Low frequency resolvent estimates on asymptotically flat manifolds

Jean-Marc Bouclet
Institut de Mathématiques de Toulouse

ANR METHCHAOS, 19 Juin 2013, Roscoff

The setup

We consider an asymptotically conical manifold $\left(\mathcal{M}^{n}, G\right)$,
for $\mathcal{K} \Subset \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism
such that

$$
G=\kappa^{*}\left(A(r) d r^{2}+2 r B(r) d r+r^{2} H(r)\right)
$$

where $A(r)$ is a function (on \mathcal{S}), $B(r)$ a 1-form and $H(r)$ Riemannian metric, all depending smoothly on r, such that for some $\rho>0$,

where H_{0} is a fixed metric on \mathcal{S}. This means $G \approx d r^{2}+r^{2} H_{0}$ close to infinity.

The setup

We consider an asymptotically conical manifold $\left(\mathcal{M}^{n}, G\right)$, ie for $\mathcal{K} \Subset \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$
\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}
$$

such that

where $A(r)$ is a function (on \mathcal{S}), $B(r)$ a 1-form and $H(r)$ Riemannian metric, all depending smoothly on r, such that for
some $\rho>0$,

where H_{0} is a fixed metric on \mathcal{S}. This means $G \approx d r^{2}+r^{2} H_{0}$ close to infinity.

The setup

We consider an asymptotically conical manifold $\left(\mathcal{M}^{n}, G\right)$, ie for $\mathcal{K} \Subset \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$
\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}
$$

such that

$$
G=\kappa^{*}\left(A(r) d r^{2}+2 r B(r) d r+r^{2} H(r)\right)
$$

where $A(r)$ is a function (on $\mathcal{S}), B(r)$ a 1-form and $H(r)$ Riemannian metric, all depending smoothly on r, such that for
some $\rho>0$,

where H_{0} is a fixed metric on \mathcal{S}. This means $G \approx d r^{2}+r^{2} H_{0}$ close to infinity.

The setup

We consider an asymptotically conical manifold $\left(\mathcal{M}^{n}, G\right)$, ie for $\mathcal{K} \Subset \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$
\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}
$$

such that

$$
G=\kappa^{*}\left(A(r) d r^{2}+2 r B(r) d r+r^{2} H(r)\right)
$$

where $A(r)$ is a function (on \mathcal{S}), $B(r)$ a 1-form and $H(r)$ Riemannian metric, all depending smoothly on r,
some $\rho>0$,

where H_{0} is a fixed metric on \mathcal{S}. This means $G \approx d r^{2}+r^{2} H_{0}$

The setup

We consider an asymptotically conical manifold ($\left.\mathcal{M}^{n}, G\right)$, ie for $\mathcal{K} \in \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$
\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}
$$

such that

$$
G=\kappa^{*}\left(A(r) d r^{2}+2 r B(r) d r+r^{2} H(r)\right)
$$

where $A(r)$ is a function (on \mathcal{S}), $B(r)$ a 1 -form and $H(r)$ Riemannian metric, all depending smoothly on r, such that for some $\rho>0$,

$$
\left\|\partial_{r}^{j}(A(r)-1)\right\|_{0}+\left\|\partial_{r}^{j} B(r)\right\|_{1}+\left\|\partial_{r}^{j}\left(H(r)-H_{0}\right)\right\|_{2} \lesssim r^{-j-\rho},
$$

where H_{0} is a fixed metric on \mathcal{S}. \square

The setup

We consider an asymptotically conical manifold ($\left.\mathcal{M}^{n}, G\right)$, ie for $\mathcal{K} \in \mathcal{M}$ and some \mathcal{S} closed manifold, we have a diffeomorphism

$$
\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}
$$

such that

$$
G=\kappa^{*}\left(A(r) d r^{2}+2 r B(r) d r+r^{2} H(r)\right)
$$

where $A(r)$ is a function (on \mathcal{S}), $B(r)$ a 1 -form and $H(r)$ Riemannian metric, all depending smoothly on r, such that for some $\rho>0$,

$$
\left\|\partial_{r}^{j}(A(r)-1)\right\|_{0}+\left\|\partial_{r}^{j} B(r)\right\|_{1}+\left\|\partial_{r}^{j}\left(H(r)-H_{0}\right)\right\|_{2} \lesssim r^{-j-\rho},
$$

where H_{0} is a fixed metric on \mathcal{S}. This means $G \approx d r^{2}+r^{2} H_{0}$ close to infinity.

Examples

1. $\left(\mathbb{R}^{n}, G_{0}\right), G_{0}=$ Euclidean metric
2. $\left(\mathbb{R}^{n}, G\right), G$ long range perturbation of G_{0}, ie

$$
\left|\partial_{x}^{\alpha}\left(G(x)-G_{0}\right)\right| \lesssim(1+|x|)^{-\rho-|\alpha|}
$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold $\overline{\mathcal{M}}$ with boundary $\partial \overline{\mathcal{M}}=\mathcal{S}$, with boundary defining function $x(\mathcal{S}=\{x=0\})$, and close to $x=0$ (= infinity)

$$
G=\frac{d x^{2}}{x^{4}}+\frac{h(x)}{x^{2}}
$$

$h()=$. family of metrics on \mathcal{S} smooth w.r.t. x up to $x=0$. Then take $r=1 / x$ and $H(r)=h(1 / r)$.

Examples

1. $\left(\mathbb{R}^{n}, G_{0}\right), G_{0}=$ Euclidean metric
2. $\left(\mathbb{R}^{n}, G\right)$, G long range perturbation of G_{0}, ie

$$
\left|\partial_{x}^{\alpha}\left(G(x)-G_{0}\right)\right| \lesssim(1+|x|)^{-\rho-|\alpha|}
$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold $\overline{\mathcal{M}}$ with boundary $\partial \overline{\mathcal{M}}=\mathcal{S}$, with boundary defining function $x(\mathcal{S}=\{x=0\})$, and close to $x=0$ (= infinity)

$h()=$. family of metrics on \mathcal{S} smooth w.r.t. x up to $x=0$.
Then take $r=1 / x$ and $H(r)=h(1 / r)$.

Examples

1. $\left(\mathbb{R}^{n}, G_{0}\right), G_{0}=$ Euclidean metric
2. $\left(\mathbb{R}^{n}, G\right)$, G long range perturbation of G_{0}, ie

$$
\left|\partial_{x}^{\alpha}\left(G(x)-G_{0}\right)\right| \lesssim(1+|x|)^{-\rho-|\alpha|}
$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold \mathcal{M} with boundary $\partial \mathcal{M}=\mathcal{S}$, with boundary defining function $x(\mathcal{S}=\{x=0\})$, and close to $x=0$ (= infinity)

$h()=$. family of metrics on \mathcal{S} smooth w.r.t. x up to $x=0$. Then take $r=1 / x$ and $H(r)=h(1 / r)$.

Examples

1. $\left(\mathbb{R}^{n}, G_{0}\right), G_{0}=$ Euclidean metric
2. $\left(\mathbb{R}^{n}, G\right)$, G long range perturbation of G, ie

$$
\left|\partial_{x}^{\alpha}\left(G(x)-G_{0}\right)\right| \lesssim(1+|x|)^{-\rho-|\alpha|}
$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold $\overline{\mathcal{M}}$ with boundary $\partial \overline{\mathcal{M}}=\mathcal{S}$,
with boundary defining function $x(\mathcal{S}=\{x=0\})$, and close
to $x=0$ (= infinity)

$h()=$. family of metrics on \mathcal{S} smooth w.r.t. x up to $x=0$. Then take $r=1 / x$ and $H(r)=h(1 / r)$.

