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Abstract. The purpose of this article is twofold. First we give a very robust method
for proving sharp time decay estimates for the most classical three models of dispersive
Partial Differential Equations, the wave, Klein-Gordon and Schrödinger equations, on
curved geometries, showing under very general assumptions the exact same decay as for
the Euclidean case. Then we also extend these decay properties to the case of boundary
value problems.

Résumé. Dans cet article nous présentons d’une part une méthode très robuste per-
mettant d’obtenir des estimées de décroissance optimales pour trois modèles classiques
d’équations aux dérivées partielles dispersives: les ondes, Klein-Gordon et Schrödinger,
dans des géométries courbées. Nous obtenons sous des hypothèses générales le même
taux de décroissance que dans le cas Euclidien. D’autre part, nous étendons ces résultats
aux cas de problèmes aux limites.

1. Introduction

The main goal of this paper is to get sharp time decay estimates for three models of
dispersive equations - the Schrödinger, wave and Klein-Gordon equations - associated to
an asymptotically flat metric, and with (or without) an obstacle. We also consider power
resolvent estimates for the related stationary problem. Recall first the classical results for
the free Laplace operator on Rn, n ≥ 2. Given any compact subset K of Rn, we have the
following estimates, first for the Schrödinger flow,

(1.1)
∥∥∥1Keit∆1K∥∥∥

L2→L2
. 〈t〉−

n
2 ,

then for the wave flow ∥∥∥1K cos(t|D|)1K
∥∥∥
L2→L2

. 〈t〉−n(1.2) ∥∥∥1K sin(t|D|)
|D|

1K

∥∥∥
L2→L2

. 〈t〉1−n,(1.3)

(here |D| =
√
−∆), and finally for the Klein-Gordon flow

(1.4)
∥∥∥1K cos(t〈D〉)1K

∥∥∥
L2→L2

+
∥∥∥1K sin(t〈D〉)

〈D〉
1K

∥∥∥
L2→L2

. 〈t〉−
n
2 ,

where 〈D〉 =
√
−∆ + 1. The estimates (1.1) and (1.4) are sharp in all dimensions while

(1.2) and (1.3) are sharp in even dimensions (see Appendix A). In this paper, we will
obtain the same optimal decay rates when the flat Euclidean metric is replaced by a long
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range perturbation. This question is mostly related to low frequencies. The contribution
of high frequencies is by no mean trivial but it may rather be responsible for a loss of
derivatives on initial data than on a lack of time decay, a phenomenon which also shows up
in the more involved context of black holes space-times (see [33] and the references therein).
More precisely, in many cases including the models considered here, the time decay of high
frequencies can be as fast as we wish if one accepts a possible derivative loss on initial
data (depending on the behaviour of the geodesic flow). Elementary evidences of this are
displayed in Section 6. Let us point out that in the above estimates we only focus on time
decay rates. For this reason, we only consider the L2 → L2 operator norm (and don’t take
into account the possible smoothing properties of some of the above operators) as well as
compact cutoffs 1K , though they could be replaced by suitable polynomial weights 〈x〉−ν .

For very short range perturbations of the Laplacian, sharp time decay rates have been
proved in many papers among which [19, 29, 26, 21, 37]. The special framework of pertur-
bations by potential decaying fast enough at infinity is also related to dispersive estimates
for which there exists a large literature so we only quote the recent papers [12, 13] and
refer the reader to the bibliography therein.

For long range perturbations by metrics, the picture is still not complete. Sharp esti-
mates for the wave equation in even dimension have been obtained by Guillarmou-Hassell-
Sikora [14] in the case of scattering manifolds. For the Schrödinger and wave equations,
Schlag-Soffer-Staubach have also obtained sharp estimates on surfaces for radial perturba-
tions of exact conical models [31]. For long range perturbations of the Euclidean metric
and a large family of dispersive equations, the best general results to our knowledge are
due to Bony-Häfner [2], but their estimates are only ε-sharp in the sense that their decay
rates are optimal up to 〈t〉ε. In the present paper, we shall remove this 〈t〉ε error. Finally,
for obstacle problems, to the best of our knowledge, the only results available are for the
euclidean metric [34, 7].

Although we shall not give sharp estimates for the wave equation in odd dimension, we
complete this introduction by quoting recent progress or open problems in this direction.
A 〈t〉−3 decay has been obtained by Tataru in [33] in the more general context of 3 + 1
asymptotically flat stationary space-times. Guillarmou-Hassell-Sikora [14] have similary
proved a 〈t〉−n decay for certain asymptotically conical manifolds of odd dimension n. We
recall that in odd dimensions, the strong Huygens principle implies that the left hand sides
of (1.2) and (1.3) vanish identically for t large enough. Proving or disproving a similar
property (e.g. a fast decay) for the local energy associated to the wave equation for a long
range perturbation of the flat metric is still an open problem.

Our approach in this paper is to get sharp low frequency estimates for the resolvent
and the spectral measure of the stationary problem. The time decay estimates are then
obtained by Fourier transform arguments, writing the different flows as oscillatory integrals
of the spectral measure. Our results could be extended to asymptotically conical manifolds;
we work in the simpler asymptotically Euclidean context to emphasize the main points of
the approach and avoid technical complications.

Everywhere below, we work in dimension n ≥ 2 and let Ω be either Rn or Rn \ K with
K a smooth compact obstacle, and the operators we consider will satisfy
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Assumption 1.1. We consider a differential operator of the form

P = −µ(x)−1
∑
j,k

∂j

(
µ(x)gjk(x)∂k

)
with smooth real valued coefficients, (gjk(x)) positive definite, µ(x) > 0 for each x, and
such that

(1.5) µ− 1 ∈ S−ρ, gjk − δjk ∈ S−ρ for some ρ > 0,

where δjk is the usual Kronecker symbol. Note that µ−1 − 1 ∈ S−ρ too. Here we use the
standard symbol classes Sm = Sm(Rn) of functions such that ∂αa(x) = O(〈x〉m−|α|); when
K is non empty, it is understood that the coefficients of P are restrictions to Ω of smooth
functions on Rn.

The operator P is formally self-adjoint on L2(Ω, µ(x)dx), i.e. with respect to the measure
µ(x)dx. We still denote by P its Dirichlet realization (which is the usual one if Ω = Rn).
We point out that the spaces Lp(Ω, dx) and Lp(Ω, µ(x)dx) coincide and have equivalent
norms so we shall mostly denote them as Lp, but will sometimes refer to the measure when
needed.

For such operators, one has

(1.6) P ≥ 0

so that
√
P is well defined. We note that by ellipticity of (gjk), the domain of

√
P coincides

with H1
0 (Ω) and

(1.7)
∥∥∥∇u∥∥∥

L2
≤ C

∥∥∥√Pu∥∥∥
L2

for all u ∈ H1
0 (Ω) or (equivalently) all u ∈ C∞0 (Ω). It ensures that we have a Nash

inequality which in turn provides convenient estimates on the heat semigroup e−tP (see
Section 3).

We study the outgoing and incoming resolvents of P

(1.8) (P − λ± i0)−1 := lim
ε→0+

(P − λ± iε)−1

with λ > 0, and the related spectral measure given by Stone’s formula

(1.9) E′P (λ) :=
1

2iπ

(
(P − λ− i0)−1 − (P − λ+ i0)−1

)
.

The existence of the limits in (1.8) in weighted L2 spaces is standard and due to [20]
together with the fact that P has no embedded eigenvalues [22].

We state our main technical results on resolvents and the spectral measure. Throughout
the paper, || · || denotes both the L2(Ω)→ L2(Ω) and L2(Rn)→ L2(Rn) operator norms.

Theorem 1.2. Let n ≥ 2, λ0 > 0, k ∈ N and ν > k. Assume that the operator P satisfies
Assumption 1.1. Then the function

λ 7−→ 〈x〉−νE′P (λ)〈x〉−ν
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is Ck−1 on (0, λ0] with values in (bounded) operators on L2. If in addition ν > n
2 , then∥∥∥ dj

dλj
〈x〉−νE′P (λ)〈x〉−ν

∥∥∥ ≤ Cλn2−1−j .

Note that the behaviour of the spectral measure is independent of the oddness or even-
ness of the dimension, unlike the one of resolvents displayed in Theorem 1.3 below. Note
also that if 〈x〉−ν is replaced by a compactly supported (or fast decaying) weight, we ob-
tain a smooth function of λ > 0 with values in bounded operators but whose behaviour of
derivatives is more and more singular at 0.

Theorem 1.3. Let n ≥ 2, λ0 > 0, k ∈ N and ν > k. Assume that the operator P satisfies
Assumption 1.1. Then there is a constant C > 0 such that for all λ ∈ (0, λ0],∥∥∥〈x〉−ν(P − λ± i0)−k〈x〉−ν∥∥∥ ≤ Cλmin{0,n

2
−k}

unless n is even and k = n
2 in which case∥∥∥〈x〉−ν(P − λ± i0)−n2 〈x〉−ν∥∥∥ ≤ C| log λ|.

The example of the flat Laplacian shows that the logarithmic divergence in even dimen-
sions is sharp (see e.g. formula (2.2) in [32]).

We next consider applications to evolution equations.

Theorem 1.4. Let n ≥ 2 and F ∈ C∞0 (R). Assume that the operator P satisfies Assump-
tion 1.1. Then one has:

• Schrödinger decay: if ν >
[
n
2

]
+ 2

(1.10)
∥∥∥〈x〉−νF (P )eitP 〈x〉−ν

∥∥∥ . 〈t〉−n2 .
• Wave decay: if ν > n+ 1,

(1.11)
∥∥∥〈x〉−νF (P )

sin(t
√
P )√

P
〈x〉−ν

∥∥∥ . 〈t〉1−n
and,

(1.12)
∥∥∥〈x〉−νF (P )eit

√
P 〈x〉−ν

∥∥∥ . 〈t〉−n.
• Klein-Gordon decay: if ν >

[
n
2

]
+ 2

(1.13)
∥∥∥〈x〉−νF (P )eit

√
P+1〈x〉−ν

∥∥∥ . 〈t〉−n2 .
Note that

√
P and

√
P + 1 are well defined since P is nonnegative.

The time decays in (1.10) and (1.13) are optimal in all dimensions. In even dimensions,
the estimates (1.11) and (1.12) are sharp too. Theorem 1.4 is a consequence of Theorem 1.2
and classical integration by part techniques displayed in Section 5.

We next give time decay estimates without high frequency cutoff. We assume the non
trapping condition, which, in the boundaryless case, means that geodesics associated to
the classical Hamiltonian

∑
j,k g

jk(x)ξjξk (with non zero initial speed) escape to infinity
as time goes to infinity.
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Theorem 1.5. Let n ≥ 2, Ω = Rn. Assume that the operator P satisfies Assumption 1.1
and the non trapping condition. Then

• Schrödinger decay: if ν >
[
n
2

]
+ 2

(1.14)
∥∥∥〈x〉−νeitP 〈x〉−ν∥∥∥

L2→H
n
2
. |t|−

n
2 .

• Wave decay: if ν > n+ 1,

(1.15)
∥∥∥〈x〉−ν sin(t

√
P )√

P
〈x〉−ν

∥∥∥
L2→H1

. 〈t〉1−n

and,

(1.16)
∥∥∥〈x〉−ν cos

(
t
√
P
)
〈x〉−ν

∥∥∥ . 〈t〉−n.
• Klein-Gordon decay: if ν >

[
n
2

]
+ 2

(1.17)
∥∥∥〈x〉−νeit√P+1〈x〉−ν

∥∥∥ . 〈t〉−n2 .
We finally state the analogous result for obstacles. In the next theorem, we denote by 〈x〉

a positive continuous function which coincides with the usual Japanese bracket (1+ |x|2)1/2

at infinity but which is equal to 1 near the obstacle.

Theorem 1.6. Let n ≥ 2. Assume that the operator P satisfies Assumption 1.1 and the
non trapping condition for obstacles (Definition 7.2), then

• Schrödinger decay: if ν >
[
n
2

]
+ 2

(1.18)
∥∥∥〈x〉−νeitP 〈x〉−ν∥∥∥

L2→Dom(Pn/4)
. |t|−

n
2 .

• Wave decay: if ν > n+ 1,

(1.19)
∥∥∥〈x〉−ν sin(t

√
P )√

P
〈x〉−ν

∥∥∥
L2→H1

0

. 〈t〉1−n

and,

(1.20)
∥∥∥〈x〉−ν cos

(
t
√
P
)
〈x〉−ν

∥∥∥ . 〈t〉−n.
• Klein-Gordon decay: if ν >

[
n
2

]
+ 2

(1.21)
∥∥∥〈x〉−νeit√P+1〈x〉−ν

∥∥∥ . 〈t〉−n2 .
2. Commutator estimates

In this section, we construct a suitable conjugate operator to derive resolvent estimates
for the family of operators (P/λ)0<λ�1 by mean of Mourre theory. The main results are
stated in Propositions 2.2 and 2.3.

Most of the analysis in this part depends only on the form of the operator near infinity
and is very robust. It does not depend on the dimension nor on the presence of an obstacle
or a potential. More precisely, we exhibit a technical condition (Assumption 2.1 below)
which ensures that we have an exact positive commutator estimate (Proposition 2.3).
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To emphasize the robustness of our method and prepare future works, we shall add a
very short range potential to P , i.e. consider

(2.1) PV := P + V, V ∈ S−2−ρ real valued.

We keep the same notation PV for the self-adjoint realization on L2(Ω, µdx) with domain
D(PV ) = D(P ).

Assumption 2.1. For all σ > 0 and for all ε > 0, there are λ1 > 0 small enough and
f ∈ C∞0 (0,+∞) equal to 1 near 1 such that

(2.2)
∥∥∥〈λ 1

2x〉−σf(PV /λ)
∥∥∥ ≤ ε,

for all 0 < λ ≤ λ1.

