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Wave packets: a review of basic facts

Canonical example: gaussian wave packet

ψz,ζ(x) = π−
n
4 exp

(
iζ · (x − z)−

|x − z|2

2

)
, x ∈ Rn

localized around (or centered at) z in space, and near ζ in momentum

(
Fψz,ζ

)
(ξ) = π−

n
4 exp

(
−iz · ξ −

|ξ − ζ|2

2

)
Think of (z, ζ) as a point in phase space T∗Rn

We call ψz,ζ a Gaussian wave packet centered at (z, ζ)

Main interests (for us) :

1. One can write ”waves” (i.e. functions) as superposition of wave packets

2. The evolution of a wave packet under a Schrödinger flow can be described rather
explicitly (in a suitable regime)
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Wave packets: a review of basic facts

1. Wave packet decomposition

Define the Bargmann transform of a function u by

Bu(z, ζ) =

∫
Rn
ψz,ζ(x)u(x)dx

Then, one has the inversion formula

u = (2π)−nB∗Bu

In other words

u(x) = (2π)−n
∫ ∫

T∗Rn
(Bu)(z, ζ)ψz,ζ(x)dzdζ

is a decomposition of u as a (continuous) sum of wave packets
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Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

pν(x , ξ) =
|ξ|2

2
+ ν
|x |2

2
, Hν = −

∆

2
+ ν
|x |2

2
, ν = 0,+1,−1

Then

e−itHνψz,ζ(x) = π−
n
4 γt
ν exp i

(
S t
ν + ζt

ν · (x − z t
ν) +

Γt
ν

2
(x − z t

ν) · (x − z t
ν)

)
where (

z t
ν , ζ

t
ν

)
= Φt

pν (z, ζ), S t
ν =

∫ t

0
żs
ν · ζs

ν − pν(zs
ν , ζ

s
ν)ds

and γt
ν , Γt

ν are given in term of the differential of flow Φt
pν ,

DΦt
pν (z, ζ) =

(
At
ν Bt

ν
C t
ν Dt

ν

)
,

by
Γt
ν = (C t

ν + iDt
ν)(At

ν + iBt
ν)−1, γt

ν = det(At
ν + iBt

ν)−1/2.
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Wave packets: a review of basic facts

Explicitly, we obtain

Γt
0 =

t + i

1 + t2
In, γt

0 = (1 + it)−
n
2

Γt
1 = iIn, γt

1 = (cos t + i sin t)−
n
2

Γt
−1 =

sinh(2t) + i

cosh(2t)
In, γt

−1 = (cosh t + i sinh t)−
n
2

This allows in particular to read the profile and spreading of the packets:

|eitH0ψz,ζ(x)| =
1

(π(1 + t2))
n
4

exp

(
−
|x − z t

0 |2

2(1 + t2)

)
|eitH1ψz,ζ(x)| =

1

π
n
4

exp

(
−
|x − z t

1 |2

2

)
|eitH−1ψz,ζ(x)| =

1

(π cosh(2t))
n
4

exp

(
−
|x − z t

−1|2

2 cosh(2t)

)
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Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

ψh
z,ζ(x) = (πh)−

n
4 exp

(
i

h
ζ · (x − z)−

|x − z|2

2h

)

=⇒ Localization around z on a scale h1/2

Consider a semiclassical Schrödinger operator on Rn

H(h) = −
h2∆

2
+ V (x), p(x , ξ) =

|ξ|2

2
+ V (x),

with V ∈ C∞(Rn,R). Denote

(z t , ζt ) = Φt
p(z, ζ),

(
At Bt

C t Dt

)
:= DΦt

p(z, ζ)

and

S t =

∫ t

0
żs · ζs − p(zs , ζs )ds

Proposition [action of the symplectic group on the Siegel half space]
At + iBt is invertible and

Γt := (C t + iDt )(At + iBt )−1

is symmetric complex, with positive definite imaginary part
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Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit h→ 0, and under
general conditions on V ,

e−i t
h

H(h)ψh
z,ζ(x)

is well approximated by

(πh)−
n
4 γtAh

t (x) exp
i

h

(
S t + ζt · (x − z t ) +

Γt

2
(x − z t ) · (x − z t )

)

for times |t| ≤ C0| ln h| (C0 dynamical constant). Here γt = det(At + iBt )−1/2. The
amplitude is of the form
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Wave packets in semiclassical analysis
Sketch of proof.

