Propagation estimates for photons

Jérémy Faupin

Introduction

Observables

Proof

Minimal velocity

Propagation estimates for photons in non-relativistic QED

Jérémy Faupin

Institut de Mathématiques de Bordeaux Université de Bordeaux 1

4^{ème} rencontre du GDR Dynamique Quantique February 10, 2012

Joint work with J.-F. Bony and I.M. Sigal

Propagation estimates for photons

> Jérémy Faupin

Introduction

Propagation

Pro

Minimal velocity

Part I

Introduction

Propagatio

Proof

Velocit

The model

Standard model of non-relativistic QED

Non-relativistic atomic system (N charged non-relativistic quantum particles) interacting with the quantized electromagnetic field

Atomic system

To simplify, we assume that the atomic system consists of a hydrogen atom with infinitely heavy nucleus. The Schrödinger operator associated to it is written as

$$H_{\rm el} = -\Delta_{\rm x} + V({\rm x})$$

where V is real-valued and $||V(x)\psi|| \le \varepsilon ||\Delta_x \psi|| + C_\varepsilon ||\psi||$. For instance

$$V(x) = -\frac{C}{|x|}$$

Standard model of non-relativistic QED

Non-relativistic atomic system (*N* charged non-relativistic quantum particles) interacting with the quantized electromagnetic field

Atomic system

To simplify, we assume that the atomic system consists of a hydrogen atom with infinitely heavy nucleus. The Schrödinger operator associated to it is written as

$$H_{\rm el} = -\Delta_x + V(x),$$

where V is real-valued and $||V(x)\psi|| \le \varepsilon ||\Delta_x \psi|| + C_\varepsilon ||\psi||$. For instance

$$V(x) = -\frac{C}{|x|}$$

Fock space

Hlbert space for the photon field

- Hilbert space for 1 photon: $L^2(\mathbb{R}^3 \times \{1,2\})$
- Symmetric Fock space for the photon field:

$$\mathcal{F}_s = \mathbb{C} \oplus \bigoplus_{n \geq 1} S_n L^2((\mathbb{R}^3 \times \{1,2\})^n) = \bigoplus_{n \geq 0} \mathcal{F}_s^n$$

where S_n is the symmetrization operator

• $a_{\lambda}^{*}(k)$ and $a_{\lambda}(k)$:

$$a_{\lambda}^{*}(k): \mathcal{F}_{s}^{n} \to \mathcal{F}_{s}^{n+1}$$
 $a_{\lambda}(k): \mathcal{F}_{s}^{n} \to \mathcal{F}_{s}^{n-1}$

$$[a_{\lambda}^*(k), a_{\lambda'}^*(k')] = [a_{\lambda}(k), a_{\lambda'}(k')] = 0$$
$$[a_{\lambda}(k), a_{\lambda'}^*(k')] = \delta_{\lambda\lambda'}\delta(k - k')$$

Propagatio observables

Minima

Fock space

Hlbert space for the photon field

- Hilbert space for 1 photon: $L^2(\mathbb{R}^3 \times \{1,2\})$
- Symmetric Fock space for the photon field:

$$\mathcal{F}_s = \mathbb{C} \oplus \bigoplus_{n \geq 1} S_n \mathrm{L}^2((\mathbb{R}^3 \times \{1,2\})^n) = \bigoplus_{n \geq 0} \mathcal{F}_s^n$$

where S_n is the symmetrization operator

Creation and annihilation operators

• $a_{\lambda}^{*}(k)$ and $a_{\lambda}(k)$:

$$a_{\lambda}^{*}(k): \mathcal{F}_{s}^{n} \to \mathcal{F}_{s}^{n+1}$$

 $a_{\lambda}(k): \mathcal{F}_{s}^{n} \to \mathcal{F}_{s}^{n-1}$

Canonical commutation rules:

$$[a_{\lambda}^*(k), a_{\lambda'}^*(k')] = [a_{\lambda}(k), a_{\lambda'}(k')] = 0$$
$$[a_{\lambda}(k), a_{\lambda'}^*(k')] = \delta_{\lambda\lambda'}\delta(k - k')$$

ropagati bservabl

Proof

Minimal velocity

Standard model in non-relativistic QED

Hilbert space for the non-relativistic electron and the photon field

$$\mathcal{H}=\mathrm{L}^2(\mathbb{R}^3)\otimes\mathcal{F}_s\simeq\mathrm{L}^2(\mathbb{R}^3;\mathcal{F}_s)$$

Pauli-Fierz Hamiltonian acting on ${\cal H}$

$$H = (-i\nabla_x + A(x))^2 + V(x) + H_f$$

where

$$A(x) = \sum_{\lambda=1,2} \int_{\mathbb{R}^3} \frac{\kappa(k)}{\sqrt{|k|}} \varepsilon_{\lambda}(k) \left(a_{\lambda}^*(k) e^{-ik \cdot x} + a_{\lambda}(k) e^{ik \cdot x} \right) dk$$

$$H_f = \sum_{\lambda=1,2} \int_{\mathbb{R}^3} \frac{|k| a_{\lambda}^*(k) a_{\lambda}(k) dk}{|k|^2} dk$$

Standard model in non-relativistic QED

Hilbert space for the non-relativistic electron and the photon field

$$\mathcal{H}=\mathrm{L}^2(\mathbb{R}^3)\otimes\mathcal{F}_s\simeq\mathrm{L}^2(\mathbb{R}^3;\mathcal{F}_s)$$

