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Strichartz estimates

Let (Mn,G) be a riemannian manifold
I Laplace operator ∆G,
I riemannian measure dG = detG(x)1/2dx .

We are interested in the unitary group

eit∆G : L2(M,dG)→ L2(M,dG),

which solves the Schrödinger equation

i∂tu + ∆Gu = 0, u|t=0 = u0,

ie
u(t) = eit∆Gu0.
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Strichartz estimates

1st possible answer: prove Sobolev embeddings

||v ||Lq(M,dG) . ||(1−∆G)σ/2v ||L2(M,dG) =: ||v ||Hσ ,

with

σ > n
(

1
2
− 1

q

)
.

Rem: we know they hold on many reasonable manifolds.

For the original problem:

||u(t)||Lq(M,dG) . ||u(t)||Hσ = ||u0||Hσ .

I Advantage: [t 7→ u(t)] ∈ C(R,Lq(M,dG)),
I Drawback: requires u0 to be (too much) smooth.
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2nd possible answer : prove Strichartz estimates

||u||Lp
t Lq

x
:=

(∫ 1

0
||u(t)||pLq(M,dG)dt

)1/p

. ||u0||Hs ,

with
2
p

+
n
q

=
n
2
, (p,q) 6= (2,∞), p ≥ 2,

and some s ≥ 0 (loss of derivatives).

Pairs (p,q) as above are called admissible pairs.

Some cases where Strichartz estimates hold:

1. M = Rn (flat): no loss s = 0,
due to Strichartz, Ginibre-Velo, Keel-Tao.

2. "General"M: loss 1/p,
due to Burq-Gérard-Tzvetkov.
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Further remarks:

I Strichartz estimates show only that u(t) ∈ Lq for a.e. t ...
I ... but this is sufficient for non linear applications.
I s = 1/p is an upper bound on the possible losses.
I There are Strichartz estimates for other dispersive

equations (e.g. wave equations).
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Strichartz estimates

The general question we want to address is :

When can one prove Strichartz estimates without losses ?



Strichartz estimates are a high frequency problem

Observation: for ψ0 ∈ C∞0 (R), set

Uψ0(t) = eit∆Gψ0(∆G).

Then

||Uψ0(·)u0||Lp
t Lq

x
≤ sup

t
||ψ(∆G)eit∆Gu0||Lq . ||u0||L2 ,

by Sobolev embeddings.

Interpretation: Losses in the Strichartz estimates may only
come from high frequency effects.
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Strichartz estimates are a high frequency problem

By semiclassical correspondance,
I "High frequency waves travel along the geodesic flow".
⇒ The losses should be related to the geodesic flow.
I More precisely: for the Schrödinger equation, solutions

localized at frequency 1/h travel at speed 1/h: for initial
data spectrally localized at frequency ∼ 1/h→∞, ie

uh
0 = ψ(h2∆G)u0, for some ψ ∈ C∞0 (R \ 0),

we have

ΦT
geodesic

(
WFs−cl(uh

0)
)

= WFs−cl

(
eihT ∆Guh

0

)

⇒ Schrödinger group for |t | ≤ 1↔ geodesic flow for
|T | ≤ 1/h.
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Influence of the geometry

Compact manifolds (trapping case)

Theorem [Burq-Gérard-Tzvetkov] For a generalM,

||u||Lp
t Lq

x
. ||u0||H1/p .

Sharp for p = 2 andM = S3.

Theorem [Bourgain] OnM = T2,

||u||L4
t L4

x
≤ Cε||u0||Hε ,

for all ε > 0.

Rem: many closed geodesics on Sn / a few of them on Tn.
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Influence of the geometry

Non compact manifolds (1/2)

Theorem IfM is asymptotically euclidean and non trapping

||u||Lp
t Lq

x
. ||u0||L2 . (no loss !)