Examples

1. $\left(\mathbb{R}^{n}, G_{0}\right), G_{0}=$ Euclidean metric
2. $\left(\mathbb{R}^{n}, G\right)$, G long range perturbation of G_{0}, ie

$$
\left|\partial_{x}^{\alpha}\left(G(x)-G_{0}\right)\right| \lesssim(1+|x|)^{-\rho-|\alpha|}
$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold $\overline{\mathcal{M}}$ with boundary $\partial \overline{\mathcal{M}}=\mathcal{S}$, with boundary defining function $x(\mathcal{S}=\{x=0\})$,

$h()=$. family of metrics on \mathcal{S} smooth w.r.t. x up to $x=0$. Then take $r=1 / x$ and $H(r)=h(1 / r)$.

Examples

1. $\left(\mathbb{R}^{n}, G_{0}\right), G_{0}=$ Euclidean metric
2. $\left(\mathbb{R}^{n}, G\right)$, G long range perturbation of G_{0}, ie

$$
\left|\partial_{x}^{\alpha}\left(G(x)-G_{0}\right)\right| \lesssim(1+|x|)^{-\rho-|\alpha|}
$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold $\overline{\mathcal{M}}$ with boundary $\partial \overline{\mathcal{M}}=\mathcal{S}$, with boundary defining function $x(\mathcal{S}=\{x=0\})$, and close to $x=0$ (= infinity)

$$
G=\frac{d x^{2}}{x^{4}}+\frac{h(x)}{x^{2}}
$$

$h()=$. family of metrics on \mathcal{S} smooth w.r.t. x up to $x=0$.

Examples

1. $\left(\mathbb{R}^{n}, G_{0}\right), G_{0}=$ Euclidean metric
2. $\left(\mathbb{R}^{n}, G\right)$, G long range perturbation of G_{0}, ie

$$
\left|\partial_{x}^{\alpha}\left(G(x)-G_{0}\right)\right| \lesssim(1+|x|)^{-\rho-|\alpha|}
$$

3. (\mathcal{M}, G) scattering manifold, ie if \mathcal{M} can be smoothly compactified as a manifold $\overline{\mathcal{M}}$ with boundary $\partial \overline{\mathcal{M}}=\mathcal{S}$, with boundary defining function $x(\mathcal{S}=\{x=0\})$, and close to $x=0$ (= infinity)

$$
G=\frac{d x^{2}}{x^{4}}+\frac{h(x)}{x^{2}}
$$

$h()=$. family of metrics on \mathcal{S} smooth w.r.t. x up to $x=0$. Then take $r=1 / x$ and $H(r)=h(1 / r)$.

The limiting absorption principle (LAP) Set $R(z)=\left(-\Delta_{G}-z\right)^{-1}$. The LAP at energy $\lambda \in \mathbb{R}$ is the existence of

for some suitable $s>0$ or (slightly) more simply

More generally, one can consider

The LAP is related to the spectral resolution E_{λ} of Δ_{G}, via

$$
\frac{d E_{\lambda}}{d \lambda}=\frac{1}{2 i \pi}(R(\lambda-i 0)-R(\lambda+i 0))
$$

The limiting absorption principle (LAP)

Set $R(z)=\left(-\Delta_{G}-z\right)^{-1}$. The LAP at energy $\lambda \in \mathbb{R}$ is the existence of

$$
R_{s}(\lambda \pm i 0):=\lim _{\varepsilon \rightarrow 0+}\langle r\rangle^{-s} R(\lambda \pm i \varepsilon)\langle r\rangle^{-s}
$$

for some suitable $s>0$ or (slightly) more simply

More generally, one can consider

The LAP is related to the spectral resolution E_{λ} of Δ_{G}, via

$$
\frac{d E_{\lambda}}{d \lambda}=\frac{1}{2 i \pi}(R(\lambda-i 0)-R(\lambda+i 0))
$$

The limiting absorption principle (LAP)

 Set $R(z)=\left(-\Delta_{G}-z\right)^{-1}$. The LAP at energy $\lambda \in \mathbb{R}$ is the existence of$$
R_{s}(\lambda \pm i 0):=\lim _{\varepsilon \rightarrow 0^{+}}\langle r\rangle^{-s} R(\lambda \pm i \varepsilon)\langle r\rangle^{-s}
$$

for some suitable $s>0$ or (slightly) more simply

$$
\sup _{\varepsilon>0}\left\|\langle r\rangle^{-s} R(\lambda+i \varepsilon)\langle r\rangle^{-s}\right\|<\infty
$$

More generally, one can consider

The LAP is related to the spectral resolution E_{λ} of Δ_{G}, via

The limiting absorption principle (LAP)

 Set $R(z)=\left(-\Delta_{G}-z\right)^{-1}$. The LAP at energy $\lambda \in \mathbb{R}$ is the existence of$$
R_{s}(\lambda \pm i 0):=\lim _{\varepsilon \rightarrow 0+}\langle r\rangle^{-s} R(\lambda \pm i \varepsilon)\langle r\rangle^{-s}
$$

for some suitable $s>0$ or (slightly) more simply

$$
\sup _{\varepsilon>0}\left\|\langle r\rangle^{-s} R(\lambda+i \varepsilon)\langle r\rangle^{-s}\right\|<\infty
$$

More generally, one can consider

$$
R_{s}^{(k)}(\lambda \pm i 0)=(k!)^{-1} \lim _{\varepsilon \rightarrow 0+}\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda \mp i \varepsilon\right)^{-1-k}\langle r\rangle^{-s}
$$

The LAP is related to the spectral resolution E_{λ} of Δ_{G}, via

The limiting absorption principle (LAP)

Set $R(z)=\left(-\Delta_{G}-z\right)^{-1}$. The LAP at energy $\lambda \in \mathbb{R}$ is the existence of

$$
R_{s}(\lambda \pm i 0):=\lim _{\varepsilon \rightarrow 0+}\langle r\rangle^{-s} R(\lambda \pm i \varepsilon)\langle r\rangle^{-s}
$$

for some suitable $s>0$ or (slightly) more simply

$$
\sup _{\varepsilon>0}\left\|\langle r\rangle^{-s} R(\lambda+i \varepsilon)\langle r\rangle^{-s}\right\|<\infty
$$

More generally, one can consider

$$
R_{s}^{(k)}(\lambda \pm i 0)=(k!)^{-1} \lim _{\varepsilon \rightarrow 0+}\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda \mp i \varepsilon\right)^{-1-k}\langle r\rangle^{-s}
$$

The LAP is related to the spectral resolution E_{λ} of Δ_{G}, via

$$
\frac{d E_{\lambda}}{d \lambda}=\frac{1}{2 i \pi}(R(\lambda-i 0)-R(\lambda+i 0))
$$

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{s}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

3. "weak" trapping: at least $\mathcal{O}\left(\lambda^{-1 / 2} \log \lambda\right)$, or $\mathcal{O}\left(\lambda^{\sigma}\right) \ldots$

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities
where $2^{*}=2 n /(n-2)$ for $n \geq 3$ (cf assumptions to get
long time gaussian heat kernel estimates)

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$
frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities
where $2^{*}=2 n /(n-2)$ for $n \geq 3$ (cf assumptions to get
long time gaussian heat kernel estimates)

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities
where $2^{*}=2 n /(n-2)$ for $n \geq 3$ (cf assumptions to get
long time gaussian heat kernel estimates)