Pauli-Fierz Hamiltonian acting on ${\cal H}$

$$H = (-i\nabla_x + A(x))^2 + V(x) + H_f$$

where

$$A(x) = \sum_{\lambda=1,2} \int_{\mathbb{R}^3} \frac{\kappa(k)}{\sqrt{|k|}} \varepsilon_{\lambda}(k) \left(a_{\lambda}^*(k) e^{-ik \cdot x} + a_{\lambda}(k) e^{ik \cdot x} \right) dk$$

$$H_f = \sum_{\lambda=1,2} \int_{\mathbb{R}^3} |k| a_{\lambda}^*(k) a_{\lambda}(k) dk$$

Propagation observable

Droof

Minima velocity

Ionization threshold, localization of photons

Ionization threshold

Let Σ denote the ionization threshold defined by

$$\Sigma := \lim_{R \to \infty} \inf_{\varphi \in D_R, \|\varphi\| = 1} \langle \varphi, H\varphi \rangle,$$

where
$$D_R = \{ \varphi \in D(H); \ \varphi(x) = 0 \text{ if } |x| < R \}$$

Theorem (Bach, Fröhlich, Sigal), (Griesemer)

For all $\delta, \xi \in \mathbb{R}$ such that $\xi + \delta^2 < \Sigma$,

$$\|e^{\delta|\mathbf{x}|}\mathbf{1}_{(-\infty,\xi]}(H)\|<\infty$$

Localization of photons

Let $f \in \mathrm{C}_0^\infty(\mathbb{R}; [0,1])$ be such that $\mathrm{supp}(f) \subset [1,2]$ and define $F(s) = \int_{-\infty}^s f(\tau) \, d\tau$. Let $y := i \nabla_k$. We localize the photon position using the operator $F(|y| \geq ct) := F(|y|/ct)$

Propagation observable

D---f

Minima velocity

Ionization threshold, localization of photons

Ionization threshold

Let Σ denote the ionization threshold defined by

$$\Sigma := \lim_{R \to \infty} \inf_{\varphi \in D_R, \|\varphi\| = 1} \langle \varphi, H\varphi \rangle,$$

where
$$D_R = \{ \varphi \in D(H); \ \varphi(x) = 0 \text{ if } |x| < R \}$$

Theorem (Bach, Fröhlich, Sigal), (Griesemer)

For all $\delta, \xi \in \mathbb{R}$ such that $\xi + \delta^2 < \Sigma$,

$$\|e^{\delta|x|}\mathbb{1}_{(-\infty,\xi]}(H)\|<\infty$$

Localization of photons

Let $f \in C_0^\infty(\mathbb{R}; [0,1])$ be such that $\mathrm{supp}(f) \subset [1,2]$ and define $F(s) = \int_{-\infty}^s f(\tau) \, d\tau$. Let $y := i \nabla_k$. We localize the photon position using the operator $F(|y| \geq ct) := F(|y|/ct)$

Propagation observable

Proof

Minima velocity

Ionization threshold, localization of photons

Ionization threshold

Let Σ denote the ionization threshold defined by

$$\Sigma := \lim_{R \to \infty} \inf_{\varphi \in D_R, \|\varphi\| = 1} \langle \varphi, H\varphi \rangle,$$

where
$$D_R = \{ \varphi \in D(H); \ \varphi(x) = 0 \text{ if } |x| < R \}$$

Theorem (Bach, Fröhlich, Sigal), (Griesemer)

For all $\delta, \xi \in \mathbb{R}$ such that $\xi + \delta^2 < \Sigma$,

$$\|e^{\delta|x|}\mathbb{1}_{(-\infty,\xi]}(H)\|<\infty$$

Localization of photons

Let $f \in \mathrm{C}_0^{\circ}(\mathbb{R}; [0,1])$ be such that $\mathrm{supp}(f) \subset [1,2]$ and define $F(s) = \int_{-\infty}^s f(\tau) \, d\tau$. Let $y := i \nabla_k$. We localize the photon position using the operator $F(|y| \geq ct) := F(|y|/ct)$

observable

Proof

Minima

Maximal velocity of photons

Theorem (Bony, F., Sigal)

Let $\chi \in C_0^{\infty}((-\infty, \Sigma))$ and c > 1. For all $u \in D(d\Gamma(\langle y \rangle)^{\frac{1}{2}})$, we have

$$\left\|\mathrm{d}\Gamma\big(F(|y|\geq \mathrm{c} t)\big)^{\frac{1}{2}}e^{-itH}\chi(H)u\right\|\lesssim t^{-\gamma}\big\|\big(\mathrm{d}\Gamma(\langle y\rangle)+1\big)^{\frac{1}{2}}u\big\|,$$

where

$$\gamma < \min\left(\frac{1}{2}\left(1 - \frac{1}{c}\right), \frac{1}{10}\right).$$

Remarl

The operator $\mathrm{d}\Gamma\big(F(|y|\geq ct)\big)$ represents the number of photons in the region $\{|y|\geq ct\}$. Hence the theorem means that, asymptotically (as $t\to\infty$), the probability to find photons in the region $\{|y|\geq ct\}$ vanishes. In other words, photons do not propagate faster that the speed of light (= 1 in our units)

Propagatio observables

Minimal

Maximal velocity of photons

Theorem (Bony, F., Sigal)

Let $\chi \in C_0^{\infty}((-\infty, \Sigma))$ and c > 1. For all $u \in D(d\Gamma(\langle y \rangle)^{\frac{1}{2}})$, we have

$$\left\|\mathrm{d}\Gamma\big(F(|y|\geq \mathrm{c} t)\big)^{\frac{1}{2}}e^{-itH}\chi(H)u\right\|\lesssim t^{-\gamma}\big\|\big(\mathrm{d}\Gamma(\langle y\rangle)+1\big)^{\frac{1}{2}}u\big\|,$$

where

$$\gamma < \min\left(\frac{1}{2}\left(1 - \frac{1}{c}\right), \frac{1}{10}\right).$$

