g − Id‖C1 � 1, preserving ω = dq∧dp.
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Mixing

p
Es

q

Eu

ϕ

ψ

ϕ ◦ f −n

Theorem (Anosov,Ruelle,..)
f is mixing with exponential decay of correlations:

∃α < 1,∀ψ,ϕ ∈ C∞ (M) , 〈ψ,ϕ ◦ f −n〉L2(M) =

(∫
ψ

)(∫
ϕ

)
+O (α

n)

This implies Central limit theorem, random aspects, irreversible convergence
towards equilibrium, ...
Anosov diffeomorphism is the basic model of “chaotic dynamics”.
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Question of a natural quantization
Question (*): Existence of a sequence h̄ = h̄j →j→∞

0 and operators and spaces

F̂h̄ : Hh̄→Hh̄, with dimHh̄ < ∞, s.t.
1 F̂h̄ is “almost unitary”:
∃εh̄→ 0, ∀h̄, ∀u ∈Hh̄, (1− εh̄)‖u‖ ≤

∥∥∥F̂h̄u
∥∥∥≤ (1+ εh̄)‖u‖, ,

2 “Gutzwiller formula”: , ∃θ < 1, ∀n, ∀h̄,

Tr
(
F̂ n

h̄

)
= ∑

x=f n(x)

eiSn,x /h̄√
|Det(1−Df n

x )|
+Ch̄θ

n

with action Sn,x = ”
∮
pdq−Hdt” defined later.

Proposition (Unicity)
If F̂h̄ exists, then its spectrum (with multiplicity) is unique. In particular dimHh̄
is unique.

proof: use: if F ,F ′ are matrices with ∀n, |Tr(F n)−Tr(F ′n)|< Cθ n then
F ,F ′ have same spectrum on |z |> θ . So above, θ < 1 is important.
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Existence
What is known for Anosov non linear map f : T2→ T2 (Keating, S. Debievre,
90’):

Weyl quantization (or geometric quantization) gives F̂h̄ : Hh̄→Hh̄
unitary, dimHh̄ = 1

2πh̄ ,
Gutzwiller formula has a remainder h̄θ n, but θ = eh0 > 1, with ”topological
entropy” h0 > 0.
Exception: the linear cat map map f0, for which θ = 0 (then answer to (*) is
yes).

Theorem ((*) M.Tsujii, F.F.)
With assumptions:

1 [ω] ∈ H2 (M,Z),
2 1 is not eigenvalue of the linear map f∗ : H1 (M,R)→ H1 (M,R)

then answer to Question (*) is yes, for N = 1
2πh̄ ∈ N large enough. The

construction uses “geometric pre-quantization” of f . We have

dimHh̄ ∼
1

(2π h̄)d Volω (M)

(
=
∫

M
e

ω

2πh̄ Todd(TM)

)
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Geometric pre-quantization of f

Theorem (Kostant, Souriau, Kirillov 70’, Zelditch 05)
With assumptions 1,2 above, there exists (almost unique):

1 U (1)-principal bundle P π→M with connection 1-form A,
curvature dA = (π∗ω)

2 a “prequantum map” f̃ : P → P
with f ◦π = π ◦ f̃ , f̃ ∗A = A, f̃

(
eiθp

)
= eiθ f̃ (p)

q

θ

2π

0

p A = qdp− dθ

2π

dA = dq∧dp = ω

M
f

f̃

x

Ker(A)

π

P



Remarks
The action ei2πSn,x of a periodic point is:

f̃

p
f̃

P

M

f̃ n(p)

e i2πSn,x

f

fx = f n(x)

f̃ is a partially hyperbolic map with neutral direction θ preserving the
contact 1-form A. It is not obvious that f̃ is mixing with exp. decay of
correlations.

q

θ

2π

0

p A = qdp− dθ

2π

dA = dq∧dp = ω

M
f

f̃

x

Ker(A)

π

P

Anosov geodesic flow have similar setting with A = ξdx . We project to
extend our results to them.
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Prequantum transfer operator

Definition
The prequantum transfer operator with potential V ∈ C∞ (M) is

F̂ :

{
C∞ (P) → C∞ (P)

u → eV ◦π
(
u ◦ f̃ −1

)
For every N ∈ Z, F̂ preserves the space:

C∞
N (P) :=

{
u ∈ C∞ (P) , u

(
eiθp

)
= eiNθu (p)

}
,

called “equivariant functions” or “Fourier mode N in the fiber”.
We will study the restricted operator:

F̂N := F̂/C∞
N (P)
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Spectrum of “Ruelle resonances”
Theorem (V.Baladi, M.Tsujii 07, N.Roy, J.Sjöstrand, F.F., 08)
For every N ∈ Z, in anisotropic Sobolev spaces Hm

N (P) of variable order
m (x ,ξ ), with m (x ,ξ ) =±M along E ∗s/u, then

F̂N : Hm
N (P)→ Hm

N (P) , C∞
N (P)⊂ Hm

N (P)⊂D ′N (P)

is bounded and ress.
(
F̂N
)
→

M→∞

0. The eigenvalues outside ress do not depend on

Hm
N (P) and are called Ruelle resonances Res

(
F̂N
)
.