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

1. in general: $\mathcal{O}\left(e^{C \lambda^{1 / 2}}\right)$

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

1. in general: $\mathcal{O}\left(e^{C \lambda^{1 / 2}}\right)$
2. non trapping: $\mathcal{O}\left(\lambda^{-1 / 2}\right)$

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

1. in general: $\mathcal{O}\left(e^{C \lambda^{1 / 2}}\right)$
2. non trapping: $\mathcal{O}\left(\lambda^{-1 / 2}\right)$
3. "weak" trapping: at least $\mathcal{O}\left(\lambda^{-1 / 2} \log \lambda\right)$, or $\mathcal{O}\left(\lambda^{\sigma}\right) \ldots$

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{S}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

1. in general: $\mathcal{O}\left(e^{C \lambda^{1 / 2}}\right)$
2. non trapping: $\mathcal{O}\left(\lambda^{-1 / 2}\right)$
3. "weak" trapping: at least $\mathcal{O}\left(\lambda^{-1 / 2} \log \lambda\right)$, or $\mathcal{O}\left(\lambda^{\sigma}\right) \ldots$

- Low frequency estimates do not depend on the geodesic flow,
or Sobolev inequalities

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{s}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

1. in general: $\mathcal{O}\left(e^{C \lambda^{1 / 2}}\right)$
2. non trapping: $\mathcal{O}\left(\lambda^{-1 / 2}\right)$
3. "weak" trapping: at least $\mathcal{O}\left(\lambda^{-1 / 2} \log \lambda\right)$, or $\mathcal{O}\left(\lambda^{\sigma}\right) \ldots$

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

$$
\left\|\langle r\rangle^{-1} u\right\|_{L^{2}} \lesssim\left\|\nabla_{G} u\right\|_{L^{2}}, \quad\|u\|_{L^{2}} \lesssim\left\|\nabla_{G} u\right\|_{L^{2}}
$$

where $2^{*}=2 n /(n-2)$ for $n \geq 3$
(cf assumptions to get

The limiting absorption principle (LAP)

- The LAP is a well known consequence of the Mourre theory (+ Jensen-Mourre-Perry).
- Problem: getting estimates $R_{s}(\lambda \pm i 0)$ as $\lambda \rightarrow \infty$, high frequency regime, and $\lambda \rightarrow 0^{+}$, low frequency regime
- High frequency (= semiclassical) estimates depend on the geodesic flow

1. in general: $\mathcal{O}\left(e^{C \lambda^{1 / 2}}\right)$
2. non trapping: $\mathcal{O}\left(\lambda^{-1 / 2}\right)$
3. "weak" trapping: at least $\mathcal{O}\left(\lambda^{-1 / 2} \log \lambda\right)$, or $\mathcal{O}\left(\lambda^{\sigma}\right) \ldots$

- Low frequency estimates do not depend on the geodesic flow, but rather use global homogeneous Hardy-Poincaré or Sobolev inequalities

$$
\left\|\langle r\rangle^{-1} u\right\|_{L^{2}} \lesssim\left\|\nabla_{G} u\right\|_{L^{2}}, \quad\|u\|_{L^{2}} \lesssim\left\|\nabla_{G} u\right\|_{L^{2}}
$$

where $2^{*}=2 n /(n-2)$ for $n \geq 3$ (cf assumptions to get long time gaussian heat kernel estimates)

Connection with time dependent problems

If B is a bounded operator

$$
\int_{\mathbb{R}}\left\|B e^{i t \Delta_{G}} u_{0}\right\|^{2} d t \leq 2 \pi\left(\sup _{\substack{\lambda \in \mathbb{R} \\ \varepsilon>0}}\left\|B R(\lambda+i \varepsilon) B^{*}\right\|\right)\left\|u_{0}\right\|^{2}
$$

Using $B=\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right)$, with $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$ and
semiclassical resolvent estimates

$$
\sup _{h-2}\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda \pm i 0\right)^{-1}\langle r\rangle^{-s}\right\| \leq C_{s} h l(h), \quad s>1 / 2
$$

we get, eg with $I(h)=h^{-1}$, a local smoothing effect

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right) e^{i t \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{S}\left\|u_{0}\right\|_{L^{2}}^{2}
$$

Connection with time dependent problems

If B is a bounded operator

$$
\int_{\mathbb{R}}\left\|B e^{i t \Delta_{G}} u_{0}\right\|^{2} d t \leq 2 \pi\left(\sup _{\substack{\lambda \in \mathbb{R}, \varepsilon>0}}\left\|B R(\lambda+i \varepsilon) B^{*}\right\|\right)\left\|u_{0}\right\|^{2}
$$

Using $B=\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right)$, with $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$ and
semiclassical resolvent estimates

we get, eg with $I(h)=h^{-1}$, a local smoothing effect

Connection with time dependent problems

If B is a bounded operator

$$
\int_{\mathbb{R}}\left\|B e^{i t \Delta_{G}} u_{0}\right\|^{2} d t \leq 2 \pi\left(\sup _{\substack{\lambda \in \mathbb{R}, \varepsilon>0}}\left\|B R(\lambda+i \varepsilon) B^{*}\right\|\right)\left\|u_{0}\right\|^{2}
$$

Using $B=\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right)$, with $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$

semiclassical resolvent estimates

we get, eg with $I(h)=h^{-1}$, a local smoothing effect

Connection with time dependent problems

If B is a bounded operator

$$
\int_{\mathbb{R}}\left\|B e^{i t \Delta_{G}} u_{0}\right\|^{2} d t \leq 2 \pi\left(\sup _{\substack{\lambda \in \mathbb{R}, \varepsilon>0}}\left\|B R(\lambda+i \varepsilon) B^{*}\right\|\right)\left\|u_{0}\right\|^{2}
$$

Using $B=\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right)$, with $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$ and semiclassical resolvent estimates

$$
\sup _{\lambda \sim h^{-2}}\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda \pm i 0\right)^{-1}\langle r\rangle^{-s}\right\| \leq C_{s} h l(h), \quad s>1 / 2
$$

we get, eg with $I(h)=h^{-1}$, a local smoothing effect

Connection with time dependent problems

If B is a bounded operator

$$
\int_{\mathbb{R}}\left\|B e^{i t \Delta_{G}} u_{0}\right\|^{2} d t \leq 2 \pi\left(\sup _{\substack{\lambda \in \mathbb{R}, \varepsilon>0}}\left\|B R(\lambda+i \varepsilon) B^{*}\right\|\right)\left\|u_{0}\right\|^{2}
$$

Using $B=\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right)$, with $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$ and semiclassical resolvent estimates

$$
\sup _{\lambda \sim h^{-2}}\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda \pm i 0\right)^{-1}\langle r\rangle^{-s}\right\| \leq C_{s} h \prime(h), \quad s>1 / 2
$$

we get, eg with $I(h)=h^{-1}$, a local smoothing effect

Connection with time dependent problems

If B is a bounded operator

$$
\int_{\mathbb{R}}\left\|B e^{i t \Delta_{G}} u_{0}\right\|^{2} d t \leq 2 \pi\left(\sup _{\substack{\lambda \in \mathbb{N}, \varepsilon>0}}\left\|B R(\lambda+i \varepsilon) B^{*}\right\|\right)\left\|u_{0}\right\|^{2}
$$