Remark

The operator $\mathrm{d}\Gamma\big(F(|y|\geq \mathrm{c}t)\big)$ represents the number of photons in the region $\{|y|\geq \mathrm{c}t\}$. Hence the theorem means that, asymptotically (as $t\to\infty$), the probability to find photons in the region $\{|y|\geq \mathrm{c}t\}$ vanishes. In other words, photons do not propagate faster that the speed of light (= 1 in our units)

Propagation estimates for photons

Jérémy Faupin

IIILIOUUCLIC

Propagation observables

Proof

velocity

Part II

The method of propagation observables

Propagation observables

Proof

Minima

Propagation observables

Heisenberg derivative

Let $\psi_t := e^{-itH} \psi_0$. Given a family of operators Φ_t on \mathcal{H} , the Heisenberg derivative is defined by

$$D\Phi_t := \partial_t \Phi_t + i[H, \Phi_t], \quad \text{so that} \quad \partial_t \langle \psi_t, \Phi_t \psi_t \rangle = \langle \psi_t, D\Phi_t \psi_t \rangle$$

Definition

A family of operators Φ_t on a subspace $\mathcal{H}_1 \subset \mathcal{H}$ is called a *weak propagation observable*, if for all $\psi_0 \in \mathcal{H}_1$, it has the following properties

- $\sup_t \langle \psi_t, \Phi_t \psi_t \rangle \lesssim ||\psi_0||_*^2$;
- $D\Phi_t \geq G_t + \mathrm{Rem}$, where $G_t \geq 0$ and $\int_0^\infty dt |\langle \psi_t, \mathrm{Rem} \, \psi_t \rangle| \lesssim \|\psi_0\|_{\diamondsuit}^2$,

for some norms $\|\psi_0\|_*$, $\|\cdot\|_{\diamondsuit} \ge \|\cdot\|$. Similarly, a family of operators Φ_t is called a *strong propagation observable*, if it has the following properties

- Φ_t is a family of non-negative operators;
- $D\Phi_t \leq -G_t + \text{Rem}$, where $G_t \geq 0$ and $\int_0^\infty dt |\langle \psi_t, \text{Rem } \psi_t \rangle| \lesssim ||\psi_0||_{\diamondsuit}^2$,

for some norm $\|\cdot\|_{\diamondsuit} \geq \|\cdot\|$

Heisenberg derivative

Let $\psi_t:=e^{-itH}\psi_0$. Given a family of operators Φ_t on \mathcal{H} , the Heisenberg derivative is defined by

$$D\Phi_t := \partial_t \Phi_t + i[H, \Phi_t], \quad \text{so that} \quad \partial_t \langle \psi_t, \Phi_t \psi_t \rangle = \langle \psi_t, D\Phi_t \psi_t \rangle$$

Definition

A family of operators Φ_t on a subspace $\mathcal{H}_1 \subset \mathcal{H}$ is called a *weak propagation observable*, if for all $\psi_0 \in \mathcal{H}_1$, it has the following properties

- $\sup_t \langle \psi_t, \Phi_t \psi_t \rangle \lesssim \|\psi_0\|_*^2$;
- $D\Phi_t \geq G_t + \text{Rem}$, where $G_t \geq 0$ and $\int_0^\infty dt |\langle \psi_t, \text{Rem } \psi_t \rangle| \lesssim ||\psi_0||_{\diamondsuit}^2$,

for some norms $\|\psi_0\|_*$, $\|\cdot\|_{\diamondsuit} \ge \|\cdot\|$. Similarly, a family of operators Φ_t is called a *strong propagation observable*, if it has the following properties

- Φ_t is a family of non-negative operators;
- $D\Phi_t \leq -G_t + \text{Rem}$, where $G_t \geq 0$ and $\int_0^\infty dt |\langle \psi_t, \text{Rem } \psi_t \rangle| \lesssim \|\psi_0\|_{\diamondsuit}^2$,

for some norm $\|\cdot\|_{\diamondsuit} \geq \|\cdot\|$

Propagation estimates

Weak propagation estimate

If Φ_t is a weak propagation observable, then

$$\int_0^\infty dt \|G_t^{1/2} \psi_t\|^2 \lesssim \|\psi_0\|_{\diamondsuit}^2 + \|\psi_0\|_*^2$$

Strong propagation estimate

If Φ_t is a strong propagation observable, then

$$\langle \psi_t, \Phi_t \psi_t \rangle + \int_0^\infty dt \|\mathcal{G}_t^{1/2} \psi_t\|^2 \lesssim \|\psi_0\|_\diamondsuit^2 + \langle \psi_0, \Phi_0 \psi_0 \rangle$$

Remark

For the strong propagation estimate, Φ_t does *not* need to be uniformly bounded in time. On the other hand, Φ_t must be ≥ 0 , with ≤ 0 Heisenberg derivative (up to integrable remainder terms)

Propagation estimates

Weak propagation estimate

If Φ_t is a weak propagation observable, then

$$\int_0^\infty dt \|G_t^{1/2} \psi_t\|^2 \lesssim \|\psi_0\|_{\diamondsuit}^2 + \|\psi_0\|_*^2$$

Strong propagation estimate

If Φ_t is a strong propagation observable, then

$$\langle \psi_t, \Phi_t \psi_t \rangle + \int_0^\infty dt \|G_t^{1/2} \psi_t\|^2 \lesssim \|\psi_0\|_\diamondsuit^2 + \langle \psi_0, \Phi_0 \psi_0 \rangle$$

Remark

For the strong propagation estimate, Φ_t does *not* need to be uniformly bounded in time. On the other hand, Φ_t must be ≥ 0 , with ≤ 0 Heisenberg derivative (up to integrable remainder terms)

