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The model

Standard model of non-relativistic QED

Non-relativistic atomic system (N charged non-relativistic quantum particles)
interacting with the quantized electromagnetic field
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The model

Standard model of non-relativistic QED

Non-relativistic atomic system (N charged non-relativistic quantum particles)
interacting with the quantized electromagnetic field

Atomic system

To simplify, we assume that the atomic system consists of a hydrogen atom
with infinitely heavy nucleus. The Schrodinger operator associated to it is
written as

Hei = — Ay + V(x),

where V is real-valued and ||V(x)¥|| < e]|Axt|| + Co||¥]|. For instance
C

Ix|

V(x) =
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Fock space

Hlbert space for the photon field
e Hilbert space for 1 photon: L?(R® x {1,2})
e Symmetric Fock space for the photon field:
Fo=Co@ S (R x {1,2)") = P #
n>1 n>0

where S, is the symmetrization operator
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Fock space

Hlbert space for the photon field
e Hilbert space for 1 photon: L*(R® x {1,2})

e Symmetric Fock space for the photon field:

Fo=Co@PSL(R x {1,2)) = D7

n>1 n>0

where S, is the symmetrization operator

Creation and annihilation operators
e ay(k) and ax(k):
ay(k) : F? — FIit
ax(k) : Ff — F 1
e Canonical commutation rules:

[aX(k), 3% (k)] = [ax(k), ax (K')] = O
[ax(k), 3% (k)] = dxnd(k — k')
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Standard model in non-relativistic QED

Hilbert space for the non-relativistic electron and the photon field

H=L*R) ® F ~ L’ (R F,)
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Standard model in non-relativistic QED

Hilbert space for the non-relativistic electron and the photon field

H=1*R% & F, ~ LR, F)

Pauli-Fierz Hamiltonian acting on ‘H
H = (—iVi+ Ax))> + V(x) + Hr

where

K(k —ik-x ik-x
A(x) = ;1:,2/ e (35(K)e** + ax(k)e*™) ak

He= > |k|a>\ Yax(k)dk

A=1,2
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lonization threshold, localization of
photons

lonization threshold
Let X denote the ionization threshold defined by

Y = lim inf (o, Hp),

R— 00 p€Dg,[l¢ll=1

where Dg = {¢ € D(H); ¢(x) =0if |x| < R}
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lonization threshold, localization of
photons

lonization threshold
Let X denote the ionization threshold defined by

Y = lim inf (o, Hp),

R— 00 p€Dg,[l¢ll=1

where Dg = {¢ € D(H); ¢(x) =0if |x| < R}

Theorem (Bach, Frohlich, Sigal), (Griesemer)
For all §,& € R such that £ + 6% < %,

e”0 e g (H)]] < 00
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lonization threshold, localization of
photons

lonization threshold
Let X denote the ionization threshold defined by

Y = lim inf (o, Hp),

R— 00 p€Dg,[l¢ll=1

where Dg = {¢ € D(H); ¢(x) =0if |x| < R}

Theorem (Bach, Frohlich, Sigal), (Griesemer)
For all §,& € R such that £ + 6% < %,

e”0 e g (H)]] < 00

Localization of photons
Let f € C5°(R; [0, 1]) be such that supp(f) C [1,2] and define

F(s)= [°__ f(r)dr. Let y := iVi. We localize the photon position using the

operator F(|y| > ct) := F(|y|/ct)
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popszion T heorem (Bony, F., Sigal)

observables

Proof Let x € C°((—00, X)) and ¢ > 1. For all u € D(dI({y))2), we have

Minimal
velocity

[ar (FOy1 > ct))? e ximyl| < £ (@r() +1) 2,

< (%(1_ %) 110)'

where
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Maximal velocity of photons

Theorem (Bony, F., Sigal)

Let x € C§°((—o0,X)) and ¢ > 1. For all u € D(dr(<y>)%), we have

lar (Faiy1 > et)) e x(Hul| < £ (@r () +1) 2],

< (%(1* %) 110)'

where

Remark

The operator dI'(F(|y| > ct)) represents the number of photons in the region
{ly| > ct}. Hence the theorem means that, asymptotically (as t — o0), the
probability to find photons in the region {|y| > ct} vanishes. In other words,
photons do not propagate faster that the speed of light (=1 in our units)
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method of propagation observables
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Heisenberg derivative

