Low frequency resolvent estimates on asymptotically flat manifolds

> Jean-Marc Bouclet Institut de Mathématiques de Toulouse

ANR METHCHAOS, 19 Juin 2013, Roscoff

(ロ) (同) (三) (三) (三) (三) (○) (○)

We consider an asymptotically conical manifold (\mathcal{M}^n, G) , ie

for $\mathcal{K} \Subset \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

 $\kappa:\mathcal{M}\setminus\mathcal{K} o(\pmb{R},\infty) imes\mathcal{S}$

such that

$$G = \kappa^* \left(A(r)dr^2 + 2rB(r)dr + r^2H(r) \right)$$

where A(r) is a function (on S), B(r) a 1-form and H(r)Riemannian metric, all depending smoothly on r, such that for some $\rho > 0$,

$$||\partial_r^j(A(r)-1)||_0+||\partial_r^jB(r)||_1+||\partial_r^j(H(r)-H_0)||_2 \lesssim r^{-j-
ho},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where H_0 is a fixed metric on S. This means $G \approx dr^2 + r^2 H_0$ close to infinity.

We consider an **asymptotically conical manifold** (\mathcal{M}^n, G) , ie for $\mathcal{K} \subseteq \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

 $\kappa:\mathcal{M}\setminus\mathcal{K} o(\pmb{R},\infty) imes\mathcal{S}$

such that

$$G = \kappa^* \left(A(r)dr^2 + 2rB(r)dr + r^2H(r) \right)$$

where A(r) is a function (on S), B(r) a 1-form and H(r)Riemannian metric, all depending smoothly on r, such that for some $\rho > 0$,

$$||\partial_r^j(A(r)-1)||_0+||\partial_r^jB(r)||_1+||\partial_r^j(H(r)-H_0)||_2 \lesssim r^{-j-
ho},$$

where H_0 is a fixed metric on S. This means $G \approx dr^2 + r^2 H_0$ close to infinity.

We consider an **asymptotically conical manifold** (\mathcal{M}^n, G) , ie for $\mathcal{K} \subseteq \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$\kappa:\mathcal{M}\setminus\mathcal{K} o(\pmb{R},\infty) imes\mathcal{S}$$

such that

$$G = \kappa^* \left(A(r)dr^2 + 2rB(r)dr + r^2H(r) \right)$$

where A(r) is a function (on S), B(r) a 1-form and H(r)Riemannian metric, all depending smoothly on r, such that for some $\rho > 0$,

$$||\partial_r^j(A(r)-1)||_0+||\partial_r^jB(r)||_1+||\partial_r^j(H(r)-H_0)||_2 \lesssim r^{-j-\rho},$$

where H_0 is a fixed metric on S. This means $G \approx dr^2 + r^2 H_0$ close to infinity.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We consider an **asymptotically conical manifold** (\mathcal{M}^n, G) , ie for $\mathcal{K} \subseteq \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$\kappa:\mathcal{M}\setminus\mathcal{K} o(\pmb{R},\infty) imes\mathcal{S}$$

such that

$$G = \kappa^* \left(A(r)dr^2 + 2rB(r)dr + r^2H(r) \right)$$

where A(r) is a function (on S), B(r) a 1-form and H(r)Riemannian metric, all depending smoothly on r, such that for some $\rho > 0$,

$$||\partial_r^j(A(r)-1)||_0+||\partial_r^jB(r)||_1+||\partial_r^j(H(r)-H_0)||_2 \lesssim r^{-j-
ho},$$

where H_0 is a fixed metric on S. This means $G \approx dr^2 + r^2 H_0$ close to infinity.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We consider an **asymptotically conical manifold** (\mathcal{M}^n, G) , ie for $\mathcal{K} \subseteq \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$\kappa:\mathcal{M}\setminus\mathcal{K} o(\pmb{R},\infty) imes\mathcal{S}$$

such that

$$G = \kappa^* \left(A(r)dr^2 + 2rB(r)dr + r^2H(r) \right)$$

where A(r) is a function (on S), B(r) a 1-form and H(r)Riemannian metric, all depending smoothly on r, such that for some $\rho > 0$,

$$||\partial_r^j (A(r) - 1)||_0 + ||\partial_r^j B(r)||_1 + ||\partial_r^j (H(r) - H_0)||_2 \lesssim r^{-j-\rho},$$

where H_0 is a fixed metric on S. This means $G \approx dr^2 + r^2 H_0$ close to infinity.

We consider an **asymptotically conical manifold** (\mathcal{M}^n, G) , ie for $\mathcal{K} \subseteq \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$\kappa:\mathcal{M}\setminus\mathcal{K} o(\pmb{R},\infty) imes\mathcal{S}$$

such that

$$G = \kappa^* \left(A(r)dr^2 + 2rB(r)dr + r^2H(r) \right)$$

where A(r) is a function (on S), B(r) a 1-form and H(r)Riemannian metric, all depending smoothly on r, such that for some $\rho > 0$,

$$||\partial_r^j (A(r) - 1)||_0 + ||\partial_r^j B(r)||_1 + ||\partial_r^j (H(r) - H_0)||_2 \lesssim r^{-j-\rho},$$

where H_0 is a fixed metric on S. This means $G \approx dr^2 + r^2 H_0$ close to infinity.

1. (\mathbb{R}^{n} , G_{0}), G_{0} = Euclidean metric 2. (\mathbb{R}^{n} , G), G long range perturbation of G_{0} , ie $\left|\partial_{x}^{\alpha}(G(x) - G_{0})\right| \lesssim (1 + |x|)^{-\rho - |\alpha|}$

(*M*, *G*) scattering manifold, ie if *M* can be smoothly compactified as a manifold *M* with boundary ∂*M* = *S*, with boundary defining function *x* (*S* = {*x* = 0}), and close to *x* = 0 (= infinity)

$$G=\frac{dx^2}{x^4}+\frac{h(x)}{x^2},$$

h(.) = family of metrics on S smooth w.r.t. x up to x = 0. Then take r = 1/x and H(r) = h(1/r).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. $(\mathbb{R}^n, G_0), G_0 =$ Euclidean metric
- 2. (\mathbb{R}^{n} , G), G long range perturbation of G_{0} , ie

$$\left|\partial_x^{lpha} \big({\it G}(x) - {\it G}_0 \big) \right| \lesssim (1 + |x|)^{-
ho - |lpha|}$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold $\overline{\mathcal{M}}$ with boundary $\partial \overline{\mathcal{M}} = S$, with boundary defining function x ($S = \{x = 0\}$), and close to x = 0 (= infinity)

$$G=\frac{dx^2}{x^4}+\frac{h(x)}{x^2},$$

h(.) = family of metrics on S smooth w.r.t. x up to x = 0. Then take r = 1/x and H(r) = h(1/r).

・ロト・西・・田・・田・・日・

- 1. $(\mathbb{R}^n, G_0), G_0 =$ Euclidean metric
- 2. (\mathbb{R}^{n} , G), G long range perturbation of G_{0} , ie

$$\left|\partial_x^{lpha} (G(x) - G_0)\right| \lesssim (1 + |x|)^{-
ho - |lpha|}$$

(*M*, *G*) scattering manifold, ie if *M* can be smoothly compactified as a manifold *M* with boundary ∂*M* = *S*, with boundary defining function *x* (*S* = {*x* = 0}), and close to *x* = 0 (= infinity)

$$G=\frac{dx^2}{x^4}+\frac{h(x)}{x^2},$$

h(.) = family of metrics on S smooth w.r.t. x up to x = 0. Then take r = 1/x and H(r) = h(1/r).