Propagation estimates

Weak propagation estimate

If Φ_t is a weak propagation observable, then

$$\int_0^\infty dt \|G_t^{1/2} \psi_t\|^2 \lesssim \|\psi_0\|_{\diamondsuit}^2 + \|\psi_0\|_*^2$$

Strong propagation estimate

If Φ_t is a strong propagation observable, then

$$\|\langle \psi_t, \Phi_t \psi_t \rangle + \int_0^\infty dt \|G_t^{1/2} \psi_t\|^2 \lesssim \|\psi_0\|_\diamondsuit^2 + \langle \psi_0, \Phi_0 \psi_0 \rangle$$

Remark

For the strong propagation estimate, Φ_t does *not* need to be uniformly bounded in time. On the other hand, Φ_t must be ≥ 0 , with ≤ 0 Heisenberg derivative (up to integrable remainder terms)

Idea of the proof of the main theorem

Theorem

Let $\chi \in C_0^{\infty}((-\infty, \Sigma))$ and c > 1. For all $u \in D(d\Gamma(\langle y \rangle)^{\frac{1}{2}})$, we have

$$\left\|\mathrm{d}\Gamma\big(F(|y|\geq \mathrm{c} t)\big)^{\frac{1}{2}}e^{-itH}\chi(H)u\right\|\lesssim t^{-\gamma}\big\|\big(\mathrm{d}\Gamma(\langle y\rangle)+1\big)^{\frac{1}{2}}u\big\|,$$

for some $\gamma > 0$

Idea of the proo

It suffices to show that $\Phi_t := t^{2\gamma} d\Gamma \big(F(|y| \ge ct) \big)$ is a strong propagation observable on $\operatorname{Ran}_{\chi}(H) \cap D(d\Gamma(\langle y \rangle)^{\frac{1}{2}})$

Idea of the proof of the main theorem

Theorem

Let $\chi \in C_0^{\infty}((-\infty, \Sigma))$ and c > 1. For all $u \in D(d\Gamma(\langle y \rangle)^{\frac{1}{2}})$, we have

$$\left\|\mathrm{d}\Gamma\big(F(|y|\geq \mathrm{c} t)\big)^{\frac{1}{2}}e^{-itH}\chi(H)u\right\|\lesssim t^{-\gamma}\big\|\big(\mathrm{d}\Gamma(\langle y\rangle)+1\big)^{\frac{1}{2}}u\big\|,$$

for some $\gamma > 0$

Idea of the proof

It suffices to show that $\Phi_t := t^{2\gamma} \mathrm{d}\Gamma \big(F(|y| \geq \mathrm{c} t) \big)$ is a strong propagation observable on $\mathrm{Ran}\chi(H) \cap D(\mathrm{d}\Gamma(\langle y \rangle)^{\frac{1}{2}})$

Propagation estimates for photons Jérémy

Faupin

Introductio

Propagation

Proof

Minimal velocity

Part III

Sketch of the proof

Field operators

Simplification for this talk

We consider scalar bosons on the Fock space

$$\mathcal{F}_s = \mathbb{C} \oplus \bigoplus_{n \geq 1} S_n \mathrm{L}^2(\mathbb{R}^{3n}) = \bigoplus_{n \geq 0} \mathcal{F}_s^n$$

Creation and annihilation operators

For $f \in L^2(\mathbb{R}^3)$,

$$(a^*(f)\Phi)^{(n)}(k_1,\cdots,k_n) := \frac{1}{\sqrt{n}} \sum_{i=1}^n f(k_i)\Phi^{(n-1)}(k_1,\cdots,\hat{k}_i,\cdots,k_n)$$

$$(a(f)\Phi)^{(n)}(k_1,\cdots,k_n) = \sqrt{n+1}\int_{\mathbb{R}^3} \bar{f}(k)\Phi^{(n+1)}(k,k_1,\cdots,k_n)dk$$

Field operators

$$\Phi(f) := a^*(f) + a(f)$$

Field operators

Simplification for this talk

We consider scalar bosons on the Fock space

$$\mathcal{F}_s = \mathbb{C} \oplus \bigoplus_{n \geq 1} S_n \mathrm{L}^2(\mathbb{R}^{3n}) = \bigoplus_{n \geq 0} \mathcal{F}_s^n$$

Creation and annihilation operators

For $f \in L^2(\mathbb{R}^3)$,

$$(a^*(f)\Phi)^{(n)}(k_1,\cdots,k_n):=\frac{1}{\sqrt{n}}\sum_{i=1}^n f(k_i)\Phi^{(n-1)}(k_1,\cdots,\hat{k}_i,\cdots,k_n)$$

$$(a(f)\Phi)^{(n)}(k_1,\cdots,k_n) = \sqrt{n+1}\int_{\mathbb{R}^3} \bar{f}(k)\Phi^{(n+1)}(k,k_1,\cdots,k_n)dk$$

Field operators

$$\Phi(f) := a^*(f) + a(f)$$

Field operators

Simplification for this talk

We consider scalar bosons on the Fock space

$$\mathcal{F}_s = \mathbb{C} \oplus \bigoplus_{n \geq 1} S_n L^2(\mathbb{R}^{3n}) = \bigoplus_{n \geq 0} \mathcal{F}_s^n$$

Creation and annihilation operators

For $f \in \mathrm{L}^2(\mathbb{R}^3)$,

$$(a^*(f)\Phi)^{(n)}(k_1,\cdots,k_n) := \frac{1}{\sqrt{n}} \sum_{i=1}^n f(k_i)\Phi^{(n-1)}(k_1,\cdots,\hat{k}_i,\cdots,k_n)$$

$$(a(f)\Phi)^{(n)}(k_1,\dots,k_n) = \sqrt{n+1}\int_{\mathbb{R}^3} \bar{f}(k)\Phi^{(n+1)}(k,k_1,\dots,k_n)dk$$

