Wave packets on Riemannian manifolds

Jean-Marc Bouclet
Institut de Mathématiques de Toulouse

November 24, 2015

Wave packets: a review of basic facts

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

localized around (or centered at) z in space,

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

localized around (or centered at) z in space, and near ζ in momentum

$$
\left(\mathcal{F} \psi_{z, \zeta}\right)(\xi)=\pi^{-\frac{n}{4}} \exp \left(-\mathrm{iz} \cdot \xi-\frac{|\xi-\zeta|^{2}}{2}\right)
$$

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

localized around (or centered at) z in space, and near ζ in momentum

$$
\left(\mathcal{F} \psi_{z, \zeta}\right)(\xi)=\pi^{-\frac{n}{4}} \exp \left(-\mathrm{iz} \cdot \xi-\frac{|\xi-\zeta|^{2}}{2}\right)
$$

Think of (z, ζ) as a point in phase space $T^{*} \mathbb{R}^{n}$

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

localized around (or centered at) z in space, and near ζ in momentum

$$
\left(\mathcal{F} \psi_{z, \zeta}\right)(\xi)=\pi^{-\frac{n}{4}} \exp \left(-\mathrm{i} z \cdot \xi-\frac{|\xi-\zeta|^{2}}{2}\right)
$$

Think of (z, ζ) as a point in phase space $T^{*} \mathbb{R}^{n}$
We call $\psi_{z, \zeta}$ a Gaussian wave packet centered at (z, ζ)

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

localized around (or centered at) z in space, and near ζ in momentum

$$
\left(\mathcal{F} \psi_{z, \zeta}\right)(\xi)=\pi^{-\frac{n}{4}} \exp \left(-\mathrm{i} z \cdot \xi-\frac{|\xi-\zeta|^{2}}{2}\right)
$$

Think of (z, ζ) as a point in phase space $T^{*} \mathbb{R}^{n}$
We call $\psi_{z, \zeta}$ a Gaussian wave packet centered at (z, ζ)
Main interests (for us) :

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

localized around (or centered at) z in space, and near ζ in momentum

$$
\left(\mathcal{F} \psi_{z, \zeta}\right)(\xi)=\pi^{-\frac{n}{4}} \exp \left(-\mathrm{i} z \cdot \xi-\frac{|\xi-\zeta|^{2}}{2}\right)
$$

Think of (z, ζ) as a point in phase space $T^{*} \mathbb{R}^{n}$
We call $\psi_{z, \zeta}$ a Gaussian wave packet centered at (z, ζ)
Main interests (for us) :

1. One can write "waves" (i.e. functions) as superposition of wave packets

Wave packets: a review of basic facts

Canonical example: gaussian wave packet

$$
\psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \exp \left(\mathrm{i} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2}\right), \quad x \in \mathbb{R}^{n}
$$

localized around (or centered at) z in space, and near ζ in momentum

$$
\left(\mathcal{F} \psi_{z, \zeta}\right)(\xi)=\pi^{-\frac{n}{4}} \exp \left(-\mathrm{i} z \cdot \xi-\frac{|\xi-\zeta|^{2}}{2}\right)
$$

Think of (z, ζ) as a point in phase space $T^{*} \mathbb{R}^{n}$
We call $\psi_{z, \zeta}$ a Gaussian wave packet centered at (z, ζ)
Main interests (for us) :

1. One can write "waves" (i.e. functions) as superposition of wave packets
2. The evolution of a wave packet under a Schrödinger flow can be described rather explicitly (in a suitable regime)

Wave packets: a review of basic facts

1. Wave packet decomposition

Wave packets: a review of basic facts

1. Wave packet decomposition

Define the Bargmann transform of a function u by

$$
B u(z, \zeta)=\int_{\mathbb{R}^{n}} \overline{\psi_{z, \zeta}(x)} u(x) d x
$$

Wave packets: a review of basic facts

1. Wave packet decomposition

Define the Bargmann transform of a function u by

$$
B u(z, \zeta)=\int_{\mathbb{R}^{n}} \overline{\psi_{z, \zeta}(x)} u(x) d x
$$

Then, one has the inversion formula

$$
u=(2 \pi)^{-n} B^{*} B u
$$

Wave packets: a review of basic facts

1. Wave packet decomposition

Define the Bargmann transform of a function u by

$$
B u(z, \zeta)=\int_{\mathbb{R}^{n}} \overline{\psi_{z, \zeta}(x)} u(x) d x
$$

Then, one has the inversion formula

$$
u=(2 \pi)^{-n} B^{*} B u
$$

In other words

$$
u(x)=(2 \pi)^{-n} \iint_{T^{*} \mathbb{R}^{n}}(B u)(z, \zeta) \psi_{z, \zeta}(x) d z d \zeta
$$

is a decomposition of u as a (continuous) sum of wave packets

Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas.

Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$
p_{\nu}(x, \xi)=\frac{|\xi|^{2}}{2}+\nu \frac{|x|^{2}}{2}, \quad H_{\nu}=-\frac{\Delta}{2}+\nu \frac{|x|^{2}}{2}, \quad \nu=0,+1,-1
$$

Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$
p_{\nu}(x, \xi)=\frac{|\xi|^{2}}{2}+\nu \frac{|x|^{2}}{2}, \quad H_{\nu}=-\frac{\Delta}{2}+\nu \frac{|x|^{2}}{2}, \quad \nu=0,+1,-1
$$

Then

$$
e^{-\mathrm{i} t H_{\nu}} \psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \gamma_{\nu}^{t} \operatorname{expi}\left(S_{\nu}^{t}+\zeta_{\nu}^{t} \cdot\left(x-z_{\nu}^{t}\right)+\frac{\Gamma_{\nu}^{t}}{2}\left(x-z_{\nu}^{t}\right) \cdot\left(x-z_{\nu}^{t}\right)\right)
$$

Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$
p_{\nu}(x, \xi)=\frac{|\xi|^{2}}{2}+\nu \frac{|x|^{2}}{2}, \quad H_{\nu}=-\frac{\Delta}{2}+\nu \frac{|x|^{2}}{2}, \quad \nu=0,+1,-1
$$

Then

$$
e^{-\mathrm{i} t H_{\nu}} \psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \gamma_{\nu}^{t} \operatorname{expi}\left(S_{\nu}^{t}+\zeta_{\nu}^{t} \cdot\left(x-z_{\nu}^{t}\right)+\frac{\Gamma_{\nu}^{t}}{2}\left(x-z_{\nu}^{t}\right) \cdot\left(x-z_{\nu}^{t}\right)\right)
$$

where

$$
\left(z_{\nu}^{t}, \zeta_{\nu}^{t}\right)=\Phi_{p_{\nu}}^{t}(z, \zeta), \quad S_{\nu}^{t}=\int_{0}^{t} \dot{z}_{\nu}^{s} \cdot \zeta_{\nu}^{s}-p_{\nu}\left(z_{\nu}^{s}, \zeta_{\nu}^{s}\right) d s
$$

Wave packets: a review of basic facts

2. Evolution of wave packets under the Schrödinger equation

For quadratic potentials, one has exact formulas. Set

$$
p_{\nu}(x, \xi)=\frac{|\xi|^{2}}{2}+\nu \frac{|x|^{2}}{2}, \quad H_{\nu}=-\frac{\Delta}{2}+\nu \frac{|x|^{2}}{2}, \quad \nu=0,+1,-1
$$

Then

$$
e^{-\mathrm{i} t H_{\nu}} \psi_{z, \zeta}(x)=\pi^{-\frac{n}{4}} \gamma_{\nu}^{t} \operatorname{expi}\left(S_{\nu}^{t}+\zeta_{\nu}^{t} \cdot\left(x-z_{\nu}^{t}\right)+\frac{\Gamma_{\nu}^{t}}{2}\left(x-z_{\nu}^{t}\right) \cdot\left(x-z_{\nu}^{t}\right)\right)
$$

where

$$
\left(z_{\nu}^{t}, \zeta_{\nu}^{t}\right)=\Phi_{p_{\nu}}^{t}(z, \zeta), \quad S_{\nu}^{t}=\int_{0}^{t} \dot{z}_{\nu}^{s} \cdot \zeta_{\nu}^{s}-p_{\nu}\left(z_{\nu}^{s}, \zeta_{\nu}^{s}\right) d s
$$

and $\gamma_{\nu}^{t}, \Gamma_{\nu}^{t}$ are given in term of the differential of flow $\Phi_{\rho_{\nu}}^{t}$,

$$
D \Phi_{p_{\nu}}^{t}(z, \zeta)=\left(\begin{array}{ll}
A_{\nu}^{t} & B_{\nu}^{t} \\
C_{\nu}^{t} & D_{\nu}^{t}
\end{array}\right),
$$

by

$$
\Gamma_{\nu}^{t}=\left(C_{\nu}^{t}+\mathrm{i} D_{\nu}^{t}\right)\left(A_{\nu}^{t}+\mathrm{i} B_{\nu}^{t}\right)^{-1}, \quad \gamma_{\nu}^{t}=\operatorname{det}\left(A_{\nu}^{t}+\mathrm{i} B_{\nu}^{t}\right)^{-1 / 2} .
$$