◆□→ ◆□→ ◆三→ ◆三→ 三三 → ○<⊙

- 1. (\mathbb{R}^n , G_0), G_0 = Euclidean metric
- 2. (\mathbb{R}^{n} , G), G long range perturbation of G_{0} , ie

$$\left|\partial_x^{lpha} (G(x) - G_0)\right| \lesssim (1 + |x|)^{-
ho - |lpha|}$$

(*M*, *G*) scattering manifold, ie if *M* can be smoothly compactified as a manifold *M* with boundary ∂*M* = *S*, with boundary defining function *x* (*S* = {*x* = 0}), and close to *x* = 0 (= infinity)

$$G=\frac{dx^2}{x^4}+\frac{h(x)}{x^2},$$

h(.) = family of metrics on S smooth w.r.t. x up to x = 0. Then take r = 1/x and H(r) = h(1/r).

◆□→ ◆□→ ◆三→ ◆三→ 三三 → ○<⊙

- 1. (\mathbb{R}^n , G_0), G_0 = Euclidean metric
- 2. (\mathbb{R}^{n} , G), G long range perturbation of G_{0} , ie

$$\left|\partial_x^{lpha} (G(x) - G_0)\right| \lesssim (1 + |x|)^{-
ho - |lpha|}$$

(*M*, *G*) scattering manifold, ie if *M* can be smoothly compactified as a manifold *M* with boundary ∂*M* = *S*, with boundary defining function *x* (*S* = {*x* = 0}), and close to *x* = 0 (= infinity)

$$G=\frac{dx^2}{x^4}+\frac{h(x)}{x^2},$$

h(.) = family of metrics on S smooth w.r.t. x up to x = 0. Then take r = 1/x and H(r) = h(1/r).

(日) (日) (日) (日) (日) (日) (日)

- 1. (\mathbb{R}^n , G_0), G_0 = Euclidean metric
- 2. (\mathbb{R}^{n} , G), G long range perturbation of G_{0} , ie

$$\left|\partial_x^{lpha} ig({\it G}(x) - {\it G}_0 ig)
ight| \lesssim (1 + |x|)^{-
ho - |lpha|}$$

(*M*, *G*) scattering manifold, ie if *M* can be smoothly compactified as a manifold *M* with boundary ∂*M* = *S*, with boundary defining function *x* (*S* = {*x* = 0}), and close to *x* = 0 (= infinity)

$$G=\frac{dx^2}{x^4}+\frac{h(x)}{x^2},$$

h(.) = family of metrics on S smooth w.r.t. x up to x = 0. Then take r = 1/x and H(r) = h(1/r).

- 1. (\mathbb{R}^n , G_0), G_0 = Euclidean metric
- 2. (\mathbb{R}^{n} , G), G long range perturbation of G_{0} , ie

$$\left|\partial_x^{lpha} (G(x) - G_0)\right| \lesssim (1 + |x|)^{-
ho - |lpha|}$$

(*M*, *G*) scattering manifold, ie if *M* can be smoothly compactified as a manifold *M* with boundary ∂*M* = *S*, with boundary defining function *x* (*S* = {*x* = 0}), and close to *x* = 0 (= infinity)

$$G=\frac{dx^2}{x^4}+\frac{h(x)}{x^2},$$

h(.) = family of metrics on S smooth w.r.t. x up to x = 0. Then take r = 1/x and H(r) = h(1/r).

$$R_{s}(\lambda \pm i0) := \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} R(\lambda \pm i\varepsilon) \langle r \rangle^{-s}$$

for some suitable s > 0 or (slightly) more simply

$$\sup_{\varepsilon>0} \left| \left| \langle r \rangle^{-s} R(\lambda + i\varepsilon) \langle r \rangle^{-s} \right| \right| < \infty$$

More generally, one can consider

$$R_{s}^{(k)}(\lambda \pm i0) = (k!)^{-1} \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} (-\Delta_{G} - \lambda \mp i\varepsilon)^{-1-k} \langle r \rangle^{-s}$$

The LAP is related to the spectral resolution E_{λ} of Δ_G , via

$$\frac{dE_{\lambda}}{d\lambda} = \frac{1}{2i\pi} (R(\lambda - i0) - R(\lambda + i0))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$R_{s}(\lambda \pm i0) := \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} R(\lambda \pm i\varepsilon) \langle r \rangle^{-s}$$

for some suitable s > 0 or (slightly) more simply

$$\sup_{\varepsilon>0} \left| \left| \langle r \rangle^{-s} R(\lambda + i\varepsilon) \langle r \rangle^{-s} \right| \right| < \infty$$

More generally, one can consider

$$R_{s}^{(k)}(\lambda \pm i0) = (k!)^{-1} \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} (-\Delta_{G} - \lambda \mp i\varepsilon)^{-1-k} \langle r \rangle^{-s}$$

The LAP is related to the spectral resolution E_{λ} of Δ_G , via

$$\frac{dE_{\lambda}}{d\lambda} = \frac{1}{2i\pi} (R(\lambda - i0) - R(\lambda + i0))$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

$$R_{s}(\lambda \pm i0) := \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} R(\lambda \pm i\varepsilon) \langle r \rangle^{-s}$$

for some suitable s > 0 or (slightly) more simply

$$\sup_{\varepsilon>0} \left| \left| \langle r \rangle^{-s} R(\lambda + i\varepsilon) \langle r \rangle^{-s} \right| \right| < \infty$$

More generally, one can consider

$$R_{s}^{(k)}(\lambda \pm i0) = (k!)^{-1} \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} (-\Delta_{G} - \lambda \mp i\varepsilon)^{-1-k} \langle r \rangle^{-s}$$

The LAP is related to the spectral resolution E_{λ} of Δ_G , via

$$\frac{dE_{\lambda}}{d\lambda} = \frac{1}{2i\pi} (R(\lambda - i0) - R(\lambda + i0))$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$R_{s}(\lambda \pm i0) := \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} R(\lambda \pm i\varepsilon) \langle r \rangle^{-s}$$

for some suitable s > 0 or (slightly) more simply

$$\sup_{\varepsilon>0} \left| \left| \langle r \rangle^{-s} R(\lambda + i\varepsilon) \langle r \rangle^{-s} \right| \right| < \infty$$

More generally, one can consider

$$R_{s}^{(k)}(\lambda \pm i0) = (k!)^{-1} \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} (-\Delta_{G} - \lambda \mp i\varepsilon)^{-1-k} \langle r \rangle^{-s}$$

The LAP is related to the spectral resolution E_λ of Δ_G , via

$$\frac{dE_{\lambda}}{d\lambda} = \frac{1}{2i\pi} (R(\lambda - i0) - R(\lambda + i0))$$

$$R_{s}(\lambda \pm i0) := \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} R(\lambda \pm i\varepsilon) \langle r \rangle^{-s}$$

for some suitable s > 0 or (slightly) more simply

$$\sup_{\varepsilon>0} \left| \left| \langle r \rangle^{-s} R(\lambda + i\varepsilon) \langle r \rangle^{-s} \right| \right| < \infty$$

More generally, one can consider

$$\mathcal{R}_{s}^{(k)}(\lambda \pm i0) = (k!)^{-1} \lim_{\varepsilon \to 0+} \langle r \rangle^{-s} (-\Delta_{G} - \lambda \mp i\varepsilon)^{-1-k} \langle r \rangle^{-s}$$

The LAP is related to the spectral resolution E_{λ} of Δ_G , via

$$\frac{dE_{\lambda}}{d\lambda} = \frac{1}{2i\pi} (R(\lambda - i0) - R(\lambda + i0))$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$

3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...

 Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

 $||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates R_s(λ ± i0) as λ → ∞, high frequency regime, and λ → 0⁺, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow
 - 1. in general: $\mathcal{O}(e^{C\lambda^{1/2}})$
 - 2. non trapping: $\mathcal{O}(\lambda^{-1/2})$
 - 3. "weak" trapping: at least $\mathcal{O}(\lambda^{-1/2} \log \lambda)$, or $\mathcal{O}(\lambda^{\sigma})$...
- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

$$||\langle r \rangle^{-1} u||_{L^2} \lesssim ||\nabla_G u||_{L^2}, \qquad ||u||_{L^{2^*}} \lesssim ||\nabla_G u||_{L^2},$$

If B is a bounded operator

$$\int_{\mathbb{R}} ||Be^{it\Delta_{G}}u_{0}||^{2}dt \leq 2\pi \left(\sup_{\lambda \in \mathbb{R}, \atop \varepsilon > 0} ||BR(\lambda + i\varepsilon)B^{*}|| \right) ||u_{0}||^{2}$$

Using $B = \langle r \rangle^{-s} \phi(h^2 \Delta_G)$, with $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$ and semiclassical resolvent estimates

$$\sup_{\lambda \sim h^{-2}} ||\langle r \rangle^{-s} (-\Delta_G - \lambda \pm i0)^{-1} \langle r \rangle^{-s} || \le C_s h l(h), \qquad s > 1/2$$

$$\int_{\mathbb{R}} ||\langle r \rangle^{-s} \phi(h^2 \Delta_G) e^{it \Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_s ||u_0||_{L^2}^2.$$

If B is a bounded operator

$$\int_{\mathbb{R}} ||Be^{it\Delta_{G}}u_{0}||^{2}dt \leq 2\pi \left(\sup_{\lambda \in \mathbb{R}, \atop \varepsilon > 0} ||BR(\lambda + i\varepsilon)B^{*}|| \right) ||u_{0}||^{2}$$

Using $B = \langle r \rangle^{-s} \phi(h^2 \Delta_G)$, with $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$ and semiclassical resolvent estimates

$$\sup_{\lambda \sim h^{-2}} ||\langle r \rangle^{-s} (-\Delta_G - \lambda \pm i0)^{-1} \langle r \rangle^{-s} || \le C_s h l(h), \qquad s > 1/2$$

$$\int_{\mathbb{R}} ||\langle r \rangle^{-s} \phi(h^2 \Delta_G) e^{it \Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_s ||u_0||_{L^2}^2.$$

If B is a bounded operator

$$\int_{\mathbb{R}} ||Be^{it\Delta_{G}}u_{0}||^{2}dt \leq 2\pi \left(\sup_{\lambda \in \mathbb{R}, \atop \varepsilon > 0} ||BR(\lambda + i\varepsilon)B^{*}|| \right) ||u_{0}||^{2}$$

Using
$$B = \langle r \rangle^{-s} \phi(h^2 \Delta_G)$$
, with $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$ and semiclassical resolvent estimates

$$\sup_{\lambda \sim h^{-2}} ||\langle r \rangle^{-s} (-\Delta_G - \lambda \pm i0)^{-1} \langle r \rangle^{-s} || \le C_s h l(h), \qquad s > 1/2$$

$$\int_{\mathbb{R}} ||\langle r \rangle^{-s} \phi(h^2 \Delta_G) e^{it \Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_s ||u_0||_{L^2}^2.$$

If B is a bounded operator

$$\int_{\mathbb{R}} ||Be^{it\Delta_{G}}u_{0}||^{2}dt \leq 2\pi \left(\sup_{\lambda \in \mathbb{R}, \atop \varepsilon > 0} ||BR(\lambda + i\varepsilon)B^{*}|| \right) ||u_{0}||^{2}$$

Using $B = \langle r \rangle^{-s} \phi(h^2 \Delta_G)$, with $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$ and semiclassical resolvent estimates

$$\sup_{\lambda \sim h^{-2}} ||\langle r \rangle^{-s} (-\Delta_G - \lambda \pm i0)^{-1} \langle r \rangle^{-s} || \le C_s h l(h), \qquad s > 1/2$$

$$\int_{\mathbb{R}} ||\langle r \rangle^{-s} \phi(h^2 \Delta_G) e^{it \Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_s ||u_0||_{L^2}^2.$$

If B is a bounded operator

$$\int_{\mathbb{R}} ||Be^{it\Delta_{G}}u_{0}||^{2}dt \leq 2\pi \left(\sup_{\lambda \in \mathbb{R}, \atop \varepsilon > 0} ||BR(\lambda + i\varepsilon)B^{*}|| \right) ||u_{0}||^{2}$$

Using $B = \langle r \rangle^{-s} \phi(h^2 \Delta_G)$, with $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$ and semiclassical resolvent estimates

$$\sup_{\lambda \sim h^{-2}} ||\langle r \rangle^{-s} (-\Delta_G - \lambda \pm i0)^{-1} \langle r \rangle^{-s} || \le C_s h l(h), \qquad s > 1/2$$

we get, *eg* with $I(h) = h^{-1}$, a local smoothing effect

$$\int_{\mathbb{R}} ||\langle r \rangle^{-s} \phi(h^2 \Delta_G) e^{it \Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_s ||u_0||_{L^2}^2.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If B is a bounded operator

$$\int_{\mathbb{R}} ||Be^{it\Delta_{G}}u_{0}||^{2}dt \leq 2\pi \left(\sup_{\lambda \in \mathbb{R}, \atop \varepsilon > 0} ||BR(\lambda + i\varepsilon)B^{*}|| \right) ||u_{0}||^{2}$$

Using $B = \langle r \rangle^{-s} \phi(h^2 \Delta_G)$, with $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$ and semiclassical resolvent estimates

$$\sup_{\lambda \sim h^{-2}} ||\langle r \rangle^{-s} (-\Delta_G - \lambda \pm i0)^{-1} \langle r \rangle^{-s} || \le C_s h l(h), \qquad s > 1/2$$

we get, eg with $l(h) = h^{-l}$, a local smoothing effect

$$\int_{\mathbb{R}} ||\langle r \rangle^{-s} \phi(h^2 \Delta_G) e^{it \Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_s ||u_0||_{L^2}^2.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
By almost orthogonality, we can sum over $h = 2^{-k}$, $k \ge 0$, and get

$$\int_{\mathbb{R}} ||\langle r \rangle^{-s} (1-\Phi)(\Delta_G) e^{it\Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_{\Phi} ||u_0||_{L^2}^2,$$

for some (actually *all*) $\Phi \in C_0^{\infty}(\mathbb{R})$, $\Phi \equiv 1$ near 0. If we want to *remove this spectral cutoff*, we only get that for all *T*

$$\int_{-T}^{T} ||\langle r \rangle^{-s} e^{it \Delta_{G}} u_{0}||_{H^{1/2-l}}^{2} dt \leq C_{T} ||u_{0}||_{L^{2}}^{2},$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to *global in time* estimates.