I flat case: Strichartz, Ginibre-Velo, Keel-Tao,
I flat outside a compact set: Staffilani-Tataru (+ Ivanovici for

convex obstacles)
I Short range: Robbiano-Zuily
I Long range: Hassell-Tao-Wunsch, B-Tzvetkov
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Influence of the geometry

Non compact manifolds (2/2)

Theorem For certainM with non positive constant Ricci
curvature

||u||Lp
t Lq

x
. ||u0||L2 .

I Hyperbolic space: Banica (+ Carles-Staffilani),
Anker-Pierfelice,

I Damek-Ricci spaces: Pierfelice,
as well as for some spherically symmetric manifolds and radial
data (Banica-Duyckaerts). Furthermore, these estimates hold
in weighted Lq spaces.
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I The results for negatively curved manifolds hold under rigid
conditions.

⇒ Can we obtain similar results in more general cases ? (e.g.
avoid spherical symmetry, Lie group structure, constant
curvature.)

I Understand which regions of the phase space may cause
losses.

I In particular, how necessary is the non trapping condition
(cf Tzvetkov-Takaoka, Burq-Guillarmou-Hassell) ?
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Asymptotically hyperbolic manifolds

(M,G) is asymptotically hyperbolic if, outside some compact
subset K bM,

(M\K,G) '
(

(R0,+∞)× S,dr2 + e2r g(r)
)
,

where
I S is a compact manifold,
I for each r , g(r) is a riemannian metric on S,
I for some fixed metric g on S and some ν > 0,

∂k
r (g(r)− g) = O(〈r〉−ν−k ).
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Asymptotically hyperbolic manifolds

Some remarks:
I our definition is more general than conformally compact

manifolds,
I it contains Hn and some of its infinite volume quotients,
I physically, asymptotically hyperbolic manifolds appear as

spacelike hypersurfaces of black hole spacetimes (e.g. de
Sitter-Reissner-Nordstöm black holes)

I long run motivation: (non linear) wave equations on spaces
times with asymptotically hyperbolic ends.
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Asymptotically hyperbolic manifolds

Theorem [B.] If (M,G) is asymptotically hyperbolic, there
exists χ ∈ C∞0 (M) (χ ≡ 1 on a large enough compact subset),
such that, for all admissible pair (p,q),

||(1− χ)u||Lp
t Lq

x
. ||u0||L2 .

Comments:
I The cutoff localizes the solution near spatial infinity,
I The Strichartz estimates hold without loss and no condition

on the geodesic flow.
I If the geodesic flow is non trapping, one can show that one

may take χ ≡ 0.
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Asymptotically hyperbolic manifolds
Some formulas (near infinity):

I Laplacian

∆G = ∂2
r + e−2r ∆g(r) + c(r , s)∂r + (n − 1)∂r ,

where
c(r , s) =

∂r detg(r , s)

2detg(r , s)
.

using local coordinates θ1, . . . , θn−1, the principal symbol is

p(r , θ, ρ, η) = ρ2 + e−2r q(r , θ, η)

= ρ2 + q
(
r , θ,e−rη

)
,

with q(r , ., .) the principal symbol of −∆g(r).
I Measure

dG = e(n−1)r drdg(r),

with dg(r) the riemannian measure on S relatively to g(r).
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Proof: spectral localization
Consider a dyadic partition of unity

I = ψ0(∆G) +
∞∑

k=0

ψ(2−k ∆G),

for some suitable

ψ0 ∈ C∞0 (R), ψ ∈ C∞0 (R \ 0).

Lemma [B. 2010] For any fixed χ ∈ C∞0 (M) and all q ∈ [2,∞),

||(1− χ)v ||Lq .

( ∑
h2=2−k

||(1− χ)ψ(h2∆G)v ||2Lq

)1/2

+ ||v ||L2 .

Rem These are Littlewood-Paley type estimates. The proof
uses Calderon-Zygmund theory with some modification since
the measure dG is non doubling.
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Proof: spectral localization

Consequence It suffices to show that, for some χ,

||(1− χ)ψ(h2∆G)eit∆Gu0||Lp
t Lq

x
≤ C||u0||L2 ,

for all u0 and all h ∈ (0,1].

