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Let (M", G) be a riemannian manifold
» Laplace operator Ag,
» riemannian measure dG = detG(x)'/2dx.

We are interested in the unitary group
e'he - [2(M,dG) — [2(M, dG),
which solves the Schrédinger equation

iOtu + Agu =0, Ujt—o = U,

u(t) = ey,
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Question: How to guarantee that
u(t) € LY(M, dG)

for (some) g > 2 ?

Motivation: non linear equations.
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1st possible answer: prove Sobolev embeddings

IVl amaey S (1= A6)72VI2amde) = |IVIIHe

A
o> 5 q .

Rem: we know they hold on many reasonable manifolds.

with

For the original problem:

u(D)lLam,06) S Nu(t)|[He = [|Uol|Ho-

» Advantage: [t — u(t)] € C(R, LY(M, dG)),
» Drawback: requires ug to be (too much) smooth.
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Important fact Strichartz estimates are twice better than
Sobolev embeddings:

» Sobolev

» Strichartz

Interest solve non linear Schrédinger equations at "low"
regularity.



Strichartz estimates

Further remarks:



Strichartz estimates

Further remarks:

» Strichartz estimates show only that u(t) € L9 for a.e. t...



Strichartz estimates

Further remarks:

» Strichartz estimates show only that u(t) € L9 for a.e. t...
» ... but this is sufficient for non linear applications.



Strichartz estimates

Further remarks:

» Strichartz estimates show only that u(t) € L9 for a.e. t...
» ... but this is sufficient for non linear applications.
» s =1/pis an upper bound on the possible losses.



Strichartz estimates

Further remarks:

» Strichartz estimates show only that u(t) € L9 for a.e. t...
» ... but this is sufficient for non linear applications.
» s =1/pis an upper bound on the possible losses.

» There are Strichartz estimates for other dispersive
equations (e.g. wave equations).
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The general question we want to address is :

When can one prove Strichartz estimates without losses ?
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Strichartz estimates are a high frequency problem

Observation: for vy € C3°(R), set
Uy, (1) = €"e4(Ag).
Then
|1 Uy (1) o | o9 < sup 14(Ag)e"™ e uo|la < ||l 2,
by Sobolev embeddings.

Interpretation: Losses in the Strichartz estimates may only
come from high frequency effects.



Strichartz estimates are a high frequency problem

By semiclassical correspondance,



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.
» More precisely:



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.

» More precisely: for the Schrédinger equation, solutions
localized at frequency 1/h travel at speed 1/h:



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.

» More precisely: for the Schrédinger equation, solutions
localized at frequency 1/h travel at speed 1/h: for initial
data spectrally localized at frequency ~ 1/h — oo, ie

ul = p(HPAg)uy,  forsome ¢ € C°(R\ 0),



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.

» More precisely: for the Schrédinger equation, solutions
localized at frequency 1/h travel at speed 1/h: for initial
data spectrally localized at frequency ~ 1/h — oo, ie

ul = p(HPAg)uy,  forsome ¢ € C°(R\ 0),

we have

(Dgzr—eodesic (WFS*CI(U{J')>



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.

» More precisely: for the Schrédinger equation, solutions
localized at frequency 1/h travel at speed 1/h: for initial
data spectrally localized at frequency ~ 1/h — oo, ie

ul = p(HPAg)uy,  forsome ¢ € C°(R\ 0),

we have

(Dgzr-eodesic (WFS*CI(UQD - Wstd <eihTAGu6')



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.

» More precisely: for the Schrédinger equation, solutions
localized at frequency 1/h travel at speed 1/h: for initial
data spectrally localized at frequency ~ 1/h — oo, ie

ul = p(HPAg)uy,  forsome ¢ € C°(R\ 0),
we have

(Dgzr-eodesic (WFS*CI(UQD - WFS*CI <eihTAGu6')

= Schrddinger group for |t| < 1 < geodesic flow for
|IT| <1/h.



Strichartz estimates are a high frequency problem

By semiclassical correspondance,
» "High frequency waves travel along the geodesic flow".
= The losses should be related to the geodesic flow.