In Section 3, we shall see that this condition is satisfied if V ≡ 0. It is natural to expect
that Assumption 2.1 is satisfied if PV has no zero eigenvalue nor zero resonant state.

We first construct a suitable conjugate operator. When working at fixed positive energy,
the usual conjugate operator for Hamiltonians which are self-adjoint with respect to the
Lebesgue measure is the generator of dilations A,

(2.3) A =
x ·D +D · x

2
, eitAu(x) = et

n
2 u(etx).

To take into account the self-adjointness of PV with respect to µ(x)dx, the first idea is to
consider

Aµ := µ−
1
2Aµ

1
2 = A− iVµ, with Vµ =

(x · ∇µ)

2µ
∈ S−ρ.

Technically, it is convenient to localize this operator where λ
1
2 |x| & 1 (this is consistent

with Assumption 2.1 which will allow to handle the region where λ
1
2 |x| . 1) so we rather

consider

Aλ :=
(1− χ)(λ

1
2x)x ·D +D · x(1− χ)(λ

1
2x)

2
where χ ∈ C∞0 (Rn) is equal to 1 on a large enough ball centered at 0 and containing K,
and then

(2.4)
Aλµ := µ−

1
2Aλµ

1
2

= (1− χ)(λ
1
2x)Aµ + iW

(
λ

1
2x
)

where W = 1
2x · (∇χ) belongs to C∞0 (Rn \ 0) ∩ C∞0 (Ω). The self-adjointness of Aλ on

L2(Ω, dx) comes from the fact that it is the generator of the unitary group

Uλ(t)ϕ(x) := det(dΦλ
t (x))

1
2ϕ(Φλ

t (x))

where Φλ
t is the flow of the vector field (1−χ)(λ

1
2x)x. It is a simple exercise to check that

this flow is complete on Ω. The operator Aλµ is then rigorously defined as the generator of
the unitary group µ−1/2Uλ(t)µ1/2.

Let us introduce the subspace

D = {ϕ ∈ D(PV ) | ϕ ∈ C∞(Ω), ϕ(x) = 0 for |x| � 1}.



SHARP DECAY ESTIMATES FOR DISPERSIVE EQUATIONS 7

In the case when Ω = Rn, D = C∞0 (Rn). The requirement that ϕ belongs to the domain
D(PV ) ensures that ϕ satisfies the boundary condition when ∂Ω is not empty. The interest
of this dense subspace is that it allows to justify all formal manipulations required in Mourre
theory. In particular, D is stable by Uλ(t); indeed, from its expression Uλ(t) preserves the
smoothness and the vanishing outside a large ball. Moreover, since Φt

λ(x) = x in the region
where the vector field (1 − χ)(λ1/2x)x vanishes, Uλ(t) preserves the boundary condition.
One can also check that D(PV ) is preserved by Uλ(t). Another useful property is that D is
dense in D(PV ) for the graph norm. More precisely, if u belongs to D(PV ), one can easily
check that uε := χ(εx)ψ(εPV )u (with ψ ∈ C∞0 (R) equal to 1 near zero) belongs to D and
converges to u for the graph norm of D(PV ).

Let us use the standard notation for k ≥ 1

adkiAλµB :=
[
adk−1

iAλµ
B, iAλµ

]
, adiAλµB :=

[
B, iAλµ

]
,

for the iterated commutators with iAλµ.
Estimates on powers of the resolvent of PV /λ rest on two types of information. The

first one is given by the following upper bounds on iterated commutators.

Proposition 2.2. Let n ≥ 2. For all k ≥ 1, the operator adkiAλµ
(
PV /λ

)
is PV /λ bounded,

uniformly in λ ∈ (0, 1]. In other words,∥∥∥adkiAλµ(PV /λ)ϕ∥∥∥L2
≤ C

∥∥∥(PV /λ+ i)ϕ
∥∥∥
L2

with a constant C independent of λ and ϕ ∈ D.

As a consequence of this proposition and the density of D in D(PV ) we get that the
commutators adkiAλµ

(
PV /λ

)
, defined first on D, have bounded closures to D(PV ). Using

standard techniques, it can also be used to show that, if u ∈ D(Aλµ), then the sequence uε
defined above converges to u in D(Aλµ). Therefore D is dense in D(PV ) ∩D(Aλµ).

The second key result is the following lower bound.

Proposition 2.3. Let n ≥ 2. If Assumption 2.1 holds, then
[
PV /λ, iA

λ
µ

]
satisfies a strong

Mourre estimate at energy 1. In other words, there exists λ0 > 0 small enough and f ∈
C∞0 ((0,+∞),R) such that f ≡ 1 near 1 and

(2.5) f(PV /λ)
[
PV /λ, iA

λ
µ

]
f(PV /λ) ≥ f(PV /λ)2,

for all λ ∈ (0, λ0].

Using the techniques of Jensen-Mourre-Perry [20] and the properties of D mentionned
above, the last two propositions imply automatically the following theorem.

Theorem 2.4. Let n ≥ 2. Then for each k ∈ N there exists C > 0 such that for all
λ ∈ (0, λ0] ∥∥∥(Aλµ − i)−k(PV /λ− 1± i0)−k(Aλµ + i)−k

∥∥∥ ≤ C.
The rest of the section is devoted to the proofs of Propositions 2.2 and 2.3.
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We will use rescaled pseudo-differential operators. We denote by Sm,σ the space of
symbols a on R2n such that∣∣∂αx ∂βξ a(x, ξ)

∣∣ ≤ Cαβ〈ξ〉m−|β|〈x〉σ−|α|.
For instance, the (full) symbol p of P belongs to S2,0. More precisely p(x, ξ) − |ξ|2 is a
sum of symbols in S2−j,−ρ−j for j = 0, 1. Everywhere below, we shall set

(2.6) τ = ln(λ
1
2 )

so that e±iτAϕ(x) = λ±
n
4 ϕ(λ±

1
2x). Then, by extending the coefficients of PV to Rn if

Ω 6= Rn, one can write

(2.7) PV /λ = eiτApλ(x,D)e−iτA

where

(2.8) pλ(x, ξ) =
∑
j,k

gjk(x/λ
1
2 )ξjξk − i

∑
k

λ−
1
2 bk(x/λ

1
2 )ξk + λ−1V (x/λ

1
2 ),

with bk =
∑

j µ
−1∂j(µg

jk) ∈ S−ρ−1. Here pλ belongs to S2,0, but not uniformly with
respect to λ. However, for any % = %(x) ∈ C∞(Rn) equal to 1 near infinity and to 0
near zero, the family

(
%pλ
)
λ∈(0,1]

belongs to a bounded subset of S2,0. This will allow to
use pseudodifferential calculus. More precisely, we have the following elementary property
(already used in [4]):

Proposition 2.5. Let n ≥ 2 and % ∈ C∞(Rn) be equal to 1 near infinity and equal to 0
on a large enough ball centered at 0. If we set

bλ(x, ξ) := λ−
ρ
2 %(x)

(
pλ(x, ξ)− |ξ|2

)
then (bλ)λ∈(0,1] is a bounded family in S2,−ρ. In other words,

%(x)pλ(x, ξ) = %(x)|ξ|2 + λ
ρ
2S2,−ρ.

Proof. According to (2.8) it suffices to show that if b ∈ S−ρ−j , then %(x)λ−
ρ
2
− j

2 b(x/λ
1
2 )

belongs to a bounded subset of S−ρ−j . Indeed, using that for |x| & 1 (as it is on the
support of %), we have 〈x〉 ∼ |x| then we find∣∣%(x)λ−

ρ
2
− j

2 b(x/λ
1
2 )
∣∣ ≤ Cλ− ρ2− j2 |x/λ 1

2 |−ρ−j = C|x|−ρ−j ≤ C ′〈x〉−ρ−j ,
with constants independent of λ. One proceeds similarly for derivatives. �

In a similar fashion, keeping (2.6) in mind, one can write

(2.9) Aλµ = eiτAaλ(x,D)e−iτA

with

aλ(x, ξ) = (1− χ)(x)

(
x · ξ +

1

2i

(x · ∇µ
µ

)
|
λ−

1
2 x

+
n

2i

)
+

1

2i
x · ∇χ(x).

As in Proposition 2.5, thanks to the support of (1−χ), aλ belongs to a bounded subset of
S1,1 as long as λ ∈ (0, 1]. One can rewrite this as

(2.10) aλ(x, ξ) = (1− χ)(x)
(
x · ξ +

n

2i

)
+ λ

ρ
2S−ρ(Rnx) + C∞0 (Rnx \ 0),
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meaning that λ−
ρ
2 (1 − χ)(x)(λ−

1
2x) · (∇µ)(λ−

1
2x)/µ(λ−

1
2x) belongs to a bounded subset

of S−ρ.
To prove Proposition 2.2, we will use a parametrix of (PV /λ− z)−1 in the region |x| &

λ−
1
2 in term of rescaled pseudo-differential operators.

Proposition 2.6. Let B be a bounded subset of C, N ∈ N and % ∈ C∞(Rn) be equal to 1
near infinity and equal to 0 on ball centered at 0 and containing K. Then, for all z ∈ B\R,

%
(
λ

1
2x
)(
PV /λ− z

)−1
= eiτA

(
qλ,z(x,D)

)
e−iτA − eiτA

(
rλ,z(x,D)

)
e−iτA

(
PV /λ− z

)−N
where qλ,z ∈ S−2,0 and rλ,z ∈ S−N,−N satisfy uniform bounds in λ. More precisely, for
any seminorms N−2,0 and N−N,−N of S−2,0 and S−N,−N respectively, there exist C > 0
and M such that

N−2,0

(
qλ,z
)

+N−N,−N (rλ,z) ≤ C|Im(z)|−M

for all λ ∈ (0, 1] and z ∈ B \ R.

Remark. It follows from the proof that the Schwartz kernels of the rescaled pseudo-
differential operators

eiτA
(
qλ,z(x,D)

)
e−iτA and eiτA

(
rλ,z(x,D)

)
e−iτA

are contained in the support of %(λ
1
2x)%̃(λ

1
2 y) for any %̃ equal to 1 near the support of % and

equal to 0 near zero and K. Thus their kernels are supported in |x| & λ−
1
2 and |y| & λ−

1
2

so, in particular, the composition of eiτArλ(x,D)e−iτA with (PV /λ−z)−N makes perfectly
sense. More generally, Proposition 2.6 rests only on the form of PV far away at infinity
and is insensitive to the form of this operator in a compact set.
Proof of Proposition 2.6. Let %̃ be a smooth function equal to 1 near the support of % and
equal to 0 near zero and K. Let us consider (2.7) and denote for symplicity Pλ = pλ(x,D).
We can then find an uniformly elliptic differential operator P̃λ with symbol bounded in
S2,0 as λ ∈ (0, 1] and such that %̃Pλ = %̃P̃λ. By standard parametrix construction, one
can find b̃λ ∈ S−2,0 and r̃λ ∈ S−2N,−2N , both bounded with respect to λ ∈ (0, 1] and with
seminorms growing polynomially in 1/|Im(z)|, such that

b̃λ,z(x,D)
(
P̃λ − z

)
= 1 + r̃λ,z(x,D).

Then
%(x)b̃λ(x,D)%̃(x)︸ ︷︷ ︸

=:bλ,z(x,D)

(Pλ − z) = %(x) + rλ,z(x,D)(Pλ − z)1−N

with
rλ,z(x,D) =

(
%(x)r̃λ(x,D)%̃(x)− %(x)b̃λ(x,D)

[
P̃λ, %̃(x)

])
(Pλ − z)N−1

and by rescaling we get(
eiτAbλ(x,D)e−iτA

)
(PV /λ− z) = %(λ

1
2x) +

(
eiτArλ(x,D)e−iτA

)
(PV /λ− z)1−N

from which the result follows by applying (PV /λ− z)−1 to this identity. �
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Proof of Proposition 2.2. Using (2.7), (2.9), in particular that the coefficients of Aλµ
are supported in |x| & λ−1/2, we see that

[PV /λ, iA
λ
µ] = eiτA

(
i
[
pλ(x,D), aλ(x,D)

])
e−iτA = eiτA

(
p

(1)
λ (x,D)

)
e−iτA

for some bounded family (p
(1)
λ )λ∈(0,1] of S2,0. This uses that, for the (pseudo)differential

calculus in classes Sm,σ, the commutator of operators with symbols in Sm1,σ1 and Sm2,σ2

has a symbol in Sm1+m2−1,σ1+σ2−1. By iteration, we find that for each k ≥ 1,

adkiAλµ
(
PV /λ

)
= eiτA

(
p

(k)
λ (x,D)

)
e−iτA

where (p
(k)
λ )λ∈(0,1] is a bounded family of S2,0. Thanks to the support of coefficients of Aλµ,

we can write
adkiAλµ

(
PV /λ

)
= adkiAλµ

(
PV /λ

)
%(λ

1
2x)

for some % ∈ C∞(Rn) supported away from zero and K, and equal to 1 near the support
of 1− χ. We can then use Proposition 2.6 (with z = i) to see that

adkiAλµ
(
PV /λ

)
%(λ

1
2x)(PV /λ+ i)−1

is bounded on L2, uniformly in λ, thanks to the Calderón-Vaillancourt Theorem and the
uniform boundedness on L2 of (eitA)t∈R. The result follows. �
Proof of Proposition 2.3. We start by observing that, by Proposition 2.5,[

PV /λ, iA
λ
µ

]
= 2(1− χ)(λ

1
2x)(−∆/λ) +Rλ

with

Rλ = 〈λ
1
2x〉−NeiτA

(
cλ(x,D)