Field operators

$$\Phi(f) := a^*(f) + a(f)$$

Second quantization and commutation properties

Second quantized operators

Let b be an operator on $L^2(\mathbb{R}^3)$. The second quantization of b is defined on \mathcal{F}_s by

$$\mathrm{d}\Gamma(b)|_{\mathcal{F}^n_s} = \sum_{j=1}^n \mathbb{1} \otimes \cdots \otimes b \otimes \cdots \otimes \mathbb{1}$$
 $\mathrm{d}\Gamma(b)\Omega = 0$

where $\Omega = (1, 0, 0, \cdots)$ (Fock vacuum)

Commutation properties

Let b, c be operators on $L^2(\mathbb{R}^3)$ and $f \in L^2(\mathbb{R}^3)$. We have

$$[\mathrm{d}\Gamma(b),\mathrm{d}\Gamma(c)] = \mathrm{d}\Gamma([b,c]),$$

Propagati

Proof

velocit

Second quantization and commutation properties

Second quantized operators

Let b be an operator on $\mathrm{L}^2(\mathbb{R}^3).$ The second quantization of b is defined on \mathcal{F}_s by

$$\mathrm{d}\Gamma(b)|_{\mathcal{F}^n_s} = \sum_{j=1}^n \mathbb{1} \otimes \cdots \otimes b \otimes \cdots \otimes \mathbb{1}$$
 $\mathrm{d}\Gamma(b)\Omega = 0$

where $\Omega = (1, 0, 0, \cdots)$ (Fock vacuum)

Commutation properties

Let b, c be operators on $L^2(\mathbb{R}^3)$ and $f \in L^2(\mathbb{R}^3)$. We have

$$[\mathrm{d}\Gamma(b),\mathrm{d}\Gamma(c)] = \mathrm{d}\Gamma([b,c]),$$
$$[\mathrm{d}\Gamma(b),\Phi(f)] = -i\Phi(ibf)$$

Proof of the theorem (I)

Nelson model

To simplify the presentation, we consider the Nelson model

$$H = -\Delta_x + V(x) + \mathrm{d}\Gamma(|k|) + \Phi(h_x), \quad h_x(k) = |k|^{\mu} e^{ik \cdot x} \kappa(k), \quad \mu > 0$$

Propagation observable

Let v = |y|/ct. The choice $\Phi_t = t^{2\gamma} \mathrm{d}\Gamma(F(v))$ does *not* work. Let instead $\Phi_t = t^{2\gamma} \mathrm{d}\Gamma(J_\beta(v^2))$, where $J_\beta(s) = s^\beta F(s^{1/2})$. Then Φ_t is well-defined or $\chi(H)D(\mathrm{d}\Gamma(\langle y \rangle^{2\beta}))$ (not trivial) and satisfies $\Phi_t \geq t^{2\gamma} \mathrm{d}\Gamma(F(v))$ (trivial)

Heisenberg derivative

$$\begin{split} D\Phi_t &= \partial_t \Phi_t + i[H, \Phi_t] = 2\gamma t^{2\gamma - 1} \mathrm{d}\Gamma \big(J_\beta \big(v^2\big)\big) \leftarrow \text{has a sign} \\ &- 2t^{2\gamma - 1} \mathrm{d}\Gamma \big(v^2J_\beta' \big(v^2\big)\big) \leftarrow \text{has a sign} \\ &+ t^{2\gamma} \mathrm{d}\Gamma \big(i\big[|k|, J_\beta \big(v^2\big)\big]\big) \leftarrow ?? \\ &- t^{2\gamma} \Phi (iJ_\beta \big(v^2\big)h_\gamma) \leftarrow \text{remainder term} \end{split}$$

Proof of the theorem (I)

Nelson model

To simplify the presentation, we consider the Nelson model

$$H = -\Delta_x + V(x) + d\Gamma(|k|) + \Phi(h_x), \quad h_x(k) = |k|^{\mu} e^{ik \cdot x} \kappa(k), \quad \mu > 0$$

Propagation observable

Let v=|y|/ct. The choice $\Phi_t=t^{2\gamma}\mathrm{d}\Gamma\big(F(v)\big)$ does *not* work. Let instead $\Phi_t=t^{2\gamma}\mathrm{d}\Gamma\big(J_\beta(v^2)\big)$, where $J_\beta(s)=s^\beta F(s^{1/2})$. Then Φ_t is well-defined on $\chi(H)D\big(\mathrm{d}\Gamma(\langle y\rangle^{2\beta})\big)$ (not trivial) and satisfies $\Phi_t\geq t^{2\gamma}\mathrm{d}\Gamma\big(F(v)\big)$ (trivial)

Heisenberg derivative

$$\begin{split} D\Phi_t &= \partial_t \Phi_t + i[H, \Phi_t] = 2\gamma t^{2\gamma-1} \mathrm{d}\Gamma \big(J_\beta(v^2)\big) \leftarrow \text{has a sign} \\ &- 2t^{2\gamma-1} \mathrm{d}\Gamma \big(v^2 J_\beta'(v^2)\big) \leftarrow \text{has a sign} \\ &+ t^{2\gamma} \mathrm{d}\Gamma \big(i\big[|k|, J_\beta(v^2)\big]\big) \leftarrow ?? \\ &- t^{2\gamma} \Phi (iJ_\beta(v^2)h_x) \leftarrow \text{remainder term} \end{split}$$

Proof of the theorem (I)

Nelson model

To simplify the presentation, we consider the Nelson model

$$H = -\Delta_x + V(x) + \mathrm{d}\Gamma(|k|) + \Phi(h_x), \quad h_x(k) = |k|^{\mu} e^{ik \cdot x} \kappa(k), \quad \mu > 0$$

