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What are Strichartz inequalities ?
Schroédinger-Strichartz estimates
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if p, g > 2 satisfy the admissibilty condition
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Wave-Strichartz estimates
OFu=A0u = ||Ullpo,m9) S NUO)]|r + [[0rU(0)]| -1
under the (sufficient) condition on p, g > 2 that
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An explicit example
Consider a wave packet centered at (y, ()
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By explicit computation:
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where ¢gp = T2 §(2/q)2q Using the admissibility condition:
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Why are they useful ?

Non linear Cauchy problem at low regularity, e.g.
iou+ Au==£[u"u,  Upo=up€L?R?), 1<v<3.

Rewrite it as an integral equation
u(t) = ePuq T i / (=98 y(5)|"~ u(s)ds
0

and use a fixed point argument in a suitable closed ball of
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XT = C([o’ T]sz)mLp([Ov T]7Lq)7 ’ q:V+1
Strichartz inequalities allow to show that e™®u, € X7 , and that

t .
v »—>/ =92y (s)[*~"v(s)ds is a contraction
0

for T small enough (this uses inhomogeneous inequalities).



Estimates in non Euclidean geometries

Wave equation: weaker dispersion but finite propagation
speed

1.

2.

M smooth with positive injectivity radius: same
estimates (local in time) as on R” [Kapitanski]

M with boundary: Additional losses in general
[lvanovici-Lebeau-Planchon]. Unavoidable at least if if
g >4 and n € {2,3,4} (additional loss of § (% — %)
[lvanovici])

low regularity metrics: additional losses in general below
C? regularity [Bahouri-Chemin, Tataru, Smith-Tataru]



Estimates in non Euclidean geometries (continued)

Schrédinger equation: one expects possible losses

Ul oo, m,Laemy) S U)oy == 11(1 = A)72u(0)]] 2w

(infinite propagation speed!)

1. Mclosed: o = % [Burg-Gérard-Tzvetkov] (optimal on S8),
but for M = T2 and p = g = 4, any ¢ > 0 [Bourgain]!

2. M compact with boundary: Additional losses in general
(o = % [Anton], % [Blair,Smith,Sogge])

3. M non compact with large ends: No loss if no (or little)
trapping; either for M asymp. flat or hyperbolic (including:
outside a convex [lvanovici] or polygonal obstacles
[Baskin-Marzuola-Wunsch])



About the proof of Strichartz estimates

The classical strategy is to prove L' — L> estimates for the
evolution and use the following type of abstract result.
Proposition. Assume
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) D
HUh(t)Uh(S) HL1_)L00 ﬁv

IN

tl s < T

Then,ifp>2,q9>2and

we have s 11
2 1 1
HUh(')fHLp([o,T],Lq) S Bf? Dy, o [If] 2



About the proof of Strichartz estimates (continued)

Up to a Littlewood-Paley argument, to localize spectrally the
problem (with ¢ € C5°(0, +00)), the usual estimates follow from:

Schroédinger
|lp(—HPa)e 22|, M sio(my < 1= 5|72

Wave

<h "F|t-s T

’ ‘w(_th)ei(tis)m‘ L1 (M)—sLoo(M) ™

on suitable time scales. Typically, if oiy; = injectivity radius,

t],|s] < oimj (Wave)  |t|,[s] < h x oy (Schrédinger)



Problem: what happens if g;,; vanishes ?

» are there still Strichartz estimates ?
» if yes, are there additional losses ?
» if yes, are they unavoidable ?

We address these questions for (smooth) surfaces with
cusps.



Surfaces with cusps

» Model for the cusp:
So = [ro, OO) X .A, Go = df2 + 6_2¢(r)d92,
A = a union of circles and

/ eNdr<oco ie.  aera(Sp) < oo

o

We also assume that ¢U) is bounded for all j > 1.
» More generally, we can consider (S, G) with

S=KU 5“0, with K compact and G = Gy on §0 )

Example: S = R x S' with G = dr? + d#?/ cosh?(r)



Operators and measures on S,

_ 0D e _ e 9(0)
0= 52~ o (r)g + e P\VAY, dvolp = e drd A

A is symmetric on Léo = [2(Sy, dvolp). We also let
= [|(1 — 2g)°/?
1l = 1101 = B0y 72t
To use the standard Lebesgue measure, it is useful to consider

U:Lg v ui=Up=e 2y e [?:= %S, drdA).

P:=U(-Do)U" = a2 A 4+ w(r),

where w = (¢> — 2¢"")/4. P is symmetric on L2. Note also that
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Projection away from zero modes
We let
mo = orthogonal projection on KerLg(A)(AA)

and define
Nn=1®m, N =1 (I—mp)

seen as operators (orthogonal projections) on both

L2((ry, 00),dr) @ L2(A,dA) ~ L2
L2((r0,00), €7*dr) @ [2(A,dA) ~ L&

If eo, ..., €k—1 is an orthonormal basis of KerLg(A)(AA),

My =>" </ ra)dA>®ek

k<ky



Zero angular modes = No Strichartz estimates
Theorem 1 letp>1,g>2ando > 0.
1. There is a sequence (vn)n>0 In HE N ARan(M) such that

¥l
0
sup =
n>0 HwnHHgo

+00.