⇒ Strategy: to find a suitable decomposition

(1− χ)ψ(h2∆G) =
N∑

j=1

Aj(h),

such that, for each j ,

||Aj(h)eit∆Gu0||Lp
t Lq

x
≤ C||u0||L2 ,

for all u0 and all h ∈ (0,1].
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Proof: reduction to a semiclassical problem

The decomposition

(1− χ)ψ(h2∆G) =
N∑

j=1

Aj(h),

will be obtained by quantization of a suitable partition of unity
on the phase space T ∗M.
To deal with pseudo-differential operators, it is convenient to
introduce

d̃G = e−(n−1)r dG,

since in local coordinates it is essentially

drdθ1 · · · dθn−1,

ie agrees with the Lebesgue measure (up to a harmless factor)
and carries no exponential weight.
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Proof: reduction to a semiclassical problem
We also set

P = −e(n−1)r/2∆Ge−(n−1)r/2

⇒ selfadjoint on L2(M, d̃G) and unitarily equivalent to −∆G.
The problem is then equivalent to find

(1− χ)ψ(h2P) =
N∑

j=1

Bj(h),

such that

||e−(n−1)r/2Bj(h)e−itP ũ0||Lp([0,1],Lq(M,dG)) ≤ C||ũ0||L2(M,d̃G)
.

→ if we can achieve this, then take

Aj(h) := e−(n−1)r/2Bj(h)e(n−1)r/2.
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time.
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Proof: pseudo-differential calculus

Given a symbol a ∈ S0(Rn × Rn), we recall that

Oph(a)u(x) = (2π)−n
∫

eix ·ξa(x ,hξ)û(ξ)dξ.

In other words, the Schwartz kernel of Oph(a) is

(2πh)−n
∫

e
i
h (x−y)·ξa(x , ξ)dξ.

Recall also the Calderon-Vaillancourt Theorem:

||Oph(a)||L2→L2 ≤ C, h ∈ (0,1].
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Proof: pseudo-differential calculus

Assume (without loss of generality) that χ = χ(r) and satisfies

χ(r) = 1 for r ≤ R.

Proposition Up to "nice" remainder terms, (1−χ)ψ(h2P) takes
the following form in charts

Oph

(
a0 + ha1 + · · ·+ hMaM

)
,

with
ak (r , θ, ρ, η) = bk (r , θ, ρ,e−rη),

for some bk (r , θ, ξ) compactly supported in ξ. More precisely,

supp(ak ) ⊂ {r ≥ R} ∩ {p(r , θ, ρ, η) ∈ supp(ψ)}.
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Proof: The partition of unity

For J b (0,+∞), we decompose the region of the phase space

{r > R} ∩ {p = p(r , θ, ρ, η) ∈ J} = Γ+(R, J) ∪ Γ−(R, J),

with

Γ±(R, J) =

{
r > R, p ∈ J, ± ρ

p1/2 > −
1
2

}
.

They are the outgoing and incoming areas.
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Proof: The partition of unity
For ε > 0, set

Γ+
st(R, J, ε) =

{
r > R, p ∈ J,

ρ

p1/2 > (1− ε)
}
,

which we call strongly outgoing areas and

Γ+
inter(R, J, ε) =

{
r > R, p ∈ J, (1− ε) ≥ ρ

p1/2 > −
1
2

}
which we call intermediate outgoing area (+ similar definitions
in the incoming case). Given an additional δ > 0, we can cover

Γ+
inter(R, J, ε) = ∪N−1

j=1

{
r > R, p ∈ J,

ρ

p1/2 ∈ Kj

}
with

∪N−1
j=1 Kj = [−1/2,1− ε], Kj = interval of length ≤ δ.
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Proof: The partition of unity
For any R � 1, ε > 0 and δ > 0 we choose a partition of unity

N∑
j=1

χ+
j + χ−j ≡ 1 near{r > R} ∩ {p ∈ J = supp(ψ)}

such that
1.