Wave packets: a review of basic facts

Explicitly, we obtain

$$
\begin{aligned}
\Gamma_{0}^{t} & =\frac{t+\mathrm{i}}{1+t^{2}} I_{n}, & & \gamma_{0}^{t}=(1+\mathrm{i} t)^{-\frac{n}{2}} \\
\Gamma_{1}^{t} & =\mathrm{i} I_{n}, & & \gamma_{1}^{t}=(\cos t+\mathrm{i} \sin t)^{-\frac{n}{2}} \\
\Gamma_{-1}^{t} & =\frac{\sinh (2 t)+\mathrm{i}}{\cosh (2 t)} I_{n}, & & \gamma_{-1}^{t}=(\cosh t+\mathrm{i} \sinh t)^{-\frac{n}{2}}
\end{aligned}
$$

Wave packets: a review of basic facts

Explicitly, we obtain

$$
\begin{aligned}
\Gamma_{0}^{t} & =\frac{t+\mathrm{i}}{1+t^{2}} I_{n}, & & \gamma_{0}^{t}=(1+\mathrm{i} t)^{-\frac{n}{2}} \\
\Gamma_{1}^{t} & =\mathrm{i} I_{n}, & & \gamma_{1}^{t}=(\cos t+\mathrm{i} \sin t)^{-\frac{n}{2}} \\
\Gamma_{-1}^{t} & =\frac{\sinh (2 t)+\mathrm{i}}{\cosh (2 t)} I_{n}, & & \gamma_{-1}^{t}=(\cosh t+\mathrm{i} \sinh t)^{-\frac{n}{2}}
\end{aligned}
$$

This allows in particular to read the profile and spreading of the packets:

$$
\begin{aligned}
\left|e^{\mathrm{i} t H_{0}} \psi_{z, \zeta}(x)\right| & =\frac{1}{\left(\pi\left(1+t^{2}\right)\right)^{\frac{n}{4}}} \exp \left(-\frac{\left|x-z_{0}^{t}\right|^{2}}{2\left(1+t^{2}\right)}\right) \\
\left|e^{\mathrm{i} t H_{1}} \psi_{z, \zeta}(x)\right| & =\frac{1}{\pi^{\frac{n}{4}}} \exp \left(-\frac{\left|x-z_{1}^{t}\right|^{2}}{2}\right) \\
\left|e^{\mathrm{i} t H_{-1}} \psi_{z, \zeta}(x)\right| & =\frac{1}{(\pi \cosh (2 t))^{\frac{n}{4}}} \exp \left(-\frac{\left|x-z_{-1}^{t}\right|^{2}}{2 \cosh (2 t)}\right)
\end{aligned}
$$

Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

$$
\psi_{z, \zeta}^{h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{\mathrm{i}}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

$$
\psi_{z, \zeta}^{h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{\mathrm{i}}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

\Longrightarrow Localization around z on a scale $h^{1 / 2}$

Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

$$
\psi_{z, \zeta}^{h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{\mathrm{i}}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

\Longrightarrow Localization around z on a scale $h^{1 / 2}$
Consider a semiclassical Schrödinger operator on \mathbb{R}^{n}

$$
H(h)=-\frac{h^{2} \Delta}{2}+V(x), \quad p(x, \xi)=\frac{|\xi|^{2}}{2}+V(x)
$$

with $V \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

$$
\psi_{z, \zeta}^{h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{\mathrm{i}}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

\Longrightarrow Localization around z on a scale $h^{1 / 2}$
Consider a semiclassical Schrödinger operator on \mathbb{R}^{n}

$$
H(h)=-\frac{h^{2} \Delta}{2}+V(x), \quad p(x, \xi)=\frac{|\xi|^{2}}{2}+V(x)
$$

with $V \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Denote

$$
\left(z^{t}, \zeta^{t}\right)=\Phi_{p}^{t}(z, \zeta), \quad\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right):=D \Phi_{p}^{t}(z, \zeta)
$$

Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

$$
\psi_{z, \zeta}^{h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{\mathrm{i}}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

\Longrightarrow Localization around z on a scale $h^{1 / 2}$
Consider a semiclassical Schrödinger operator on \mathbb{R}^{n}

$$
H(h)=-\frac{h^{2} \Delta}{2}+V(x), \quad p(x, \xi)=\frac{|\xi|^{2}}{2}+V(x)
$$

with $V \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Denote

$$
\left(z^{t}, \zeta^{t}\right)=\Phi_{p}^{t}(z, \zeta), \quad\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right):=D \Phi_{p}^{t}(z, \zeta)
$$

and

$$
S^{t}=\int_{0}^{t} \dot{z}^{s} \cdot \zeta^{s}-p\left(z^{s}, \zeta^{s}\right) d s
$$

Wave packets for semiclassical Schrödinger operators

From now on, we use a semiclassical normalization

$$
\psi_{z, \zeta}^{h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{\mathrm{i}}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

\Longrightarrow Localization around z on a scale $h^{1 / 2}$
Consider a semiclassical Schrödinger operator on \mathbb{R}^{n}

$$
H(h)=-\frac{h^{2} \Delta}{2}+V(x), \quad p(x, \xi)=\frac{|\xi|^{2}}{2}+V(x)
$$

with $V \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Denote

$$
\left(z^{t}, \zeta^{t}\right)=\Phi_{p}^{t}(z, \zeta), \quad\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right):=D \Phi_{p}^{t}(z, \zeta)
$$

and

$$
S^{t}=\int_{0}^{t} \dot{z}^{s} \cdot \zeta^{s}-p\left(z^{s}, \zeta^{s}\right) d s
$$

Proposition [action of the symplectic group on the Siegel half space] $A^{t}+\mathrm{i} B^{t}$ is invertible and

$$
\Gamma^{t}:=\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}
$$

is symmetric complex, with positive definite imaginary part

Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(x)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right)
$$

Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(x)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right)
$$

for times $|t| \leq C_{0}|\ln h|\left(C_{0}\right.$ dynamical constant $)$. Here $\gamma^{t}=\operatorname{det}\left(A_{t}+\mathrm{i} B_{t}\right)^{-1 / 2}$.

Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(x)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right)
$$

for times $|t| \leq C_{0}|\ln h|\left(C_{0}\right.$ dynamical constant $)$. Here $\gamma^{t}=\operatorname{det}\left(A_{t}+\mathrm{i} B_{t}\right)^{-1 / 2}$. The amplitude is of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} A_{j}\left(z, \zeta, t, \frac{x-z^{t}}{h^{\frac{1}{2}}}\right)
$$

with $A_{j}(z, \zeta, t, X)$ polynomial of degree $\leq 3 j$ in X, with coeff. depending on the classical trajectory $t \mapsto\left(z^{t}, \zeta^{t}\right)$ and the Taylor expansion of V at z^{t}

Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(x)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right)
$$

for times $|t| \leq C_{0}|\ln h|\left(C_{0}\right.$ dynamical constant $)$. Here $\gamma^{t}=\operatorname{det}\left(A_{t}+\mathrm{i} B_{t}\right)^{-1 / 2}$. The amplitude is of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} A_{j}\left(z, \zeta, t, \frac{x-z^{t}}{h^{\frac{1}{2}}}\right)
$$

with $A_{j}(z, \zeta, t, X)$ polynomial of degree $\leq 3 j$ in X, with coeff. depending on the classical trajectory $t \mapsto\left(z^{t}, \zeta^{t}\right)$ and the Taylor expansion of V at z^{t}

Rem. The polynomial growth of the amplitude in $\left(x-z^{t}\right) / h^{\frac{1}{2}}$ is beaten by the exponential decay of the exponential since $\operatorname{Im}\left(\Gamma^{t}\right)$ is positive definite

Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(x)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right)
$$

for times $|t| \leq C_{0}|\ln h|\left(C_{0}\right.$ dynamical constant $)$. Here $\gamma^{t}=\operatorname{det}\left(A_{t}+\mathrm{i} B_{t}\right)^{-1 / 2}$. The amplitude is of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} A_{j}\left(z, \zeta, t, \frac{x-z^{t}}{h^{\frac{1}{2}}}\right)
$$

with $A_{j}(z, \zeta, t, X)$ polynomial of degree $\leq 3 j$ in X, with coeff. depending on the classical trajectory $t \mapsto\left(z^{t}, \zeta^{t}\right)$ and the Taylor expansion of V at z^{t}