By almost orthogonality, we can sum over $h = 2^{-k}$, $k \ge 0$, and get

$$\int_{\mathbb{R}} ||\langle r\rangle^{-s} (1-\Phi)(\Delta_G) e^{it\Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_\Phi ||u_0||_{L^2}^2,$$

for some (actually *all*) $\Phi \in C_0^{\infty}(\mathbb{R})$, $\Phi \equiv 1$ near 0. If we want to remove this spectral cutoff, we only get that for all T

$$\int_{-T}^{T} ||\langle r \rangle^{-s} e^{it \Delta_{G}} u_{0}||_{H^{1/2-l}}^{2} dt \leq C_{T} ||u_{0}||_{L^{2}}^{2},$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to *global in time* estimates.

By almost orthogonality, we can sum over $h = 2^{-k}$, $k \ge 0$, and get

$$\int_{\mathbb{R}} ||\langle r\rangle^{-s} (1-\Phi)(\Delta_G) e^{it\Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_\Phi ||u_0||_{L^2}^2,$$

for some (actually *all*) $\Phi \in C_0^{\infty}(\mathbb{R})$, $\Phi \equiv 1$ near 0. If we want to *remove this spectral cutoff*, we only get that for all T

$$\int_{-T}^{T} ||\langle r \rangle^{-s} e^{it \Delta_{G}} u_{0}||_{H^{1/2-t}}^{2} dt \leq C_{T} ||u_{0}||_{L^{2}}^{2},$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to *global in time* estimates.

By almost orthogonality, we can sum over $h = 2^{-k}$, $k \ge 0$, and get

$$\int_{\mathbb{R}} ||\langle r\rangle^{-s}(1-\Phi)(\Delta_G)e^{it\Delta_G}u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_\Phi ||u_0||_{L^2}^2,$$

for some (actually *all*) $\Phi \in C_0^{\infty}(\mathbb{R})$, $\Phi \equiv 1$ near 0. If we want to *remove this spectral cutoff*, we only get that for all *T*

$$\int_{-\boldsymbol{\mathsf{T}}}^{\boldsymbol{\mathsf{T}}} ||\langle \boldsymbol{\mathsf{r}}\rangle^{-s} \boldsymbol{e}^{it\Delta_{G}} \boldsymbol{u}_{0}||_{H^{1/2-i}}^{2} dt \leq C_{\boldsymbol{\mathsf{T}}} ||\boldsymbol{u}_{0}||_{L^{2}}^{2},$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to *global in time* estimates.

By almost orthogonality, we can sum over $h = 2^{-k}$, $k \ge 0$, and get

$$\int_{\mathbb{R}} ||\langle r\rangle^{-s} (1-\Phi)(\Delta_G) e^{it\Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_\Phi ||u_0||_{L^2}^2,$$

for some (actually *all*) $\Phi \in C_0^{\infty}(\mathbb{R})$, $\Phi \equiv 1$ near 0. If we want to *remove this spectral cutoff*, we only get that for all *T*

$$\int_{-\boldsymbol{T}}^{\boldsymbol{T}} ||\langle \boldsymbol{r}\rangle^{-s} \boldsymbol{e}^{it\Delta_G} \boldsymbol{u}_0||_{H^{1/2-l}}^2 dt \leq C_{\boldsymbol{T}} ||\boldsymbol{u}_0||_{L^2}^2,$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to *global in time* estimates.

By almost orthogonality, we can sum over $h = 2^{-k}$, $k \ge 0$, and get

$$\int_{\mathbb{R}} ||\langle r\rangle^{-s} (1-\Phi)(\Delta_G) e^{it\Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_\Phi ||u_0||_{L^2}^2,$$

for some (actually *all*) $\Phi \in C_0^{\infty}(\mathbb{R})$, $\Phi \equiv 1$ near 0. If we want to *remove this spectral cutoff*, we only get that for all *T*

$$\int_{-\boldsymbol{T}}^{\boldsymbol{T}} ||\langle r\rangle^{-s} e^{it\Delta_G} u_0||_{H^{1/2-l}}^2 dt \leq C_{\boldsymbol{T}} ||u_0||_{L^2}^2,$$

unless we have a good control of the resolvent when $\lambda \to 0$ which leads to *global in time* estimates.

By almost orthogonality, we can sum over $h = 2^{-k}$, $k \ge 0$, and get

$$\int_{\mathbb{R}} ||\langle r\rangle^{-s} (1-\Phi)(\Delta_G) e^{it\Delta_G} u_0||_{H^{\frac{1-l}{2}}}^2 dt \leq C_\Phi ||u_0||_{L^2}^2,$$

for some (actually *all*) $\Phi \in C_0^{\infty}(\mathbb{R})$, $\Phi \equiv 1$ near 0. If we want to *remove this spectral cutoff*, we only get that for all *T*

$$\int_{-\boldsymbol{T}}^{\boldsymbol{T}} ||\langle r\rangle^{-s} e^{it\Delta_G} u_0||_{H^{1/2-l}}^2 dt \leq C_{\boldsymbol{T}} ||u_0||_{L^2}^2,$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to *global in time* estimates.

Theorem 1 (B + Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$.

1. There exists C > 0 such that, for $|\text{Re}(z)| \le 1$,

 $||\langle r\rangle^{-1}(-\Delta_G-z)^{-1}\langle r\rangle^{-1}|| \leq C.$

 For all s ∈ (0, 1/2), there exists C_s > 0 such that, for 0 < |Re(z)| ≤ 1,

$$||\langle r \rangle^{-2-s}(-\Delta_G-z)^{-2}\langle r \rangle^{-2-s}|| \leq C_s|\operatorname{Re}(z)|^{s-1}$$

3. Fix $[E_1, E_2] \Subset (0, \infty)$. For all integer $k \ge 1$, there exists C_k such that, for all $\epsilon \in (0, 1]$ and all ζ s.t. $\operatorname{Re}(\zeta) \in [E_1, E_2]$,

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \le C_k.$$

Theorem 1 (B + Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$.

1. There exists C > 0 such that, for $|\text{Re}(z)| \le 1$,

$$||\langle r\rangle^{-1}(-\Delta_G-z)^{-1}\langle r\rangle^{-1}|| \leq C.$$

2. For all $s \in (0, 1/2)$, there exists $C_s > 0$ such that, for $0 < |\operatorname{Re}(z)| \le 1$,

$$||\langle r
angle^{-2-s}(-\Delta_G-z)^{-2}\langle r
angle^{-2-s}|| \leq C_s|\operatorname{Re}(z)|^{s-1}.$$

3. Fix $[E_1, E_2] \subseteq (0, \infty)$. For all integer $k \ge 1$, there exists C_k such that, for all $\epsilon \in (0, 1]$ and all ζ s.t. $\operatorname{Re}(\zeta) \in [E_1, E_2]$,

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \leq C_k.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Theorem 1 (B + Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$.

1. There exists C > 0 such that, for $|\text{Re}(z)| \le 1$,

$$||\langle r\rangle^{-1}(-\Delta_G-z)^{-1}\langle r\rangle^{-1}|| \leq C.$$

2. For all $s \in (0, 1/2)$, there exists $C_s > 0$ such that, for $0 < |\operatorname{Re}(z)| \le 1$,

$$||\langle r
angle^{-2-s}(-\Delta_G-z)^{-2}\langle r
angle^{-2-s}|| \leq C_s|\mathsf{Re}(z)|^{s-1}$$

3. Fix $[E_1, E_2] \subseteq (0, \infty)$. For all integer $k \ge 1$, there exists C_k such that, for all $\epsilon \in (0, 1]$ and all ζ s.t. $\operatorname{Re}(\zeta) \in [E_1, E_2]$,

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \leq C_k.$$

Theorem 1 (B + Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$.