)
e−iτA%̃(λ

1
2x) + λ

ρ
2 eiτA

(
dλ(x,D)

)
e−iτA%̃(λ

1
2x)

with cλ ∈ S2,0 and dλ ∈ S2,−ρ, both with uniform bounds in λ, and with ρ̃ equal to 0
near zero. Here N is arbitrary; actually the first term of Rλ is compactly supported and
localized in a region where |x| ∼ λ−1/2 but we record only this polynomial decay which is
sufficient. Overall, using (2.7) and Proposition 2.5, we obtain[

PV /λ, iA
λ
µ

]
= 2(1− χ)(λ

1
2x)(PV /λ) + 〈λ

1
2x〉−ρeiτA

(
eλ(x,D)

)
e−iτA%(λ

1
2x)

for some bounded family (eλ)λ∈(0,1] of S2,0 and % equal to 0 near zero. It follows from

Proposition 2.6 that the operator eiτA
(
eλ(x,D)

)
e−iτA%(λ

1
2x)(PV /λ + i)−1 is bounded

uniformly in λ. Thus, if f1 belongs to C∞0 (R), we obtain

(2.11)
∥∥∥f1(PV /λ)

([
PV /λ, iA

λ
µ

]
− 2PV /λ

)
f1(PV /λ)

∥∥∥ ≤ C∥∥∥f1(PV /λ)〈λ
1
2x〉−ρ

∥∥∥,
with a constant C independent of λ and of f1 as long as the support of f1 is contained
in a fixed compact set, say in [−2, 2], and as long as ||f1||∞ is bounded (say by 1). By
Assumption 2.1, the right hand side of (2.11) can be made as small as we wish, say less
than 1

4 , provided we shrink the support of f1 around 1 and take λ small enough. We obtain

(2.12) f1(PV /λ)
[
PV /λ, iA

λ
µ

]
f1(PV /λ) ≥ 2f1(PV /λ)(PV /λ)f1(PV /λ)− 1

4
.
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We may further assume that f1 is equal to 1 near 1. If the support of f1 is small enough
around 1, we also have 2f1(PV /λ)(PV /λ)f1(PV /λ) ≥ 3

2f
2
1 (PV /λ). Thus, after composition

by f(PV /λ) with f supported close to 1, (2.12) yields (2.5). �

3. The uncertainty region

We now come back to the case where V = 0. The purpose of this section is to prove the
following result.

Proposition 3.1. Assume that the operator satisfies Assumption 1.1. Then, for all σ > 0
and ε > 0, there exist λ0 > 0 and f ∈ C∞0 ((0,∞), [0, 1]) such that f ≡ 1 near 1 and∥∥∥〈λ 1

2x〉−σf(P/λ)
∥∥∥ ≤ ε, 0 < λ ≤ λ0.

In other words, Assumption 1.1 (and V = 0) implies Assumption 2.1

One of the key ingredients is the following Nash inequality (see [27, p. 936])

(3.1) ||ϕ||1+ 2
n

L2 ≤ Cn||ϕ||
2
n

L1 ||∇ϕ||L2 , ϕ ∈ C∞0 (Rn).

By (1.6) and (1.7), we obtain

(3.2) ||ϕ||1+ 2
n

L2 ≤ C||ϕ||
2
n

L1

∥∥∥P 1
2ϕ
∥∥∥
L2
, ϕ ∈ D(P

1
2 ).

The inequality (3.2) then implies the following heat flow estimates for any p ∈ [1, 2],

||e−tP ||Lp→L2 ≤ Ct
n
2

(
1
p
− 1

2

)
, t > 0.

We refer to [27, 8, 9] for proofs of such estimates; we only recall here that they follow from
(3.2) and the fact that e−tP is uniformly bounded in t as an operator on L1(Ω) since it is
positivity preserving (by the maximum principle) and integral preserving (by integration
by part) since there is no potential term in P .

We will use heat flow estimates through the following elementary lemma.

Lemma 3.2. Let n ≥ 2. Then, for each s ∈ [0, n4 ], σ > 2s and κ > s, there is C > 0 such
that for λ > 0, ∥∥∥(P/λ+ 1

)−κ〈x〉−σ∥∥∥
L2→L2

≤ Cλs.

Proof. Let p := 2n
4s+n ∈ [1, 2] and 1

r := 1
p −

1
2 = 2s

n ∈ [0, 1
2 ]. By heat flow estimates

(3.3) ||e−tP/λ||Lp→L2 . (λ/t)
n
2

(
1
p
− 1

2

)
= (λ/t)s.

Then, using that

(3.4)
(
P/λ+ 1

)−κ
=

1

Γ(κ)

∫ ∞
0

e−t(P/λ+1)tκ−1dt

together with (3.3) and the integrability of e−ttκ−s−1, we get the estimate

(3.5)
∥∥∥(P/λ+ 1)−κ

∥∥∥
Lp→L2

≤ Cλs.

The result then follows from the estimate

||〈x〉−σϕ||Lp . ||ϕ||L2



12 JEAN-MARC BOUCLET AND NICOLAS BURQ

since 〈x〉−σ ∈ Lr and Lr · L2 ⊂ Lp by Hölder’s inequality. �
In what follows, we select a function χ ∈ C∞0 (Rn) (also viewed as a function on Ω),

equal to 1 near K ∪ {0} and set
χλ(x) = χ

(
λ

1
4x
)
.

Notice that we need to cut off away from the obstacle, but the precise choice of the power 1
4

is not essential. For convenience, we also assume that χ is real valued and that 0 ≤ χ ≤ 1.
We next set, for any given f ∈ C∞0 (R),

Df (λ) = (1− χλ)f(P/λ)(1− χλ)− (1− χλ)f(−∆/λ)(1− χλ)

which is well defined both as an operator on L2(Rn) and on L2(Ω) since 1 − χλ vanishes
near the obstacle for λ � 1. In other words, we slightly abuse notations and identify for
ϕ ∈ L2(Ω) (resp. ϕ ∈ L2(Rn)) (1 − χλ)(x)ϕ with a function in L2(Rn) (resp. a function
in L2(Ω)).

Proposition 3.3. Let f ∈ C∞0 (R). Then there exists Cf such that,

(3.6)
∥∥∥〈λ 1

2x〉−σf(P/λ)
∥∥∥ ≤ Cfλn8 +

∥∥∥〈λ 1
2x〉−σf(−∆/λ)

∥∥∥+
∥∥∥Df (λ)

∥∥∥.
Proof. We decompose first

(3.7) f(P/λ) = χλf(P/λ) + (1− χλ)f(P/λ)χλ + (1− χλ)f(P/λ)(1− χλ).

Using the spectral theorem, we obtain for any fixed N (as large as we wish)

(3.8)

∥∥∥f(P/λ)χλ

∥∥∥ ≤ Cf∥∥∥(Pλ + 1)−Nχλ

∥∥∥ ≤ Cf∥∥∥(Pλ + 1)−N
∥∥∥
L1→L2

||χλ||L2

≤ C ′fλ
n
8 ,

using in the second line (3.5) with s = n
4 and that ||χλ||L2 = O(λ−

n
8 ). The same estimate

holds for χλf(P/λ) by taking the adjoint. This treats the case of the first two terms of
the RHS of (3.7), by using the crude estimate ||〈λ

1
2x〉−σ|| ≤ 1. Adding and substracting

(1− χλ)f(−∆/λ)(1− χλ) to (3.7) we obtain the result by using that∥∥∥〈λ 1
2x〉−σ(1− χλ)f(−∆/λ)(1− χλ)

∥∥∥ ≤ ∥∥∥〈λ 1
2x〉−σf(−∆/λ)

∥∥∥
and again that ||〈λ

1
2x〉−σ|| ≤ 1 for the contribution of Df (λ). �

We next recall a simple version of the uncertainty principle: localising a function in
frequencies |ξλ−1/2 − 1| � 1 forces a space delocalisation 1� |λ1/2x|.
Lemma 3.4. For any ε > 0, there exists f ∈ C∞0 (R, [0, 1]) such that f(1) = 1, and∥∥∥〈λ 1

2x〉−σf(−∆/λ)
∥∥∥ ≤ ε, for all λ > 0.

In other words, the above norm goes to zero as the support of f shrinks to {1}, uniformly
in λ.

Proof. By scaling
∥∥∥〈λ 1

2x〉−σf(−∆/λ)
∥∥∥ =

∥∥∥〈x〉−σf(−∆)
∥∥∥ so the dependence on λ is artifi-

cial. One then concludes by observing that, if f is supported close to 1 and ϕ is a smooth
cutoff equal to 1 near 1, we may write

〈x〉−σf(−∆) =
(
〈x〉−σϕ(−∆)

)
f(−∆)
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where the parenthese is a fixed compact operator while f(−∆) goes to zero in the strong
sense as the support of f shrinks to {1} (since 1 is not an eigenvalue of −∆), so that
composition of the two goes to zero in operator norm. �
Proof of Proposition 3.1. It is a straightforward consequence of Proposition 3.3 and
Lemma 3.4 together with the fact that, for a fixed f (chosen according to Lemma 3.4), we
have

||Df (λ)|| → 0, λ→ 0

which is a consequence of Proposition 3.5 below if n ≥ 3, or Proposition 3.7 if n = 2. �
For convenience and without loss of generality, we will assume everywhere that

0 < ρ < 1.

This will simplify the table used in the next proof.

Proposition 3.5. Let n ≥ 3. Then there exists δ > 0 such that for any f ∈ C∞0 (R) one
can find C > 0 such that ∥∥∥Df (λ)

∥∥∥ ≤ Cλδ, λ� 1.

Proof. We use that (1−χλ)(1−χ) = (1−χλ) for λ� 1. Since (1−χ)(−∆/λ−z)−1(1−χλ)
has a range contained in the domain of P , we can compute for z ∈ C \ [0,∞)

(3.9) D(λ, z) := (P/λ− z)
(

(1−χ)(P/λ− z)−1(1−χλ)− (1−χ)(−∆/λ− z)−1(1−χλ)
)
.

The interest of this quantity is that, using the Helffer-Sjöstrand formula (see [11, Thm
8.1]),

(3.10) f(P/λ) =
1

π

∫
C
∂̄f̃(z)(P/λ− z)−1L(dz)

we have

(3.11) Df (λ) =
1

π

∫
C
∂̄f̃(z)

(
(1− χλ)(P/λ− z)−1D(λ, z)

)
L(dz).

A straightforward calculation shows that D(λ, z) reads

−
[
P/λ, χ

]
(P/λ−z)−1(1−χλ)+

([
P/λ, χ

]
−(1−χ)(P/λ−(−∆/λ)

))
(−∆/λ−z)−1(1−χλ)

where one can write

[P, χ]− (1− χ)
(
P − (−∆)

)
=
∑
|α|≤2

aα(x)∂α,

with aα ∈ S−ρ+|α|−2 equal to zero near K. Actually the zero order term is

(3.12) a0 = P (χ)

and is compactly supported but we do not need this stronger information. We wish to
estimate the L2 → L2 operator norm of (1− χλ)(P/λ− z)−1D(λ, z). Up to a factor 1/λ,
we thus have to consider∥∥∥(1− χλ)(P/λ− z)−1aα∂

α(−∆/λ− z)−1(1− χλ)
∥∥∥
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where ∂α and (−∆/λ − z)−1 commute. Using Lemma 3.2 and the spectral theorem, we
can bound this norm by

(3.13)
∥∥∥(P/λ− z)−1〈x〉−σ1

∥∥∥ ∥∥∥〈x〉−σ2(−∆/λ− z)−1(−∆)
|α|
2

∥∥∥ . 〈z〉2

|Im(z)|2
λs1+s2+

|α|
2

provided we select σ1, σ2, s1, s2 according to the following table

|α| σ1 s1 σ2 s2

2 ρ ∈ [0, n4 ] ∩ [0, ρ2) 0 0

1 1 + ρ
2 ∈ [0, n4 ] ∩ [0, 1

2 + ρ
4) ρ

2 ∈ [0, n4 ] ∩ [0, ρ4)

0 1 + ρ
2 ∈ [0, n4 ] ∩ [0, 1

2 + ρ
4) 1 + ρ

2 ∈ [0, n4 ] ∩ [0, 1
2 + ρ

4)

so that, in particular, σ1 + σ2 = ρ + 2 − |α|. The powers of 〈z〉/|Im(z)| show up by
estimating ∥∥∥(P/λ− z)−1(P/λ+ 1)

∥∥∥ . 〈z〉
|Im(z)|

,

and similarly for −∆. One studies (P/λ−z)−1[P, χ](−∆/λ−z)−1 similarly by considering
only the cases |α| = 0, 1. Overall, using that n ≥ 3, hence that n

4 > 1
2 , one can choose

s1, s2 so the right hand sides of (3.13) are of order λ1+δ for some δ > 0. After division by
λ, we conclude that

(3.14)
∥∥∥(1− χλ)(P/λ− z)−1D(λ, z)

∥∥∥ . 〈z〉2

|Im(z)|2
λδ

and get the result from (3.11) since ∂̄f̃ vanishes to infinite order on {Im(z) = 0} and is
compactly supported. �

What prevents Proposition 3.5 from working in dimension 2 is the estimate (3.13) when
α = 0 in which case s1 + s2 + |α|

2 ≤
n
2 = 1. We shall get rid of this problem by using the

special structure of the zero-th order term given in (3.12). The key point in the proof is
the following lemma inspired from considerations from 2d potential theory.

Lemma 3.6. There exists a family, indexed by ` > 1, of radial functions ψ` ∈ C∞0 (R2)
such that

• ψ` is supported in {|x| ≤ `2} and is equal to 1 on {|x| ≤ `/2},
• there exists C > 0 such that for all `,∥∥∥|x|−1∇xψ`

∥∥∥
L1

+
∥∥∥∇2

xψ`

∥∥∥
L1
≤ C,

• the Laplacian of ψ`, ∆(ψ`) satisfies

‖∆ψ`‖L1 .
1

log `
.