Rem. The polynomial growth of the amplitude in $\left(x-z^{t}\right) / h^{\frac{1}{2}}$ is beaten by the exponential decay of the exponential since $\operatorname{Im}\left(\Gamma^{t}\right)$ is positive definite \Longrightarrow Concentration near the classical trajectory,

Wave packets for semiclassical Schrödinger operators

Theorem (Hagedorn-Joye, Combescure-Robert) In the limit $h \rightarrow 0$, and under general conditions on V,

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(x)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right)
$$

for times $|t| \leq C_{0}|\ln h|\left(C_{0}\right.$ dynamical constant $)$. Here $\gamma^{t}=\operatorname{det}\left(A_{t}+\mathrm{i} B_{t}\right)^{-1 / 2}$. The amplitude is of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} A_{j}\left(z, \zeta, t, \frac{x-z^{t}}{h^{\frac{1}{2}}}\right)
$$

with $A_{j}(z, \zeta, t, X)$ polynomial of degree $\leq 3 j$ in X, with coeff. depending on the classical trajectory $t \mapsto\left(z^{t}, \zeta^{t}\right)$ and the Taylor expansion of V at z^{t}

Rem. The polynomial growth of the amplitude in $\left(x-z^{t}\right) / h^{\frac{1}{2}}$ is beaten by the exponential decay of the exponential since $\operatorname{Im}\left(\Gamma^{t}\right)$ is positive definite
\Longrightarrow Concentration near the classical trajectory, at least as long as $\operatorname{Im}\left(\Gamma^{t}\right) \gg h$

Wave packets in semiclassical analysis

Sketch of proof.

Lemma The matrix Γ^{t} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

Wave packets in semiclassical analysis Sketch of proof.

Lemma The matrix Γ^{t} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

and the function γ^{t} satisfies

$$
\dot{\gamma}^{t}=-\frac{\operatorname{tr}\left(\Gamma^{t}\right)}{2} \gamma^{t}
$$

Wave packets in semiclassical analysis Sketch of proof.

Lemma The matrix Γ^{t} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

and the function γ^{t} satisfies

$$
\dot{\gamma}^{t}=-\frac{\operatorname{tr}\left(\Gamma^{t}\right)}{2} \gamma^{t}
$$

Set

$$
\varphi:=S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)
$$

Wave packets in semiclassical analysis Sketch of proof.

Lemma The matrix Γ^{t} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

and the function γ^{t} satisfies

$$
\dot{\gamma}^{t}=-\frac{\operatorname{tr}\left(\Gamma^{t}\right)}{2} \gamma^{t}
$$

Set

$$
\varphi:=S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)
$$

Then
$H(h) \gamma^{t} e^{\frac{i}{h} \varphi}$

Wave packets in semiclassical analysis
Sketch of proof.
Lemma The matrix Γ^{t} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

and the function γ^{t} satisfies

$$
\dot{\gamma}^{t}=-\frac{\operatorname{tr}\left(\Gamma^{t}\right)}{2} \gamma^{t}
$$

Set

$$
\varphi:=S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)
$$

Then

$$
H(h) \gamma^{t} e^{\frac{\mathrm{i}}{h} \varphi}=\left[\left(\dot{\varphi}+\frac{\nabla_{x} \varphi \cdot \nabla_{x} \varphi}{2}+V(x)\right)-\mathrm{i} h\left(\frac{\dot{\gamma}^{t}}{\gamma^{t}}+\frac{\Delta \varphi}{2}\right)\right] \gamma^{t} e^{\frac{\mathrm{i}}{h} \varphi}
$$

Wave packets in semiclassical analysis

Sketch of proof.

Lemma The matrix Γ^{\dagger} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

and the function γ^{t} satisfies

$$
\dot{\gamma}^{t}=-\frac{\operatorname{tr}\left(\Gamma^{t}\right)}{2} \gamma^{t} .
$$

Set

$$
\varphi:=S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)
$$

Then

$$
\begin{aligned}
H(h) \gamma^{t} e^{\frac{i}{h} \varphi} & =\left[\left(\dot{\varphi}+\frac{\nabla_{x} \varphi \cdot \nabla_{x} \varphi}{2}+V(x)\right)-\mathrm{i} h\left(\frac{\dot{\gamma}^{t}}{\gamma^{t}}+\frac{\Delta \varphi}{2}\right)\right] \gamma^{t} e^{\frac{\mathrm{i}}{h} \varphi} \\
& =\left[V(x)-V\left(z^{t}\right)-V^{(1)}\left(z^{t}\right) \cdot\left(x-z^{t}\right)-\frac{V^{(2)}\left(z^{t}\right)}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right] \gamma^{t} e^{\frac{i}{h} \varphi}
\end{aligned}
$$

Wave packets in semiclassical analysis

Sketch of proof.

Lemma The matrix Γ^{\dagger} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

and the function γ^{t} satisfies

$$
\dot{\gamma}^{t}=-\frac{\operatorname{tr}\left(\Gamma^{t}\right)}{2} \gamma^{t} .
$$

Set

$$
\varphi:=S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)
$$

Then

$$
\begin{aligned}
H(h) \gamma^{t} e^{\frac{i}{h} \varphi} & =\left[\left(\dot{\varphi}+\frac{\nabla_{x} \varphi \cdot \nabla_{x} \varphi}{2}+V(x)\right)-\mathrm{i} h\left(\frac{\dot{\gamma}^{t}}{\gamma^{t}}+\frac{\Delta \varphi}{2}\right)\right] \gamma^{t} e^{\frac{\mathrm{i}}{h} \varphi} \\
& =\left[V(x)-V\left(z^{t}\right)-V^{(1)}\left(z^{t}\right) \cdot\left(x-z^{t}\right)-\frac{V^{(2)}\left(z^{t}\right)}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right] \gamma^{t} e^{\frac{i}{h} \varphi} \\
& =O\left(\left|x-z^{t}\right|^{3}\right) \gamma^{t} e^{\frac{i}{h} \varphi}
\end{aligned}
$$

Wave packets in semiclassical analysis

Sketch of proof.

Lemma The matrix Γ^{t} satisfies the Ricatti equation

$$
\dot{\Gamma}^{t}=-V^{(2)}\left(z^{t}\right)-\left(\Gamma^{t}\right)^{2}, \quad \Gamma^{0}=\mathrm{i} I_{n}
$$

and the function γ^{t} satisfies

$$
\dot{\gamma}^{t}=-\frac{\operatorname{tr}\left(\Gamma^{t}\right)}{2} \gamma^{t} .
$$

Set

$$
\varphi:=S^{t}+\zeta^{t} \cdot\left(x-z^{t}\right)+\frac{\Gamma^{t}}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)
$$

Then

$$
\begin{aligned}
H(h) \gamma^{t} e^{\frac{i}{h} \varphi} & =\left[\left(\dot{\varphi}+\frac{\nabla_{x} \varphi \cdot \nabla_{x} \varphi}{2}+V(x)\right)-\mathrm{i} h\left(\frac{\dot{\gamma}^{t}}{\gamma^{t}}+\frac{\Delta \varphi}{2}\right)\right] \gamma^{t} e^{\frac{\mathrm{i}}{h} \varphi} \\
& =\left[V(x)-V\left(z^{t}\right)-V^{(1)}\left(z^{t}\right) \cdot\left(x-z^{t}\right)-\frac{V^{(2)}\left(z^{t}\right)}{2}\left(x-z^{t}\right) \cdot\left(x-z^{t}\right)\right] \gamma^{t} e^{\frac{i}{h} \varphi} \\
& =O\left(\left|x-z^{t}\right|^{3}\right) \gamma^{t} e^{\frac{i}{h} \varphi} \\
& =h^{3 / 2} O\left(\frac{\left|x-z^{t}\right|^{3}}{h^{3 / 2}}\right) \gamma^{t} e^{\frac{i}{h} \varphi}
\end{aligned}
$$

Wave packets on Riemannian manifolds

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...).

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols).