supp
(
χ±N
)
⊂ Γ±st(R, J, ε),

2. for j = 1, . . . ,N − 1,

supp
(
χ±j

)
⊂
{

r > R, p ∈ J,
ρ

p1/2 ∈ Kj

}
,

and such that each χ±j has the form

χ±j (r , θ, ρ, η) = c±j (r , θ, ρ,e−rη), 1 ≤ j ≤ N,

with c±j (r , θ, ξ) compactly supported with respect to ξ.
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Proof: The partition of unity

The operators Bj(h) will be pseudo-differential operators
obtained after decomposition of

(1− χ)ψ(h2P) ≈ Oph(a(h)),

according to our partition of unity, ie

a(h) =
∑

j

χ+
j a(h) +

∑
j

χ−j a(h),

(→ there are actually 2N operators Bj(h)).
For any choice of ε and δ, the bound

||Bj(h)||L2→L2 ≤ C, h ∈ (0,1],

follows easily from the Calderon-Vaillancourt Theorem.
The tricky part is the proof of dispersion estimates.
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Proof: An Isozaki-Kitada parametrix
Proposition For R � 1, 0 < ε� 1, and any χ+ such that

χ+(r , θ, ρ, η) = c(r , θ, ρ,e−rη),

with c(r , θ, ξ) compactly supported with respect to ξ, and

supp(χ+) ⊂ Γ+
st(R, J, ε)

we have a parametrix valid for times 0 ≤ T ≤ h−1 of the form

e−iThPOph(χ+) ≈ H+(a+(h))e−iThD2
rH+(b+(h))∗

where H+(a) denotes an FIO with kernel of the form

(2πh)−n
∫ ∫

e
i
h (S+(r ,θ,ρ,η)−r ′ρ−θ′·η)a(r , θ, ρ,e−rη)dρdη

with phase

S+(r , θ, ρ, η) = rρ+ θ · η +
e−2r q(θ, η)

4ρ
+O(ε1/2e−2r |η|2).
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Proof: An Isozaki-Kitada parametrix

The dispersion estimates for the operators Bj(h) localized in
strongly outgoing (or incoming areas) reduces to estimate the
L∞ norm of the kernel. Up to remainders, it reduces to
oscillatory integrals of the form

e−(n−1) r+r ′
2

∫ ∫
e

i
h Φt a(r , θ, ρ,e−rη)b(r ′, θ′, ρ,e−r ′η)

dρdη
(2πh)n ,

with

Φt = S+(r , θ, ρ, η)− tρ2 − S+(r ′, θ′, ρ, η)

≈ (r − r ′)ρ+ (θ − θ′) · η − T

(
ρ2 +

e−2r ′q(θ′, η)− e−2r q(θ, η)

4ρT

)

⇒ dispersion estimates via stationary phase (using that
r − r ′ ≈ 2Tρ and |er ′(θ − θ′)| . T after non stationary phase).
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Proof: Dispersion estimates in intermediate areas

Proposition For fixed ε > 0 and T0 > 0 (∼ injectivity radius),
we can choose δ > 0 small enough such that

ΦT
geodesic

({
r > R, p ∈ J,

ρ

p1/2 ∈ Kj

})
∩
{

r > R, p ∈ J,
ρ

p1/2 ∈ Kj

}
is empty for times T ≥ T0 (similar incoming case for T ≤ −T0).

Corollary If Bj(h) is localized in{
r > R, p ∈ J,

ρ

p1/2 ∈ Kj

}
,

then

||Bj(h)e−iThPBj(h)∗||L2(M,d̃G)→L2(M,d̃G)
= O(h∞), T0 ≤ T ≤ h−1.
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Proof: Dispersion estimates in intermediate areas

By Sobolev embeddings, we obtain that

||e−(n−1)r/2Bj(h)e−iThPBj(h)∗e−(n−1)r/2||L1→L∞ = O
(
|Th|−n/2

)
for times T0 ≤ T ≤ h−1.

The dispersion estimate for times |T | ≤ T0 follows again from
the non Stationary Phase Theorem in a FIO approximation of

e−(n−1)r/2Bj(h)e−iThPBj(h)∗e−(n−1)r/2.
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