Let 1, := e~ ™4y Given a family of operators ®; on H, the Heisenberg

derivative is defined by

D¢t = 8t¢t + I[H, ¢t]7

Propagation observables

so that

O (e, Pethe) = (e, DPethe)
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Propagation observables

Heisenberg derivative

Let 1, := e~ ™4y Given a family of operators ®; on H, the Heisenberg
derivative is defined by

Dq)t = 3t¢f + I[l’l7 q)t], so that 8t<¢t7 q)t’l/Jt) = <’¢t, D¢f1/)t>

Definition
A family of operators ®; on a subspace H; C H is called a weak propagation
observable, if for all ¥ € Hi, it has the following properties

o sup,(te, Pethe) < [[0oll%;
o D®; > G; + Rem, where G; > 0 and [ dt|(¢r, Rem )| < [[eboll%,

for some norms ||1ol|«, || - |l¢ > || - ||. Similarly, a family of operators ®. is
called a strong propagation observable, if it has the following properties

o ®, is a family of non-negative operators;
e D®; < —G; + Rem, where G; > 0 and [, dt|(1)r, Rem r)| < ll3boll%,

for some norm || - [ > || - ||
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Propagation estimates

Weak propagation estimate

If &, is a weak propagation observable, then

/ dt]| G2 < ol + 9ol
0

10/23
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Propagation estimates

Weak propagation estimate

If ®; is a weak propagation observable, then

/ dt]| G2 < ol + 9ol
0

Strong propagation estimate
If &, is a strong propagation observable, then
(e @) + [ At G2l 5wl + (o, o)
0

10/23
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Propagation estimates

Weak propagation estimate

If ®; is a weak propagation observable, then

/ dtl| G *el® S liwoll? + lpoll

0

Strong propagation estimate

If &, is a strong propagation observable, then

(tbe, Pete) + / dtl| G 2nllP S oll3 + (4o, Sovo)

Remark

For the strong propagation estimate, ®; does not need to be uniformly
bounded in time. On the other hand, ®; must be > 0, with < 0 Heisenberg
derivative (up to integrable remainder terms)
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Idea of the proof of the main theorem

Theorem

Let x € C5°((—00,X)) and ¢ > 1. Forall u € D(dr((y))%), we have

Jar (F(y1 = et) e x(H)ul| 5 ]| (@r () +1)2u],

for some v > 0
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Idea of the proof of the main theorem

Theorem

Let x € C5°((—o0,X)) and ¢ > 1. For all u € D(dr((y))%), we have
4 (F Ayt = e0)) e x(H)u]| S €| (@r() + 1) ],

for some v > 0

Idea of the proof

It suffices to show that ®, := t*7dl(F(|y| > ct)) is a strong propagation
observable on Rany(H) N D(dr((y>)%)
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Sketch of the proof

o

N
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Simplification for this talk

Introduction

We consider scalar bosons on the Fock space

Propagation
observables

Proof Fo=Cao@SL*®R") =P F
Minimal n>1 n>0
velocity

13/23
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Field operators

Simplification for this talk

We consider scalar bosons on the Fock space

F.=Co@PsSL®R")=PF

n>1 n>0

Creation and annihilation operators
For f € L3(R?),

o g I = " R
(a (f)¢)( )(klv"' 7k") = %Zf(k’)q)( 1)(k17"' 7ki7"' 7kl7)
i=1

(a(F)®) D (kr, - ko) = VA F T /3 F(k)O™ D (k, k- - - o)k
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Field operators

Simplification for this talk

We consider scalar bosons on the Fock space

F.=Co@PsSL®R")=PF

n>1 n>0

Creation and annihilation operators
For f € L3(R?),

o g I = " R
(a (f)¢)( )(klv"' 7k") = %Zf(k’)q)( 1)(k17"' 7ki7"' 7kl7)
i=1

(a(F)®) D (kr, - ko) = VA F T /3 F(k)O™ D (k, k- - - o)k

Field operators

d(f) := a"(f) + a(f)
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Second quantization and commutation
properties

Second quantized operators

Let b be an operator on L?(R?). The second quantization of b is defined on
Fs by

(b)|zr = }:n® @1

dr(b) =0

where Q = (1,0,0, - -) (Fock vacuum)
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Second quantization and commutation
properties