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit,

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)
2. Get an (at most as possible) intrinsinc description of wave packets propagation

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)
2. Get an (at most as possible) intrinsinc description of wave packets propagation
3. Get (relatively) explicit approximation of $e^{\mathrm{i} t H(h) / h}$ as a single integral

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)
2. Get an (at most as possible) intrinsinc description of wave packets propagation
3. Get (relatively) explicit approximation of $e^{\mathrm{itH}(h) / h}$ as a single integral, without need to go to the universal cover

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)
2. Get an (at most as possible) intrinsinc description of wave packets propagation
3. Get (relatively) explicit approximation of $e^{\mathrm{itH}(h) / h}$ as a single integral, without need to go to the universal cover, up to $|t| \leq C_{0}|\log h|$

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)
2. Get an (at most as possible) intrinsinc description of wave packets propagation
3. Get (relatively) explicit approximation of $e^{\mathrm{itH}(h) / h}$ as a single integral, without need to go to the universal cover, up to $|t| \leq C_{0}|\log h|$
4. See e.g. quite explicitly the effect of (negative) curvature

Wave packets on Riemannian manifolds

Goal: to emulate the construction on \mathbb{R}^{n}
Previous related works:

- Construction of quasimodes: by propagating a single wave packet along a closed geodesic (Babich-Lazutkin, Ralston, Paul-Uribe, Nonnenmacher-Eswarathasan...). Allows to use Fermi coordinates.
- More general propagation results: Paul-Uribe, Guillemin-Uribe-Wang: qualitative description of wave packets and their evolutions (for Hamiltonians with non homogeneous symbols). General but not so explicit, using local coordinates and given for finite times

Motivations and interests:

1. Consider more than the propagation along a single trajectory \Rightarrow vary (z, ζ)
2. Get an (at most as possible) intrinsinc description of wave packets propagation
3. Get (relatively) explicit approximation of $e^{\mathrm{itH}(h) / h}$ as a single integral, without need to go to the universal cover, up to $|t| \leq C_{0}|\log h|$
4. See e.g. quite explicitly the effect of (negative) curvature
5. ...

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold
Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_{g}(z, m)<r_{0}$, there is a unique $W_{z}^{m} \in T_{z} M$ such that

$$
m=\exp _{z}\left(W_{z}^{m}\right)
$$

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold
Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_{g}(z, m)<r_{0}$, there is a unique $W_{z}^{m} \in T_{z} M$ such that

$$
m=\exp _{z}\left(W_{z}^{m}\right)
$$

For fixed $m, z \mapsto W_{z}^{m}$ is a vector field

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold
Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_{g}(z, m)<r_{0}$, there is a unique $W_{z}^{m} \in T_{z} M$ such that

$$
m=\exp _{z}\left(W_{z}^{m}\right)
$$

For fixed $m, z \mapsto W_{z}^{m}$ is a vector field and one can expand its covariant derivative

$$
\nabla W_{z}^{m} \sim-I+\frac{1}{3} R_{z}\left(., W_{z}^{m}\right) W_{z}^{m}+\frac{1}{12}(\nabla R)_{z}\left(W_{z}^{m} ; ., W_{z}^{m}\right) W_{z}^{m}+\cdots
$$

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold
Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_{g}(z, m)<r_{0}$, there is a unique $W_{z}^{m} \in T_{z} M$ such that

$$
m=\exp _{z}\left(W_{z}^{m}\right)
$$

For fixed $m, z \mapsto W_{z}^{m}$ is a vector field and one can expand its covariant derivative

$$
\nabla W_{z}^{m} \sim-I+\frac{1}{3} R_{z}\left(., W_{z}^{m}\right) W_{z}^{m}+\frac{1}{12}(\nabla R)_{z}\left(W_{z}^{m} ; ., W_{z}^{m}\right) W_{z}^{m}+\cdots
$$

All tensors in this expansion are bounded

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold
Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_{g}(z, m)<r_{0}$, there is a unique $W_{z}^{m} \in T_{z} M$ such that

$$
m=\exp _{z}\left(W_{z}^{m}\right)
$$

For fixed $m, z \mapsto W_{z}^{m}$ is a vector field and one can expand its covariant derivative

$$
\nabla W_{z}^{m} \sim-I+\frac{1}{3} R_{z}\left(., W_{z}^{m}\right) W_{z}^{m}+\frac{1}{12}(\nabla R)_{z}\left(W_{z}^{m} ; ., W_{z}^{m}\right) W_{z}^{m}+\cdots
$$

All tensors in this expansion are bounded (similar result for higher covariant derivatives)

Wave packets on Riemannian manifolds

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with bounded geometry i.e.

1. injectivity radius bounded from below by $r_{0}>0$
2. all covariant derivatives of the Riemann curvature tensor bounded on M
3. complete (for simplicity)

Example. Any closed Riemannian manifold
Lemma [Inverse exponential map close to the diagonal of $M \times M$] If $d_{g}(z, m)<r_{0}$, there is a unique $W_{z}^{m} \in T_{z} M$ such that

$$
m=\exp _{z}\left(W_{z}^{m}\right)
$$

For fixed $m, z \mapsto W_{z}^{m}$ is a vector field and one can expand its covariant derivative

$$
\nabla W_{z}^{m} \sim-I+\frac{1}{3} R_{z}\left(., W_{z}^{m}\right) W_{z}^{m}+\frac{1}{12}(\nabla R)_{z}\left(W_{z}^{m} ; ., W_{z}^{m}\right) W_{z}^{m}+\cdots
$$

All tensors in this expansion are bounded (similar result for higher covariant derivatives)

Rem: on $\mathbb{R}^{n}, W_{z}^{m}=m-z$.

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
H(h):=-h^{2} \frac{\Delta_{g}}{2}+V
$$

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta g}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta_{g}}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Proposition. Let U be a coordinate patch, with coordinates y_{1}, \ldots, y_{n}.

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta_{g}}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Proposition. Let U be a coordinate patch, with coordinates y_{1}, \ldots, y_{n}. Along each trajectory starting at $(z, \zeta) \in T^{*} U$, one can define intrinsincally

$$
\Gamma^{t}: T_{z^{t}} M^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}, \quad \text { where } \quad T_{z^{t}} M^{\mathbb{C}}=T_{z^{t}} M \otimes \mathbb{C}
$$

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta_{g}}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Proposition. Let U be a coordinate patch, with coordinates y_{1}, \ldots, y_{n}. Along each trajectory starting at $(z, \zeta) \in T^{*} U$, one can define intrinsincally

$$
\Gamma^{t}: T_{z^{t}} M^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}, \quad \text { where } \quad T_{z^{t}} M^{\mathbb{C}}=T_{z^{t}} M \otimes \mathbb{C}
$$

(i.e. Γ^{t} is a complex tensor along the curve $t \mapsto z^{t}$)

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta_{g}}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Proposition. Let U be a coordinate patch, with coordinates y_{1}, \ldots, y_{n}. Along each trajectory starting at $(z, \zeta) \in T^{*} U$, one can define intrinsincally

$$
\Gamma^{t}: T_{z^{t}} M^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}, \quad \text { where } \quad T_{z^{t}} M^{\mathbb{C}}=T_{z^{t}} M \otimes \mathbb{C}
$$

(i.e. Γ^{t} is a complex tensor along the curve $t \mapsto z^{t}$) which is

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta g}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Proposition. Let U be a coordinate patch, with coordinates y_{1}, \ldots, y_{n}. Along each trajectory starting at $(z, \zeta) \in T^{*} U$, one can define intrinsincally

$$
\Gamma^{t}: T_{z^{t}} M^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}, \quad \text { where } \quad T_{z^{t}} M^{\mathbb{C}}=T_{z^{t}} M \otimes \mathbb{C}
$$

(i.e. Γ^{t} is a complex tensor along the curve $t \mapsto z^{t}$) which is symmetric

$$
\left\langle\Gamma^{t} X, Y\right\rangle_{z^{t}}=\left\langle X, \Gamma^{t} Y\right\rangle_{z^{t}}, \quad X, Y \in T_{z^{t}} M
$$

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta_{g}}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Proposition. Let U be a coordinate patch, with coordinates y_{1}, \ldots, y_{n}. Along each trajectory starting at $(z, \zeta) \in T^{*} U$, one can define intrinsincally

$$
\Gamma^{t}: T_{z^{t}} M^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}, \quad \text { where } \quad T_{z^{t}} M^{\mathbb{C}}=T_{z^{t}} M \otimes \mathbb{C}
$$

(i.e. Γ^{t} is a complex tensor along the curve $t \mapsto z^{t}$) which is symmetric

$$
\left\langle\Gamma^{t} X, Y\right\rangle_{z^{t}}=\left\langle X, \Gamma^{t} Y\right\rangle_{z^{t}}, \quad X, Y \in T_{z^{t}} M
$$

has positive definite imaginary part

$$
\operatorname{Im}\left\langle\Gamma^{t} X, X\right\rangle_{z^{t}}>0, \quad X \neq 0, X \in T_{z^{t}} M
$$