Using $B=\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right)$, with $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$ and semiclassical resolvent estimates

$$
\sup _{\lambda \sim h^{-2}}\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda \pm i 0\right)^{-1}\langle r\rangle^{-s}\right\| \leq C_{s} h \prime(h), \quad s>1 / 2
$$

we get, eg with $I(h)=h^{-1}$, a local smoothing effect

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s} \phi\left(h^{2} \Delta_{G}\right) e^{i t \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{s}\left\|u_{0}\right\|_{L^{2}}^{2}
$$

Connection with time dependent problems (continued)

By almost orthogonality, we can sum over $h=2^{-k}, k \geq 0$, and get

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s}(1-\Phi)\left(\Delta_{G}\right) e^{i t \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{\Phi}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

for some (actually all) $\Phi \in C_{0}^{\infty}(\mathbb{R}), \Phi \equiv 1$ near 0 . If we want to remove this spectral cutoff, we only get that for all T

$$
\int_{-T}^{T}\left\|\langle r\rangle^{-s} e^{i t \Delta_{G}} u_{0}\right\|_{H^{1 / 2-1}}^{2} d t \leq C_{T}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$
which leads to global in time estimates.
Other important motivations for low frequency estimates: global
Strichartz estimates (more later) and local energy decay

Connection with time dependent problems (continued)

By almost orthogonality, we can sum over $h=2^{-k}, k \geq 0$, and get

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s}(1-\Phi)\left(\Delta_{G}\right) e^{i \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{\Phi}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

for some (actually all) $\Phi \in C_{0}^{\infty}(\mathbb{R}), \Phi \equiv 1$ near 0 .

Connection with time dependent problems (continued)

By almost orthogonality, we can sum over $h=2^{-k}, k \geq 0$, and get

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s}(1-\Phi)\left(\Delta_{G}\right) e^{i \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{\Phi}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

for some (actually all) $\Phi \in C_{0}^{\infty}(\mathbb{R}), \Phi \equiv 1$ near 0 . If we want to remove this spectral cutoff,

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to global in time estimates.
Other important motivations for low frequency estimates: global Strichartz estimates (more later) and local energy decay

Connection with time dependent problems (continued)

By almost orthogonality, we can sum over $h=2^{-k}, k \geq 0$, and get

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s}(1-\Phi)\left(\Delta_{G}\right) e^{i t \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{\Phi}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

for some (actually all) $\Phi \in C_{0}^{\infty}(\mathbb{R}), \Phi \equiv 1$ near 0 . If we want to remove this spectral cutoff, we only get that for all T

$$
\int_{-T}^{T}\left\|\langle r\rangle^{-s} e^{i t \Delta_{G}} u_{0}\right\|_{H^{1 / 2-1}}^{2} d t \leq C_{T}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to global in time estimates.
Other important motivations for low frequency estimates: global Strichartz estimates (more later) and local energy decay

Connection with time dependent problems (continued)

By almost orthogonality, we can sum over $h=2^{-k}, k \geq 0$, and get

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s}(1-\Phi)\left(\Delta_{G}\right) e^{i \Delta_{G}} u_{0}\right\|_{H^{-\frac{1}{2}}}^{2} d t \leq C_{\Phi}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

for some (actually all) $\Phi \in C_{0}^{\infty}(\mathbb{R}), \Phi \equiv 1$ near 0 . If we want to remove this spectral cutoff, we only get that for all T

$$
\int_{-T}^{T}\left\|\langle r\rangle^{-s} e^{i t \Delta_{G}} u_{0}\right\|_{H^{1 / 2-1}}^{2} d t \leq C_{T}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to global in time estimates.
Other important motivations for low frequency estimates: global Strichartz estimates (more later) and local energy decay

Connection with time dependent problems (continued)

By almost orthogonality, we can sum over $h=2^{-k}, k \geq 0$, and get

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s}(1-\Phi)\left(\Delta_{G}\right) e^{i \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{\Phi}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

for some (actually all) $\Phi \in C_{0}^{\infty}(\mathbb{R}), \Phi \equiv 1$ near 0 . If we want to remove this spectral cutoff, we only get that for all T

$$
\int_{-T}^{T}\left\|\langle r\rangle^{-s} e^{i t \Delta_{G}} u_{0}\right\|_{H^{1 / 2-1}}^{2} d t \leq C_{T}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to global in time estimates.
Other important motivations for low frequency estimates: global Strichartz estimates (more later)

Connection with time dependent problems (continued)

By almost orthogonality, we can sum over $h=2^{-k}, k \geq 0$, and get

$$
\int_{\mathbb{R}}\left\|\langle r\rangle^{-s}(1-\Phi)\left(\Delta_{G}\right) e^{i \Delta_{G}} u_{0}\right\|_{H^{\frac{1-1}{2}}}^{2} d t \leq C_{\Phi}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

for some (actually all) $\Phi \in C_{0}^{\infty}(\mathbb{R}), \Phi \equiv 1$ near 0 . If we want to remove this spectral cutoff, we only get that for all T

$$
\int_{-T}^{T}\left\|\langle r\rangle^{-s} e^{i t \Delta_{G}} u_{0}\right\|_{H^{1 / 2-1}}^{2} d t \leq C_{T}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

unless we have a good control of the resolvent when $\lambda \rightarrow 0$ which leads to global in time estimates.
Other important motivations for low frequency estimates: global Strichartz estimates (more later) and local energy decay

The result

Theorem 1 ($\mathbf{B}+$ Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$.

$$
\begin{aligned}
& \text { 1. There exists } C>0 \text { such that, for }|\operatorname{Re}(z)| \leq 1, \\
& \qquad\left\|\langle r\rangle^{-1}\left(-\Delta_{G}-z\right)^{-1}\langle r\rangle^{-1}\right\| \leq C .
\end{aligned}
$$

2. For all $s \in(0,1 / 2)$, there exists $C_{s}>0$ such that, for $0<|\operatorname{Re}(z)| \leq 1$,
3. Fix $\left[E_{1}, E_{2}\right] \Subset(0, \infty)$. For all integer $k \geq 1$, there exists C_{k} such that, for all $\epsilon \in(0,1]$ and all ζ s.t. $\operatorname{Re}(\zeta) \in\left[E_{1}, E_{2}\right]$,

The result

Theorem 1 ($\mathbf{B}+$ Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$.

1. There exists $C>0$ such that, for $|\operatorname{Re}(z)| \leq 1$,

$$
\left\|\langle r\rangle^{-1}\left(-\Delta_{G}-z\right)^{-1}\langle r\rangle^{-1}\right\| \leq C .
$$

2. For all $s \in(0,1 / 2)$, there exists $C_{s}>0$ such that, for $0<|\operatorname{Re}(z)| \leq 1$,
3. Fix $\left[E_{1}, E_{2}\right] \Subset(0, \infty)$. For all integer $k \geq 1$, there exists C_{k} such that, for all $\epsilon \in(0,1]$ and all ζ s.t. $\operatorname{Re}(\zeta) \in\left[E_{1}, E_{2}\right]$,

The result

Theorem 1 ($\mathbf{B}+$ Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$.

1. There exists $C>0$ such that, for $|\operatorname{Re}(z)| \leq 1$,

$$
\left\|\langle r\rangle^{-1}\left(-\Delta_{G}-z\right)^{-1}\langle r\rangle^{-1}\right\| \leq C .
$$

2. For all $s \in(0,1 / 2)$, there exists $C_{s}>0$ such that, for $0<|\operatorname{Re}(z)| \leq 1$,

$$
\|\langle r\rangle^{-2-s}\left(-\Delta_{G}-z\right)^{-2}\langle r\rangle^{-2-s}| | \leq C_{s}|\operatorname{Re}(z)|^{s-1} .
$$

3. Fix $\left[E_{1}, E_{2}\right] \Subset(0, \infty)$. For all integer $k \geq 1$, there exists C_{k} such that, for all $\epsilon \in(0,1]$ and all ζ s.t. $\operatorname{Re}(\zeta) \in\left[E_{1}, E_{2}\right]$,

The result

Theorem 1 ($\mathbf{B}+$ Royer) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$.