» More precisely: for the Schrédinger equation, solutions
localized at frequency 1/h travel at speed 1/h: for initial
data spectrally localized at frequency ~ 1/h — oo, ie

ul = p(HPAg)uy,  forsome ¢ € C°(R\ 0),
we have
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= Schrddinger group for |t| < 1 < geodesic flow for
|IT| <1/h.
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Influence of the geometry

Compact manifolds (trapping case)

Theorem [Burg-Gérard-Tzvetkov] For a general M,
ullprs S 11uoll /e

Sharp for p = 2 and M = S3.
Theorem [Bourgain] On M = T?,

ullpara < Celltol[ e
for all e > 0.

Rem: many closed geodesics on S” / a few of them on T".
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Non compact manifolds (1/2)

Theorem If M is asymptotically euclidean and non trapping

[ulleys < lltolli2. (noloss )

» flat case: Strichartz, Ginibre-Velo, Keel-Tao,

» flat outside a compact set: Staffilani-Tataru (+ Ivanovici for
convex obstacles)

» Short range: Robbiano-Zuily
» Long range: Hassell-Tao-Wunsch, B-Tzvetkov
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Influence of the geometry

Non compact manifolds (2/2)

Theorem For certain M with non positive constant Ricci
curvature
[ullipis < lleoll e

» Hyperbolic space: Banica (+ Carles-Staffilani),
Anker-Pierfelice,
» Damek-Ricci spaces: Pierfelice,
as well as for some spherically symmetric manifolds and radial
data (Banica-Duyckaerts). Furthermore, these estimates hold
in weighted L9 spaces.
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» The results for negatively curved manifolds hold under rigid
conditions.

= Can we obtain similar results in more general cases ? (e.g.
avoid spherical symmetry, Lie group structure, constant
curvature.)

» Understand which regions of the phase space may cause
losses.

» In particular, how necessary is the non trapping condition
(cf Tzvetkov-Takaoka, Burg-Guillarmou-Hassell) ?
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Asymptotically hyperbolic manifolds

(M, G) is asymptotically hyperbolic if, outside some compact
subset K € M,

(M\ K, G) = ((Ro, +0) x S, dr? + €¥'g(r))

where
» Sis a compact manifold,
» for each r, g(r) is a riemannian metric on S,
» for some fixed metric g on S and some v > 0,

a7 (g(r) — g) = O({r) ™).
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Some remarks:

» our definition is more general than conformally compact
manifolds,

» it contains H" and some of its infinite volume quotients,

» physically, asymptotically hyperbolic manifolds appear as
spacelike hypersurfaces of black hole spacetimes (e.g. de
Sitter-Reissner-Nordstdm black holes)

» long run motivation: (non linear) wave equations on spaces
times with asymptotically hyperbolic ends.
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Asymptotically hyperbolic manifolds

Theorem [B.] If (M, G) is asymptotically hyperbolic, there
exists x € C5°(M) (x = 1 on a large enough compact subset),
such that, for all admissible pair (p, q),

(1 = x)ullpra < [lol]2-
t=x

Comments:
» The cutoff localizes the solution near spatial infinity,

» The Strichartz estimates hold without loss and no condition
on the geodesic flow.

» If the geodesic flow is non trapping, one can show that one
may take y = 0.
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Proof: spectral localization
Consider a dyadic partition of unity

o0

I'=4o(Ag) + Y (2 Ag),

k=0

for some suitable
Yo € C°(R), ¢ € Cg°(R\0).
Lemma [B. 2010] For any fixed x € C3°(M) and all g € [2, ),
1/2
(1 =x)Vllea S ( > la —X)lﬁ(hZAG)V’\fq) + [Vl 2.
h2=2—k
Rem These are Littlewood-Paley type estimates. The proof

uses Calderon-Zygmund theory with some modification since
the measure dG is non doubling.
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Proof: spectral localization

Consequence It suffices to show that, for some vy,
1(1 = )% (H* Ag)e™ 5 uo|| 1,0 < Cl|uol |2,
for all up and all h € (0,1].