Wave packets on Riemannian manifolds

Consider $V \in C^{\infty}(M, \mathbb{R})$ and

$$
\begin{gathered}
H(h):=-h^{2} \frac{\Delta_{g}}{2}+V \\
\left(z^{t}, \zeta^{t}\right)=\Phi^{t}(z, \zeta), \quad \text { Hamiltonian flow of } \frac{|\xi|_{m}^{2}}{2}+V(m)
\end{gathered}
$$

Proposition. Let U be a coordinate patch, with coordinates y_{1}, \ldots, y_{n}. Along each trajectory starting at $(z, \zeta) \in T^{*} U$, one can define intrinsincally

$$
\Gamma^{t}: T_{z^{t}} M^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}, \quad \text { where } \quad T_{z^{t}} M^{\mathbb{C}}=T_{z^{t}} M \otimes \mathbb{C}
$$

(i.e. Γ^{t} is a complex tensor along the curve $t \mapsto z^{t}$) which is symmetric

$$
\left\langle\Gamma^{t} X, Y\right\rangle_{z^{t}}=\left\langle X, \Gamma^{t} Y\right\rangle_{z^{t}}, \quad X, Y \in T_{z^{t}} M
$$

has positive definite imaginary part

$$
\operatorname{Im}\left\langle\Gamma^{t} X, X\right\rangle_{z^{t}}>0, \quad X \neq 0, X \in T_{z^{t}} M
$$

and satisfies the Ricatti equation

$$
\nabla_{\dot{z}^{t}} \Gamma^{t}=-\operatorname{Hess}(V)_{z^{t}}-R_{z^{t}}\left(., \dot{z}^{t}\right) \dot{z}^{t}-\left(\Gamma^{t}\right)^{2}
$$

where $R_{z^{t}}$ is the Riemann tensor at z^{t}

Wave packets on Riemannian manifolds

Proof.

To construct Γ^{t} on \mathbb{R}^{n}, we have used the natural identifications

$$
T_{(z, \zeta)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \quad T_{\left(z^{t}, \zeta^{t}\right)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

Wave packets on Riemannian manifolds

Proof.
To construct Γ^{t} on \mathbb{R}^{n}, we have used the natural identifications

$$
T_{(z, \zeta)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \quad T_{\left(z^{t}, \zeta^{t}\right)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

How to proceed on a manifold ?

Wave packets on Riemannian manifolds

Proof.

To construct Γ^{t} on \mathbb{R}^{n}, we have used the natural identifications

$$
T_{(z, \zeta)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \quad T_{\left(z^{t}, \zeta^{t}\right)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$
T_{(z, \zeta)}\left(T^{*} M\right) \approx \mathbb{R}_{y}^{n} \oplus \mathbb{R}_{\eta}^{n}
$$

using the (symplectic) coordinates $\left(y_{1}, \ldots, y_{n}, \eta_{1}, \ldots, \eta_{n}\right)$ on $T^{*} U$

Wave packets on Riemannian manifolds

Proof.

To construct Γ^{t} on \mathbb{R}^{n}, we have used the natural identifications

$$
T_{(z, \zeta)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \quad T_{\left(z^{t}, \zeta^{t}\right)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$
T_{(z, \zeta)}\left(T^{*} M\right) \approx \mathbb{R}_{y}^{n} \oplus \mathbb{R}_{\eta}^{n}
$$

using the (symplectic) coordinates ($y_{1}, \ldots, y_{n}, \eta_{1}, \ldots, \eta_{n}$) on $T^{*} U$
2. At points $\left(z^{t}, \zeta^{t}\right)$, we use the (global) identification $\mathcal{I}_{g}: T^{*} M \rightarrow T M$

Wave packets on Riemannian manifolds

Proof.

To construct Γ^{t} on \mathbb{R}^{n}, we have used the natural identifications

$$
T_{(z, \zeta)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \quad T_{\left(z^{t}, \zeta^{t}\right)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$
T_{(z, \zeta)}\left(T^{*} M\right) \approx \mathbb{R}_{y}^{n} \oplus \mathbb{R}_{\eta}^{n}
$$

using the (symplectic) coordinates ($y_{1}, \ldots, y_{n}, \eta_{1}, \ldots, \eta_{n}$) on $T^{*} U$
2. At points $\left(z^{t}, \zeta^{t}\right)$, we use the (global) identification $\mathcal{I}_{g}: T^{*} M \rightarrow T M$

$$
\mathcal{I}_{g}\left(z^{t}, \zeta^{t}\right)=\left(z^{t}, \dot{z}^{t}\right)
$$

Wave packets on Riemannian manifolds

Proof.

To construct Γ^{t} on \mathbb{R}^{n}, we have used the natural identifications

$$
T_{(z, \zeta)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \quad T_{\left(z^{t}, \zeta^{t}\right)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$
T_{(z, \zeta)}\left(T^{*} M\right) \approx \mathbb{R}_{y}^{n} \oplus \mathbb{R}_{\eta}^{n}
$$

using the (symplectic) coordinates ($y_{1}, \ldots, y_{n}, \eta_{1}, \ldots, \eta_{n}$) on $T^{*} U$
2. At points $\left(z^{t}, \zeta^{t}\right)$, we use the (global) identification $\mathcal{I}_{g}: T^{*} M \rightarrow T M$

$$
\mathcal{I}_{g}\left(z^{t}, \zeta^{t}\right)=\left(z^{t}, \dot{z}^{t}\right)
$$

and split along horizontal and vertical spaces

$$
T_{\left(z^{t}, \dot{z}^{t}\right)}\left(\mathcal{I}_{g} T^{*} M\right)=\mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)} \oplus \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}
$$

Wave packets on Riemannian manifolds

Proof.

To construct Γ^{t} on \mathbb{R}^{n}, we have used the natural identifications

$$
T_{(z, \zeta)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \quad T_{\left(z^{t}, \zeta^{t}\right)}\left(T^{*} \mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}^{n}
$$

How to proceed on a manifold ?

1. At starting points (z, ζ) with $z \in U$, we split

$$
T_{(z, \zeta)}\left(T^{*} M\right) \approx \mathbb{R}_{y}^{n} \oplus \mathbb{R}_{\eta}^{n}
$$

using the (symplectic) coordinates ($y_{1}, \ldots, y_{n}, \eta_{1}, \ldots, \eta_{n}$) on $T^{*} U$
2. At points $\left(z^{t}, \zeta^{t}\right)$, we use the (global) identification $\mathcal{I}_{g}: T^{*} M \rightarrow T M$

$$
\mathcal{I}_{g}\left(z^{t}, \zeta^{t}\right)=\left(z^{t}, \dot{z}^{t}\right)
$$

and split along horizontal and vertical spaces

$$
T_{\left(z^{t}, \dot{z}^{t}\right)}\left(\mathcal{I}_{g} T^{*} M\right)=\mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)} \oplus \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}
$$

This gives a natural block decomposition

$$
d\left(\mathcal{I}_{g} \circ \Phi^{t}\right)=\left(\begin{array}{ll}
\mathcal{L}_{A} & \mathcal{L}_{B} \\
\mathcal{L}_{C} & \mathcal{L}_{D}
\end{array}\right): \mathbb{R}_{y}^{n} \oplus \mathbb{R}_{\eta}^{n} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)} \oplus \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}
$$

Wave packets on Riemannian manifolds
Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right)
$$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right), \quad \Sigma_{i j}^{t}=\sum_{k, l} g_{k l}\left(x^{t}\right) \Gamma_{i j}^{\prime}\left(x^{t}\right) \dot{x}_{k}^{t}, \quad x^{t}=x\left(z^{t}\right)
$$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right), \quad \Sigma_{i j}^{t}=\sum_{k, l} g_{k l}\left(x^{t}\right) \Gamma_{i j}^{\prime}\left(x^{t}\right) \dot{x}_{k}^{t}, \quad x^{t}=x\left(z^{t}\right)
$$

and

$$
\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right)=\left(\begin{array}{ll}
\partial x^{t} / \partial y & \partial x^{t} / \partial \eta \\
\partial \xi^{t} / \partial y & \partial \xi^{t} / \partial \eta
\end{array}\right)
$$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right), \quad \Sigma_{i j}^{t}=\sum_{k, l} g_{k l}\left(x^{t}\right) \Gamma_{i j}^{\prime}\left(x^{t}\right) \dot{x}_{k}^{t}, \quad x^{t}=x\left(z^{t}\right)
$$

and

$$
\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right)=\left(\begin{array}{ll}
\partial x^{t} / \partial y & \partial x^{t} / \partial \eta \\
\partial \xi^{t} / \partial y & \partial \xi^{t} / \partial \eta
\end{array}\right)
$$