1. There exists $C>0$ such that, for $|\operatorname{Re}(z)| \leq 1$,

$$
\left\|\langle r\rangle^{-1}\left(-\Delta_{G}-z\right)^{-1}\langle r\rangle^{-1}\right\| \leq C .
$$

2. For all $s \in(0,1 / 2)$, there exists $C_{s}>0$ such that, for $0<|\operatorname{Re}(z)| \leq 1$,

$$
\|\langle r\rangle^{-2-s}\left(-\Delta_{G}-z\right)^{-2}\langle r\rangle^{-2-s}| | \leq C_{s}|\operatorname{Re}(z)|^{s-1} .
$$

3. Fix $\left[E_{1}, E_{2}\right] \Subset(0, \infty)$. For all integer $k \geq 1$, there exists C_{k} such that, for all $\epsilon \in(0,1]$ and all ζ s.t. $\operatorname{Re}(\zeta) \in\left[E_{1}, E_{2}\right]$,

$$
\left\|\langle\epsilon r\rangle^{-k}\left(-\epsilon^{-2} \Delta_{G}-\zeta\right)^{-k}\langle\epsilon r\rangle^{-k}\right\| \leq C_{k} .
$$

Comments

1. The weight $\langle r\rangle^{-1}$ is sharp and improves on previous results by B and Bony-Häfner (on \mathbb{R}^{n}).
in Guillarmou-Hassell for scattering manifolds.
2. In higher dimensions, one has better estimates. Morevoer when $n=3$ and $\left(\mathcal{S}, H_{0}\right)=\left(S^{2}\right.$, can $)$, one can take $s=1 / 2$.
3. When $(\mathcal{M}, G)=\left(\mathbb{R}^{n}, G_{0}\right)$, the estimate
follow from the case $\epsilon=1$ by rescaling. Such estimates imply that, for any $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$,

Comments

1. The weight $\langle r\rangle^{-1}$ is sharp and improves on previous results by B and Bony-Häfner (on \mathbb{R}^{n}). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
2. In higher dimensions, one has better estimates. Morevoer when $n=3$ and $\left(\mathcal{S}, H_{0}\right)=\left(S^{2}\right.$, can $)$, one can take $s=1 / 2$.
3. When $(\mathcal{M}, G)=\left(\mathbb{R}^{n}, G_{0}\right)$, the estimate
follow from the case $\epsilon=1$ by rescaling. Such estimates imply that, for any $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$,

Comments

1. The weight $\langle r\rangle^{-1}$ is sharp and improves on previous results by B and Bony-Häfner (on \mathbb{R}^{n}). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
2. In higher dimensions, one has better estimates. Morevoer
3. When $(\mathcal{M}, G)=\left(\mathbb{R}^{n}, G_{0}\right)$, the estimate
follow from the case $\epsilon=1$ by rescaling. Such estimates imply that, for any $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$,

Comments

1. The weight $\langle r\rangle^{-1}$ is sharp and improves on previous results by B and Bony-Häfner (on \mathbb{R}^{n}). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
2. In higher dimensions, one has better estimates. Morevoer when $n=3$ and $\left(\mathcal{S}, H_{0}\right)=\left(S^{2}\right.$, can $)$, one can take $s=1 / 2$.
3. When $(\mathcal{M}, G)=\left(\mathbb{R}^{n}, G_{0}\right)$, the estimate
follow from the case $\epsilon=1$ by rescaling. Such estimates imply that, for any $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$,

Comments

1. The weight $\langle r\rangle^{-1}$ is sharp and improves on previous results by B and Bony-Häfner (on \mathbb{R}^{n}). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
2. In higher dimensions, one has better estimates. Morevoer when $n=3$ and $\left(\mathcal{S}, H_{0}\right)=\left(S^{2}\right.$, can $)$, one can take $s=1 / 2$.
3. When $(M, G)=\left(\mathbb{R}^{n}, G_{0}\right)$, the estimate
follow from the case $\epsilon=1$ by rescaling. Such estimates imply that, for any $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$,

Comments

1. The weight $\langle r\rangle^{-1}$ is sharp and improves on previous results by B and Bony-Häfner (on \mathbb{R}^{n}). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
2. In higher dimensions, one has better estimates. Morevoer when $n=3$ and $\left(\mathcal{S}, H_{0}\right)=\left(S^{2}, c a n\right)$, one can take $s=1 / 2$.
3. When $(\mathcal{M}, G)=\left(\mathbb{R}^{n}, G_{0}\right)$, the estimate

$$
\left\|\langle\epsilon r\rangle^{-k}\left(-\epsilon^{-2} \Delta_{G}-\zeta\right)^{-k}\langle\epsilon r\rangle^{-k}\right\| \leq C_{k}
$$

follow from the case $\epsilon=1$ by rescaling.

Comments

1. The weight $\langle r\rangle^{-1}$ is sharp and improves on previous results by B and Bony-Häfner (on \mathbb{R}^{n}). Maybe contained implicitly in Guillarmou-Hassell for scattering manifolds.
2. In higher dimensions, one has better estimates. Morevoer when $n=3$ and $\left(\mathcal{S}, H_{0}\right)=\left(S^{2}\right.$, can $)$, one can take $s=1 / 2$.
3. When $(\mathcal{M}, G)=\left(\mathbb{R}^{n}, G_{0}\right)$, the estimate

$$
\left\|\langle\epsilon r\rangle^{-k}\left(-\epsilon^{-2} \Delta_{G}-\zeta\right)^{-k}\langle\epsilon r\rangle^{-k}\right\| \leq C_{k}
$$

follow from the case $\epsilon=1$ by rescaling. Such estimates imply that, for any $\phi \in C_{0}^{\infty}(\mathbb{R} \backslash 0)$,

$$
\left\|\langle\epsilon r\rangle^{-k} \phi\left(\epsilon^{-2} \Delta_{G}\right) e^{i t \Delta_{G}}\langle\epsilon r\rangle^{-k}\right\| \leq C_{k}\left\langle\epsilon^{2} t\right\rangle^{1-k} .
$$

Connection with Strichartz estimates

We want to know if global Strichartz estimates for $u(t)=e^{i t \Delta_{G}} u_{0}$ hold,

$$
\int_{\mathbb{R}}\left\|e^{i t \Delta_{G}} u_{0}\right\|_{L^{2}}^{2} d t \lesssim\left\|u_{0}\right\|_{L^{2}}^{2}
$$

ie typically

Connection with Strichartz estimates

We want to know if global Strichartz estimates for $u(t)=e^{i t \Delta_{G}} u_{0}$ hold, ie

$$
\int_{\mathbb{R}}\left\|e^{i t \Delta_{G}} u_{0}\right\|_{L^{2}}^{2} d t \lesssim\left\|u_{0}\right\|_{L^{2}}^{2}
$$

ie typically

Connection with Strichartz estimates

We want to know if global Strichartz estimates for $u(t)=e^{i t \Delta_{G}} u_{0}$ hold, ie

$$
\int_{\mathbb{R}}\left\|e^{i t \Delta_{G}} u_{0}\right\|_{L^{2}}^{2} d t \lesssim\left\|u_{0}\right\|_{L^{2}}^{2}
$$

ie typically

$$
\int_{\mathbb{R}}\left\|\phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}^{2} d t \lesssim\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(i)\right\|_{L^{2}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \triangle_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} \phi\left(\epsilon^{-2} \triangle_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2^{*}}} \lesssim
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$
and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use mierolocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|\langle\epsilon r)^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|(r)^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$
and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use mierolocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|(r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$
and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (rescaled psoudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$
and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use mierolocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (rescaled pseudodifferential and Fourier integral operators).