= Strategy: to find a suitable decomposition
(1= X)¢(h*Ag) = ZA

such that, for each j,
14;(h)e" e up| py9 < Clluol| 2.

for all up and all h € (0, 1].



Proof: reduction to a semiclassical problem

The decomposition

N

(1= x)¢(PPAg) =D Aj(h),

J=1

will be obtained by quantization of a suitable partition of unity
on the phase space T*M.



Proof: reduction to a semiclassical problem
The decomposition

N
(1= x)¢(PPAg) =D Aj(h),

J=1

will be obtained by quantization of a suitable partition of unity
on the phase space T*M.
To deal with pseudo-differential operators, it is convenient to
introduce N

dG = e~ ("-Vrgg,



Proof: reduction to a semiclassical problem

The decomposition

N

(1= x)¢(PPAg) =D Aj(h),

J=1

will be obtained by quantization of a suitable partition of unity
on the phase space T*M.
To deal with pseudo-differential operators, it is convenient to
introduce N

dG = e~ ("-Vrgg,

since in local coordinates it is essentially

ardf, - -- d@n_1,

ie agrees with the Lebesgue measure (up to a harmless factor)
and carries no exponential weight.
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We also set
P— _e(nf1)r/2AGef(nf1)r/2

= selfadjoint on L2(M, c?é) and unitarily equivalent to —Ag.
The problem is then equivalent to find

N
(1= x)v(h*P)=>_Bj(h
j=1

such that
|le= (=D By(h)e ™™ Tig|| 1p(fo.1, La( MGy < Clldoll 2 p1. 56
— if we can achieve this, then take

Ai(h) := e~ ("=Dr/2B;(h)e(n=1)r/2,
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1-L2 estimates:

||1B;(h) <C,

‘|L2(M,c7é)_>L2(M,cTG)
forall h € (0,1].

2- L' — L™ estimates (dispersion estimates):

C

—(n—1)r/2 ihTP *g—(n—1)r/2
e (n=1)r/ Bi(h)e""PB;(h)*e (n=1)r/ HU(M’dG)_)Loo < W7

forall he (0,1]and 0 < |T| < h~'.
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Proof: a useful trick

Lemma Let C(h) : L2(M, dG) — L2(M, dG) be a family of
bounded operators. Then, the following properties are
equivalent

C

IC(NE™PC(h) |1 poe € sy hE(01], O<[T|<h T,
| Th|"/
. . C B
HC(h)elThPC(h) HU—}LOOSi(Th)n/z’ h€(0,1], O<TSh 1,
) . C B
Hc(h)elThPC(h) 11 —pee < Wv he(0,1], —h '<T<o.

= It suffices to prove dispersion estimates in one sense of the
time.
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Given a symbol a € S°(R" x R™), we recall that
Opn(a)u(x) = (2m) " [ & <a(, he)a(e)ok.
In other words, the Schwartz kernel of Opy(a) is
(2rh)=" / er(€q(x, £)de.

Recall also the Calderon-Vaillancourt Theorem:

10pn(a)ll2—2 < €, he(0,1].
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Proof: pseudo-differential calculus
Assume (without loss of generality) that x = x(r) and satisfies
x(r)=1 for r <A.

Proposition Up to "nice" remainder terms, (1 — x)i(h?P) takes
the following form in charts

Opn (a0+ha1 +---+h"”aM>,

with
ak(r7 9, P, 77) = bk(ra 97 P e_rn)v
for some by (r,0,&) compactly supported in £&. More precisely,

supp(ax) C {r > R} n{p(r,0,p,n) € supp()}.
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Proof: The partition of unity

For J € (0, +00), we decompose the region of the phase space
{r>Ryn{p=p(r.0,p,n) € J} =TT (RJ)UT(R,J),

with 1
+ _ ot
F(R,J)—{r>Fx’,peJ,ip1/2> 2}.