\Longrightarrow Symmetry of Γ^{t},

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right), \quad \Sigma_{i j}^{t}=\sum_{k, l} g_{k l}\left(x^{t}\right) \Gamma_{i j}^{\prime}\left(x^{t}\right) \dot{x}_{k}^{t}, \quad x^{t}=x\left(z^{t}\right)
$$

and

$$
\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right)=\left(\begin{array}{ll}
\partial x^{t} / \partial y & \partial x^{t} / \partial \eta \\
\partial \xi^{t} / \partial y & \partial \xi^{t} / \partial \eta
\end{array}\right)
$$

\Longrightarrow Symmetry of Γ^{t}, positivity of $\operatorname{Im}\left(\Gamma^{t}\right)$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right), \quad \Sigma_{i j}^{t}=\sum_{k, l} g_{k l}\left(x^{t}\right) \Gamma_{i j}^{\prime}\left(x^{t}\right) \dot{x}_{k}^{t}, \quad x^{t}=x\left(z^{t}\right)
$$

and

$$
\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right)=\left(\begin{array}{ll}
\partial x^{t} / \partial y & \partial x^{t} / \partial \eta \\
\partial \xi^{t} / \partial y & \partial \xi^{t} / \partial \eta
\end{array}\right)
$$

\Longrightarrow Symmetry of Γ^{t}, positivity of $\operatorname{Im}\left(\Gamma^{t}\right)+$ Ricatti equation by direct computation \#

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right), \quad \Sigma_{i j}^{t}=\sum_{k, l} g_{k l}\left(x^{t}\right) \Gamma_{i j}^{\prime}\left(x^{t}\right) \dot{x}_{k}^{t}, \quad x^{t}=x\left(z^{t}\right)
$$

and

$$
\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right)=\left(\begin{array}{ll}
\partial x^{t} / \partial y & \partial x^{t} / \partial \eta \\
\partial \xi^{t} / \partial y & \partial \xi^{t} / \partial \eta
\end{array}\right)
$$

\Longrightarrow Symmetry of Γ^{t}, positivity of $\operatorname{Im}\left(\Gamma^{t}\right)+$ Ricatti equation by direct computation \#
Rem. If $\left(\tilde{y}_{1}, \ldots, \tilde{y}_{n}\right)$ are other coordinates on U, the matrix of Γ^{t} is changed into

$$
G^{-1}\left(\tilde{C}^{t}+\tilde{D}^{t} Z\right)\left(\tilde{A}^{t}+\tilde{B}^{t} Z\right)^{-1}-G^{-1} \Sigma^{t}
$$

Wave packets on Riemannian manifolds

Proof (continued). One can then define

$$
\left(\mathcal{L}_{C}+\mathrm{i} \mathcal{L}_{D}\right)\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right)^{-1}: \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}
$$

and then define Γ^{t} by composition with the natural isomorphisms

$$
T_{z^{t}} M^{\mathbb{C}} \rightarrow \mathcal{H}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}}, \quad \mathcal{V}_{\left(z^{t}, \dot{z}^{t}\right)}^{\mathbb{C}} \rightarrow T_{z^{t}} M^{\mathbb{C}}
$$

More concretely, using local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ near z^{t}, the matrix of Γ^{t} reads

$$
G^{-1}\left(C^{t}+\mathrm{i} D^{t}\right)\left(A^{t}+\mathrm{i} B^{t}\right)^{-1}-G^{-1} \Sigma^{t}
$$

with

$$
G^{-1}=\left(g^{i j}\left(x^{t}\right)\right), \quad \Sigma_{i j}^{t}=\sum_{k, l} g_{k l}\left(x^{t}\right) \Gamma_{i j}^{\prime}\left(x^{t}\right) \dot{x}_{k}^{t}, \quad x^{t}=x\left(z^{t}\right)
$$

and

$$
\left(\begin{array}{ll}
A^{t} & B^{t} \\
C^{t} & D^{t}
\end{array}\right)=\left(\begin{array}{ll}
\partial x^{t} / \partial y & \partial x^{t} / \partial \eta \\
\partial \xi^{t} / \partial y & \partial \xi^{t} / \partial \eta
\end{array}\right)
$$

\Longrightarrow Symmetry of Γ^{t}, positivity of $\operatorname{Im}\left(\Gamma^{t}\right)+$ Ricatti equation by direct computation \#
Rem. If ($\tilde{y}_{1}, \ldots, \tilde{y}_{n}$) are other coordinates on U, the matrix of Γ^{t} is changed into

$$
G^{-1}\left(\tilde{C}^{t}+\tilde{D}^{t} Z\right)\left(\tilde{A}^{t}+\tilde{B}^{t} Z\right)^{-1}-G^{-1} \Sigma^{t}, \quad Z=\left(\frac{\partial \tilde{\eta}}{\partial y}+\mathrm{i} \frac{\partial \tilde{\eta}}{\partial \eta}\right)\left(\frac{\partial \tilde{y}}{\partial y}+\mathrm{i} \frac{\partial \tilde{y}}{\partial \eta}\right)^{-1}
$$

Wave packets on Riemannian manifolds

Definition of gaussian wave packets

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

$$
\Psi_{z, \zeta}^{h}(m):=(\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h}\left(\zeta \cdot W_{z}^{m}+\frac{1}{2}\left\langle\Gamma^{0} W_{z}^{m}, W_{z}^{m}\right\rangle_{z}\right) \rho\left(d_{g}(z, m)\right),
$$

for $m \in M$ and $(z, \zeta) \in T^{*} U$ (i.e. $\zeta \in T_{z}^{*} U$)

$$
\gamma^{0}=\operatorname{det}\left(g_{j k}(y(z))\right)^{-\frac{1}{4}}
$$

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

$$
\Psi_{z, \zeta}^{h}(m):=(\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h}\left(\zeta \cdot W_{z}^{m}+\frac{1}{2}\left\langle\Gamma^{0} W_{z}^{m}, W_{z}^{m}\right\rangle_{z}\right) \rho\left(d_{g}(z, m)\right),
$$

for $m \in M$ and $(z, \zeta) \in T^{*} U$ (i.e. $\zeta \in T_{z}^{*} U$)

$$
\gamma^{0}=\operatorname{det}\left(g_{j k}(y(z))\right)^{-\frac{1}{4}}
$$

Rem. $\Psi_{z, \zeta}^{h}(m)=0$ if $d_{g}(z, m) \geq r_{0}$.

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

$$
\Psi_{z, \zeta}^{h}(m):=(\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h}\left(\zeta \cdot W_{z}^{m}+\frac{1}{2}\left\langle\Gamma^{0} W_{z}^{m}, W_{z}^{m}\right\rangle_{z}\right) \rho\left(d_{g}(z, m)\right),
$$

for $m \in M$ and $(z, \zeta) \in T^{*} U$ (i.e. $\zeta \in T_{z}^{*} U$)

$$
\gamma^{0}=\operatorname{det}\left(g_{j k}(y(z))\right)^{-\frac{1}{4}}
$$

Rem. $\Psi_{z, \zeta}^{h}(m)=0$ if $d_{g}(z, m) \geq r_{0}$.
Proposition [Wave packet decomposition - Approximate Bargmann transform]

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

$$
\Psi_{z, \zeta}^{h}(m):=(\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h}\left(\zeta \cdot W_{z}^{m}+\frac{1}{2}\left\langle\Gamma^{0} W_{z}^{m}, W_{z}^{m}\right\rangle_{z}\right) \rho\left(d_{g}(z, m)\right),
$$

for $m \in M$ and $(z, \zeta) \in T^{*} U$ (i.e. $\zeta \in T_{z}^{*} U$)

$$
\gamma^{0}=\operatorname{det}\left(g_{j k}(y(z))\right)^{-\frac{1}{4}}
$$

Rem. $\Psi_{z, \zeta}^{h}(m)=0$ if $d_{g}(z, m) \geq r_{0}$.
Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$
B_{h} u(z, \zeta):=\left\langle\Psi_{z, \zeta}^{h}, u\right\rangle_{L^{2}(M)}, \quad u \in C_{0}^{\infty}(U)
$$