Lemma The matrix Γt satisfies the Ricatti equation

Γ̇t = −V (2)(z t )− (Γt )2, Γ0 = iIn,

and the function γt satisfies
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Wave packets on Riemannian manifolds

Goal: to emulate the construction on Rn

Previous related works:

I Construction of quasimodes: by propagating a single wave packet along a closed
geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...).
Allows to use Fermi coordinates.

I More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang:
qualitative description of wave packets and their evolutions (for Hamiltonians
with non homogeneous symbols). General but not so explicit, using local
coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory ⇒ vary (z, ζ)

2. Get an (at most as possible) intrinsinc description of wave packets propagation

3. Get (relatively) explicit approximation of eitH(h)/h as a single integral, without
need to go to the universal cover, up to |t| ≤ C0| log h|

4. See e.g. quite explicitly the effect of (negative) curvature

5. ...
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Motivations and interests:

1. Consider more than the propagation along a single trajectory ⇒ vary (z, ζ)

2. Get an (at most as possible) intrinsinc description of wave packets propagation

3. Get (relatively) explicit approximation of eitH(h)/h as a single integral, without
need to go to the universal cover
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Wave packets on Riemannian manifolds

Let (Mn, g) be a Riemannian manifold with bounded geometry

i.e.

1. injectivity radius bounded from below by r0 > 0

2. all covariant derivatives of the Riemann curvature tensor bounded on M

3. complete (for simplicity)

Example. Any closed Riemannian manifold

Lemma [Inverse exponential map close to the diagonal of M ×M] If dg (z,m) < r0,
there is a unique W m

z ∈ Tz M such that

m = expz

(
W m

z

)
.

For fixed m, z 7→W m
z is a vector field and one can expand its covariant derivative

∇W m
z ∼ −I +

1

3
Rz (.,W m

z ) W m
z +

1

12
(∇R)z (W m

z ; .,W m
z )W m

z + · · ·

All tensors in this expansion are bounded (similar result for higher covariant
derivatives)

Rem: on Rn, W m
z = m − z.
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Wave packets on Riemannian manifolds

Consider V ∈ C∞(M,R) and

H(h) := −h2 ∆g

2
+ V

(z t , ζt ) = Φt (z, ζ), Hamiltonian flow of
|ξ|2m

2
+ V (m)

Proposition. Let U be a coordinate patch, with coordinates y1, . . . , yn. Along each
trajectory starting at (z, ζ) ∈ T∗U, one can define intrinsincally

Γt : Tzt MC → Tzt MC, where Tzt MC = Tzt M ⊗ C

(i.e. Γt is a complex tensor along the curve t 7→ z t ) which is symmetric〈
Γt X ,Y

〉
zt =

〈
X , Γt Y

〉
zt , X ,Y ∈ Tzt M

has positive definite imaginary part

Im
〈
Γt X ,X

〉
zt > 0, X 6= 0, X ∈ Tzt M

and satisfies the Ricatti equation

∇żt Γt = −Hess(V )zt − Rzt

(
., ż t

)
ż t −

(
Γt
)2

where Rzt is the Riemann tensor at z t
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ż t −

(
Γt
)2

where Rzt is the Riemann tensor at z t



Wave packets on Riemannian manifolds

Consider V ∈ C∞(M,R) and

H(h) := −h2 ∆g

2
+ V

(z t , ζt ) = Φt (z, ζ), Hamiltonian flow of
|ξ|2m

2
+ V (m)

Proposition. Let U be a coordinate patch, with coordinates y1, . . . , yn. Along each
trajectory starting at (z, ζ) ∈ T∗U, one can define intrinsincally