Propagation observable

Let v=|y|/ct. The choice $\Phi_t=t^{2\gamma}\mathrm{d}\Gamma\big(F(v)\big)$ does *not* work. Let instead $\Phi_t=t^{2\gamma}\mathrm{d}\Gamma\big(J_\beta(v^2)\big)$, where $J_\beta(s)=s^\beta F(s^{1/2})$. Then Φ_t is well-defined on $\chi(H)D\big(\mathrm{d}\Gamma\big(\langle y\rangle^{2\beta}\big)\big)$ (not trivial) and satisfies $\Phi_t\geq t^{2\gamma}\mathrm{d}\Gamma\big(F(v)\big)$ (trivial)

Heisenberg derivative

$$\begin{split} D\Phi_t &= \partial_t \Phi_t + i[H, \Phi_t] = 2\gamma t^{2\gamma-1} \mathrm{d}\Gamma \big(J_\beta(v^2)\big) \leftarrow \mathsf{has \ a \ sign} \\ &- 2t^{2\gamma-1} \mathrm{d}\Gamma \big(v^2 J_\beta'(v^2)\big) \leftarrow \mathsf{has \ a \ sign} \\ &+ t^{2\gamma} \mathrm{d}\Gamma \big(i\big[|k|, J_\beta(v^2)\big]\big) \leftarrow ?? \\ &- t^{2\gamma} \Phi(iJ_\beta(v^2)h_x) \leftarrow \mathsf{remainder \ term} \end{split}$$

Proof of the theorem (II)

The field remainder term

Recall
$$h_x(k) = |k|^{\mu} e^{ik \cdot x} \kappa(k)$$

Use that

$$\|\Phi(iJ_{\beta}(v^{2})h_{x})(H_{f}+1)^{-1/2}\|\lesssim \||k|^{-1/2}J_{\beta}(v^{2})h_{x}\|_{L^{2}}+\|J_{\beta}(v^{2})h_{x}\|_{L^{2}},$$

- Use that $J_{eta}(\cdot)$ is supported away from 0: $\||y|^{-\rho}J_{eta}(v^2)\|\lesssim t^{ho}$
- Use that $|||k|^{-1/2}|y|^{\rho}h_x||_{L^2}\lesssim \langle x\rangle^{\rho}$ (for ρ not too large, depending on the value of μ)
- Use exponential decay in the electron position variable below the ionization threshold to bound $\|\langle x \rangle^{\rho} \chi(H) \| < \infty$
- It follows that

$$t^{2\gamma} \|\chi(H)\Phi(iJ_{\beta}(v^2)h_x)\chi(H)\| \lesssim t^{-1-\varepsilon}$$

for
$$2\gamma + 1 + \varepsilon + 1/2 + 2\beta - \mu < 3/2$$
 (requires $\mu > 0$)

Proof of the theorem (III)

Commutator expansion

Consider the term $t^{2\gamma} d\Gamma(i[|k|, J_{\beta}(v^2)])$

• By the Helffer-Sjöstrand formula,

$$i[|k|, J_{\beta}(v^{2})] = (J'_{\beta})^{\frac{1}{2}}(v^{2})i[|k|, v^{2}](J'_{\beta})^{\frac{1}{2}}(v^{2}) + \text{Rem}$$

$$= -\frac{1}{\text{ct}}(J'_{\beta})^{\frac{1}{2}}(v^{2})(v \cdot \frac{k}{|k|} + \frac{k}{|k|} \cdot v)(J'_{\beta})^{\frac{1}{2}}(v^{2}) + \text{Rem}$$

• The main term: since $\operatorname{supp}(J'_{\beta}) \subset [1, \infty)$,

$$-\frac{1}{\mathrm{c}t}(J'_{\beta})^{\frac{1}{2}}(v^2)(v\cdot\frac{k}{|k|}+\frac{k}{|k|}\cdot v)(J'_{\beta})^{\frac{1}{2}}(v^2)\leq \frac{2}{\mathrm{c}t}v^2J'_{\beta}(v^2)$$

• The remainder term: use Hardy's inequality in \mathbb{R}^3 $(\||k|^{-\delta}u\|_{L^2} \lesssim \||y|^{\delta}u\|_{L^2}$ for $0 \leq \delta < 3/2$) to show that

$$\left\| |k|^{\frac{\delta}{2}} \operatorname{Rem}|k|^{\frac{\delta}{2}} \right\| \lesssim t^{-1-\delta}, \quad 0 \le \delta \le 1$$

Proof of the theorem (IV)

Control of small momenta

After second quantization, the previous estimate give

$$t^{2\gamma}\mathrm{d}\Gamma\big(i\big[|k|,J_\beta(v^2)\big]\big) \leq 2\mathrm{c}^{-1}t^{2\gamma-1}\mathrm{d}\Gamma\big(v^2J_\beta'(v^2)\big) + Ct^{-1-\delta}\mathrm{d}\Gamma\big(|k|^{-\delta}\big)$$

• Control the growth of $\mathrm{d}\Gamma(|k|^{-\delta})$ along the evolution: Assume $\psi_0 \in D(|H|^{\frac{1}{2}}) \cap D(\mathrm{d}\Gamma(|k|^{-\delta})^{\frac{1}{2}})$. Then for any $\delta \in [-1,1]$,

$$\langle \psi_t, \mathrm{d}\Gamma(|k|^{-\delta})\psi_t
angle \lesssim t^{rac{1+\delta}{2+\mu}} (\langle \psi_0, (|H|+1)\psi_0
angle + \langle \psi_0, \mathrm{d}\Gamma(|k|^{-\delta})\psi_0
angle)$$