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

$$
\Psi_{z, \zeta}^{h}(m):=(\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h}\left(\zeta \cdot W_{z}^{m}+\frac{1}{2}\left\langle\Gamma^{0} W_{z}^{m}, W_{z}^{m}\right\rangle_{z}\right) \rho\left(d_{g}(z, m)\right),
$$

for $m \in M$ and $(z, \zeta) \in T^{*} U$ (i.e. $\zeta \in T_{z}^{*} U$)

$$
\gamma^{0}=\operatorname{det}\left(g_{j k}(y(z))\right)^{-\frac{1}{4}}
$$

Rem. $\Psi_{z, \zeta}^{h}(m)=0$ if $d_{g}(z, m) \geq r_{0}$.
Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$
B_{h} u(z, \zeta):=\left\langle\Psi_{z, \zeta}^{h}, u\right\rangle_{L^{2}(M)}, \quad u \in C_{0}^{\infty}(U)
$$

Then

$$
(2 \pi h)^{-n} B_{h}^{*} B_{h} u=a(h) u
$$

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

$$
\Psi_{z, \zeta}^{h}(m):=(\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h}\left(\zeta \cdot W_{z}^{m}+\frac{1}{2}\left\langle\Gamma^{0} W_{z}^{m}, W_{z}^{m}\right\rangle_{z}\right) \rho\left(d_{g}(z, m)\right),
$$

for $m \in M$ and $(z, \zeta) \in T^{*} U$ (i.e. $\zeta \in T_{z}^{*} U$)

$$
\gamma^{0}=\operatorname{det}\left(g_{j k}(y(z))\right)^{-\frac{1}{4}}
$$

Rem. $\Psi_{z, \zeta}^{h}(m)=0$ if $d_{g}(z, m) \geq r_{0}$.
Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$
B_{h} u(z, \zeta):=\left\langle\Psi_{z, \zeta}^{h}, u\right\rangle_{L^{2}(M)}, \quad u \in C_{0}^{\infty}(U)
$$

Then

$$
(2 \pi h)^{-n} B_{h}^{*} B_{h} u=a(h) u=\left(1+h^{\frac{1}{2}} a_{1}+h^{1} a_{2}+\cdots\right) u
$$

with $a(h), a_{1}, a_{2}, \ldots \in C^{\infty}$

Wave packets on Riemannian manifolds

Definition of gaussian wave packets Let $\rho \in C_{0}^{\infty}\left(-r_{0}, r_{0}\right)$, equal to 1 near 0 .

$$
\Psi_{z, \zeta}^{h}(m):=(\pi h)^{-\frac{n}{4}} \gamma^{0} \exp \frac{\mathrm{i}}{h}\left(\zeta \cdot W_{z}^{m}+\frac{1}{2}\left\langle\Gamma^{0} W_{z}^{m}, W_{z}^{m}\right\rangle_{z}\right) \rho\left(d_{g}(z, m)\right),
$$

for $m \in M$ and $(z, \zeta) \in T^{*} U$ (i.e. $\zeta \in T_{z}^{*} U$)

$$
\gamma^{0}=\operatorname{det}\left(g_{j k}(y(z))\right)^{-\frac{1}{4}}
$$

Rem. $\Psi_{z, \zeta}^{h}(m)=0$ if $d_{g}(z, m) \geq r_{0}$.
Proposition [Wave packet decomposition - Approximate Bargmann transform] Set

$$
B_{h} u(z, \zeta):=\left\langle\Psi_{z, \zeta}^{h}, u\right\rangle_{L^{2}(M)}, \quad u \in C_{0}^{\infty}(U)
$$

Then

$$
(2 \pi h)^{-n} B_{h}^{*} B_{h} u=a(h) u=\left(1+h^{\frac{1}{2}} a_{1}+h^{1} a_{2}+\cdots\right) u
$$

with $a(h), a_{1}, a_{2}, \ldots \in C^{\infty}$, i.e.

$$
(2 \pi h)^{-n} \iint_{T^{*} U} B_{h} u(z, \zeta) \Psi_{z, \zeta}^{h} d z d \zeta=a(h) u
$$

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets]

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}\right) \rho\left(d_{g}\left(z_{t}, m\right)\right)
$$

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}\right) \rho\left(d_{g}\left(z_{t}, m\right)\right)
$$

with

$$
\gamma^{t}=\operatorname{det}\left(g_{j k}\left(x^{t}\right)\right)^{-1 / 4} \operatorname{det}\left(A^{t}+\mathrm{i} B^{t}\right)^{-1 / 2}
$$

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}\right) \rho\left(d_{g}\left(z_{t}, m\right)\right)
$$

with

$$
\gamma^{t}=\operatorname{det}\left(g_{j k}\left(x^{t}\right)\right)^{-1 / 4} \operatorname{det}\left(A^{t}+\mathrm{i} B^{t}\right)^{-1 / 2}
$$

and an amplitude of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} T_{j}\left(t, z^{t}, \zeta^{t}, \frac{W_{z^{t}}^{m}}{h^{\frac{1}{2}}}\right)
$$

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}\right) \rho\left(d_{g}\left(z_{t}, m\right)\right)
$$

with

$$
\gamma^{t}=\operatorname{det}\left(g_{j k}\left(x^{t}\right)\right)^{-1 / 4} \operatorname{det}\left(A^{t}+\mathrm{i} B^{t}\right)^{-1 / 2}
$$

and an amplitude of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} T_{j}\left(t, z^{t}, \zeta^{t}, \frac{W_{z^{t}}^{m}}{h^{\frac{1}{2}}}\right)
$$

for times $|t| \leq C_{0}|\ln h|$

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}\right) \rho\left(d_{g}\left(z_{t}, m\right)\right)
$$

with

$$
\gamma^{t}=\operatorname{det}\left(g_{j k}\left(x^{t}\right)\right)^{-1 / 4} \operatorname{det}\left(A^{t}+\mathrm{i} B^{t}\right)^{-1 / 2}
$$

and an amplitude of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} T_{j}\left(t, z^{t}, \zeta^{t}, \frac{W_{z^{t}}^{m}}{h^{\frac{1}{2}}}\right)
$$

for times $|t| \leq C_{0}|\ln h|$ with $T_{j}\left(t, z^{t}, \zeta^{t},.\right)$ polynomial (i.e. sum of tensors) of degree at most $3 j$,

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}\right) \rho\left(d_{g}\left(z_{t}, m\right)\right)
$$

with

$$
\gamma^{t}=\operatorname{det}\left(g_{j k}\left(x^{t}\right)\right)^{-1 / 4} \operatorname{det}\left(A^{t}+\mathrm{i} B^{t}\right)^{-1 / 2}
$$

and an amplitude of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} T_{j}\left(t, z^{t}, \zeta^{t}, \frac{W_{z^{t}}^{m}}{h^{\frac{1}{2}}}\right)
$$

for times $|t| \leq C_{0}|\ln h|$ with $T_{j}\left(t, z^{t}, \zeta^{t},.\right)$ polynomial (i.e. sum of tensors) of degree at most $3 j$, depending on the classical trajectory and the Taylor expansions of V and W^{m} at z^{t}.

Wave packets on Riemannian manifolds

Theorem [Propagation of gaussian wave packets] In the limit $h \rightarrow 0$, and under general conditions on V (e.g. all covariant derivatives bounded),

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} \psi_{z, \zeta}^{h}(m)
$$

is well approximated by

$$
(\pi h)^{-\frac{n}{4}} \gamma^{t} \mathcal{A}_{t}^{h}(x) \exp \frac{\mathrm{i}}{h}\left(S^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}\right) \rho\left(d_{g}\left(z_{t}, m\right)\right)
$$

with

$$
\gamma^{t}=\operatorname{det}\left(g_{j k}\left(x^{t}\right)\right)^{-1 / 4} \operatorname{det}\left(A^{t}+\mathrm{i} B^{t}\right)^{-1 / 2}
$$

and an amplitude of the form

$$
\mathcal{A}_{t}^{h}(x) \sim 1+\sum_{j \geq 1} h^{\frac{j}{2}} T_{j}\left(t, z^{t}, \zeta^{t}, \frac{W_{z^{t}}^{m}}{h^{\frac{1}{2}}}\right)
$$

for times $|t| \leq C_{0}|\ln h|$ with $T_{j}\left(t, z^{t}, \zeta^{t},.\right)$ polynomial (i.e. sum of tensors) of degree at most $3 j$, depending on the classical trajectory and the Taylor expansions of V and W^{m} at z^{t}.