1. There exists C > 0 such that, for $|\text{Re}(z)| \le 1$,

$$||\langle r\rangle^{-1}(-\Delta_G-z)^{-1}\langle r\rangle^{-1}|| \leq C.$$

2. For all $s \in (0, 1/2)$, there exists $C_s > 0$ such that, for $0 < |\operatorname{Re}(z)| \le 1$,

$$||\langle r
angle^{-2-s}(-\Delta_G-z)^{-2}\langle r
angle^{-2-s}|| \leq C_s|\mathrm{Re}(z)|^{s-1}.$$

3. Fix $[E_1, E_2] \Subset (0, \infty)$. For all integer $k \ge 1$, there exists C_k such that, for all $\epsilon \in (0, 1]$ and all ζ s.t. $\text{Re}(\zeta) \in [E_1, E_2]$,

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \leq C_k.$$

- The weight ⟨r⟩⁻¹ is sharp and improves on previous results by B and Bony-Häfner (on ℝⁿ). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
- 2. In higher dimensions, one has better estimates. Morevoer when n = 3 and $(S, H_0) = (S^2, can)$, one can take s = 1/2.
- 3. When $(\mathcal{M}, G) = (\mathbb{R}^n, G_0)$, the estimate

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \leq C_k$$

follow from the case $\epsilon = 1$ by rescaling. Such estimates imply that, for any $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$,

$$||\langle \epsilon r \rangle^{-k} \phi(\epsilon^{-2} \Delta_G) e^{it \Delta_G} \langle \epsilon r \rangle^{-k}|| \leq C_k \langle \epsilon^2 t \rangle^{1-k}.$$

(日) (日) (日) (日) (日) (日) (日)

- The weight ⟨r⟩⁻¹ is sharp and improves on previous results by B and Bony-Häfner (on ℝⁿ). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
- 2. In higher dimensions, one has better estimates. Morevoer when n = 3 and $(S, H_0) = (S^2, can)$, one can take s = 1/2.
- 3. When $(\mathcal{M}, G) = (\mathbb{R}^n, G_0)$, the estimate

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \leq C_k$$

follow from the case $\epsilon = 1$ by rescaling. Such estimates imply that, for any $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$,

$$||\langle \epsilon r \rangle^{-k} \phi(\epsilon^{-2} \Delta_G) e^{it \Delta_G} \langle \epsilon r \rangle^{-k}|| \leq C_k \langle \epsilon^2 t \rangle^{1-k}.$$

- The weight ⟨r⟩⁻¹ is sharp and improves on previous results by B and Bony-Häfner (on ℝⁿ). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
- 2. In higher dimensions, one has better estimates. Morevoer when n = 3 and $(S, H_0) = (S^2, can)$, one can take s = 1/2.
- 3. When $(\mathcal{M}, G) = (\mathbb{R}^n, G_0)$, the estimate

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \le C_k$$

follow from the case $\epsilon = 1$ by rescaling. Such estimates imply that, for any $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$,

$$||\langle \epsilon r \rangle^{-k} \phi(\epsilon^{-2} \Delta_G) e^{it \Delta_G} \langle \epsilon r \rangle^{-k}|| \leq C_k \langle \epsilon^2 t \rangle^{1-k}.$$

- The weight ⟨r⟩⁻¹ is sharp and improves on previous results by B and Bony-Häfner (on ℝⁿ). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
- 2. In higher dimensions, one has better estimates. Morevoer when n = 3 and $(S, H_0) = (S^2, can)$, one can take s = 1/2.
- 3. When $(\mathcal{M}, G) = (\mathbb{R}^n, G_0)$, the estimate $||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2} \Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k} || \le C_k$

follow from the case $\epsilon = 1$ by rescaling. Such estimates imply that, for any $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$,

$$||\langle \epsilon r \rangle^{-k} \phi(\epsilon^{-2} \Delta_G) e^{it \Delta_G} \langle \epsilon r \rangle^{-k}|| \leq C_k \langle \epsilon^2 t \rangle^{1-k}.$$

- The weight ⟨r⟩⁻¹ is sharp and improves on previous results by B and Bony-Häfner (on ℝⁿ). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
- 2. In higher dimensions, one has better estimates. Morevoer when n = 3 and $(S, H_0) = (S^2, can)$, one can take s = 1/2.
- 3. When $(\mathcal{M}, G) = (\mathbb{R}^n, G_0)$, the estimate $||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \le C_k$

follow from the case $\epsilon = 1$ by rescaling. Such estimates imply that, for any $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$,

$$||\langle \epsilon r \rangle^{-k} \phi(\epsilon^{-2} \Delta_G) e^{it \Delta_G} \langle \epsilon r \rangle^{-k}|| \leq C_k \langle \epsilon^2 t \rangle^{1-k}.$$

- The weight ⟨r⟩⁻¹ is sharp and improves on previous results by B and Bony-Häfner (on ℝⁿ). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
- 2. In higher dimensions, one has better estimates. Morevoer when n = 3 and $(S, H_0) = (S^2, can)$, one can take s = 1/2.
- 3. When $(\mathcal{M}, G) = (\mathbb{R}^n, G_0)$, the estimate

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \leq C_k$$

follow from the case $\epsilon = 1$ by rescaling. Such estimates imply that, for any $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$,

$$||\langle \epsilon r \rangle^{-k} \phi(\epsilon^{-2} \Delta_G) e^{it \Delta_G} \langle \epsilon r \rangle^{-k}|| \leq C_k \langle \epsilon^2 t \rangle^{1-k}.$$

- The weight ⟨r⟩⁻¹ is sharp and improves on previous results by B and Bony-Häfner (on ℝⁿ). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
- 2. In higher dimensions, one has better estimates. Morevoer when n = 3 and $(S, H_0) = (S^2, can)$, one can take s = 1/2.
- 3. When $(\mathcal{M}, G) = (\mathbb{R}^n, G_0)$, the estimate

$$||\langle \epsilon r \rangle^{-k} (-\epsilon^{-2}\Delta_G - \zeta)^{-k} \langle \epsilon r \rangle^{-k}|| \leq C_k$$

follow from the case $\epsilon = 1$ by rescaling. Such estimates imply that, for any $\phi \in C_0^{\infty}(\mathbb{R} \setminus 0)$,

$$||\langle \epsilon r \rangle^{-k} \phi(\epsilon^{-2} \Delta_G) e^{it \Delta_G} \langle \epsilon r \rangle^{-k}|| \leq C_k \langle \epsilon^2 t \rangle^{1-k}$$

We want to know if global Strichartz estimates for $u(t) = e^{it\Delta_G}u_0$ hold, ie

$$\int_{\mathbb{R}} ||e^{it\Delta_G}u_0||_{L^{2^*}}^2 dt \lesssim ||u_0||_{L^2}^2$$

ie typically

$$\int_{\mathbb{R}} ||\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2^*}}^2 dt \lesssim ||u_0||_{L^2}^2.$$

・ロト・四ト・モート ヨー うへの

We want to know if global Strichartz estimates for $u(t) = e^{it\Delta_G}u_0$ hold, ie

$$\int_{\mathbb{R}} ||\boldsymbol{e}^{it\Delta_G}\boldsymbol{u}_0||_{L^{2^*}}^2 dt \lesssim ||\boldsymbol{u}_0||_{L^2}^2$$

ie typically

$$\int_{\mathbb{R}} ||\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2^*}}^2 dt \lesssim ||u_0||_{L^2}^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We want to know if global Strichartz estimates for $u(t) = e^{it\Delta_G}u_0$ hold, ie

$$\int_{\mathbb{R}} ||e^{it\Delta_{G}}u_{0}||_{L^{2^{*}}}^{2} dt \lesssim ||u_{0}||_{L^{2}}^{2}$$

ie typically

$$\int_{\mathbb{R}} ||\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2^*}}^2 dt \lesssim ||u_0||_{L^2}^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP)