Connection with Strichartz estimates

We split

$$
\phi\left(\epsilon^{-2} \Delta_{\mathcal{G}}\right) u(t)=\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)+(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)
$$

1. The first term is treated by L^{2} estimates (Sobolev + LAP)

$$
\begin{aligned}
\left\|\chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{*}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim \epsilon\left\|\langle\epsilon r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} \phi\left(\epsilon^{-2} \Delta_{G}\right) u(t)\right\|_{L^{2}}
\end{aligned}
$$

2. $(1-\chi)(\epsilon r) \phi\left(\epsilon^{-2} \Delta_{G}\right)$ is a (micro)localization where $r \gtrsim \epsilon^{-1}$ and $|\xi| \sim \epsilon \Rightarrow$ outside of the 'uncertainty region' \Rightarrow one can use microlocal techniques (rescaled pseudodifferential and Fourier integral operators). Here, the 'type 3 estimates' are very useful.

Global Strichartz estimates

Let

$$
u(t)=e^{i t \Delta_{G}} u_{0}
$$

Theorem $2(B+$ Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$. Assume we have polynomial resolvent estimates at high frequency

$$
\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda-i 0\right)\langle r\rangle^{-s}\right\| \leq C \lambda^{\sigma}, \quad \lambda \gg 1,
$$

for some $s>0$ and $\sigma \in \mathbb{R}$. Then

1. There exists $\chi \in C_{0}^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that

$$
\|(1-\chi) u\|_{L^{2}\left(\mathbb{R} ; L^{L^{*}}(\mathcal{M})\right)} \lesssim\left\|u_{0}\right\|_{L^{2}(\mathcal{M})} .
$$

2. If the manifold is non trapping (ie $\sigma=-1 / 2$), then we have global space time Strichartz estimates

$$
\mid u\left\|_{L^{2}\left(\mathbb{R} ; L^{2^{*}}(\mathcal{M})\right)} \lesssim\right\| u_{0} \|_{L^{2}(\mathcal{M})} .
$$

Global Strichartz estimates

Let

$$
u(t)=e^{i t \Delta_{G}} u_{0}
$$

Theorem 2 ($B+$ Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$.
we have polynomial resolvent estimates at high frequency
for some $s>0$ and $\sigma \in \mathbb{R}$. Then
There exists $\chi \in C_{0}^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that
2. If the manifold is non trapping (ie $\sigma=-1 / 2$), then we have global space time Strichartz estimates

Global Strichartz estimates

Let

$$
u(t)=e^{i t \Delta_{G}} u_{0}
$$

Theorem $2(B+$ Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$. Assume we have polynomial resolvent estimates at high frequency

$$
\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda-i 0\right)\langle r\rangle^{-s}\right\| \leq C \lambda^{\sigma}, \quad \lambda \gg 1,
$$

for some $s>0$ and $\sigma \in \mathbb{R}$.

1. There exists $\chi \in C_{0}^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that
 2. If the manifold is non trapping (ie $\sigma=-1 / 2$), then we have global space time Strichartz estimates

Global Strichartz estimates

Let

$$
u(t)=e^{i t \Delta_{G}} u_{0}
$$

Theorem $2(B+$ Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$. Assume we have polynomial resolvent estimates at high frequency

$$
\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda-i 0\right)\langle r\rangle^{-s}\right\| \leq C \lambda^{\sigma}, \quad \lambda \gg 1,
$$

for some $s>0$ and $\sigma \in \mathbb{R}$. Then

1. There exists $\chi \in C_{0}^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that

$$
\|(1-\chi) u\|_{L^{2}\left(\mathbb{R} ; L^{2}(\mathcal{M})\right)} \lesssim\left\|u_{0}\right\|_{L^{2}(\mathcal{M})} .
$$

2. If the manifold is non trapping (ie $\sigma=-1 / 2$), then we have global space time Strichartz estimates

Global Strichartz estimates

Let

$$
u(t)=e^{i t \Delta_{G}} u_{0}
$$

Theorem $2(B+$ Mizutani - in progress) Let (\mathcal{M}, G) be an asymptotically conical manifold of dimension $n \geq 3$. Assume we have polynomial resolvent estimates at high frequency

$$
\left\|\langle r\rangle^{-s}\left(-\Delta_{G}-\lambda-i 0\right)\langle r\rangle^{-s}\right\| \leq C \lambda^{\sigma}, \quad \lambda \gg 1,
$$

for some $s>0$ and $\sigma \in \mathbb{R}$. Then

1. There exists $\chi \in C_{0}^{\infty}(\mathcal{M})$ equal to 1 on a large enough compact set such that

$$
\|(1-\chi) u\|_{L^{2}\left(\mathbb{R} ; L^{*}(\mathcal{M})\right)} \lesssim\left\|u_{0}\right\|_{L^{2}(\mathcal{M})} .
$$

2. If the manifold is non trapping (ie $\sigma=-1 / 2$), then we have global space time Strichartz estimates

$$
\|u\|_{L^{2}\left(\mathbb{R} ; L^{2}(\mathcal{M})\right)} \lesssim\left\|u_{0}\right\|_{L^{2}(\mathcal{M})} .
$$

Proof of Theorem 1 (item 1)

Lemma One can choose $\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates r near infinity) such that

$$
d \operatorname{vol}_{G}=\kappa^{*}\left(r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)
$$

Consequence: Outside a compact set, a good model for $\left(\mathcal{M}, d \operatorname{vol}_{G}\right)$ is $\left(\mathcal{M}_{0}, r^{n-1} d r d\right.$ vol $\left._{H_{0}}\right)$ with $\mathcal{M}_{0}=(0, \infty) \times \mathcal{S}$, and

1. the rescaling group $e^{i t A}$

is unitary on $L^{2}\left(\mathcal{M}_{0}, r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)$.
2. the operator $\kappa_{*} \Delta_{G} \kappa^{*}$ coincides near infinity with

Proof of Theorem 1 (item 1)

Lemma One can choose $\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates r near infinity) such that

$$
d \operatorname{vol}_{G}=\kappa^{*}\left(r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)
$$

Consequence: Outside a compact set, a good model for $\left(\mathcal{M}, d \operatorname{vol}_{G}\right)$ is $\left(\mathcal{M}_{0}, r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)$ with $\mathcal{M}_{0}=(0, \infty) \times \mathcal{S}$,
the rescaling group $e^{i t A}$
is unitary on $L^{2}\left(\mathcal{M}_{0}, r^{n-1} d r d\right.$ vol $\left._{H_{0}}\right)$.
2. the operator $\kappa_{*} \Delta_{G} \kappa^{*}$ coincides near infinity with

Proof of Theorem 1 (item 1)

Lemma One can choose $\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates r near infinity) such that

$$
d \operatorname{vol}_{G}=\kappa^{*}\left(r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)
$$

Consequence: Outside a compact set, a good model for $\left(\mathcal{M}, d_{\operatorname{vol}_{G}}\right)$ is $\left(\mathcal{M}_{0}, r^{n-1} d r d\right.$ vol $\left._{H_{0}}\right)$ with $\mathcal{M}_{0}=(0, \infty) \times \mathcal{S}$, and