Second quantized operators

Let b be an operator on L?(R?). The second quantization of b is defined on
Fs by

b)|fn:Z]].® -®1

dr(b)2 =0

where Q = (1,0,0, - -) (Fock vacuum)

Commutation properties
Let b, ¢ be operators on L*(R?) and f € L*(R?). We have

[dr(b), dI(c)] = dr([b, c]),
[dr(b), ®(f)] = —id(ibf)
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Proof of the theorem (1)

Nelson model

To simplify the presentation, we consider the Nelson model

H=—A,+ V(x) +dr(|k]) + ®(hs),

he(k) = |k|" " *x(k),

pn>0

15/23
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Proof of the theorem (1)

Nelson model

To simplify the presentation, we consider the Nelson model

H = Do+ V(x) +dT (k) + (), he(k) = [kl n(k), >0

Propagation observable

Let v = |y|/ct. The choice ®; = t*?dl'(F(v)) does not work. Let instead
&, = t27dI (Js(v?)), where Js(s) = s°F(s'/2). Then &, is well-defined on
X(H)D(dr(<y)2ﬂ)) (not trivial) and satisfies ®¢ > t>7dl (F(v)) (trivial)
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Proof of the theorem (1)

Nelson model

To simplify the presentation, we consider the Nelson model

H = Do+ V(x) +dT (k) + (), he(k) = [kl n(k), >0

Propagation observable
Let v = |y|/ct. The choice ®; = t*?dl'(F(v)) does not work. Let instead

&, = t27dI (Js(v?)), where Js(s) = s°F(s'/2). Then &, is well-defined on
X(H)D(dr(<y)2ﬁ)) (not trivial) and satisfies ®¢ > t>7dl (F(v)) (trivial)

Heisenberg derivative
Do = 8¢ + i[H, dc] = 24t 71dl (Js(v*)) « has a sign
- 2t2771dr(v2J;3(v2)) — has a sign
+ e7dr (i[|k], Js(v?)]) « 77

— t2w¢(iJg(v2)hX) « remainder term
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Proof of the theorem (II)

The field remainder term
Recall hy(k) = |k|*e™ >k (k)
e Use that
[(ids(v*)he)(Hr + 1) 72 S k1725 (V) helli2 + (V) bl 2,

e Use that Js(-) is supported away from 0: |||y|~*Js(v?)|| S t7°

e Use that |||k|Y/?]y| he|l 2 < (x)? (for p not too large, depending on the

~

value of u)

e Use exponential decay in the electron position variable below the
ionization threshold to bound ||(x}?x(H)| < oo

o |t follows that
27 [x(H)®(ids (V) h)x(H) | S t71°°

for2y+1+e+1/2+208 — p < 3/2 (requires u > 0)

16/2
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Proof of the theorem (l1I)

Commutator expansion
Consider the term t*7dl (i[|k|, Ja(v?)])
e By the Helffer-Sjostrand formula,
i[lKl, J(v)] = (45)2 (V)illk], v*1(J5)* (v¥) + Rem
1 I\NL, 2 k k 1. 9
S+ VU 2) + Rem
e The main term: since supp(Js) C [1, 00),

1 /L, 2 k k / % 2 2 5, 9
=) (v)(v- PRECE v)(Js)2 (v7) < Zvids(v)

ct

e The remainder term: use Hardy’s inequality in R®
(k)= ull 2 < |llyl°ull2 for 0 < & < 3/2) to show that

|[[k|2 Remk|3]| S t7+7%, 0<d<1

N
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Proof of the theorem (1V)

Control of small momenta

o After second quantization, the previous estimate give
£27dr (i[|kl, Js(v®)]) < 2¢7 127N (VV (V) + CEH0dr(|k|°)
e Control the growth of dI'(|k|~°) along the evolution: Assume
o € D(|H|2) N D(dF(|k|~%)2). Then for any 6 € [—1,1],
_ 145 _
(e, dT (|| =" )pe) S t200 (o, (|H] + L)po) + (o, AT (k| )bo))

e Therefore
710, AT (|| ) S 717,

with e = § — %, and hence & > 0 provided that x> 67 — 1
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Proof of the theorem (V)