2. There is a sequence (vn)n>o 0f in Hg N Ran(M) such that

|| cos(tv/=R0)tnllogo,1),:19 )
sup 0 — 4.
>0 [1¥nllHg,

3. Consider e?() = ¢ and ry = 0. There is a sequence
(¥n)nx0 in HE, N Ran(M) such that

HeitAT/JnHLp([oj],;l_g )
sup 0 — +oo.
n>0 HwnHHgo




Wave-Strichartz estimates at infinity away from zero

angular modes
Let ry > rp and 1y, )(r) be a localization inside the cusp.

Theorem 2 Let (p, q) be sharp wave admissible in dimension

two

2 N 1 1

p q 2
and set

3/1 1
w=2(zq)
Then, if we set
sm(t\/I)

W(t) = cos(tv/—A)ig

we have

an]l[thO)(r)wHLp ([0,1]; Lq ) ~ H¢OHH"W + H¢1 HHUW 1



Schrddinger-Strichartz estimates at infinity away from

zero angular modes
Theorem 3 Let (p, ) be Schrédinger admissible

1,11 _a oy 1
p g 2 T72\274q) 2
Fix ¢ € C5°(R). Then, if we set

V() = €™ p(—RPA)y

we have
"nc]l[fhoo)(r)wh"LP([O,h];L?;O) S Hl/JHHgS

Corollary Let (p, g) be a Schrédinger admissible pair. If we set

w(t) — eftAw

we have
(o] <
HI'I ]l[fhoo)(r)w"LP([OJ];L%O) ~ H¢HHG2%



Separation of variables

Using an orthonormal eigenbasis (ex)x>o of A4,
Ak = —psex

we have a unitary equivalence

25 urs (u)k € P LE((ro,00), dr), uk(r) = /ek(a)u(r, a)dA
k>0

Through this mapping, for any bounded Borel function f, we
have

f(P)u=> f(pk)uk @ ex
K

where
b= —0F + uge®™ + w(r).



Elliptic estimates away from zero angular modes

Proposition Let x € C3°(R) such that x = 1 near rp. Then for
any N >0

(€240 4N 0ne(1 — x(r)(1 — Ao) ™

L2GO—>L%;0
provided that 2Ny + N, < 2N. In particular, for N large enough

5 < o0
o0
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Localization in frequency: Littlewood-Paley
decomposition

Consider a dyadic partition of unity
I=po(—00)+ Y, w(—hPAo)
h2=2—n
with g € C3°(R), ¢ € C5°(0, +o0)

Proposition. For all g € [2,00) and x € C3°(R) such that x = 1
near ry,

1

I =x)¥llg, < (ZH” X)p(—H Do) wHLq> Hllliz,



Localization in space

For ry > ry + 6 with § > 0, define
L =11 0n4041) T = 1py s4Ln 14640
Proposition. Let g € [2,00) and v € {1, }}.

1
2

1ML, 00 (=P B0)Y [ 1o < (Z!\ﬂ°nL(r)so(—h2Ao)¢\|ig)
0 L 0

For |t| < t, small enough independent of L and h,

|

MeLLp(—h Do)eh a0 (1 — Ty = O((he D))

12, —19
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Angular decomposition

The first two localizations reduce the problem to prove
Strichartz inequalities for

i v 1
hu(t) == NP1 (N2 oA, ve {1, 5)

Using 1D Sobolev inequalities

cyr(v) _ cw (V)
e o - [Imew§ e, r, sy (oo 0
0
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where W;;,/Z,k(t) — ﬂL(f)e‘z’(’)/Ze’%(th")”(p(thk)e_‘b(r)/zq/;



Dispersion estimates

We have eventually to estimate

(t=s)

#(r) i(t—s) v #(r)
|72 1u(r)(PPp)2e 7 PP 11 (r)e™2 || 1 oy ooy

((t=8) (42 v
< e¢(’-)H]lL(r)<p(h2pk)zel m (Fpk) ]lL(r)HU(R)ﬁL‘X’(R)

where
P(MPpk)? ~ Opn(p(p® + W 5e21)).
We approximate the operators by FIOs with phases

oiSy) = (08402 + 1P2e0) . 80, r.p)=rp

and argue by Stationary Phase/Van der Corput estimates using

RSz, RSP 2 |ty



Optimality of the semiclassical Schrédinger-Strichartz
inequality

We consider ¢(r) = r, ey, an eigenfunction of A 4 with non zero
eigenvalue —p , and set

PO(r,a) == ez uf(r)ex (a),

where, for a given x € C3°(R) which is equal to 1 near 0,

Ui(r) = (wh)~4x(r + log h) exp <—(f+2';7)9h)2> .
Then
o'ty = &2 (e iuf) wey,  t=hs
where

]
P = D7+ pi € + 4



Facti: wé’ is localized at frequency 1/h (mod a h> remainder)
Fact2: By coherent states propagation ((Combescure-Robert])

Py u{,’ ~ wave packet centered at (— log(h),0) + O(1)
Therefore
_jSh2 h _(1_i> 1
100D BP0y 2 () = 1

and
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