Proof. Pick first ζ ∈ C∞0 (R), supported on [−1, 1] and equal to 1 on [−1/2, 1/2], and define

(3.15) f`(r) =
1

r
ζ(
r

`
)(1− ζ(r)) ∈ C∞0 (0, `).
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We then have for ` ≥ 2

f ′` +
1

r
f` = −ζ

′(r)

r
ζ(r/`) + (1− ζ)(r)

ζ ′(r/`)

`r
,

so that

(3.16)
∫ +∞

0
|f ′`(r) +

1

r
f`(r)|rdr = O(1)`→+∞.

We now define the function

g`(r) =

∫ r
0 f`(s)ds∫ +∞

0 f`(s)ds

which is a smooth function equal to 0 on (0, 1/2) and equal to 1 for r ≥ `. Notice that
there exists c, C > 0 such that

(3.17) c log(`) ≤
∫ `/2

1

dr

r
≤
∫ +∞

0
f`(s)ds ≤

∫ `

1/2

dr

r
≤ C log(`).

As a consequence, we deduce that the function ψ̃`(x) := 1− g`(|x|) satisfies

supp(ψ̃`) ⊂ {|x| ≤ `} and ψ̃` ≡ 1 on {|x| ≤ 1/2},
and

(3.18) |∇xψ̃`(x)| ≤ C

log(`)|x|
, |∇2

xψ̃`(x)| ≤ C

log(`)|x|2
.

This implies ∥∥∥ 1

|x|
∇xψ̃`

∥∥∥
L1

+
∥∥∥∇2

xψ̃`(x)
∥∥∥
L1
≤ C,

while, on the other hand, using (3.16), (3.17), we have∥∥∥∆ψ̃`

∥∥∥
L1

=

∫ +∞

0

∣∣∣ (∂2
r +

1

r
∂r

)
g`(r)

∣∣∣rdr . 1

log(`)
.

To conclude the proof of Lemma 3.6 it just reamins to ensure the first (support) conditions,
which is automatic by putting

ψ`(x) = ψ̃`(x/`),

since the scaling factor preserves the L1 norms considered. �

Proposition 3.7. Let n = 2. For any f ∈ C∞0 (R) one can find C > 0 such that∥∥∥Df (λ)
∥∥∥ ≤ C

| log λ|
, λ� 1.

Proof. We review the proof of Proposition 3.5. Instead of using (1−χλ)(1−χ) = (1−χλ)
we will rather use that

(1− χλ)(1− ψ
λ−

1
10

) = (1− χλ)

where ψ
λ−

1
10

is the function constructed in Lemma 3.6 with ` = λ−
1
10 . Indeed (1− χλ) is

supported in {|x| & λ−
1
4 } while (1− ψ`) = 1 if |x| ≥ `2 so that it suffices to choose ` such

that `2 � λ−
1
4 , which holds e.g. for ` = λ−

1
10 .
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We study the contribution of α = 0 to the decomposition of (1−χλ)(P/λ−z)−1D(λ, z).
According to the observation (3.12), this term reads

(3.19)
1

λ
(1− χλ)(P/λ− z)−1P (ψ

λ−
1
10

)
(
(−∆/λ− z)−1 − (P/λ− z)−1

)
(1− χλ)

Writing

(P/λ− z)−1 = (P/λ+ 1)−1(P/λ+ 1)(P/λ− z)−1 = (P/λ− z)−1(P/λ+ 1)(P/λ+ 1),

and using (3.5), we see that (P/λ− z)−1 is bounded from L2 to L∞, and from L1 to L2 by

C
〈z〉
|Im(z)|

λ1/2

(and similarly for (−∆/λ − z)−1). As a consequence, we can bound the operator norm
in (3.19) by

C
∥∥∥P (ψ

λ−
1
10

)
∥∥∥
L1
.

We shall prove that this norm is of size | log(λ)|−1. We write P = −∆ +Q. According to
Lemma 3.6, we have ∥∥∥∆(ψ

λ−
1
10

)
∥∥∥
L1
. | log(λ)|−1.

Now we have
Q
(
ψ
λ−

1
10

)
= a(x) · ∇x

(
ψ
λ−

1
10

)
+ b(x)∇2

x

(
ψ
λ−

1
10

)
,

with
a ∈ S−ρ−1, b ∈ S−ρ.

Since |x| & λ−
1
10 on the support of ∇xψ

λ−
1
10
, and using again Lemma 3.6, we get that∥∥∥Q(ψ

λ−
1
10

)∥∥∥
L1
≤ Cλ

ρ
10 .

The contributions of terms corresponding to |α| = 1, 2 are handled as in the proof of
Proposition 3.5 (the replacement of χ by ψ

λ−
1
10

is irrelevant for ψ
λ−

1
10

and all its derivatives
are bounded on Rn uniformly in λ). Summing-up our estimates, we get that there exists
δ > 0 such that∥∥∥(1− ψλ)(

(
(−∆/λ− z)−1 − (P/λ− z)−1

)
(1− χλ)‖ . 〈z〉2

|Im(z)|2
(
λδ + λ

ρ
10 + | log(λ)|−1

)
.

We conclude again thanks to the Helffer-Sjöstrand formula. �

4. Resolvent estimates

In this section, we use Theorem 2.4 to prove Theorems 1.2 and 1.3. The main point is
to convert the weights (Aλµ ± i)−k of Theorem 2.4 into physical weights. We will use the
following proposition.

Proposition 4.1. Let n ≥ 2, k ∈ N and f ∈ C∞0 (R). Let ν ≥ k and s ∈ [0, n4 ] be such
that ν > 2s. Then

(4.1)
∥∥∥(Aλµ + i

)k
f(P/λ)〈x〉−ν

∥∥∥ ≤ Cλs,
as long as λ > 0 belongs to a bounded set.
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Lemma 4.2. Let N ∈ N and λ0 > 0. Then, there exists a bounded family (ψk,λ)λ∈(0,λ0]

of S−N,k and a bounded family (Bλ)λ∈(0,λ0] of bounded operators on L2 and %̃ ∈ C∞(Rn),
equal to 0 near zero and to 1 near infinity, such that(

Aλµ + i
)k
f(P/λ) =

(
eiτAψk,λ(x,D)e−iτA

)
%̃
(
λ

1
2x
)

+Bλ(P/λ+ 1)−N

for all λ ∈ (0, λ0].

Proof. Observe first that, for some % ∈ C∞(Rn) equal to 0 near 0 and to 1 near infinity,
we have

(Aλµ + i)k = ik +
(
eiτAak,λ(x,D)e−iτA

)
%
(
λ

1
2x
)

with
(
ak,λ

)
λ∈(0,λ0]

bounded in Sk,k (use (2.9)). On the other hand, applying the Helffer-
Sjöstrand formula (3.10) to the parametrix obtained in Lemma 2.6, we find that

%
(
λ

1
2x
)
f(P/λ) =

(
eiτAθλ(x,D)e−iτA

)
ρ̃(λ

1
2x) +Rλ(P/λ+ 1)−N

where (θλ)λ∈(0,λ0] is a bounded family of S−∞,0 (it is compactly supported in ξ) and

Rλ =
1

π

∫
∂̄f̃(z)

(
eiτArλ,z(x,D)e−iτA

)(
(P/λ− z)−N (P/λ+ 1)N

)
L(dz)

with rλ,z ∈ S−N,N as in Lemma 2.6. In particular, ak,λ(x,D)rλ,z(x,D) has a symbol in
Sk−N,k−N bounded in λ and with polynomial growth in 1/|Im(z)| (z ∈ supp(f̃)). Thus, if
N ≥ k, (

eiτAak,λ(x,D)e−iτA
)
Rλ

is bounded on L2, uniformly in λ. The result follows since ak,λ(x,D)θλ(x,D) =: ψk,λ(x,D)

has a symbol in S−∞,k uniformly bounded in λ. �
Proof of Proposition 4.1. By Lemma 4.2,

(
Aλµ + i

)k
f(P/λ)〈x〉−ν can be written, for

any fixed N ≥ 1 (large in the application below), as the following sum

(4.2)
(
eiτAψk,λ(x,D)〈x〉−νe−iτA

)
%̃(λ

1
2x)

(
〈λ

1
2x〉
〈x〉

)ν
+Bλ(P/λ+ 1)−N 〈x〉−ν

where ψk,λ(x,D)〈x〉−ν = ψλ(x,D) for some bounded family (ψλ)0<λ.1 of S−∞,k−ν ⊂ S0,0.
To get (4.2), we have used that

e−iτA%̃(λ
1
2x)〈x〉−ν = 〈x〉−νe−iτA%̃(λ

1
2x)

(
〈λ

1
2x〉
〈x〉

)ν
.

Using on one hand the Calderón-Vaillancourt Theorem, we have

||ψλ(x,D)||L2→L2 ≤ C, 0 < λ . 1,

and on the other hand that 〈λ
1
2x〉 ≤ C|λ

1
2x| on the support of %̃(λ

1
2x), we have∥∥∥%̃(λ

1
2x)

(
〈λ

1
2x〉
〈x〉

)ν ∥∥∥ ≤ Cλ ν2
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we conclude that the first term of (4.2) has an operator norm bounded by Cλ
ν
2 hence by

Cλs. To be complete, we point out that we also used that ||e±iτA||L2(Rn)→L2(Rn) ≤ C. The
contribution of the second term of (4.2) follows from Lemma 3.2 thanks to which∥∥∥(P/λ+ 1)−N 〈x〉−ν

∥∥∥ ≤ Cλs
provided N is large enough. The result follows. �

We obtain the following spectrally localized resolvent estimates.

Theorem 4.3. Let n ≥ 2, f ∈ C∞0 (R), k ∈ N and λ0 > 0. If if ν ≥ k and s ∈ [0, n4 ] are
such that ν > 2s, then∥∥∥〈x〉−νf(P/λ)

(
P − λ± i0

)−k〈x〉−ν∥∥∥ ≤ Cλ2s−k

for all λ ∈ (0, λ0]. In particular, if ν > n
2 and ν ≥ k, then∥∥∥〈x〉−νf(P/λ)

(
P − λ± i0

)−k〈x〉−ν∥∥∥ ≤ Cλn2−k.
Note that in Theorem 4.3, there is no distinction between the cases n odd and n even.

This is due to the strong spectral localization f(P/λ). The logarithmic divergence in even
dimensions is displayed in Theorem 4.4 below where the spectral localization F (P ) is much
weaker.
Proof of Theorem 4.3. It follows by writing

f(P/λ)(P − λ± i0)−k = λ−kf(P/λ)
(
P/λ− 1± i0

)−k
and

f1(P/λ)〈x〉−ν = (Aλµ + i)−k
(

(Aλµ + i)kf1(P/λ)〈x〉−ν
)

with f1 ∈ C∞0 (R) equal to 1 near supp(f), and then to combine Theorem 2.4, which holds
since Assumption 2.1 is satisfied when V ≡ 0 (Proposition 3.1) together with Proposi-
tion 4.1. �

The proof of Theorem 1.2 is then a simple consequence of the above one.
Proof of Theorem 1.2. This is a direct consequence of Theorem 4.3 together with the
fact that

dj

dλj
(P − λ± i0)−1 = j!(P − λ± i0)−1−j

and the observation that, whenever f ∈ C∞0 (0,+∞) is equal to 1 near 1,

(P − λ− i0)−1−j − (P − λ+ i0)−1−j = f(P/λ)
(

(P − λ− i0)−1−j − (P − λ+ i0)−1−j
)
.

�
We next consider resolvent estimates. The following intermediate result will lead to

Theorem 1.3.

Proposition 4.4. Let λ0 > 0. There is F ∈ C∞0 (R) equal to 1 near [0, λ0] such that for
each integer k ≥ 1 and ν > k, one has∥∥∥〈x〉−νF (P )

(
P − λ± i0

)−k〈x〉−ν∥∥∥ ≤ Cλmin{0,n
2
−k}
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unless k = n
2 (i.e. n even and k = n

2 ) in which case∥∥∥〈x〉−νF (P )
(
P − λ± i0

)−n
2 〈x〉−ν

∥∥∥ ≤ C| log λ|,

for all λ ∈ (0, λ0].

Proof. Let N = [log λ−1] be the integer part of log λ−1 and let Λ = e
log λ−1

N ∈ [e, e2). Note
that ΛN = λ−1. Pick F such that F = 1 near [0, e2] ∩ [0, λ0] and let

G(p) = F (p)− F (Λp), p ≥ 0,

so that G = 0 near [0, 1] and G has support contained in a compact subset independent of
λ. Moreover

F (P ) = F (P/λ) +
N∑
`=1

G(Λ−`P/λ).

Pick next G̃ ∈ C∞0 equal to 1 on the support of G, so that one has

(P − λ)−kG(Λ−`Pλ) = G̃(Λ−`Pλ)
(
λ−kG(Λ−`P/λ)(P/λ− 1)−k

)
G̃(λ−`P/λ).

Let us next choose s ∈ [0, n4 ] such that

s =
n

4
if k ≥ n

2
or ν > 2s > k if k <

n

2
.

This choice ensures that, by Lemma 3.2,∥∥∥〈x〉−νG̃(Λ−`P/λ)
∥∥∥+

∥∥∥G̃(Λ−`P/λ)〈x〉−ν
∥∥∥ = O(λsΛs`).