 $\begin{aligned} ||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2^{*}}} &\lesssim ||\nabla_{G}\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \end{aligned}$

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

- 1. The first term is treated by L^2 estimates (Sobolev + LAP)
 - $\begin{aligned} ||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2^{*}}} &\lesssim ||\nabla_{G}\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \end{aligned}$
- 2. $(1 \chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (<u>rescaled</u> pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP) $||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2*}} \lesssim ||\nabla_G\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$

$$\lesssim \frac{\epsilon_{||\langle \epsilon_{I} \rangle}}{\lesssim} \frac{\phi(\epsilon - \Delta_{G})u(t)||_{L^{2}}}{\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}}}$$

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

- 1. The first term is treated by L^2 estimates (Sobolev + LAP) $||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2*}} \lesssim ||\nabla_G\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$
- 2. $(1 \chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (<u>rescaled</u> pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

- 1. The first term is treated by L^2 estimates (Sobolev + LAP) $||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2*}} \lesssim ||\nabla_G\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$
- 2. $(1 \chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (<u>rescaled</u> pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

- 1. The first term is treated by L^2 estimates (Sobolev + LAP) $||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2*}} \lesssim ||\nabla_G\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$
- 2. $(1 \chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (<u>rescaled</u> pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP) $||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2*}} \lesssim ||\nabla_G\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP) $||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^{2*}} \lesssim ||\nabla_G\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$ $\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_G)u(t)||_{L^2}$

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP)

$$\begin{aligned} ||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2*}} &\lesssim ||\nabla_{G}\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \end{aligned}$$

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP)

$$\begin{aligned} ||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2*}} &\lesssim ||\nabla_{G}\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \end{aligned}$$

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP)

$$\begin{aligned} ||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2*}} &\lesssim ||\nabla_{G}\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \end{aligned}$$

We split

$$\phi(\epsilon^{-2}\Delta_G)u(t) = \chi(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t) + (1-\chi)(\epsilon r)\phi(\epsilon^{-2}\Delta_G)u(t)$$

1. The first term is treated by L^2 estimates (Sobolev + LAP)

$$\begin{aligned} ||\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2*}} &\lesssim ||\nabla_{G}\chi(\epsilon r)\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim \epsilon ||\langle\epsilon r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \\ &\lesssim ||\langle r\rangle^{-1}\phi(\epsilon^{-2}\Delta_{G})u(t)||_{L^{2}} \end{aligned}$$

Global Strichartz estimates

 $u(t)=e^{it\Delta_G}u_0.$

Theorem 2 (B + Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$. Assume we have polynomial resolvent estimates at high frequency

$$||\langle r\rangle^{-s}(-\Delta_G-\lambda-i0)\langle r\rangle^{-s}|| \leq C\lambda^{\sigma}, \qquad \lambda \gg 1,$$

for some s > 0 and $\sigma \in \mathbb{R}$. Then

1. There exists $\chi \in C_0^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that

$$||(1-\chi)u||_{L^{2}(\mathbb{R};L^{2^{*}}(\mathcal{M}))} \lesssim ||u_{0}||_{L^{2}(\mathcal{M})}.$$

2. If the manifold is non trapping (ie $\sigma = -1/2$), then we have global space time Strichartz estimates

 $||U||_{L^2(\mathbb{R};L^{2^*}(\mathcal{M}))} \lesssim ||U_0||_{L^2(\mathcal{M})}.$

Global Strichartz estimates Let

$$u(t)=e^{it\Delta_G}u_0.$$

Theorem 2 (B + Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$. Assume

we have polynomial resolvent estimates at high frequency

$$||\langle r\rangle^{-s}(-\Delta_G-\lambda-i0)\langle r\rangle^{-s}|| \leq C\lambda^{\sigma}, \qquad \lambda \gg 1,$$

for some s > 0 and $\sigma \in \mathbb{R}$. Then

1. There exists $\chi \in C_0^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that

$$||(1-\chi)u||_{L^2(\mathbb{R};L^{2^*}(\mathcal{M}))} \lesssim ||u_0||_{L^2(\mathcal{M})}.$$

2. If the manifold is non trapping (ie $\sigma = -1/2$), then we have global space time Strichartz estimates

 $||U||_{L^2(\mathbb{R};L^{2^*}(\mathcal{M}))} \lesssim ||U_0||_{L^2(\mathcal{M})}.$

Global Strichartz estimates Let

$$u(t)=e^{it\Delta_G}u_0.$$

Theorem 2 (B + Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$. Assume we have polynomial resolvent estimates at high frequency

$$||\langle r\rangle^{-s}(-\Delta_G - \lambda - i\mathbf{0})\langle r\rangle^{-s}|| \leq C\lambda^{\sigma}, \qquad \lambda \gg 1,$$

for some s > 0 and $\sigma \in \mathbb{R}$. Then

1. There exists $\chi \in C_0^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that

$$||(1-\chi)u||_{L^{2}(\mathbb{R};L^{2^{*}}(\mathcal{M}))} \lesssim ||u_{0}||_{L^{2}(\mathcal{M})}.$$

2. If the manifold is non trapping (ie $\sigma = -1/2$), then we have global space time Strichartz estimates

 $||U||_{L^2(\mathbb{R};L^{2^*}(\mathcal{M}))} \lesssim ||U_0||_{L^2(\mathcal{M})}.$
Global Strichartz estimates Let

$$u(t)=e^{it\Delta_G}u_0.$$

Theorem 2 (B + Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$. Assume we have polynomial resolvent estimates at high frequency

$$||\langle r \rangle^{-s}(-\Delta_G - \lambda - i\mathbf{0})\langle r \rangle^{-s}|| \leq C\lambda^{\sigma}, \qquad \lambda \gg 1,$$

for some s > 0 and $\sigma \in \mathbb{R}$. Then

 There exists χ ∈ C₀[∞](M) equal to 1 on a large enough compact set such that

$$||(1 - \chi)u||_{L^{2}(\mathbb{R}; L^{2^{*}}(\mathcal{M}))} \lesssim ||u_{0}||_{L^{2}(\mathcal{M})}.$$

2. If the manifold is non trapping (ie $\sigma = -1/2$), then we have global space time Strichartz estimates

 $||U||_{L^2(\mathbb{R};L^{2^*}(\mathcal{M}))} \lesssim ||U_0||_{L^2(\mathcal{M})}.$

Global Strichartz estimates Let

$$u(t)=e^{it\Delta_G}u_0.$$

Theorem 2 (B + Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \ge 3$. Assume we have polynomial resolvent estimates at high frequency

$$||\langle r \rangle^{-s}(-\Delta_G - \lambda - i\mathbf{0})\langle r \rangle^{-s}|| \leq C\lambda^{\sigma}, \qquad \lambda \gg 1,$$

for some s > 0 and $\sigma \in \mathbb{R}$. Then

 There exists χ ∈ C₀[∞](M) equal to 1 on a large enough compact set such that

$$||(1-\chi)u||_{L^{2}(\mathbb{R};L^{2^{*}}(\mathcal{M}))} \lesssim ||u_{0}||_{L^{2}(\mathcal{M})}.$$

2. If the manifold is non trapping (ie $\sigma = -1/2$), then we have global space time Strichartz estimates

 $||u||_{L^2(\mathbb{R};L^{2^*}(\mathcal{M}))} \lesssim ||u_0||_{L^2(\mathcal{M})}.$

Lemma One can choose $\kappa : \mathcal{M} \setminus \mathcal{K} \to (\mathcal{R}, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates *r* near infinity) such that

$$d\mathrm{vol}_{G} = \kappa^{*} (r^{n-1} dr d\mathrm{vol}_{H_{0}}).$$

Consequence: Outside a compact set, a good model for $(\mathcal{M}, dvol_G)$ is $(\mathcal{M}_0, r^{n-1} drdvol_{H_0})$ with $\mathcal{M}_0 = (0, \infty) \times S$, and 1. the rescaling group e^{itA}

$$e^{it\mathcal{A}}v(r,\omega)=e^{trac{n}{2}}v(e^{t}r,\omega),\qquad t\in\mathbb{R}$$

is unitary on $L^2(\mathcal{M}_0, r^{n-1} dr d \operatorname{vol}_{H_0})$.