Wave packets on Riemannian manifolds

Remark on the proof: The transport equations

Wave packets on Riemannian manifolds

Remark on the proof: The transport equations are of the form

$$
\left(\nabla_{\dot{z}^{t}} T\right)(\underbrace{., \ldots, .}_{k \text { factors }})+\underbrace{T\left[\Gamma^{t}, \ldots\right]+\cdots+T\left[\ldots, \Gamma^{t} .\right]}_{k \text { terms }}=F[., \ldots, .]
$$

Wave packets on Riemannian manifolds

Remark on the proof: The transport equations are of the form

$$
\left(\nabla_{\dot{z}^{t}} T\right)(\underbrace{., \ldots, .}_{k \text { factors }})+\underbrace{T\left[\Gamma^{t}, \ldots\right]+\cdots+T\left[\ldots, \Gamma^{t} .\right]}_{k \text { terms }}=F[., \ldots, .]
$$

which turns out to be equivalent to

$$
\frac{d}{d t}\left(T\left[E_{t} \cdot, \ldots, E_{t} \cdot\right]\right)=F\left[E_{t} \cdot, \ldots, E_{t^{*}}\right]
$$

with $E_{t}:=d \pi\left(\mathcal{L}_{A}+\mathrm{i} \mathcal{L}_{B}\right): \mathbb{C}^{n} \rightarrow T_{z^{t}} M \otimes \mathbb{C}(d \pi=$ projection from the horizontal space at $\left(z^{t}, \dot{z}^{t}\right)$ to the tangent space at $\left.z^{t}\right)$
\Longrightarrow Control on the exponential growth in time of $T_{j}\left(t, z^{t}, \zeta^{t},.\right)$.

Wave packets on Riemannian manifolds

Theorem [Propagator approximation]

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U,

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U, with principal symbol χ,

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U, with principal symbol χ, then (the kernel of) $e^{-\mathrm{i} \frac{t}{h} H(h)} A_{h}$

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U, with principal symbol χ, then (the kernel of) $e^{-\mathrm{i} \frac{t}{h} H(h)} A_{h}$ is well approximated by

$$
K_{t}^{h}\left(m, m^{\prime}\right)=h^{-\frac{3 n}{2}} \iint_{T^{*} U} b_{h}\left(t, z, \zeta, m, m^{\prime}\right) \exp \frac{\mathrm{i}}{h} F\left(t, z, \zeta, m, m^{\prime}\right) d z d \zeta
$$

for times $|t| \leq C_{0}|\log h|$.

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U, with principal symbol χ, then (the kernel of) $e^{-\mathrm{i} \frac{t}{h} H(h)} A_{h}$ is well approximated by

$$
K_{t}^{h}\left(m, m^{\prime}\right)=h^{-\frac{3 n}{2}} \iint_{T^{*} U} b_{h}\left(t, z, \zeta, m, m^{\prime}\right) \exp \frac{\mathrm{i}}{h} F\left(t, z, \zeta, m, m^{\prime}\right) d z d \zeta
$$

for times $|t| \leq C_{0}|\log h|$. The phase reads

$$
F=S_{(z, \zeta)}^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma_{(z, \zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}-\zeta \cdot W_{z}^{m^{\prime}}+\frac{1}{2}\left\langle\widetilde{\Gamma_{(z, \zeta)}^{0}} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}
$$

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U, with principal symbol χ, then (the kernel of) $e^{-\mathrm{i} \frac{t}{h} H(h)} A_{h}$ is well approximated by

$$
K_{t}^{h}\left(m, m^{\prime}\right)=h^{-\frac{3 n}{2}} \iint_{T^{*} U} b_{h}\left(t, z, \zeta, m, m^{\prime}\right) \exp \frac{\mathrm{i}}{h} F\left(t, z, \zeta, m, m^{\prime}\right) d z d \zeta
$$

for times $|t| \leq C_{0}|\log h|$. The phase reads

$$
F=S_{(z, \zeta)}^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma_{(z, \zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}-\zeta \cdot W_{z}^{m^{\prime}}+\frac{1}{2}\left\langle\widetilde{\Gamma_{(z, \zeta)}^{0}} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}
$$

where

$$
\left\langle\widetilde{\Gamma_{(z, \zeta)}^{0}} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}=-\operatorname{Re}\left\langle\Gamma_{(z, \zeta)}^{0} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}+\mathrm{i} \operatorname{Im}\left\langle\Gamma_{(z, \zeta)}^{0} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}
$$

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U, with principal symbol χ, then (the kernel of) $e^{-\mathrm{i} \frac{t}{h} H(h)} A_{h}$ is well approximated by

$$
K_{t}^{h}\left(m, m^{\prime}\right)=h^{-\frac{3 n}{2}} \iint_{T^{*} U} b_{h}\left(t, z, \zeta, m, m^{\prime}\right) \exp \frac{\mathrm{i}}{h} F\left(t, z, \zeta, m, m^{\prime}\right) d z d \zeta
$$

for times $|t| \leq C_{0}|\log h|$. The phase reads

$$
F=S_{(z, \zeta)}^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma_{(z, \zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}-\zeta \cdot W_{z}^{m^{\prime}}+\frac{1}{2}\left\langle\widetilde{\Gamma_{(z, \zeta)}^{0}} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}
$$

where

$$
\left\langle\widetilde{\Gamma_{(z, \zeta)}^{0}} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}=-\operatorname{Re}\left\langle\Gamma_{(z, \zeta)}^{0} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}+i \operatorname{Im}\left\langle\Gamma_{(z, \zeta)}^{0} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}
$$

The amplitude $b_{h}\left(t, z, \zeta, m, m^{\prime}\right)$ reads $b_{0}\left(t, z, \zeta, m, m^{\prime}\right)+O_{t}\left(h^{1 / 2}\right)$,

$$
\left.b_{0}=\operatorname{det}\left(\left(g_{j k}\left(x^{t}\right)\right)^{1 / 2}\left(A^{t}+\mathrm{i} B^{t}\right)\right)^{-\frac{1}{2}} \operatorname{det}\left(g_{j k}(y)\right)\right)^{-\frac{1}{4}} \chi(z, \zeta) \rho\left(d_{g}\left(z, m^{\prime}\right)\right) \rho\left(d_{g}\left(z^{t}, m\right)\right)
$$

Wave packets on Riemannian manifolds

Theorem [Propagator approximation] If A_{h} is a pseudodifferential operator supported in U, with principal symbol χ, then (the kernel of) $e^{-\mathrm{i} \frac{t}{h} H(h)} A_{h}$ is well approximated by

$$
K_{t}^{h}\left(m, m^{\prime}\right)=h^{-\frac{3 n}{2}} \iint_{T^{*} U} b_{h}\left(t, z, \zeta, m, m^{\prime}\right) \exp \frac{\mathrm{i}}{h} F\left(t, z, \zeta, m, m^{\prime}\right) d z d \zeta
$$

for times $|t| \leq C_{0}|\log h|$. The phase reads

$$
F=S_{(z, \zeta)}^{t}+\zeta^{t} \cdot W_{z^{t}}^{m}+\frac{1}{2}\left\langle\Gamma_{(z, \zeta)}^{t} W_{z^{t}}^{m}, W_{z^{t}}^{m}\right\rangle_{z^{t}}-\zeta \cdot W_{z}^{m^{\prime}}+\frac{1}{2}\left\langle\widetilde{\Gamma_{(z, \zeta)}^{0}} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}
$$

where

$$
\left\langle\widetilde{\Gamma_{(z, \zeta)}^{0}} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}=-\operatorname{Re}\left\langle\Gamma_{(z, \zeta)}^{0} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}+\mathrm{i} \operatorname{Im}\left\langle\Gamma_{(z, \zeta)}^{0} W_{z}^{m^{\prime}}, W_{z}^{m^{\prime}}\right\rangle_{z}
$$

The amplitude $b_{h}\left(t, z, \zeta, m, m^{\prime}\right)$ reads $b_{0}\left(t, z, \zeta, m, m^{\prime}\right)+O_{t}\left(h^{1 / 2}\right)$,

$$
\left.b_{0}=\operatorname{det}\left(\left(g_{j k}\left(x^{t}\right)\right)^{1 / 2}\left(A^{t}+\mathrm{i} B^{t}\right)\right)^{-\frac{1}{2}} \operatorname{det}\left(g_{j k}(y)\right)\right)^{-\frac{1}{4}} \chi(z, \zeta) \rho\left(d_{g}\left(z, m^{\prime}\right)\right) \rho\left(d_{g}\left(z^{t}, m\right)\right)
$$

Proof:

$$
e^{-\mathrm{i} \frac{t}{h} H(h)} A_{h} u=(2 \pi h)^{-n} \iint_{T^{*} U} e^{-\mathrm{i} \frac{t}{h} H(h)} \Psi_{z, \zeta}^{h}\left\langle A_{h}^{*} a_{h}^{-1} \Psi_{z, \zeta}^{h}, u\right\rangle_{L^{2}(M)} d z d \zeta
$$

Thank you for your attention