On the other hand, the spectral theorem yields∥∥∥λ−kG(Λ−`P/λ)(P/λ− 1)−k
∥∥∥ ≤ Cλ−kΛ−`k

since P/λ is of size Λ` on the support of G. Altogether, the above estimates and Theo-
rem 4.3 (to treat the contribution of F (P/λ)) imply that∥∥∥〈x〉−νF (P )

(
P − λ± i0

)−k〈x〉−ν∥∥∥ . λ2s−k +
N∑
`=1

λ2s−k(Λ2s−k)`
where

N∑
`=1

λ2s−k(Λ2s−k)` .

λ2s−k(Λ2s−k)N+1 ∼ 1 if n2 > k

N ∼ | log λ| if n2 = k

λ
n
2
−k if n2 < k

.

The result follows. �
Proof of Theorem 1.3. Pick F as in Proposition 4.4. Since (1 − F (P ))(P − λ)−k is
bounded on L2 (uniformly in λ ∈ (0, λ0]) by the spectral theorem, we may replace (P −λ±
i0)−k by F (P )(P −λ± i0)−k. The conclusion then simply follows from Proposition 4.4. �
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5. Time decay estimates

Definition 5.1. Let ε > 0 and s ∈ R. The space Hs(ε) is the set of smooth functions a
on (0, ε) such that for each integer k ≥ 0∣∣a(k)(λ)

∣∣ ≤ Cλs−k, λ ∈ (0, ε).

Let us summarize some basic useful properties of such spaces.

Proposition 5.2. (1) λs ∈ Hs(ε).
(2) If a1 ∈ Hs1(ε) and a2 ∈ Hs2(ε) then a1a2 ∈ Hs1+s2(ε).
(3) If a ∈ Hs(ε) and k ∈ N then a(k) ∈ Hs−k(ε).
(4) Let s > 0 be not an integer. Let [s] be its integer part. Then any a ∈ Hs(ε)

continued by 0 at 0 belongs to C [s]([0, ε)) and

a(0) = · · · = a([s])(0) = 0.

If s ≥ 1 is an integer, then any a ∈ Hs(ε) continued by 0 at 0 belongs to Cs−1([0, ε))
and satisfies

a(0) = · · · = a(s−1)(0) = 0.

(5) Let φ : (0, ε)→ (0, δ) be a diffeomorphism such that for some κ > 0 and all j ∈ N

φ(λ) ∼ λκ as λ→ 0 and
∣∣φ(j)(λ)

∣∣ ≤ Cφ(λ)λ−j .

Then
a ∈ Hs(δ) =⇒ a ◦ φ ∈ Hκs(ε).

Proof. The items 1, 2, 3 and 4 are straightforward. The item 5 follows easily from the Faà
di Bruno formula saying that, for some coefficients ckjk1···kj that are irrelevant here,

(5.1) (a ◦ φ
)(k)

= (φ′)ka(k) ◦ φ+
∑

k1+···+kj=k
ckjk1···kjφ

(k1) · · ·φ(kj)a(j) ◦ φ

where 1 ≤ j ≤ k − 1 and k1, . . . , kj ≥ 1 (in particular, the sum is zero if k = 1). �
In the sequel, for s > −1 and a ∈ Hs(ε), we let

||a||(s) = max
k≤[s]+2

sup
(0,ε)

∣∣λ−s+ka(k)(λ)
∣∣

where [s] is the integer part of s.

Proposition 5.3. Let f ∈ C∞0 (R) be supported in (−∞, ε) and s > −1 be real. Then there
is C > 0 such that ∣∣∣∣∫ ∞

0
eitλa(λ)f(λ)dλ

∣∣∣∣ ≤ C||a||(s)〈t〉−s−1

for all t ∈ R and all a ∈ Hs(ε).

Proof. Let b := af . Since b is integrable, it suffices to prove the estimate for |t| � 1.
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Case −1 < s < 0: We write∫ ∞
0

eitλb(λ)dλ =

∫ |t|−1

0
eitλb(λ)dλ− i

t

∫ +∞

|t|−1

∂λ
(
eitλ
)
b(λ)dλ

=

∫ |t|−1

0
eitλb(λ)dλ+

i

t

(
eit|t|

−1
b(|t|−1) +

∫ +∞

|t|−1

eitλb′(λ)dλ

)

= O(||a||(s))

{∫ |t|−1

0
λsdλ+

1

|t|

(
(|t|−1)s +

∫ ∞
|t|−1

λ−s−1dλ

)}
which yields the result for the last line is obviously O(|t|−s−1||a||(s)).

Case s = 0: In this case, we write∫ ∞
0

eitλb(λ)dλ =

∫ |t|−1

0
eitλb(λ)dλ− 1

t2

∫ ∞
|t|−1

∂2
λ

(
eitλ
)
b(λ)dλ

= O(||b||∞|t|−1) +
eit|t|

−1

t2

(
itb(|t|−1)− b′(|t|−1)

)
− 1

t2

∫ ∞
|t|−1

eitλb′′(λ)dλ

= O
(
||a||(s)

){
|t|−1 +

1

t2

(
|t|+

∫ +∞

|t|−1

λ−2dλ

)}
which is O(|t|−1||a||(s)).

Case s > 0: We let k = [s] + 1 if s /∈ N and k = s in s ∈ N. Then we write

tk
∫
eitλb(λ)dλ = ik

∫ ∞
0

eitλb(k)(λ)dλ

using the item 4 of Proposition 5.2. We are then reduced to the previous cases since b(k)

belongs to H(s−k)(ε) with s− k ∈ (−1, 0]. �

Corollary 5.4. Let ε > 0 and f ∈ C∞0 (R) be supported in (−∞, ε). There exists C > 0

such that for all a ∈ H
n
2
−1(ε), one has

• (Schrödinger decay)∣∣∣∣∫ ∞
0

eitλa(λ)f(λ)dλ

∣∣∣∣ ≤ C||a||(n2−1)〈t〉−
n
2 .

• (Wave decay:) Let σ ∈ [0, 1] and φ(λ) = λ2. Then∣∣∣∣∫ ∞
0

eit
√
λλ−

σ
2 a(λ)f(λ)dλ

∣∣∣∣ ≤ C||a ◦ φ||(n−2)〈t〉σ−n.

• (Klein-Gordon decay)∣∣∣∣∫ ∞
0

eit
√
λ+1a(λ)f(λ)dλ

∣∣∣∣ ≤ C||a||(n2−1)〈t〉−
n
2 .
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Proof. The first estimate (Schrödinger decay) is a direct application of Proposition 5.3.
For the second estimate (Wave decay), we use first the change of variable λ = θ2 so that∫ ∞

0
eit
√
λλ−

σ
2 a(λ)f(λ)dλ = 2

∫ ∞
0

eitθθ1−σa(θ2)f(θ2)dθ

and apply Proposition 5.3 with s = n− 1− σ using that ã(θ) := θ1−σa(θ2) ∈ Hn−1−σ(ε
1
2 )

(by Proposition 5.2) and that

||ã||(n−1−σ) ≤ C||a ◦ φ||(n−2).

For the last estimate (Klein-Gordon decay), we write eit
√
λ+1 = eitetψ(λ) with ψ(λ) =√

λ+ 1 − 1 which is a diffeomorphism near [0,∞) whose inverse ψ−1(θ) = (θ + 1)2 − 1
satisfies the assumption of the item 5 of Proposition 5.2 with κ = 1. After the change
variable θ = ψ(λ), the conclusion then follows again from Proposition 5.3 with s = n

2 − 1
and the fact that ∥∥∥(ψ−1)′(a ◦ ψ−1)

∥∥∥
(n
2
−1)
≤ C||a||(n

2
−1).

The proof is complete. �
Proof of Theorem 1.4. It follows from Corollary 5.4 by considering

a(λ) =
(
ϕ, 〈x〉−νE′P (λ)〈x〉−νψ

)
and from the fact that

||a||(n
2
−1) ≤ C||ϕ||L2 ||ψ||L2 , ||a ◦ φ||(n−2) ≤ C||ϕ||L2 ||ψ||L2

by Theorem 1.2 (and the item 5 of Proposition 5.2) provided we select ν ensuring the
finiteness of ||a||(n

2
−1) for the Schrödinger and Klein-Gordon equations, and the finiteness

of ||a◦φ||(n−2) for the wave equation. The finiteness of ||a||(n
2
−1) requires

[
n
2

]
+1 derivatives

of the spectral measure hence ν >
[
n
2

]
+ 2, while the finiteness of ||a||(n−2) requires n

derivatives of the spectral measure hence ν > n+ 1. The proof is complete. �

6. High frequency estimates: the boundaryless case

In this section, we review the main points that allow to derive the non spectrally localized
estimates of Theorem 1.5. To cover all equations at the same time, we let

(6.1) ψh(λ) =


λ for the Schrodinger equation√
λ for the wave equation√
λ+ h2 for the Klein-Gordon equation

and

(6.2) Uh(s) := exp
(
− i

h
sψh(h2P )

)
be the related semiclassical propagator. Here h ∈ (0, 1] is a (high frequency) semiclassical
parameter and s corresponds to the natural semiclassical time. Eventually, we shall take
s = t for the wave and Klein-Gordon equations and s = t/h for the Schrödinger equation.
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We recall first how to derive time decay estimates from power resolvent estimates. As-
sume that for some (or equivalently any) J b (0,+∞), we have the following polynomial
(in 1/h) resolvent estimates, for each k ∈ N,

(6.3)
∥∥∥〈x〉−ν(h2P − λ± i0)−k〈x〉−ν

∥∥∥ ≤ Ckh−M(k), λ ∈ J,

with M(k) ≥ k and M(k) ≤M(k+ 1). When the geodesic flow is non-trapping (including
in the billiard sense for obstacles), it is known that one can take M(k) = k: this follows
from (6.3) for k = 1 [30, 6] and e.g. techniques as in [18] (see also [3] for the semiclas-
sical framework) to extend it to higher powers. Note that assumption (6.3) also covers
weakly trapping situations [28, 7]. We refer to the recent paper [1] for connections between
propagation of singularities and polynomial resolvent estimates.

Let E′h(λ) be the spectral projections of h2P . The Stone formula (1.9) (for h2P instead
of P ) yields automatically∥∥∥〈x〉−k−1∂kλ

(
E′h(λ)

)
〈x〉−k−1

∥∥∥ ≤ Ch−M(k+1), λ ∈ J.

If now f ∈ C∞0 (0,∞) and if we call its support J , then by integrations by part in∫
e−isψh(λ)/hf(λ)E′h(λ)dλ, using that ψ′h is bounded below on J (uniformly in h in the

case of Klein-Gordon), one easily obtains

(6.4)
∥∥∥〈x〉−k−1f(h2P )Uh(s)〈x〉−k−1

∥∥∥ ≤ Ch−M(k+1)〈s〉−k.

This estimate illustrates in our context that, upon the choice of weights and a possible
loss of derivatives measured by h−M(k+1), the contribution of high fequencies to the local
energy decay can be as fast as we wish in time.

The main drawback of (6.4) is that there is a possibly unnecessary loss in h. One possible
way to improve this inequality is to use the general interpolation estimate∥∥∥〈x〉−θNA〈x〉−θN∥∥∥ ≤ ||A||1−θ∥∥∥〈x〉−NA〈x〉−N∥∥∥θ, θ ∈ [0, 1].

Indeed, for any 0 ≤ ν ′ < ν such that ν/(ν − ν ′) is an integer (which can be guaranteed
with ν ′ as close to ν as we wish), we obtain1,

(6.5)
∥∥∥〈x〉−νf(h2P )Uh(s)〈x〉−ν

∥∥∥ ≤ C〈s〉−ν′hν′−(ν−ν′)M( ν
ν−ν′ ).

In particular, if M(k) = k, the loss in h becomes hν′−ν , where ν − ν ′ > 0 is as small as we
wish.

Removing completely the artificial loss in h in the non-trapping case requires more than
the above trick. One possible technique is to use propagation estimates due to Isozaki-
Kitada. For r > 0, J b (0,∞) and ε ∈ (0, 1), we recall the definition of outgoing(+) and
incoming(-) areas:

Γ±(r, J, ε) :=

{
(x, ξ) ∈ Ω× Rn | |x| > r, |ξ|2 ∈ J, ± x

|x|
· ξ
|ξ|

> ε− 1

}
.

1pick θ ∈ (0, 1) and k ∈ N such that θk = ν′ and θ(1 + k) = ν
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Proposition 6.1 (Outgoing/incoming propagation estimates). Assume that (6.3) holds
for all k. Let 0 ≤ ν ′ < ν. Let f ∈ C∞0 (0,+∞), J b (0,+∞) and ε ∈ (0, 1). If r is large
enough and χ± ∈ S−∞,0 is supported in Γ±(r, J, ε) then∥∥∥〈x〉−νUh(s)f(h2P )χ±(x, hD)

∥∥∥ ≤ C〈s〉−ν′ ,
for all ±s ≥ 0 and h ∈ (0, 1].

We refer to [17, 5, 4] for proofs. The main interest of this proposition is to remove the
loss in h in the time decay estimates, even in trapping situations (as long as (6.3) holds).
Note however that the estimates of Proposition 6.1 hold in one sense of time.
Remark. Proposition 6.1 still holds when there is a compact obstacle. The estimates
come from microlocal parametrices localized far away from the obstacle; the control on
the remainder terms only uses polynomial estimates of the form (6.3) which hold for non-
trapping obstacles.

We recall below the proof of Wang [36] (written in the case of semiclassical Schrödinger
operators −h2∆ + V ) of sharp in h time decay estimates in the non-trapping case. It uses
Proposition 6.1 in a crucial manner.

Proposition 6.2. Let Ω = Rn. If the non-trapping condition holds, then for any ν > ν ′ >
0, ∥∥∥〈x〉−νf(h2P )Uh(s)〈x〉−ν

∥∥∥ ≤ C〈s〉−ν′ ,
for all s ∈ R and h ∈ (0, 1].