2. the operator $\kappa_* \Delta_G \kappa^*$ coincides near infinity with

 $Pu = \operatorname{div}_{G_0}(T^G du),$ (here $G_0 = dr^2 + r^2 G_0),$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Lemma One can choose $\kappa : \mathcal{M} \setminus \mathcal{K} \to (\mathcal{R}, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates *r* near infinity) such that

$$d\mathrm{vol}_G = \kappa^* (r^{n-1} dr d\mathrm{vol}_{H_0}).$$

Consequence: Outside a compact set, a good model for $(\mathcal{M}, d\mathrm{vol}_G)$ is $(\mathcal{M}_0, r^{n-1} dr d\mathrm{vol}_{H_0})$ with $\mathcal{M}_0 = (0, \infty) \times S$, and 1. the rescaling group e^{itA}

$$e^{it\mathcal{A}} v(r,\omega) = e^{trac{n}{2}} v(e^t r,\omega), \qquad t \in \mathbb{R}$$

is unitary on $L^2(\mathcal{M}_0, r^{n-1} dr d \operatorname{vol}_{H_0})$.

2. the operator $\kappa_* \Delta_G \kappa^*$ coincides near infinity with

 $Pu = \text{div}_{G_0}(T^G du),$ (here $G_0 = dr^2 + r^2 G_0),$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Lemma One can choose $\kappa : \mathcal{M} \setminus \mathcal{K} \to (\mathcal{R}, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates *r* near infinity) such that

$$d\mathrm{vol}_G = \kappa^* (r^{n-1} dr d\mathrm{vol}_{H_0}).$$

Consequence: Outside a compact set, a good model for $(\mathcal{M}, d\mathrm{vol}_G)$ is $(\mathcal{M}_0, r^{n-1} dr d\mathrm{vol}_{H_0})$ with $\mathcal{M}_0 = (0, \infty) \times S$, and 1. the rescaling group e^{itA}

$$oldsymbol{e}^{it\mathcal{A}}oldsymbol{v}(oldsymbol{r},\omega)=oldsymbol{e}^{trac{n}{2}}oldsymbol{v}(oldsymbol{e}^{t}oldsymbol{r},\omega),\qquad t\in\mathbb{R}$$

is unitary on $L^2(\mathcal{M}_0, r^{n-1} dr d \operatorname{vol}_{\mathcal{H}_0})$.

2. the operator $\kappa_* \Delta_G \kappa^*$ coincides near infinity with

 $Pu = \operatorname{div}_{G_0}(T^G du),$ (here $G_0 = dr^2 + r^2 G_0),$

▲□▶▲□▶▲□▶▲□▶ = のへで

Lemma One can choose $\kappa : \mathcal{M} \setminus \mathcal{K} \to (\mathbf{R}, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates *r* near infinity) such that

$$d\mathrm{vol}_G = \kappa^* (r^{n-1} dr d\mathrm{vol}_{H_0}).$$

Consequence: Outside a compact set, a good model for $(\mathcal{M}, d\mathrm{vol}_G)$ is $(\mathcal{M}_0, r^{n-1} dr d\mathrm{vol}_{H_0})$ with $\mathcal{M}_0 = (0, \infty) \times S$, and 1. the rescaling group e^{itA}

$$oldsymbol{e}^{it\mathcal{A}}oldsymbol{v}(oldsymbol{r},\omega)=oldsymbol{e}^{trac{n}{2}}oldsymbol{v}(oldsymbol{e}^{t}oldsymbol{r},\omega),\qquad t\in\mathbb{R}$$

is unitary on $L^2(\mathcal{M}_0, r^{n-1} dr d \operatorname{vol}_{\mathcal{H}_0})$.

2. the operator $\kappa_* \Delta_G \kappa^*$ coincides near infinity with

$$Pu = \operatorname{div}_{G_0}(T^G du),$$
 (here $G_0 = dr^2 + r^2 G_0),$

(日) (日) (日) (日) (日) (日) (日)

Lemma One can choose $\kappa : \mathcal{M} \setminus \mathcal{K} \to (\mathcal{R}, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates *r* near infinity) such that

$$d\mathrm{vol}_G = \kappa^* (r^{n-1} dr d\mathrm{vol}_{H_0}).$$

Consequence: Outside a compact set, a good model for $(\mathcal{M}, d\mathrm{vol}_G)$ is $(\mathcal{M}_0, r^{n-1} dr d\mathrm{vol}_{H_0})$ with $\mathcal{M}_0 = (0, \infty) \times S$, and 1. the rescaling group e^{itA}

$$oldsymbol{e}^{it\mathcal{A}}oldsymbol{v}(oldsymbol{r},\omega)=oldsymbol{e}^{trac{n}{2}}oldsymbol{v}(oldsymbol{e}^{t}oldsymbol{r},\omega),\qquad t\in\mathbb{R}$$

is unitary on $L^2(\mathcal{M}_0, r^{n-1} dr d \operatorname{vol}_{H_0})$.

2. the operator $\kappa_* \Delta_G \kappa^*$ coincides near infinity with

$$Pu = \operatorname{div}_{G_0}(T^G du),$$
 (here $G_0 = dr^2 + r^2 G_0),$

More precisely

$$Pu = \operatorname{div}_{G_0}(T^G du),$$

with T_G section of Hom $(T^*\mathcal{M}_0, T\mathcal{M}_0)$ looking like

$$T_{G} = \begin{pmatrix} 1 + K_{11}(r) & r^{-1}K_{12}(r) \\ r^{-1}K_{21}(r) & r^{-2}(T^{H_{0}} + K_{22}(r)) \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & r^{-2}T^{H_{0}} \end{pmatrix},$$

with

$$(r\partial_r)^k K_{ij}$$
 small for all $k \ge 0.$ (S)

Then

$$(P - \lambda - i\varepsilon)^{-1} = \lambda^{-1} e^{i \ln \lambda^{1/2} A} (P_{\lambda} - 1 - i\mu) e^{-i \ln \lambda^{1/2} A}$$

More precisely

$$Pu = \operatorname{div}_{G_0}(T^G du),$$

with T_G section of Hom $(T^*\mathcal{M}_0, T\mathcal{M}_0)$ looking like

$$T_{G} = \begin{pmatrix} 1 + K_{11}(r) & r^{-1}K_{12}(r) \\ r^{-1}K_{21}(r) & r^{-2}(T^{H_{0}} + K_{22}(r)) \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & r^{-2}T^{H_{0}} \end{pmatrix},$$

with

$$(r\partial_r)^k K_{ij}$$
 small for all $k \ge 0.$ (S)