Γt : Tzt MC → Tzt MC, where Tzt MC = Tzt M ⊗ C

(i.e. Γt is a complex tensor along the curve t 7→ z t ) which is symmetric〈
Γt X ,Y

〉
zt =

〈
X , Γt Y

〉
zt , X ,Y ∈ Tzt M

has positive definite imaginary part

Im
〈
Γt X ,X

〉
zt > 0, X 6= 0, X ∈ Tzt M

and satisfies the Ricatti equation
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Wave packets on Riemannian manifolds

Proof.
To construct Γt on Rn, we have used the natural identifications

T(z,ζ)(T∗Rn) = Rn ⊕ Rn, T(zt ,ζt )(T∗Rn) = Rn ⊕ Rn

How to proceed on a manifold ?

1. At starting points (z, ζ) with z ∈ U, we split

T(z,ζ)(T∗M) ≈ Rn
y ⊕ Rn

η

using the (symplectic) coordinates (y1, . . . , yn, η1, . . . , ηn) on T∗U

2. At points (z t , ζt ), we use the (global) identification Ig : T∗M → TM

Ig (z t , ζt ) = (z t , ż t )

and split along horizontal and vertical spaces

T(zt ,żt )(Ig T∗M) = H(zt ,żt ) ⊕ V(zt ,żt )

This gives a natural block decomposition

d
(
Ig ◦ Φt

)
=

(
LA LB

LC LD

)
: Rn

y ⊕ Rn
η →H(zt ,żt ) ⊕ V(zt ,żt )
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Wave packets on Riemannian manifolds

Proof.
To construct Γt on Rn, we have used the natural identifications

T(z,ζ)(T∗Rn) = Rn ⊕ Rn, T(zt ,ζt )(T∗Rn) = Rn ⊕ Rn

How to proceed on a manifold ?

1. At starting points (z, ζ) with z ∈ U, we split

T(z,ζ)(T∗M) ≈ Rn
y ⊕ Rn

η

using the (symplectic) coordinates (y1, . . . , yn, η1, . . . , ηn) on T∗U

2. At points (z t , ζt ), we use the (global) identification Ig : T∗M → TM

Ig (z t , ζt ) = (z t , ż t )
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Proof (continued). One can then define(
LC + iLD

)(
LA + iLB

)−1
: HC

(zt ,żt ) → V
C
(zt ,żt )

and then define Γt by composition with the natural isomorphisms

Tzt MC →HC
(zt ,żt ), VC

(zt ,żt ) → Tzt MC

More concretely, using local coordinates (x1, . . . , xn) near z t , the matrix of Γt reads

G−1(C t + iDt )(At + iBt )−1 − G−1Σt

with
G−1 = (g ij (x t )), Σt

ij =
∑
k,l

gkl (x t )Γl
ij (x t )ẋ t

k , x t = x(z t )

and (
At Bt

C t Dt

)
=

(
∂x t/∂y ∂x t/∂η
∂ξt/∂y ∂ξt/∂η

)
=⇒ Symmetry of Γt , positivity of Im(Γt ) + Ricatti equation by direct computation #

Rem. If (ỹ1, . . . , ỹn) are other coordinates on U, the matrix of Γt is changed into

G−1
(
C̃ t + D̃t Z

)(
Ãt + B̃t Z

)−1 − G−1Σt , Z =

(
∂η̃

∂y
+ i

∂η̃

∂η

)(
∂ỹ

∂y
+ i

∂ỹ

∂η

)−1
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Rem. If (ỹ1, . . . , ỹn) are other coordinates on U, the matrix of Γt is changed into

G−1
(
C̃ t + D̃t Z

)(
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∂ỹ

∂η

)−1



Wave packets on Riemannian manifolds
Definition of gaussian wave packets

Let ρ ∈ C∞0 (−r0, r0), equal to 1 near 0.