Proof. We work for instance for s ≥ 0. By pseudo-differential approximation of f̃(h2P )
(see [5]), one can write for any χ ∈ C∞0 (Rn), equal to 1 near the ball {|x| ≤ r}, and for
any N ,

(6.6) f(h2P ) = f(h2P )χ(x)︸ ︷︷ ︸
=:A0

+χ+(x, hD, h)︸ ︷︷ ︸
=:A+

+χ−(x, hD, h)∗︸ ︷︷ ︸
(A−)∗

+hN 〈x〉−NB(h)〈x〉−N︸ ︷︷ ︸
=:R

with B(h) uniformly bounded on L2 and χ± finite sums of the form
∑

j≥0 h
ja±j with a±j

supported in Γ±(r, J, 1/2). Picking f̃ ∈ C∞0 (0,+∞) real valued and equal to 1 near the
support of f , we may then write

〈x〉−νUh(s)f(h2P )〈x〉−ν =
(
〈x〉−νUh(s/2)f̃(h2P )

)
︸ ︷︷ ︸

=:W (s)

f(h2P )
(
f̃(h2P )Uh(s/2)〈x〉−ν

)

which can be splitted into

W (s)A0W (−s)∗ +W (s)A+W (−s)∗ +W (s)A−∗W (−s)∗ + hNW (s)RW (−s)∗.

By Proposition 6.1, we have

(6.7)
∥∥∥W (s)A+W (−s)∗

∥∥∥ ≤ C∥∥∥W (s)A+
∥∥∥ ≤ C〈s〉−ν′

and ∥∥∥W (s)A−∗W (−s)∗
∥∥∥ ≤ C∥∥∥A−∗W (−s)∗

∥∥∥ = C
∥∥∥W (−s)A−

∥∥∥ ≤ C〈s〉−ν′ .
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Picking N large enough to compensate the loss in h in (6.5) and to have N > ν, we find

(6.8)
∥∥∥hNW (s)RW (−s)∗

∥∥∥ ≤ ChN∥∥∥W (s)〈x〉−N
∥∥∥ ∥∥∥〈x〉−NW (−s)∗

∥∥∥ ≤ C〈s〉−2ν′ .

So far, we haven’t used the non-trapping condition (except in the very weak form (6.3)).
We use it to handle the term W (s)A0W (−s)∗. For T > 0 large enough independent of h
to be fixed below and s ≥ T

(6.9) W (s)A0W (−s)∗ = W (s− T )
(
Uh
(
T/2

)
A0Uh

(
− T/2

))
W (−s− T )∗.

By the Egorov theorem and the non-trapping condition, which implies that the wave front
set of A0 is transported by the geodesic into any given outgoing area2 in finite time (this
is a classical property which we prove for completeness in Appendix C), one can write for
any N

(6.10) Uh
(
T/2

)
A0Uh

(
T/2

)
= A+

T + hNRT

with A+
T similar to A+ and RT similar to R. Their contributions are then obtained as in

(6.7) and (6.8). Note here that the estimates are given in term of s±T but this is harmless
since we are interested in s→ +∞. �
Proof of Theorem 1.5. Consider a dyadic partition of unity 1 = F (λ) +

∑
`≥0 f(2−`λ)

with F ∈ C∞0 (R) and f ∈ C∞0 (0,+∞). We can sum the estimates of Proposition 6.2 with
h2 = 2−` to get ∥∥∥〈x〉−ν(1− F )(P )eit

√
P+c〈x〉−ν

∥∥∥ ≤ C〈t〉−ν′
with c = 0, 1, and for the Schrödinger equation∥∥∥〈x〉−ν(1− F )(P )e−itP 〈x〉−ν

∥∥∥
L2→Hν′

≤ C|t|−ν′ .

In this case, we use that the semiclassical time decay rate in term of t, 〈t/h〉−ν′ , is bounded
by hν′ |t|−ν′ . We refer to Corollary 6.2 of [3] for details on the summation over h. The
contribution of F (P ) follows from Theorem 1.4, where the L2 → L2 operator norm can be
replaced by the L2 → HN one for any N . The result follows by picking ν ′ according to
the decay rates of Theorem 1.4. �

7. High frequency estimates: the case with a boundary

When Ω 6= Rn, the strategy displayed in the previous section can be repeated almost
verbatim: the only argument which fails is the Egorov theorem used in (6.10) to handle the
contribution of the compactly supported cutoff A0 involved in (6.9). This difficulty can be
overcome by using the Melrose-Sjöstrand propagation of singularities theorem [24]. The
purpose of this section is to explain this point and to recall the minimal background on the
Melrose-Sjöstrand generalized geodesic flow to state properly the non-trapping assumption
in this case.

2i.e. with arbitrary r and ε
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7.1. The wave and Klein-Gordon equations. In this paragraph, we consider the wave
equation (∂2

t +P )u = 0. Replacing P by P +1 does not change anything for our purpose so
the analysis below also covers the case of the Klein-Gordon equation. We let χ0 ∈ C∞0 (Rn)
be a cutoff equal to 1 near the obstacle and consider, for u0 ∈ L2 and k ∈ N arbitrary,

u = e−it
√
P (P kχ0u0).

We want to study mainly the case k = 0, however it is technically important to consider
the general case (see Corollary 7.5). This is a distribution satisfying the wave equation
and the Dirichlet boundary condition (it is 0 when restricted to R × ∂Ω). We refer to
Appendix B for a justification of this.

We wish to study the wave front set of u seen as distribution on Ω×R. The good notion
of wavefront set here isWFb(u) seen as a subset of T ∗b (Ω×R) = T ∗(Ω×R)\0tT ∗(∂Ω×R)\0.
If x0 ∈ Ω, one says that (x0, t0, ξ0, τ0) does not belong to WFb(u) iff it does not belong to
WF (u|Ω×R), i.e. if one can apply a classical pseudodifferential operator to u, elliptic at
(x0, t0, ξ0, τ0) which turns u into a smooth function near (x0, t0). When x0 belongs to the
boundary ∂Ω, one says that (x0, t0, ξ0, τ0) does not belong to WFb(u)3 if one can apply a
tangential pseudodifferential operator to u, elliptic at (x0, t0, ξ0, τ0) which turns u into a
function smooth up to the boundary in a neighborhood of (x0, t0) (everywhere we take the
geodesic distance to ∂K as a boundary defining function).

Proposition 7.1 (Rough estimate on WFb(u) near t = 0). Assume that χ0 is supported
in an open ball B(0, r0) also containing the obstacle K. Then there exists δ > 0 such that

WFb(u) ∩ {|t| < δ} is contained in {|x| ≤ r0 and τ < 0}.

Proof. That τ < 0 follows from the fact that if a ∈ S0(R) is an elliptic symbol equal to 1
near +∞ and to 0 near −∞ then

ψ(Dt)u = ψ(−
√
P )u

is smooth since ψ(−
√
P ) is a compactly supported function of P by the spectral theorem

hence a smoothing operator. Note that this holds at any time, not only at t = 0. We next
show that |x| ≤ r0. Consider

v(t) = cos(t
√
P )(P kχ0u0), w(t) =

sin(t
√
P )√

P
(P kχ0u0),

so that u(t) = v(t)−i
√
Pw(t). The interest of v and w is that they solve the wave equation

with inital data supported in supp(χ0). Thus by finite speed of propagation, one has

supp(v(t)) ∪ supp(w(t)) ⊂ B(0, r0), |t| � 1.

One can thus pick a smooth cutoff χ1 equal to 1 near supp(χ0) and supported in B(0, r0)
such that, for t small,

v(t) = χ1v(t), w(t) = χ1w(t),

and thus
u(t) = χ1v(t)− i

√
Pχ1w(t).

3in this case, (x0, ξ0) belongs to T ∗∂Ω
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Now, if we pick χ2 supported in B(0, r0) and equal to 1 near supp(χ1), we have

(1− χ2)u(t) = i(1− χ2)
√
Pχ1w(t) = i

[√
P , χ2

]
χ1w(t).

One may then write the commutator
[√
P , χ2

]
as the sum of a smoothing operator and

a properly supported pseudo-differential operator with symbol vanishing near the support
of χ1; the point here is that the pseudo-differential part is supported in supp(∇χ2), in
particular away from the boundary and the support of χ1. Therefore, for small times[√

P , χ2

]
χ1w(t) ∈ C∞(Ω).

Using that w solves the wave equation, we have similarly (and for the same times) for any
j ∈ N

∂2j
t

([√
P , χ2

]
χ1w(t)

)
∈ C∞(Ω).

We show this way that (1− χ2)u ∈ C∞(Ω× (−t0, t0)) for some t0 > 0. The result follows.
�

To state and use properly the non-trapping condition, we recall the main properties of
the generalized bicharacteristic flow of Melrose-Sjöstrand (see [24] and [16, Sec. 24.3]). It
is defined on the subset p(x, ξ)− τ2 = 0 by the standard Hamiltonian system

(7.1) ẋ = ∇ξp(x, ξ), ṫ = −2τ, ξ̇ = −∇xp(x, ξ), τ̇ = 0

as long as x does not reach the boundary ∂Ω (here and below the dot ˙ stands for the
derivative wrt some parameter s). If x reaches (or starts at) the boundary, the above
flow is modified as follows. Denoting by yn the geodesic distance to ∂Ω and y1, . . . , yn−1

coordinates on ∂Ω, the Hamiltonian p(x, ξ)− τ2 can be written η2
n + q(y, η′)− τ2 where η′

is the dual variable to y′ = (y1, . . . , yn−1), ηn the one to yn and y = (y1, . . . , yn). If yn = 0
and q(y′, 0, η′) − τ2 < 0 (hyperbolic point), one applies the usual billiard reflection law.
In this case, the variable ξ has a jump, but the other ones remains continuous wrt s (and
the flow is actually continuous with values in T ∗b (Ω×R) endowed with a proper topology).
Otherwise, at glancing points i.e. if q(y′, 0, η′)− τ2 = 0, we distinguish three possibilities.

• Either the point is diffractive, ∂ynq(0, y′, η′) < 0 (i.e. the domain is micro-locally
concave) and at this point we still have (7.1) and the ray leaves instantly the
boundary after and before grazing the boundary.
• Either the point is gliding ∂ynq(0, y

′, η′) > 0 (i.e. the domain is micro-locally
convex) and one continues the motion by solving

(7.2) ẏ′ = ∇η′q(y′, 0, η′), yn = 0, η̇′ = −∇y′q(y′, 0, η′), ηn = 0,

together with
ṫ = −2τ, τ̇ = 0.

• Or the point is degenerate ∂ynq(0, y′, η′) = 0, then we require that (7.1) is satisfied
(remark that then at these points (7.2) is also satisfied .

This procedure defines a flow under an assumption of "no infinite contact order between
the boundary and its tangents". We refer the reader to [24, 16] for more details; one of
the points we wish to emphasize here is that the standard flow and the one for gliding rays
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have the same homogeneity property and since neither ξ (or η) nor τ can vanish, we can
parametrize the whole flow so that τ = ∓1/2. In this case,

ẋ = ∇ξ
√
p(x, ξ), ξ̇ = −∇x

√
p(x, ξ), ṫ = ±1,

away from the boundary and (7.2) is modified accordingly, i.e. by replacing q by √q.
We shall say that this is a normalized parametrization and, say if ṫ = 1, call the curves
t 7→ x = x(t) normalized characteristics.

Definition 7.2. The couple (Ω, g) is non-trapping if, for every compact subset K of
Ω and every R � 1, there is some time T � 1 for which all normalized characteristics
starting in K at t = 0 are contained in {|x| > R} for |t| > T .

Remark 7.3. The non-trapping assumption does not require uniqueness of the generalized
bicharacteristics passing through a given point.

Proposition 7.4 (Propagating the wavefront set in an outgoing region). Let R � 1 and
0 < ε� 1. Then for all T large enough, one can find δ > 0 and R′ � 1 such that

WFb(u) ∩ {|t− T | < δ} is contained in
{
R′ > |x| > R and

x

|x|
· ξ
|ξ|

> ε− 1

}
.

Proof. Since τ < 0 on WFb(u) by Proposition 7.1, we may parametrize the generalized
flow so that ṫ = +1. Using the non-trapping condition with K = B̄(0, r0), the invariance of
WFb(u) by the generalized flow [24] and Proposition 7.1 imply thatWFb(u)∩{|t−T | < δ} is
contained in {|x| ≥ RT } with RT →∞ as T →∞. In particular, the (x, ξ) curves become
ordinary geodesics after some time. Since they escape to infinity, they reach any arbitrary
outgoing area in finite time (Appendix C). In particular, for T large enough, we have
|x| > R and x·ξ > (ε−1)|x||ξ|. The continuity of the generalized characteristics also implies
that |x| remains bounded over finite time intervals. This completes the proof. Notice that
in case of non uniqueness of bicharacteristics, [24] still applies since, strictly speaking
their result states that the wave front is a union of (possibly non unique) generalized
bicharacteristics. �

Corollary 7.5. Let R� 1 and χ ∈ C∞0 (B(0, R)) be equal to 1 near ∂Ω. Then for T � 1
independent of u0 ∈ L2,

χe−iT
√
Pχ0u0 belongs to ∩k∈N Dom(P k).

Proof. A direct consequence of Proposition 7.4 is that χe−iT
√
Pχ0u0 ∈ C∞([T − δ/2, T +

δ/2]×Ω), and consequently χe−iT
√
Pχ0u0 belongs to C∞0 (Ω). Since χ ≡ 1 near the bound-

ary and e−it
√
Pχ0u0 satisfies the Dirichlet condition on R×Ω it follows that χe−iT

√
Pχ0u0

satisfies the Dirichlet condition on ∂Ω. This implies that χe−iT
√
Pχ0u0 belongs to Dom(P ).