Therefore

$$t^{-1-\delta}\langle \psi_t, \mathrm{d}\Gamma(|k|^{-\delta})\psi_t\rangle \lesssim t^{-1-\varepsilon},$$

with $\varepsilon = \delta - \frac{1+\delta}{2+\mu}$, and hence $\varepsilon > 0$ provided that $\mu > \delta^{-1} - 1$

Proof of the theorem (V)

Conclusion

Combine the previous estimates to obtain

$$\begin{split} D\Phi_t &= 2\gamma t^{2\gamma-1}\mathrm{d}\Gamma\big(J_\beta(v^2)\big) - 2t^{2\gamma-1}\mathrm{d}\Gamma\big(v^2J_\beta'(v^2)\big) \\ &+ t^{2\gamma}\mathrm{d}\Gamma\big(i\big[|k|,J_\beta(v^2)\big]\big) - t^{2\gamma}\Phi\big(iJ_\beta(v^2)h_x\big) \\ &\leq 2t^{2\gamma-1}\mathrm{d}\Gamma\big(\gamma J_\beta(v^2) - (1-c^{-1})v^2J_\beta'(v^2)\big) + \mathrm{Int.\,term} \end{split}$$

• Use that $v^2J'_{\beta}(v^2) \geq \beta J_{\beta}(v^2)$ which implies

$$D\Phi_t \le 2t^{2\gamma-1}(\gamma - (1-c^{-1})\beta)d\Gamma(J_\beta(v^2)) + \text{Int. term}$$

• Choose β such that $\gamma - (1 - c^{-1})\beta < 0$

Standard model of non-relativistic QED

- Infrared singularity is of order $|k|^{\mu}$ with $\mu = -1/2$ (while we used the condition $\mu > 0$ for the Nelson model)
- Use a (generalized) Pauli-Fierz transformation to improve the infrared behavior

Proof of the theorem (V)

Conclusion

Combine the previous estimates to obtain

$$\begin{split} D\Phi_{t} &= 2\gamma t^{2\gamma-1} \mathrm{d}\Gamma \big(J_{\beta}(v^{2})\big) - 2t^{2\gamma-1} \mathrm{d}\Gamma \big(v^{2}J_{\beta}'(v^{2})\big) \\ &+ t^{2\gamma} \mathrm{d}\Gamma \big(i\big[|k|,J_{\beta}(v^{2})\big]\big) - t^{2\gamma} \Phi \big(iJ_{\beta}(v^{2})h_{x}\big) \\ &\leq 2t^{2\gamma-1} \mathrm{d}\Gamma \big(\gamma J_{\beta}(v^{2}) - (1-c^{-1})v^{2}J_{\beta}'(v^{2})\big) + \mathrm{Int.\,term} \end{split}$$

• Use that $v^2J'_{eta}(v^2) \geq \beta J_{eta}(v^2)$ which implies

$$D\Phi_t \le 2t^{2\gamma-1}(\gamma - (1-c^{-1})\beta)d\Gamma(J_\beta(v^2)) + \text{Int. term}$$

• Choose β such that $\gamma - (1 - c^{-1})\beta < 0$

Standard model of non-relativistic QED

- Infrared singularity is of order $|k|^{\mu}$ with $\mu = -1/2$ (while we used the condition $\mu > 0$ for the Nelson model)
- Use a (generalized) Pauli-Fierz transformation to improve the infrared behavior

Propagation estimates for photons

Jérémy Faupin

Introductio

Propagation

Pro

Minimal velocity

Part IV

Minimal velocity estimate?

Minimal velocity of photons

Conjecture

Since physically, photons propagate at the speed of light (c=1), we expect that, for $F \in C_0^\infty((0,1))$ and $\chi \in C_0^\infty((-\infty,\Sigma) \setminus \sigma_p(H))$

$$\int_{1}^{\infty} \left\| \mathrm{d}\Gamma \big(F(|y|/t) \big)^{\frac{1}{2}} \mathrm{e}^{-itH} \chi(H) u \right\|^{2} \frac{dt}{t} < \infty$$

for u in some dense set

Problems

• Let $\Phi_t = \mathrm{d}\Gamma(G(v^2))$. We have

$$D\Phi_t = \partial_t d\Gamma(v^2) + i[H, G(v^2)]$$

Now the second term should dominate the first one

• To prove a weak propagation estimate, we need that $\langle \psi_t, \Phi_t \psi_t \rangle$ is uniformly bounded. However, it is *not* known that $\langle \psi_t, \mathrm{d}\Gamma(1)\psi_t \rangle$ is uniformly bounded

Minimal velocity of photons

Conjecture

Since physically, photons propagate at the speed of light (c = 1), we expect that, for $F \in C_0^{\infty}((0,1))$ and $\chi \in C_0^{\infty}((-\infty,\Sigma) \setminus \sigma_p(H))$

$$\int_{1}^{\infty} \left\| \mathrm{d}\Gamma \big(F(|y|/t) \big)^{\frac{1}{2}} \mathrm{e}^{-itH} \chi(H) u \right\|^{2} \frac{dt}{t} < \infty$$

for u in some dense set

Problems

• Let $\Phi_t = \mathrm{d}\Gamma(G(v^2))$. We have

$$D\Phi_t = \partial_t d\Gamma(v^2) + i[H, G(v^2)]$$

Now the second term should dominate the first one

• To prove a weak propagation estimate, we need that $\langle \psi_t, \Phi_t \psi_t \rangle$ is uniformly bounded. However, it is *not* known that $\langle \psi_t, d\Gamma(1)\psi_t \rangle$ is uniformly bounded

Local decay

Mourre estimate (Fröhlich, Griesemer, Sigal)