Ψh
z,ζ(m) := (πh)−

n
4 γ0 exp

i

h

(
ζ ·W m

z +
1

2
〈Γ0W m

z ,W
m
z 〉z

)
ρ (dg (z,m)) ,

for m ∈ M and (z, ζ) ∈ T∗U (i.e. ζ ∈ T∗z U)

γ0 = det
(
gjk (y(z))

)− 1
4

Rem. Ψh
z,ζ(m) = 0 if dg (z,m) ≥ r0.

Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

Bhu(z, ζ) :=
〈

Ψh
z,ζ , u

〉
L2(M)

, u ∈ C∞0 (U)

Then

(2πh)−nB∗h Bhu = a(h)u =
(

1 + h
1
2 a1 + h1a2 + · · ·

)
u

with a(h), a1, a2, . . . ∈ C∞, i.e.

(2πh)−n
∫ ∫

T∗U
Bhu(z, ζ)Ψh

z,ζdzdζ = a(h)u
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Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets]

In the limit h→ 0, and under
general conditions on V (e.g. all covariant derivatives bounded),

e−i t
h

H(h)ψh
z,ζ(m)

is well approximated by

(πh)−
n
4 γtAh

t (x) exp
i

h

(
S t + ζt ·W m

zt +
1

2

〈
Γt W m

zt ,W
m
zt

〉
zt

)
ρ
(
dg (zt ,m)

)
with

γt = det(gjk (x t ))−1/4det(At + iBt )−1/2

and an amplitude of the form

Ah
t (x) ∼ 1 +

∑
j≥1

h
j
2 Tj

(
t, z t , ζt ,

W m
zt

h
1
2

)

for times |t| ≤ C0| ln h| with Tj (t, z t , ζt , .) polynomial (i.e. sum of tensors) of degree
at most 3j , depending on the classical trajectory and the Taylor expansions of V and
W m
. at z t .
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Wave packets on Riemannian manifolds

Remark on the proof: The transport equations

are of the form

(∇żt T )(., . . . , .︸ ︷︷ ︸
k factors

) + T [Γt ·, . . .] + · · ·+ T [. . . , Γt ·]︸ ︷︷ ︸
k terms

= F [., . . . , .]

which turns out to be equivalent to

d

dt
(T [Et ·, . . . ,Et ·]) = F [Et ·, . . . ,Et ·]

with Et := dπ(LA + iLB ) : Cn → Tzt M ⊗ C (dπ = projection from the horizontal
space at (z t , ż t ) to the tangent space at z t )

=⇒ Control on the exponential growth in time of Tj (t, z t , ζt , .).
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Wave packets on Riemannian manifolds

Theorem [Propagator approximation]

If Ah is a pseudodifferential operator supported

in U, with principal symbol χ, then (the kernel of) e−i t
h

H(h)Ah is well approximated by

K h
t (m,m′) = h−

3n
2

∫ ∫
T∗U

bh(t, z, ζ,m,m′) exp
i

h
F (t, z, ζ,m,m′)dzdζ

for times |t| ≤ C0| log h|. The phase reads

F = S t
(z,ζ) + ζt ·W m

zt +
1

2

〈
Γt

(z,ζ)W m
zt ,W

m
zt

〉
zt
− ζ ·W m′

z +
1

2

〈
Γ̃0

(z,ζ)
W m′

z ,W m′
z

〉
z

where〈
Γ̃0

(z,ζ)
W m′

z ,W m′
z

〉
z

= −Re
〈

Γ0
(z,ζ)W m′

z ,W m′
z

〉
z

+ i Im
〈

Γ0
(z,ζ)W m′

z ,W m′
z

〉
z

The amplitude bh(t, z, ζ,m,m′) reads b0(t, z, ζ,m,m′) + Ot (h1/2),

b0 = det
(
(gjk (x t ))1/2(At + iBt )

)− 1
2 det

(
gjk (y))

)− 1
4 χ(z, ζ)ρ

(
dg (z,m′)

)
ρ
(
dg (z t ,m)

)
Proof:

e−i t
h

H(h)Ahu = (2πh)−n
∫ ∫

T∗U
e−i t

h
H(h)Ψh

z,ζ

〈
A∗h a−1

h Ψh
z,ζ , u

〉
L2(M)

dzdζ
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