Then

$$(\boldsymbol{P}-\lambda-\boldsymbol{i}\varepsilon)^{-1}=\lambda^{-1}e^{\boldsymbol{i}\ln\lambda^{1/2}A}(\boldsymbol{P}_{\lambda}-1-\boldsymbol{i}\mu)e^{-\boldsymbol{i}\ln\lambda^{1/2}A}$$

More precisely

$$Pu = \operatorname{div}_{G_0}(T^G du),$$

with T_G section of Hom $(T^*\mathcal{M}_0, T\mathcal{M}_0)$ looking like

$$T_{G} = \begin{pmatrix} 1 + K_{11}(r) & r^{-1}K_{12}(r) \\ r^{-1}K_{21}(r) & r^{-2}(T^{H_{0}} + K_{22}(r)) \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & r^{-2}T^{H_{0}} \end{pmatrix},$$

with

$$(r\partial_r)^k K_{ij}$$
 small for all $k \ge 0.$ (S)

Then

$$(\boldsymbol{P}-\lambda-i\varepsilon)^{-1}=\lambda^{-1}\boldsymbol{e}^{i\ln\lambda^{1/2}\boldsymbol{A}}(\boldsymbol{P}_{\lambda}-1-i\mu)\boldsymbol{e}^{-i\ln\lambda^{1/2}\boldsymbol{A}}$$

More precisely

$$Pu = \operatorname{div}_{G_0}(T^G du),$$

with T_G section of Hom $(T^*\mathcal{M}_0, T\mathcal{M}_0)$ looking like

$$T_{G} = \begin{pmatrix} 1 + K_{11}(r) & r^{-1}K_{12}(r) \\ r^{-1}K_{21}(r) & r^{-2}(T^{H_{0}} + K_{22}(r)) \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & r^{-2}T^{H_{0}} \end{pmatrix},$$

with

$$(r\partial_r)^k K_{ij}$$
 small for all $k \ge 0$. (S)

Then

$$(P - \lambda - i\varepsilon)^{-1} = \lambda^{-1} e^{i \ln \lambda^{1/2} A} (P_{\lambda} - 1 - i\mu) e^{-i \ln \lambda^{1/2} A}$$

More precisely

$$Pu = \operatorname{div}_{G_0}(T^G du),$$

with T_G section of Hom $(T^*\mathcal{M}_0, T\mathcal{M}_0)$ looking like

$$T_{G} = \begin{pmatrix} 1 + K_{11}(r) & r^{-1}K_{12}(r) \\ r^{-1}K_{21}(r) & r^{-2}(T^{H_{0}} + K_{22}(r)) \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & r^{-2}T^{H_{0}} \end{pmatrix},$$

with

$$(r\partial_r)^k K_{ij}$$
 small for all $k \ge 0$. (S)

Then

$$(\boldsymbol{P}-\lambda-i\varepsilon)^{-1}=\lambda^{-1}\boldsymbol{e}^{i\ln\lambda^{1/2}\boldsymbol{A}}(\boldsymbol{P}_{\lambda}-1-i\mu)\boldsymbol{e}^{-i\ln\lambda^{1/2}\boldsymbol{A}}$$

More precisely

$$Pu = \operatorname{div}_{G_0}(T^G du),$$

with T_G section of Hom $(T^*\mathcal{M}_0, T\mathcal{M}_0)$ looking like

$$T_{G} = \begin{pmatrix} 1 + K_{11}(r) & r^{-1}K_{12}(r) \\ r^{-1}K_{21}(r) & r^{-2}(T^{H_{0}} + K_{22}(r)) \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & r^{-2}T^{H_{0}} \end{pmatrix},$$

with

$$(r\partial_r)^k K_{ij}$$
 small for all $k \ge 0$. (S)

Then

$$(\boldsymbol{P}-\lambda-i\varepsilon)^{-1}=\lambda^{-1}\boldsymbol{e}^{i\ln\lambda^{1/2}\boldsymbol{A}}(\boldsymbol{P}_{\lambda}-1-i\mu)\boldsymbol{e}^{-i\ln\lambda^{1/2}\boldsymbol{A}}$$

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$

Proposition There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \le C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$. Observe next that

$$r^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)}$$

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$ **Proposition** There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \leq C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$. Observe next that

$$r^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)},$$

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$ **Proposition** There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \leq C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$.

Observe next that

$$r^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)},$$

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$ **Proposition** There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \leq C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$. Observe next that

$$\mathbf{r}^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)},$$

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$ **Proposition** There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \leq C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$. Observe next that

$$r^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)},$$

(日) (日) (日) (日) (日) (日) (日)

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$ **Proposition** There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \leq C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$. Observe next that

$$r^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)},$$

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$ **Proposition** There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \leq C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$. Observe next that

$$r^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)}$$

Using the standard Mourre theory, we can prove the LAP for $(P_{\lambda} - 1 - i\mu)^{-1}$ **Proposition** There exists $\nu > 0$ small enough such that

$$||(\nu A + i)^{-1}(P_{\lambda} - 1 - i\mu)^{-1}(\nu A + i)^{-1}||_{H^{-1} \to H^{1}_{0}} \le C$$

for all $\lambda > 0$ and all $\mu > 0$. Recall that $iA = r\partial_r + \frac{n}{2}$. Observe next that

$$r^{-1} = r^{-1}(\nu A + i)(\nu A + i)^{-1} = (ar^{-1} + b\partial_r)(\nu A + i)^{-1},$$

where, by the homeogenous Hardy inequality

$$||r^{-1}v||_{L^2(\mathcal{M}_0)} \leq C||\partial_r v||_{L^2(\mathcal{M}_0)}$$

... therefore, we get the bound

$$||r^{-1}(P_{\lambda}-1-i\mu)^{-1}r^{-1}||_{L^{2}\to L^{2}}\leq C$$

for all $\lambda > 0$ and all $\mu > 0$.

After rescaling, this yields

$$||\lambda^{1/2}r^{-1}\lambda^{-1}(P-\lambda-i\varepsilon)^{-1}r^{-1}\lambda^{1/2}||_{L^2\to L^2}\leq C$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

for all $\lambda > 0$ and all $\mu > 0$, which completes the proof for the model.

... therefore, we get the bound

$$||r^{-1}(P_{\lambda}-1-i\mu)^{-1}r^{-1}||_{L^{2}\rightarrow L^{2}}\leq C$$

for all $\lambda > 0$ and all $\mu > 0$. After rescaling, this yields

$$||\lambda^{1/2}r^{-1}\lambda^{-1}(P-\lambda-i\varepsilon)^{-1}r^{-1}\lambda^{1/2}||_{L^2\to L^2}\leq C$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

for all $\lambda > 0$ and all $\mu > 0$, which completes the proof for the model.

... therefore, we get the bound

$$||r^{-1}(P_{\lambda}-1-i\mu)^{-1}r^{-1}||_{L^{2}\rightarrow L^{2}}\leq C$$

for all $\lambda > 0$ and all $\mu > 0$. After rescaling, this yields

$$||\lambda^{1/2}r^{-1}\lambda^{-1}(P-\lambda-i\varepsilon)^{-1}r^{-1}\lambda^{1/2}||_{L^2\to L^2}\leq C$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for all $\lambda >$ 0 and all $\mu >$ 0, which completes the proof for the model.