1. the rescaling group $e^{i t A}$

$$
e^{i t A} v(r, \omega)=e^{t \frac{n}{2}} v\left(e^{t} r, \omega\right), \quad t \in \mathbb{R}
$$

is unitary on $L^{2}\left(\mathcal{M}_{0}, r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)$.
2. the operator $\kappa_{*} \Delta_{G} \kappa^{*}$ coincides near infinity with

Proof of Theorem 1 (item 1)

Lemma One can choose $\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates r near infinity) such that

$$
d \operatorname{vol}_{G}=\kappa^{*}\left(r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)
$$

Consequence: Outside a compact set, a good model for $\left(\mathcal{M}, d_{\operatorname{vol}_{G}}\right)$ is $\left(\mathcal{M}_{0}, r^{n-1} d r d\right.$ vol $\left._{H_{0}}\right)$ with $\mathcal{M}_{0}=(0, \infty) \times \mathcal{S}$, and

1. the rescaling group $e^{i t A}$

$$
e^{i t A} v(r, \omega)=e^{t \frac{n}{2}} v\left(e^{t} r, \omega\right), \quad t \in \mathbb{R}
$$

is unitary on $L^{2}\left(\mathcal{M}_{0}, r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)$.
2. the operator $\kappa_{*} \Delta_{G} \kappa^{*}$ coincides near infinity with

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right), \quad\left(\text { here } G_{0}=d r^{2}+r^{2} G_{0}\right)
$$

Proof of Theorem 1 (item 1)

Lemma One can choose $\kappa: \mathcal{M} \backslash \mathcal{K} \rightarrow(R, \infty) \times \mathcal{S}$ (or equivalently the radial coordinates r near infinity) such that

$$
d \operatorname{vol}_{G}=\kappa^{*}\left(r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)
$$

Consequence: Outside a compact set, a good model for $\left(\mathcal{M}, d_{\operatorname{vol}_{G}}\right)$ is $\left(\mathcal{M}_{0}, r^{n-1} d r d\right.$ vol $\left._{H_{0}}\right)$ with $\mathcal{M}_{0}=(0, \infty) \times \mathcal{S}$, and

1. the rescaling group $e^{i t A}$

$$
e^{i t A} v(r, \omega)=e^{t \frac{n}{2}} v\left(e^{t} r, \omega\right), \quad t \in \mathbb{R}
$$

is unitary on $L^{2}\left(\mathcal{M}_{0}, r^{n-1} d r d \operatorname{vol}_{H_{0}}\right)$.
2. the operator $\kappa_{*} \Delta_{G} \kappa^{*}$ coincides near infinity with

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right), \quad\left(\text { here } G_{0}=d r^{2}+r^{2} G_{0}\right)
$$

Proof of Theorem 1 (item 1)

More precisely

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right),
$$

with T_{G} section of $\operatorname{Hom}\left(T^{*} \mathcal{M}_{0}, T \mathcal{M}_{0}\right)$ looking like

$$
T_{G}=\left(\begin{array}{cc}
1+K_{11}(r) & r^{-1} K_{12}(r) \\
r^{-1} K_{21}(r) & r^{-2}\left(T^{H_{0}}+K_{22}(r)\right)
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
0 & r^{-2} T^{H_{0}}
\end{array}\right),
$$

with

$$
\begin{equation*}
\left(r \partial_{r}\right)^{k} K_{i j} \text { small for all } k \geq 0 . \tag{S}
\end{equation*}
$$

Then
where P_{λ} is the rescaled operator obtained by rescaling $r \mapsto r / \lambda^{1 / 2}$ in the $K_{i j}$, scaling under which (S) is invariant.
Remark: all theses λ dependent operators are selfadjoint with respect to $r^{n-1} d^{\prime} \mathrm{d}_{\mathrm{vol}}^{\mathrm{H}_{0}}$.

Proof of Theorem 1 (item 1)

More precisely

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right),
$$

with T_{G} section of $\operatorname{Hom}\left(T^{*} \mathcal{M}_{0}, T \mathcal{M}_{0}\right)$ looking like

$$
T_{G}=\left(\begin{array}{cc}
1+K_{11}(r) & r^{-1} K_{12}(r) \\
r^{-1} K_{21}(r) & r^{-2}\left(T^{H_{0}}+K_{22}(r)\right)
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
0 & r^{-2} T^{H_{0}}
\end{array}\right),
$$

with

$$
\begin{equation*}
\left(r \partial_{r}\right)^{k} K_{i j} \text { small for all } k \geq 0 . \tag{S}
\end{equation*}
$$

Then

$$
(P-\lambda-i \varepsilon)^{-1}
$$

where P_{λ} is the rescaled operator obtained by rescaling $r \mapsto r / \lambda^{1 / 2}$ in the $K_{i j}$, scaling under which (S) is invariant. Remark: all theses λ dependent operators are selfadjoint with respect to $\mathrm{r}^{n-1} \mathrm{drdvol}^{1} \mathrm{H}_{0}$.

Proof of Theorem 1 (item 1)

More precisely

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right),
$$

with T_{G} section of $\operatorname{Hom}\left(T^{*} \mathcal{M}_{0}, T \mathcal{M}_{0}\right)$ looking like

$$
T_{G}=\left(\begin{array}{cc}
1+K_{11}(r) & r^{-1} K_{12}(r) \\
r^{-1} K_{21}(r) & r^{-2}\left(T^{H_{0}}+K_{22}(r)\right)
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
0 & r^{-2} T^{H_{0}}
\end{array}\right),
$$

with

$$
\begin{equation*}
\left(r \partial_{r}\right)^{k} K_{i j} \text { small for all } k \geq 0 . \tag{S}
\end{equation*}
$$

Then

$$
(P-\lambda-i \varepsilon)^{-1}=\lambda^{-1} e^{i \ln \lambda^{1 / 2} A}\left(P_{\lambda}-1-i \mu\right) e^{-i \ln \lambda^{1 / 2} A}
$$

where P_{λ} is the rescaled operator obtained by rescaling $r \mapsto r / \lambda^{1 / 2}$ in the $K_{i j}$, scaling under which (S) is invariant. Remark: all theses λ dependent operators are selfadjoint with respect to ${ }^{n-1}$ drdvol $_{H_{0}}$.

Proof of Theorem 1 (item 1)

More precisely

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right)
$$

with T_{G} section of $\operatorname{Hom}\left(T^{*} \mathcal{M}_{0}, T \mathcal{M}_{0}\right)$ looking like

$$
T_{G}=\left(\begin{array}{cc}
1+K_{11}(r) & r^{-1} K_{12}(r) \\
r^{-1} K_{21}(r) & r^{-2}\left(T^{H_{0}}+K_{22}(r)\right)
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
0 & r^{-2} T^{H_{0}}
\end{array}\right),
$$

with

$$
\begin{equation*}
\left(r \partial_{r}\right)^{k} K_{i j} \text { small for all } k \geq 0 \tag{S}
\end{equation*}
$$

Then

$$
(P-\lambda-i \varepsilon)^{-1}=\lambda^{-1} e^{i \ln \lambda^{1 / 2} A}\left(P_{\lambda}-1-i \mu\right) e^{-i \ln \lambda^{1 / 2} A}
$$

where P_{λ} is the rescaled operator obtained by rescaling $r \mapsto r / \lambda^{1 / 2}$ in the $K_{i j}$,

Proof of Theorem 1 (item 1)

More precisely

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right)
$$

with T_{G} section of $\operatorname{Hom}\left(T^{*} \mathcal{M}_{0}, T \mathcal{M}_{0}\right)$ looking like

$$
T_{G}=\left(\begin{array}{cc}
1+K_{11}(r) & r^{-1} K_{12}(r) \\
r^{-1} K_{21}(r) & r^{-2}\left(T^{H_{0}}+K_{22}(r)\right)
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
0 & r^{-2} T^{H_{0}}
\end{array}\right),
$$

with

$$
\begin{equation*}
\left(r \partial_{r}\right)^{k} K_{i j} \text { small for all } k \geq 0 \tag{S}
\end{equation*}
$$

Then

$$
(P-\lambda-i \varepsilon)^{-1}=\lambda^{-1} e^{i \ln \lambda^{1 / 2} A}\left(P_{\lambda}-1-i \mu\right) e^{-i \ln \lambda^{1 / 2} A}
$$

where P_{λ} is the rescaled operator obtained by rescaling $r \mapsto r / \lambda^{1 / 2}$ in the $K_{i j}$, scaling under which (S) is invariant.