Let $E:=\inf \sigma(H)$, $e_{\mathrm{gap}}=e_{1}-e_{0}$ with $e_{0}=\inf \sigma(H_{\mathrm{el}})$, $e_{1}=\inf \sigma(H_{\mathrm{el}})\setminus\{e_{0}\}$, and

$$\mathcal{B}_{\sigma} := \mathrm{d}\Gamma(b_{\sigma}), \quad b_{\sigma} := \frac{1}{2}\eta_{\sigma}(k)(k\cdot y + y\cdot k)\eta_{\sigma}(k)$$

Let $I \in (0,1)$ be an open interval. There exist $c_0 > 0$ such that, for sufficiently small coupling and $0 < \sigma \le e_{\rm gap}/2$,

$$\mathbb{1}_{\sigma I}(H-E)[H,iB_{\sigma}]\mathbb{1}_{\sigma I}(H-E) \geq c_0 \sigma \mathbb{1}_{\sigma I}(H-E)$$

(Non uniform) Local decay (Hunziker, Sigal, Soffer)

Let $\varphi \in \mathrm{C}_0^\infty((0,1);\mathbb{R})$, $\varphi_\sigma(\cdot) := \varphi(\cdot/\sigma)$. For all $s \geq 0$, there exits $\mathrm{C}_{s,\varphi} > 0$ such that, for sufficiently small coupling and for all $0 < \sigma \leq e_{\mathrm{gap}}/2$ and $t \in \mathbb{R}$

$$\left\|\langle B_{\sigma}
angle^{-s}e^{-itH}arphi_{\sigma}(H-E)\langle B_{\sigma}
angle^{-s}
ight\|\leq rac{\mathrm{C}_{s,arphi}}{\langle t\sigma
angle^{s}}$$

Local decay

Mourre estimate (Fröhlich, Griesemer, Sigal)

Let $E:=\inf \sigma(H)$, $e_{\mathrm{gap}}=e_{1}-e_{0}$ with $e_{0}=\inf \sigma(H_{\mathrm{el}})$, $e_{1}=\inf \sigma(H_{\mathrm{el}})\setminus\{e_{0}\}$, and

$$B_{\sigma} := \mathrm{d}\Gamma(b_{\sigma}), \quad b_{\sigma} := \frac{1}{2}\eta_{\sigma}(k)(k\cdot y + y\cdot k)\eta_{\sigma}(k)$$

Let $I \in (0,1)$ be an open interval. There exist $c_0 > 0$ such that, for sufficiently small coupling and $0 < \sigma \le e_{\rm gap}/2$,

$$\mathbb{1}_{\sigma I}(H-E)[H,iB_{\sigma}]\mathbb{1}_{\sigma I}(H-E) \geq c_0\sigma\mathbb{1}_{\sigma I}(H-E)$$

(Non uniform) Local decay (Hunziker, Sigal, Soffer)

Let $\varphi \in C_0^{\infty}((0,1);\mathbb{R})$, $\varphi_{\sigma}(\cdot) := \varphi(\cdot/\sigma)$. For all $s \geq 0$, there exits $C_{s,\varphi} > 0$ such that, for sufficiently small coupling and for all $0 < \sigma \leq e_{\rm gap}/2$ and $t \in \mathbb{R}$,

$$\|\langle B_{\sigma} \rangle^{-s} e^{-itH} \varphi_{\sigma} (H - E) \langle B_{\sigma} \rangle^{-s} \| \leq \frac{C_{s,\varphi}}{\langle t\sigma \rangle^{s}}$$

Minimal velocity of at least one photon

(Uniform) Local decay (Bony, F.)

For sufficiently small coupling, for all $\chi \in \mathrm{C}_0^\infty((E,E+e_{\mathrm{gap}}/4);\mathbb{R})$ and $0 \leq s < 2$, we have

$$\|\langle \mathrm{d}\Gamma(|y|)\rangle^{-s}\mathrm{e}^{-itH}\chi(H)\langle \mathrm{d}\Gamma(|y|)\rangle^{-s}\|\lesssim \langle t\rangle^{-s}$$

Consequence

Let $\Gamma(b) = b \otimes \cdots \otimes b$ on the *n*-particles subspace. For sufficiently small coupling, for all $\chi \in C_0^{\infty}((E, E + e_{\text{gap}}/4); \mathbb{R})$

$$\left\| \Gamma(F(|y| \le ct^{\alpha}))e^{-itH}\chi(H)\psi \right\|^2 \lesssim t^{\alpha-\frac{9}{20}}$$

for all c>0 and $\alpha<9/20$. In other words, asymptotically as $t\to\infty$, at least one particle is in the region $\{|y|\geq ct^{\alpha}\}$

observabl

Minimal velocity

Minimal velocity of at least one photon

(Uniform) Local decay (Bony, F.)

For sufficiently small coupling, for all $\chi \in \mathrm{C}_0^\infty((E,E+e_{\mathrm{gap}}/4);\mathbb{R})$ and $0 \leq s < 2$, we have

$$\|\langle \mathrm{d}\Gamma(|y|)\rangle^{-s}e^{-itH}\chi(H)\langle \mathrm{d}\Gamma(|y|)\rangle^{-s}\|\lesssim \langle t\rangle^{-s}$$

Consequence

Let $\Gamma(b)=b\otimes\cdots\otimes b$ on the *n*-particles subspace. For sufficiently small coupling, for all $\chi\in\mathrm{C}_0^\infty((E,E+e_{\mathrm{gap}}/4);\mathbb{R})$

$$\left\| \Gamma(F(|y| \le ct^{\alpha}))e^{-itH}\chi(H)\psi \right\|^2 \lesssim t^{\alpha-\frac{9}{20}},$$

for all c>0 and $\alpha<9/20$. In other words, asymptotically as $t\to\infty$, at least one particle is in the region $\{|y|\geq ct^\alpha\}$