In the very same way, χe−iT
√
P (P kχ0u0) belongs to the domain of P for all k. Now, if v

belongs to D(P 2),

(P 2v, χe−iT
√
Pχ0u0) = (Pv, P (χe−iT

√
Pχ0u0))

=
(
Pv, [P, χ]e−iT

√
Pχ0u0 + χe−iT

√
PPχ0u0

)
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where [P, χ]e−iT
√
Pχ0u0 ∈ C∞0 (Ω) for it is smooth (we may chose T so that e−iT

√
Pχ0u0

is smooth near the support of χ) and [P, χ] vanishes near the boundary. Thus

[P, χ]e−iT
√
Pχ0u0 + χe−iT

√
PPχ0u0 ∈ D(P ).

This implies that χe−iT
√
Pχ0u0 belongs to D(P 2). Iteration of this argument yields the

result. �
We next consider semiclassical estimates. All we need to adapt the proof of the previous

section is the following result.

Proposition 7.6. Let f ∈ C∞0 (0,+∞), R� 1 and 0 < ε� 1. Let N ≥ 1. One can find
an interval J b (0,+∞), a symbol χ+ ∈ S−∞,0 supported in Γ+(R, J, ε) and some time
T > 0 such that

(7.3) e−iT
√
P f(h2P )χ0 = χ+(x, hD)e−iT

√
Pχ0 + hN 〈x〉−NB(h)

with B(h) bounded on L2, uniformly in h ∈ (0, 1].

Informally, this says that e−iT
√
P f(h2P )χ0 is microlocalized in Γ+(R, J, ε) mod h∞.

Note however that the remainder is not only O(h∞), but it also decays spatially. Getting
this improvement on the remainder is crucial and requires a little bit of work.

We start with the following lemma which also holds for the Klein-Gordon and semiclas-
sical Schrödinger equations. We use the propagator (6.2).

Lemma 7.7. Let T > 0, N > 0, χ0 ∈ C∞0 (Ω) and f ∈ C∞0 (0,+∞). Assume that χ0 is
supported in a ball B(0, R) containing the obstacle. There exists C depending only on f
and the metric g such that for every symbol a ∈ Sm,µ (for some µ,m ∈ R) and any cutoffs
χ1, χ2 ∈ C∞0 (Rn) both equal 1 near B(0, R+ CT ), one has∥∥∥(1− χ1)a(x, hD)(1− χ2)Uh(t)f(h2P )χ0

∥∥∥ . hN ,
uniformly with respect to t ∈ [−T, T ].

A concrete application of this lemma is that, for a given T , if χ1 is a smooth cutoff equal
to 1 on B(0, R+ CT ), one has

(7.4) 〈x〉N (1− χ1)e−iT
√
P f(h2P )χ0 = OL2(hN ),

as long as |t| ≤ T . In other words, (1 − χ1)e−iT
√
P f(h2P )χ0 is of the same form as the

remainder of (7.3).
Proof of Lemma 7.7. Without loss of generality we may assume that µ is a nonnegative
integer. We then proceed by induction on µ. The induction argument itself is simple
once the following has been observed: since we are considering the spectrally localized
propagator Uh(t)f(h2P ) we may freely modify the definition of ψh (see 6.1) away from the
support of f and write

Uh(t)f(h2P ) = e−
i
h
tψ̃h(h2P )︸ ︷︷ ︸

=:Ũh(t)

f(h2P )

with ψ̃h = ψh near the support of f and such that ψ̃h is a smooth symbol (bounded in h).
We may keep ψh(λ) = λ for the Schrödinger equation but we wish to avoid the singular
behavior at λ = 0 of

√
λ or

√
λ+ h2. The interest of this modification is that, away from
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the boundary, ψ̃h(h2P ) has a nice pseudo-differential expansion, say with symbol in S2,0.
Setting for simplicity

Qµ = (1− χ1)a(x, hD)(1− χ2)

which is supported far from the boundary, we exploit the Duhamel formula

(7.5) QµŨh(t) = Ũh(t)Qµ +
i

h

∫ t

0
Ũh(t− s)[ψ̃h(h2P ), Qµ]Ũh(s)ds

by observing that pseudo-differential calculus in Sm,µ classes shows that

[ψ̃h(h2P ), Qµ] = Qµ−1 +OL(L2)(h
N )

with Qµ−1 of the same form as Qµ but with a symbol in Sm+1,µ−1. This allows to apply
the induction assumption to Qµ−1Ũh(s)f(h2P )χ0. The first term in the right hand side of
(7.5) is harmless for

Qµf(h2P )χ0 = OL(L2)(h
∞),

since χ0 and Qµ have disjoint supports. It is thus sufficient to prove the result for µ = 0,
which we do now. Let f̃ ∈ C∞0 (0,+∞) be equal to 1 near supp(f). By standard pseudo-
differential calculus and functional calculus, one can write, for any N ,

(1− χ1)a(x, hD)(1− χ2)f̃(h2P ) = ah(x, hD)(1− χ3) + hNBN (h)

with 1− χ3 ≡ 1 near supp(1− χ2), (BN (h))0<h≤1 a bounded family of bounded operators
on L2 and (ah)0<h≤1 a bounded family of S−∞,µ(R2n) such that

(7.6) supp(ah) ⊂ p−1(supp(f̃)) ∩ {|x| ≥ R+ CT}.
Here the constant C is such that the Hamiltonian flow of ψh(p) satisfies |x(t, y, η)−y| ≤ C|t|
on the energy shell p−1

(
supp(f̃)

)
as long as one does not touch the boundary. Then

Q0Ũh(t)f(h2P )χ0 = ah(x, hD)(1− χ3)Ũh(t)χ0 + hNBN (h)Ũh(t)χ0

= Ũh(t)
(
Ũh(−t)ah(x, hD)(1− χ3)Ũh(t)

)
χ0 +OL2(hN ).

By the usual Egorov Theorem, one can write the parenthese above as

ath(x, hD)(1− χ4) +OL(L2)(h
N )

with

(7.7) supp(ath) ⊂ φt
(
supp(ah)

)
and χ4 any smooth cutoff equal to 1 near the obstacle and such that 1− χ4 equals 1 near
the projection in Rn of supp(ath). This can be done as long as the right hand side of (7.7)
does not reach the boundary. From our choice of C in (7.6), we have

φt
(
supp(ah)

)
⊂ {|x| ≥ R+ CT − C|t|}

where the right hand side is disjoint from the boundary and from supp(χ0) for |t| ≤ T . It
follows by pseudo-differential calculus that

ath(x, hD)(1− χ4)χ0 = OL(L2)(h
∞)

since ath and χ0 have disjoint supports. This completes the proof. �
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Lemma 7.8. Let R � 1 and χ ∈ C∞0 (B(0, R)) be equal to 1 near the obstacle. Then for
each large enough T > 0 ∥∥∥χe−iT√P f(h2P )χ0

∥∥∥ = O(h∞).

Proof. Let χ̃ ∈ C∞0 (B(0, R)) be equal to 1 near the support of χ and write

χe−iT
√
P f(h2P )χ0 = χf(h2P )χ̃e−iT

√
Pχ0 + χf(h2P )(1− χ̃)e−iT

√
Pχ0.

Using that χ and 1− χ̃ have disjoint supports and that 1− χ̃ vanishes near the boundary,
one has

||χf(h2P )(1− χ̃)|| = O(h∞).

On the other hand, Corollary 7.5 allows to choose T such that, for each u0 ∈ L2(Ω),
χ̃e−iT

√
Pχ0u0 belongs to Dom(P k) for all k. Thus

f(h2P )χ̃e−iT
√
Pχ0u0 = P−kf(h2P )︸ ︷︷ ︸

O(h2k)

P kχ̃e−iT
√
Pχ0u0︸ ︷︷ ︸

∈L2

.

This shows that for any N and any u0 ∈ L2, h−Nχe−iT
√
P f(h2P )χ0u0 is bounded in L2

for h ∈ (0, 1]. The result follows by uniform boundedness principle. �
Proof of Proposition 7.6. By Lemmata 7.7 and 7.8, one can select T � 1 and a smooth
cutoff % = %(x) supported in an annulus as far from the boundary as we wish such that,
for any N ,

e−iT
√
P f(h2P )χ0 = %e−iT

√
P f(h2P )χ0 + 〈x〉−NOL(L2)(h

N ).

By pseudo-differential calculus, using that % vanishes near the boundary, we may also select
%̃ equal to 1 near the support of % and supported in another annulus far from the boundary
so that

%e−iT
√
P f(h2P )χ0 = %f(h2P )%̃e−iT

√
Pχ0 + 〈x〉−NOL(L2)(h

N ).

We next exploit Proposition 7.4 which shows that for some other cutoff %0 supported in an
annulus far from the boundary and some classical pseudo-differential with symbol in S0,0

supported in the indicated outgoing area

%̃e−iT
√
Pχ0 = a(x,D)%0e

−iT
√
Pχ0 +R

with R bounded from L2 to C∞0 (Ω) (with support contained in supp(%̃)). In particular

f(h2P )R = 〈x〉−NOL(L2)(h
N ).

Therefore, we obtain

%f(h2P )%̃e−iT
√
Pχ0 =

(
%f(h2P )a(x,D)%0

)
e−iT

√
Pχ0 + 〈x〉−NOL(L2)(h

N )

where the bracket is of the form χ(x, hD, h) with χ supported in the outgoing region, plus
a remainder decaying fast in x and h. Picking χ+ supported in the same region and equal
to 1 near supp(χ(., ., h)). The result follows then easily from pseudo-differential symbolic
calculus. �
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Proof of Theorem 1.6 (Wave equation). We start again from the decomposition 6.6
which holds also for obstacles. We work again with t ≥ 0 (we set s = t). The only term
that cannot be handled as in the proof of Proposition 6.2 is

W (t)A0W (−t)∗ = W (t− T )e−i
T
2

√
PA0W (−t)∗

which we now split into

W (t− T )χ+(x, hD)e−i
T
2

√
Pχ0W (−t)∗ + hNW (t− T )〈x〉−NBN (h)W (−t)∗

using Proposition 7.6 (with T/2 � 1 instead of T !). By application of Proposition 6.1
to W (t − T )χ+(x, hD) for t ≥ T and using (6.5) for the remainder term, we obtain as in
Proposition 6.2 that W (t)A0W (−t)∗ = O(〈t〉−ν′) hence that∥∥∥〈x〉−νf(h2P )e−it

√
P 〈x〉−ν

∥∥∥ ≤ C〈t〉−ν′ .
Using next a dyadic partition of unity

(7.8) 1 = f0(λ) +
∑
h=2k

k∈N

f(h2λ), λ ≥ 0,

with f0 ∈ C∞0 (R) and f ∈ C∞0 (0,+∞), the result of Proposition 6.1 of [3] remains valid
for obstacles and leads to

(7.9)
∥∥∥〈x〉−ν(1− f0)(P )e−it

√
P 〈x〉−ν

∥∥∥ ≤ C〈t〉−ν′ ,
and

(7.10)
∥∥∥〈x〉−ν(1− f0)(P )

√
P
−1
e−it

√
P 〈x〉−ν

∥∥∥
L2→D(P 1/2)

≤ C〈t〉−ν′ .

Technically, the adapation to obstacles of [3, Prop. 6.1] can be made by the same pseudo-
differential approximation of f(h2P ) and by modifying, as we may, the Japanese bracket
〈x〉 so that it equals 1 near the obstacle. Using that D(P 1/2) = H1

0 (Ω), and combining
then (7.9) and (7.10) together with Theorem 1.4, we get the result. �

7.2. The Schrödinger equation. In this part, we explain what to modify in the previous
paragraph to handle the Schrödinger equation. To turn the problem into a non semiclassical
one and be able to use the Melrose-Sjöstrand theorem, we use the following trick of Lebeau
[23]. We select first a function f ∈ C∞0 (0,+∞), which in the end will be taken as in the
partition of unity (7.8), and then pick f̃ ∈ C∞0 (0,+∞) such that f̃ ≡ 1 near the support
of f . For χ0 ∈ C∞0 (Rn) equal to 1 on a ball containing the obstacle and u0 ∈ L2(Ω), one
introduces ∑

hj=2−j

e
−i s

hj e−ithjP f̃(h2
jP )χ0u0.

By quasi-orthogonality, it is standard to see that the sum converges in C(R2, L2(Ω)). More
generally, we shall consider for k ≥ 0

U(s, t, x) =
∑

hj=2−j

e
−i s

hj e−ithjP f̃(h2
jP )P kχ0u0
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which converges in the distributions sense and satisfies

(DsDt − P )U = 0

Moreover U has a restriction ot Rs×Rt×∂Ω where it satisfies the Dirichlet condition. This
can be checked similarly to the previous paragraph by using the arguments of Appendix B
with e−ithP instead of e−it

√
P .

Proposition 7.9. Assume that supp(f̃) ⊂ [a, b] with 0 < a < b. If (x, s, t, ξ, σ, τ) belong
to WFb(U) then

τ < 0, σ < 0, a ≤ τ

σ
≤ b

Proof. Let us assume that WFb(U) is non empty. Let % be a zero order symbol on R equal
to 1 near +∞ and to 0 near −∞. Then

%(Dt)U =
∑
h

e−i
s
h e−ithP%(−hP )f̃(h2P )P kχ0u0

and %(−hP )f̃(h2P ) = %(−h2P/h)f̃(h2P ) = 0 for h � 1 using the supports of f̃ and %.
Thus there are finitley many terms in the above sum and %(Dt)U belongs to C∞(R2×Ω).
This shows that τ ≤ 0 on WFb(U). Similarly

%(Ds)U =
∑
h

%(−1/h)e−i
s
h e−ithP f̃(h2P )P kχ0u0

has finitely many non vanishing terms since h > 0. This shows that σ ≤ 0 on WFb(U).
Let now (σ0, τ0) 6= (0, 0) be a point in the open cone {aσ < τ} of R2 \ 0. Let χ ∈ S0(R2)
be an elliptic symbol equal to one on a conic neighborhood of (σ0, τ0) and supported in
{aσ < τ}. Then

χ(Ds, Dt)U =
∑
h

e−i
s
h e−ithPχ(−1/h,−h2P/h)f̃(h2P )P kχ0u0

vanishes identically since χ(−1/h,−λ/h)f̃(λ) = 0 since, for λ ≥ a,(
−1

h
,−λ

h

)
/∈ {aσ < τ}.