Proof of Theorem 1 (item 1)

More precisely

$$
P u=\operatorname{div}_{G_{0}}\left(T^{G} d u\right)
$$

with T_{G} section of $\operatorname{Hom}\left(T^{*} \mathcal{M}_{0}, T \mathcal{M}_{0}\right)$ looking like

$$
T_{G}=\left(\begin{array}{cc}
1+K_{11}(r) & r^{-1} K_{12}(r) \\
r^{-1} K_{21}(r) & r^{-2}\left(T^{H_{0}}+K_{22}(r)\right)
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
0 & r^{-2} T^{H_{0}}
\end{array}\right),
$$

with

$$
\begin{equation*}
\left(r \partial_{r}\right)^{k} K_{i j} \text { small for all } k \geq 0 \tag{S}
\end{equation*}
$$

Then

$$
(P-\lambda-i \varepsilon)^{-1}=\lambda^{-1} e^{i \ln \lambda^{1 / 2} A}\left(P_{\lambda}-1-i \mu\right) e^{-i \ln \lambda^{1 / 2} A}
$$

where P_{λ} is the rescaled operator obtained by rescaling $r \mapsto r / \lambda^{1 / 2}$ in the $K_{i j}$, scaling under which (S) is invariant. Remark: all theses λ dependent operators are selfadjoint with respect to $r^{n-1} d r d \operatorname{vol}_{H_{0}}$.

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that
for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that

where, by the homeogenous Hardy inequality

$$
\left\|r^{-1} V\right\|_{L^{2}\left(M_{0}\right)} \leq C\left\|\partial_{r} V\right\|_{L^{2}\left(M_{0}\right)}
$$

$a r^{-1}+b \partial_{r}$ is bounded from H_{0}^{1} to $L^{2} \ldots$

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that

$$
\left\|(\nu A+i)^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1}(\nu A+i)^{-1}\right\|_{H^{-1} \rightarrow H_{0}^{1}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that
where, by the homeogenous Hardy inequality

$a r^{-1}+b \partial_{r}$ is bounded from H_{0}^{1} to $L^{2} \ldots$

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that

$$
\left\|(\nu A+i)^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1}(\nu A+i)^{-1}\right\|_{H^{-1} \rightarrow H_{0}^{1}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that
where, by the homeogenous Hardy inequality

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that

$$
\left\|(\nu A+i)^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1}(\nu A+i)^{-1}\right\|_{H^{-1} \rightarrow H_{0}^{1}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that

$$
r^{-1}=r^{-1}(\nu A+i)(\nu A+i)^{-1}=\left(a r^{-1}+b \partial_{r}\right)(\nu A+i)^{-1}
$$

where, by the homeogenous Hardy inequality

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that

$$
\left\|(\nu A+i)^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1}(\nu A+i)^{-1}\right\|_{H^{-1} \rightarrow H_{0}^{1}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that

$$
r^{-1}=r^{-1}(\nu A+i)(\nu A+i)^{-1}=\left(a r^{-1}+b \partial_{r}\right)(\nu A+i)^{-1}
$$

where, by the homeogenous Hardy inequality

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that

$$
\left\|(\nu A+i)^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1}(\nu A+i)^{-1}\right\|_{H^{-1} \rightarrow H_{0}^{1}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that

$$
r^{-1}=r^{-1}(\nu A+i)(\nu A+i)^{-1}=\left(a r^{-1}+b \partial_{r}\right)(\nu A+i)^{-1}
$$

where, by the homeogenous Hardy inequality

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that

$$
\left\|(\nu A+i)^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1}(\nu A+i)^{-1}\right\|_{H^{-1} \rightarrow H_{0}^{1}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that

$$
r^{-1}=r^{-1}(\nu A+i)(\nu A+i)^{-1}=\left(a r^{-1}+b \partial_{r}\right)(\nu A+i)^{-1}
$$

where, by the homeogenous Hardy inequality

$$
\left\|r^{-1} v\right\|_{L^{2}\left(\mathcal{M}_{0}\right)} \leq C\left\|\partial_{r} v\right\|_{L^{2}\left(\mathcal{M}_{0}\right)}
$$

$a r^{-1}+b \partial_{r}$ is bounded from H_{0}^{1} to $L^{2} \ldots$

Proof of Theorem 1 (item 1)

Using the standard Mourre theory, we can prove the LAP for $\left(P_{\lambda}-1-i \mu\right)^{-1}$
Proposition There exists $\nu>0$ small enough such that

$$
\left\|(\nu A+i)^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1}(\nu A+i)^{-1}\right\|_{H^{-1} \rightarrow H_{0}^{1}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
Recall that $i A=r \partial_{r}+\frac{n}{2}$.
Observe next that

$$
r^{-1}=r^{-1}(\nu A+i)(\nu A+i)^{-1}=\left(a r^{-1}+b \partial_{r}\right)(\nu A+i)^{-1}
$$

where, by the homeogenous Hardy inequality

$$
\left\|r^{-1} v\right\|_{L^{2}\left(\mathcal{M}_{0}\right)} \leq C\left\|\partial_{r} v\right\|_{L^{2}\left(\mathcal{M}_{0}\right)}
$$

$a r^{-1}+b \partial_{r}$ is bounded from H_{0}^{1} to $L^{2} \ldots$

Proof of Theorem 1 (item 1)

... therefore, we get the bound

$$
\left\|r^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1} r^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
After rescaling, this yields
for all $\lambda>0$ and all $\mu>0$, which completes the proof for the model.

Proof of Theorem 1 (item 1)

... therefore, we get the bound

$$
\left\|r^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1} r^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
After rescaling, this yields

$$
\left\|\lambda^{1 / 2} r^{-1} \lambda^{-1}(P-\lambda-i \varepsilon)^{-1} r^{-1} \lambda^{1 / 2}\right\|_{L^{2} \rightarrow L^{2}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$, which completes the proof for the
model.

Proof of Theorem 1 (item 1)

... therefore, we get the bound

$$
\left\|r^{-1}\left(P_{\lambda}-1-i \mu\right)^{-1} r^{-1}\right\|_{L^{2} \rightarrow L^{2}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$.
After rescaling, this yields

$$
\left\|\lambda^{1 / 2} r^{-1} \lambda^{-1}(P-\lambda-i \varepsilon)^{-1} r^{-1} \lambda^{1 / 2}\right\|_{L^{2} \rightarrow L^{2}} \leq C
$$

for all $\lambda>0$ and all $\mu>0$, which completes the proof for the model.