Conclusion

e Combine the previous estimates to obtain
Do, = 2yt 71l (Jp(v?)) — 2677 71T (V2 J5(v7))
+ £27dr (i [ |k, Js(v?)]) — 27D (is(v*)hy)
< 267NN (s (VP) — (1 — ¢ VP J5(vVP)) + Int. term
e Use that v?Jj(v?) > BJs(v?) which implies
Do, <2t (v — (1 — ¢ H)B)Ar(Js(v?)) + Int. term

e Choose 3 such that v — (1 — ¢ 1B < 0
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Proof of the theorem (V)

Conclusion

e Combine the previous estimates to obtain
Do, = 2yt 71l (Jp(v?)) — 2677 71T (V2 J5(v7))
+ £27dr (i [ |k, Js(v?)]) — 27D (is(v*)hy)
< 267NN (s (VP) — (1 — ¢ VP J5(vVP)) + Int. term
e Use that v?Jj(v?) > BJs(v?) which implies
Do, <2t (v — (1 — ¢ H)B)Ar(Js(v?)) + Int. term

e Choose 3 such that v — (1 — ¢ 1B < 0

Standard model of non-relativistic QED

e Infrared singularity is of order |k|* with = —1/2 (while we used the
condition p > 0 for the Nelson model)

e Use a (generalized) Pauli-Fierz transformation to improve the infrared
behavior
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Minimal velocity estimate?
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Minimal velocity of photons

Conjecture

Since physically, photons propagate at the speed of light (c = 1), we expect
that, for F € C5°((0,1)) and x € C5°((—o0, X) \ 0,(H))

[ o Fanirentexqryal " < o0

for u in some dense set
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Minimal velocity of photons

Conjecture

Since physically, photons propagate at the speed of light (c = 1), we expect
that, for F € C5°((0,1)) and x € C5°((—o0, X) \ 0,(H))

/100 Hdr(F(M/t))%ef"tHx(H)UI‘z% < o0

for u in some dense set

Problems
o Let ®; =drl(G(v?)). We have

D, = 8.dr(v?) + i[H, G(v?)]

Now the second term should dominate the first one

e To prove a weak propagation estimate, we need that (¢, P:1);) is
uniformly bounded. However, it is not known that (i, dl (1)) is
uniformly bounded
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Local decay

Mourre estimate (Frohlich, Griesemer, Sigal)

Let E := info(H), egap = €1 — € with eg = info(He1), e1 = info(He) \ {e0},
and
1
Br = dl(bs), b = s (K)(K -y +y - K (K)

Let / € (0,1) be an open interval. There exist co > 0 such that, for
sufficiently small coupling and 0 < 0 < egap/2,

]IJ[(H — E)[H7 iBg]]].g/(H — E) 2 Coaﬂg/(H — E)

N
N

N
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Mourre estimate (Frohlich, Griesemer, Sigal)

Local decay

Let E :=info(H), egap = €1 — e with &g = inf o(He1), &1 = info(He) \ {eo},

and

B, = dT(b,), by = 2no(K)(k -y +y - K)o(K)

Let / € (0,1) be an open interval. There exist co > 0 such that, for

sufficiently small coupling and 0 < 0 < egap/2,

]lJ[(H — E)[H7 iBU]]].g/(H — E) 2 Coo’]lg/(H — E)

(Non uniform) Local decay (Hunziker, Sigal, Soffer)

Let ¢ € C5°((0,1); R), ¢ (-) :== ¢(:/o). For all s > 0, there exits Cs,, > 0
such that, for sufficiently small coupling and for all 0 < 0 < €zap/2 and t € R,

1(B2) e o0 (H — E)(Bs)~*|| <

Cso
~ (to)?
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Minimal velocity of at least one photon

(Uniform) Local decay (Bony, F.)

For sufficiently small coupling, for all x € C5°((E, E + egap/4); R) and
0 <s <2, we have

Iar(ly1)) =" e ™ X (H)Ar (ly1) Il < (6~
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Minimal velocity of at least one photon

(Uniform) Local decay (Bony, F.)

For sufficiently small coupling, for all x € C§°((E, E + egap/4); R) and
0 <s <2, we have

Iar(ly1)) =" e ™ X (H)Ar (ly1) Il < (6~

Consequence

Let ['(b) = b® --- ® b on the n-particles subspace. For sufficiently small
coupling, for all x € C§°((E, E + egap/4); R)

. 2
| TRyl < ctne ™ x(Hyw| 5 25,

for all ¢ > 0 and a < 9/20. In other words, asymptotically as t — oo, at least
one particle is in the region {|y| > ct*}
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