Thus WFb(U) is contained in {aσ ≥ τ}. Similarly WFb(U) is contained {bσ ≤ τ}. In
particular, neither τ nor σ can vanish on WFb(U), otherwise if, say, τ = 0 then σ = 0 and
then ξ = 0 for WFb(U) is contained in {p(x, ξ) = στ}, while (σ, τ, ξ) shoud be non zero.
Thus σ < 0 and τ < 0 on WFb(U). Taking those conditions into account, the domain
{aσ ≥ τ} ∩ {bσ ≤ τ} can be written {a ≤ τ/σ ≤ b}. This completes the proof. �

Proposition 7.10 (Rough estimate on WFb(U) at t = 0). Assume that χ0 is supported
in B(0, R) with R� 1. Then, for some δ > 0 small enough,

WFb(U) ∩ {|t| < δ} is contained in {|x| ≤ R}.

Proof. Let R0 < R be such that χ0 is supported in B̄(0, R0). Let χ̃ ∈ C∞0 (Rn) be equal to
1 near B(0, R0) and supported in B(0, R). Let m ∈ N. Then, by Lemma 7.7, there exists
t0 > 0 (such that R− Ct0 > R0) such that

∆m(1− χ̃)(x)e−ithP f̃(h2P )P kχ0u0 = OL2(h∞)
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uniformly in t ∈ (−t0, t0). The same holds for derivatives in t so, one easily infers that

(1− χ̃)(x)U(x, s, t) ∈ C∞(R× (−t0, t0)× Rn).

The result follows. �
The generalized bicharacteristic flow is obtained away from the boundary by the equa-

tions

ẋ =
∂p

∂ξ
, ṡ = −τ, ṫ = −σ, ξ̇ = −∂p

∂x
, σ̇ = τ̇ = 0

and the modifications indicated in the previous paragraph at the boundary. It is defined
on the the subset {p(x, ξ)−στ = 0} of T ∗(R2×Ω)\0tT (R2×∂Ω)\0. By Proposition 7.9,
we only have to consider those σ, τ such that τ/σ belongs to the compact interval [a, b]. By
homogeneity, one can reparametrize each such bicharacteristic in a way that p(x, ξ) = τσ =
1/4 so that the characteristic obtained by projection on Ω is a normalized characteristic
as in the previous section. The only difference is that σ is not equal to 1/2 as for the
wave equation, i.e. that one cannot parametrize such normalized curves by t in general;
nevertheless, the conditions στ = 1/4 and τ/σ ∈ [a, b] imply that

ṫ = −σ ∈ [− 1

2
√
b
,− 1

2
√
a

].

Thus, the non-trapping condition of Definition 7.2 implies that the above characteristics
leave any compact set (locally uniformly with respect to initial conditions in a compact
set) when t becomes large enough. In particular, this leads to

Proposition 7.11 (Propagating the wavefront set in an outgoing region). Assume the
non-trapping condition. Let R � 1 and 0 < ε � 1. Then for all T large enough, one can
find δ > 0 and R′ � 1 such that

WFb(U) ∩ {|t− T | < δ} ⊂
{
R′ > |x| > R and

x

|x|
· ξ
|ξ|

> ε− 1

}
.

We finally interpret the result semiclassically.

Proposition 7.12. For any given outgoing area one can pick T � 1 and χ+ supported in
this outgoing area such that, for each N ,

f(h2P )e−iThPχ0 = χ+(x, hD)e−iThPχ0 + hN 〈x〉−NBN (h),

for all h = 2−j; here BN (h) is uniformly bounded on L2.

Proof. We compute first
(7.11)

f(h2P )U = e−
i
h
se−ithP f(h2P )χ0u0 +

∑
1≤|`|≤C

e−2
`
2 i
h
se−it2

− `2 hP f(h2P )f̃(2−`h2P )χ0u0,

(for some C depending only on f, f̃). Then by selecting φ ∈ C∞0 (R) with integral 1, we
obtain

χe−ithP f(h2P )χ0u0 =

∫
R
φ(s)e

i
h
sχf(h2P )Uds+ hN 〈x〉−NBN (h, t)u0,
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with BN (t, h) bounded on L2 uniformly in h and locally uniformly in t; indeed, the contri-
bution of the terms in the sum (7.11) is negligeable for we get factors of the form φ̂(2`/2−1

h )
which are O(h∞) since ` 6= 0. The fast decay in x is provided by the cutoff χ. One can
then repeat the arguments of Proposition 7.6 by exploiting in particular that χ(x)U(s, T, x)
belong to D(P k) for all k if T is large enough. �
Proof of Theorem 1.6 (Schrödinger equation). We repeat the proof for the wave
equation to get ∥∥∥〈x〉−νf(h2P )e−ithP 〈x〉−ν

∥∥∥ ≤ C〈t〉−ν′
with semiclassical time scaling. Since the low frequency part prevents from decaying faster
than 〈t〉−n/2 (in non semiclassical times), we use the above estimate with ν ′ = n/2 where
changing t to t/h provides a decay of order h

n
2 |t|−n/2. One concludes again thanks to

the dyadic partition of unity using f where the gain hn/2 provides the smoothing effect
L2 → Pn/4. �

Appendix A. Optimality of the estimates

In this appendix, we briefly justify the optimality of the upper bounds (1.1) and (1.4)
in all dimensions and (1.2) and (1.3) in even dimensions. We recall first standard facts on
the fundamental solutions of the Schrödinger and wave equations, say for t > 0. We have

eit∆δ0(x) = t−
n
2 S
(
|x|/t

1
2
)

and
sin(t
√
−∆)√
−∆

δ0(x) =

{
0 n odd
t1−nW (|x|/t) n even

, t > |x|

with
S(r) =

1

(4iπ)
n
2

ei
r2

4 , W (r) = cn(1− r2)−
n−1
2

for some irrelevant constant cn. Since S andW do not vanish at zero (where it is understood
that we only consider even dimensions for the wave equation), it is easy to check that for
ϕ ∈ C∞0 (Rn) with non vanishing integral we have as t→ +∞

(A.1) eit∆ϕ(x) ∼ t−
n
2 S(0)

∫
ϕ and

sin(t
√
−∆)√
−∆

∼ t1−nW (0)

∫
ϕ

uniformly in x in a given compact set. This proves the optimality of (1.1) and (1.3) (the
case of (1.2) being similar). For the Klein-Gordon equation, the fundamental solution
has a more complicated expression (see e.g. [10, p. 692] for a construction). However, to
prove the optimality of the estimate, the following asymptotic behaviour is sufficient. If f ∈
C∞0 (R) is supported close enough to zero, so that the phase

√
|ξ|2 + 1 = 1+|ξ|2/2+O(|ξ|4)

is non degenerate on the support of f(|ξ|2), we obtain by stationary phase asymptotics

cos
(
t
√
−∆ + 1

)
f(−∆)δ0(x) = t−

n
2KGt(|x|/t) +O(t−

n
2
−1),

locally uniformly with respect to x as t→ +∞, with

KGt(r) = (2π)−
n
2 cos

(
t
√

1− r2 + nπ/4
)
(1− r2)−

n+2
4 f

(
r2

1− r2

)
.
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In particular, if ϕ ∈ C∞0 (Rn) has non zero integral, and if we let tj = 2πj − nπ/4→ +∞
as j → +∞, we obtain

(A.2) cos(tj
√
−∆ + 1)f(−∆)ϕ(x) ∼ t−

n
2

j (2π)−
n
2

∫
ϕ,

locally uniformly in x. This proves the optimality of (1.4). We note that the optimal lower
bounds obtained from (A.1) and (A.2) are due to initial data with non zero integral, i.e.
which do have low frequencies on their supports on the Fourier side.

Appendix B. Dirichlet condition for distributional solutions to the wave
equation

Let k ∈ N and let Dk = Dom(P k), equipped with the norm graph ||u||Dk = ||(P +
1)ku||L2 . We defineD′k as the topological dual ofDk. Using that (P+1)k is an isomorphism
between Dk and L2 it is easy to check that for any T ∈ D′k there is a unique v ∈ L2 such
that

T (u) = (v, (P + 1)ku)L2

for all u ∈ Dk. Conversely, when v ∈ L2, we shall denote by (P + 1)kv the linear form
on Dk, u 7→ (v, (P + 1)ku)L2 . There is no ambiguity in the notation since if v ∈ Dk then
(P + 1)kv in the above sense is also the linear form ((P + 1)kv, .)L2 that extends from Dk

to L2. In other words,
D′k = {(P + 1)kv |v ∈ L2}

and the norm of D′k reads
||(P + 1)kv||D′k = ||v||L2 .

For v ∈ L2, we define e−it
√
P (P + 1)kv by duality since the adjoint of e−it

√
P preserves Dk

and is continuous thereon. It is easy to check that

e−it
√
P (P + 1)kv = (P + 1)ke−it

√
P v

and that the map t 7→ e−it
√
P (P + 1)kv is continuous from R to D′k. Using that C∞0 (Ω)

is contained in Dk, e−it
√
P (P + 1)kv defines a distribution on R × Ω. This distribution

satisfies the wave equation,

(B.1) (∂2
t + P )e−it

√
P (P + 1)kv = 0.

To see this, we can observe that if f is a smooth cutoff equal to 1 near 0,

e−it
√
P (P + 1)kv = lim

ε→0
e−it

√
P (P + 1)kf(εP )v

in the distributions sense with e−it
√
P (P + 1)kf(εP )v solution to the wave equation since

(P + 1)kf(εP )v belongs to Dom(P ).
Since the boundary is non characteristic for ∂2

t + P , one can take the restriction of
e−it

√
P (P + 1)kv to the boundary R× ∂Ω. The Dirichlet condition

e−it
√
P (P + 1)kv

∣∣∣
R×∂Ω

= 0
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is satisfied since one can write

e−it
√
P (P + 1)kv = (1− i∂t)2k+2e−it

√
P (
√
P + 1)−2k−2(P + 1)kv

where, for every t,
e−it

√
P (
√
P + 1)−2k−2(P + 1)kv

∣∣∣
∂Ω

= 0

since this is the trace of an element of Dom(P ).

Appendix C. Non-trapped geodesics escape in outgoing areas

We let (x(t), ξ(t)) be the bicharacteristic curves of p, the principal symbol of P , and
consider an energy shell I b (0,+∞). We assume that (x(t), ξ(t)) ∈ p−1(I). We consider
the situation where x(0) belongs to a compact set so that, by the non-trapping condition
and after possibly replacing (x(0), ξ(0)) by (x(T0), ξ(T0)) with T0 � 1, we may assume
without loss of generality that |x(t)| � 1 for all t ≥ 0, uniformly with respect to the
initial conditions (x(0), ξ(0)). In particular, the bicharacteristics can no longer meet the
boundary (if any).

Proposition C.1. Given ε ∈ (−1, 1) and R � 1, we can find T � 1 uniformly wrt
(x(0), ξ(0)) such that, for t ≥ T ,

|x(t)| > R and
x(t) · ξ(t)
|x(t)||ξ(t)|

> ε− 1.

Proof. Using that

p(x(t), ξ(t)) = |ξ(t)|2 +O
(
〈x(t)〉−ρ

)
,

∂p

∂x

(
x(t), ξ(t)

)
= O(〈x〉−1−ρ)(C.1)

and the motion equations, we note first that
d

dt

(
x(t) · ξ(t)

)
= 2p(x(0), ξ(0)) +O

(
〈x(t)〉−ρ

)
,

hence that, since we stay close enough to infinity so that the O(· · · ) remains small,

x(t) · ξ(t) ≥ x(0) · ξ(0) + ct, t ≥ 0,(C.2)

for some positive constant c. In particular,

|x(t)| & 〈t〉.

This implies that ξ(t) converges as t→∞ (ξ̇(t) is integrable in time), uniformly wrt initial
data. Thus, given any δ > 0, we may select T1 > 0 large enough so that

|ξ(t)− ξ(T1)| ≤ δ, t ≥ T1.

Usnig the first estimate of (C.1) and after possibly increasing T1, we may then improve
(C.2) into

x(t) · ξ(t) ≥ x(T1) · ξ(T1) + 2(t− T1)(|ξ(t)|2 − δ), t ≥ 0.(C.3)

On the other hand, using

x(t)− x(T1) =

∫ t

T1

∂p

∂ξ
(x(s), ξ(s))ds
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and that ∂p/∂ξ = ξ +O(〈x〉−ρ), we see after possibly increasing T1 that

|x(t)| ≤ |x(0)|+ 2(t− T1)(|ξ(t)|+ δ)

uniformly with respect to the initial conditions. Using (C.3), we conclude that

x(t) · ξ(t)
|x(t)||ξ(t)|

≥ O(〈t〉−1) +
2(|ξ(t)|2 − δ)(t− T1)(

2(|ξ(t)|+ δ)(t− T1) + |x(T1)|
)
|ξ(t)|

≥ O(〈t〉−1) +O(δ) + 1.

The result follows by taking t large enough and δ small enough. �

Remark. A simple adaption of this proof shows that one reaches any incoming area (up
to the energy localization) far enough backward in time.
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