Remark : the only obvious resonance is for the “equilibrium” u = cste, λ = 1 for
N = 0, .

ress



Spectrum in annuli

Theorem (M.Tsujii, F.F.)
In the semiclassical limit N = 1

2πh̄ → ∞,

Res
(

F̂N
)
⊂

|z | ∈ ⋃k≥0

[
r−k −δN , r+

k +δN
]︸ ︷︷ ︸

annulus Ak


with δN = C

Nε → 0, ε > 0,C > 0 indept of f ,

r−k = lim
n→∞

∣∣∣∣∣∣∣∣ inf
x∈M

eVn(x)

∥∥∥Df n
/Eu (x)

∥∥∥︸ ︷︷ ︸
>1


−k ∣∣∣∣∣∣∣∣detDf n

/Eu (x)︸ ︷︷ ︸
>1

∣∣∣∣∣∣∣∣
−1/2

∣∣∣∣∣∣∣∣
1/n

,

r+
k = . . . sup

x∈M
. . .

(∥∥∥Df n
/Eu (x)

∥∥∥−1
)+k

..., Vn (x) =
n

∑
j=1

V
(
f j (x)

)

A0
A1

r−1 r+1 r−0 r+0
ε

Rem: r−k+1 < r−k , r+
k+1 < r+

k . Choice V = V0 = 1
2 log

∣∣detDf/Eu (x)
∣∣ gives eV0,n =

∣∣∣detDf n
/Eu (x)

∣∣∣1/2

and r−0 = r+
0 = 1.



Theorem
Let F̂h̄ : Hh̄→Hh̄: spectral restriction of F̂N on
A0, then

1 dimHh̄ = 1
(2πh̄)Vol(M) +o.

2 Most of eigenvalues of F̂h̄ concentrate and
equidistribute on the circle of radius

r = e〈V−V0〉, 〈V −V0〉 :=
1

Vol(M)

∫
(V −V0)dx

3 Gutzwiller trace formula:

Tr
(
F̂ n

h̄

)
= ∑

x=f n(x)

e(V−V0,)neiSn,x /h̄√
|Det(1−Df n

x )|
+ h̄ε

(
1
λ

)n

→We get initial Thm (*) if V = V0.

r̄

r−1 r+1 r−0 r+0

A0A1

ε

Corollary
The map f̃ : P → P is mixing with exponential decay of correlations.
Heuristic: at large time, F̂ n

N ' F̂ n
h̄ +O

( 1
λ n
)
, i.e. “quantum dynamics emerges

dynamically”.
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Summary. Is it a “natural quantization”?
Construction:

We start from f : M→M symplectic and Anosov.
Then the prequantum map f̃ : P → P and prequantum operator
F̂N : C∞

N (P)→ C∞
N (P) are (almost) uniquely defined.

Take the potential V0 = 1
2 log

∣∣detDf/Eu (x)
∣∣.

We consider ΠN : Hm
N (P)→Hh̄: spectral (finite rank) projector on the

external annulus. Let F̂h̄ = ΠN F̂NΠN . (set h̄ = 1
2πN ).

Properties:
F̂h is almost unitary (in the limit h̄→ 0) and satisfies Gutzwiller formula
with exp. small remainder in large time.
If a ∈ C∞ (M), define Oph̄ (a) := ΠNaΠN . We have (obviously) exact Egorov
theorem:

Fh̄Oph̄ (a) = Oph̄
(
a ◦ f −1)Fh̄

(= ΠN F̂NaΠN = ΠN
(
a ◦ f −1) F̂NΠN), and symbol calculus:

Oph̄ (a)Oph̄ (b) = Oph̄ (ab) +O (h̄ε ) (1)

Oph̄ (a) = (Oph̄ (a))† +O (h̄ε ) (2)
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Idea of the proof
Based on: “Semiclassical theory of quantum scattering” and “escape
functions in phase space”, developped by Aguilar-Balslev,Combes (71),
Helffer-Sjöstrand (85), ...
Atiyah-Bott, exact trace formula (66).

The operator F̂N : C∞
N (P)→ C∞

N (P) is a F.I.O. with canonical map on (T ∗M,Ω):

F : (x ,ζ )→
(
f (x) ,t Df −1

x .ζ
)
, Ω =

2d
∑
j=1

dx j ∧dζ
j + ω

symplectic

x

π̃

f (x)
(M,ω)

f

TρK

νq

νp

K = ζ = 0

F

(TρK )⊥

TρT ∗M

F (ρ)

ζq

ζp (T ∗M,Ω)

Trapped set

ρ is Ω− symplectic
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Some key results for linear maps

Let f =

(
A 0
0 tA−1

)
: R2d → R2d symplectic, hyperbolic with A : Rd → Rd

expanding.
Let F̂f u := u ◦ f −1: unitary in L2 (R2d).
Then

F̂f = F̂A⊗ F̂t A−1

with
(
F̂Av

)
:= 1√

|detA|
v ◦A−1 unitary.

In Sobolev space Hm(x ,ξ ), F̂A has discrete spectrum (in polyn. space) and
r
(
F̂A
)

= 1√
|detA|

.

Also (Atiyah-Bott): Tr[F̂f =
∫
R2d 〈δx |F̂f δx 〉=

∫
R2d δ

(
x − f −1 (x)

)
= 1
|det(1−f )|

hence
Tr[F̂A = Tr[F̂t A−1 =

1√
|det(1− f )|

,