They are the outgoing and incoming areas.
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Proof: The partition of unity
For e > 0, set

rL(R,J,e) = {r>Fx’ pedJ, p1/2 > (1 —e)},

which we call strongly outgoing areas and

1
(R,J,e) = {r>R,p€J, (1—6)2'062>—2}

1nter

which we call intermediate outgoing area (+ similar definitions
in the incoming case). Given an additional 6 > 0, we can cover
mter(

R,J,e) = {r>R pedJ, p1/2€K}

with

UMK =[-1/2,1—¢, K= interval of length < 4.
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N
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such that
1.
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Proof: The partition of unity
Forany R> 1, ¢ > 0and § > 0 we choose a partition of unity

N
Y xj+x; =1 near{r>R}n{peJ=supp(s)}

such that
1.
supp (x7) C M&(R. J,e),

2. forj=1,...,N—-1,

supp(xf>c{r>l? pedJ, p1/2 K-},

and such that each x;" has the form
X (r,0,0,n) = ¢ (r,0,p,€7 "),  1<j<N,

with cji(r, 0, &) compactly supported with respect to &.
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Proof: The partition of unity

The operators B;j(h) will be pseudo-differential operators
obtained after decomposition of

(1 = x)u(H°P) =~ Opn(a(h)).

according to our partition of unity, ie

a(h) = xfalh)+> x;a(h),
i j
(— there are actually 2N operators B;(h)).
For any choice of € and ¢, the bound
I1Bi(h)[|z—p < C,  he(0,1],

follows easily from the Calderon-Vaillancourt Theorem.
The tricky part is the proof of dispersion estimates.
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Proof: An Isozaki-Kitada parametrix
Proposition For R > 1,0 < e < 1, and any x such that

X+(r.0,p,n) = c(r.0,p,e""n),
with ¢(r, 0, &) compactly supported with respect to &, and
supp(x+) C M (R, J;¢)
we have a parametrix valid for times 0 < T < h~' of the form
&P Opn(x+) ~ Ha(ar(h)e™ ™ H. (b (h)"

where H (a) denotes an FIO with kernel of the form

(2rh)~" / / eh(S+(rlpm=r'o=0"m a(r g p e "n)dpdn
with phase

e~2"q(6,n)

1/2 p—2r|, |2
4, + O(e'’=e™“"n|?).

S+(r797p’77):rp+0'77+
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Proof: An Isozaki-Kitada parametrix

The dispersion estimates for the operators B;(h) localized in
strongly outgoing (or incoming areas) reduces to estimate the
L*> norm of the kernel. Up to remainders, it reduces to
oscillatory integrals of the form

(n—1) r+r o / —I’ dpd77
//eh a(r,0,p,e "n)b(r', 0, p,e )(2 Ay’

with
q)t = S+(r)95 Pﬂ?) - tpz - SJr(r,a ‘9/71)’77)

~ (r_ r/)p+ (0 o 9/) n— T (:02 + e_2r/q(9/777) _qu(9 77))

4pT

= dispersion estimates via stationary phase (using that
r—r ~2Tpand|e” (§ —¢')| < T after non stationary phase).
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Proof: Dispersion estimates in intermediate areas

Proposition For fixed e > 0 and Ty > 0 (~ injectivity radius),
we can choose § > 0 small enough such that

¢geodesm({r>l%’ peEJ, p1/2€K}> {r>F? pEJ, p1/2 K}

is empty for times T > Ty (similar incoming case for T < —Tj).

Corollary If B;(h) is localized in

r>R, ped, K-},
{ ,o1/2
then

1B;(h)e~"T"" By(h)* O(h®), To<T<h .
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Proof: Dispersion estimates in intermediate areas

By Sobolev embeddings, we obtain that
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Proof: Dispersion estimates in intermediate areas

By Sobolev embeddings, we obtain that
|‘9_(n_1)r/ZBj(h)e_iThPBj(h)*e_(n_1)r/2| |L1HL°0 -0 (| Th|—n/2>
fortimes To < T < h™'.

The dispersion estimate for times | T| < T, follows again from
the non Stationary Phase Theorem in a FIO approximation of

ef(nf1)r/ZBj(h)efiThPBj(h)*ef(nf1)r/2_



