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Abstract

For a class of non compact Riemannian manifolds with ends (M, g), we give pseudo-
differential expansions of bounded functions of the semi-classical Laplacian h2∆g, h ∈ (0, 1].
We then study related Lp boundedness properties and show in particular that, although
ϕ(−h2∆g) is not bounded on Lp(M, dg) in general, it is always bounded on suitable weighted
Lp spaces.

1 Introduction and Results

In this paper we describe semi-classical expansions of functions of the Laplacian on a class of non
compact manifolds of bounded geometry. We also derive certain weighted Lp → Lp boundedness
properties of such operators. Further applications to Littlewood-Paley decompositions [4] and
Strichartz estimates [5] will be published separately. Needless to say, the range of applications of
the present functional calculus goes beyond Strichartz estimates; there are many problems which
naturally involve spectral cutoffs at high frequencies in linear and non linear PDEs (Littlewood-
Paley decompositions, paraproducts) or in spectral theory (trace formulas).

Consider a non compact Riemannian manifold (M, g) with ends, ie whose model at infinity is
a product (R,+∞) × S with metric g = dr2 + dθ2/w(r)2, where R � 1, (S, dθ2) is a compact
Riemannian manifold and w(r) a bounded positive function. For instance, w(r) = r−1 corresponds
to conical ends, w(r) = 1 to cylindrical ends and w(r) = e−r to hyperbolic ends. We actually
consider more general metrics (see Definition 1.2 below for precise statements) but these are the
typical examples we have in mind. If ∆g denotes the Laplacian onM and ϕ is a symbol of negative
order, we are interested in decompositions of the form

ϕ(−h2∆g) = QN (ϕ, h) + hN+1RN (ϕ, h), h ∈ (0, 1], (1.1)
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where N ≥ 0 is fixed and arbitrary, QN (ϕ, h) has an expansion in powers of h in terms h-pseudo-
differential operators and hN+1RN (ϕ, h) is a ’nice’ remainder. We recall that, for such semi-
classical expansions, even the case of ϕ ∈ C∞0 (R) is of interest, by opposition to the classical case
(h = 1) where C∞0 functions of ∆g are often treated as negligible operators.

There is a large literature devoted to the pseudo-differential analysis of functions of closed op-
erators on manifolds so we only give references which are either classical or close to our framework.
For h = 1, the case of compact manifolds (ie, essentially, the local interior case) was considered by
Seeley [19] (see also [20, pp. 917-920]). For boundary value problems, we refer to [20, 12] and for
non compact or singular manifolds to [18, 1]. We also quote [8, 22, 15] where general manifolds
of bounded geometry are studied in connection with the problem of the Lp → Lp boundedness
of functions the Laplacian (to which we come back below). The semi-classical case is treated for
very general operators on Rn in [14, 17, 11] and in [7] for a compact manifold. Besides, one of our
initial motivations is to extend the functional calculus used in [7] to non compact manifolds and
thus to provide a convenient tool to prove Strichartz estimates, as for instance in [13, 6].

Although the general picture is quite clear, at least from the L2 point of view, the problem of
getting expansions of the form (1.1) requires some care. By opposition to the compact case (or
to Rn for uniformly elliptic operators), one has to take into account certain off diagonal effects
possibly leading to the unboundedness of the operators on Lp(M, dg), when p 6= 2, if dg denotes
the Riemannian measure.

By considering properly supported operators, namely with kernels supported close to the di-
agonal of M×M, we may insure that the principal part of the expansion QN (ϕ, h) is bounded
on Lp(M, dg), for all p ∈ [1,∞], uniformly with respect to h. However, the boundedness of the
remainder RN (ϕ, h) on Lp(M, dg) remains equivalent to the one of the full operator ϕ(−h2∆g)
and it is well known that the latter may fail for non holomorphic ϕ, as first noticed by Clerc and
Stein [9] for symmetric spaces. The latter question is treated (with h = 1) for a large class of
manifolds by Taylor in [22] (see also the references therein and the extension [15] to systems of
properly supported operators). Taylor proves that, if A denotes the bottom of the spectrum of
−∆g and L = (−∆g−A)1/2, the boundedness of ϕ(L) on Lp(M, dg) is guaranteed if ϕ is even and
holomorphic in a strip of width at least κ|1/p − 1/2|, with κ the exponential rate of the volume
growth of balls. This is typically relevant in the hyperbolic case. To illustrate this fact (as well as
some of our results), we recall a short proof of the Lp-unboundedness of (z−∆Hn)−1 in Appendix
A, ∆Hn being the Laplacian on the hyperbolic space.

In summary, our first goal is to provide a fairly explicit and precise description of expansions of
the form (1.1). For h = 1, this result is essentially contained in [8, 22] but we feel that it is worth
giving complete proofs for the semi-classical case too, first because we shall use it extensively in
subsequent papers and second because of the subtleties due to Lp-unboundedness.

Our second point is to prove weighted Lp estimates on RN (ϕ, h) or, equivalently, on the resol-
vent (z−∆g)−1. The basic strategy is to use the expansion (1.1) to get L2 estimates on commutators
of the resolvent with natural first order differential operators and show that (z−∆g)−1 is a pseudo-
differential operator, using the Beals criterion. At this stage, the meaning of pseudo-differential
operator is rather vague but we emphasize that the point is not (only) to control the singularity
of the kernel close to the diagonal but also the decay far from the diagonal. As a consequence
of this analysis, we obtain in particular that, although (z −∆g)−1 is not necessarily bounded on
Lp(M, dg), we always have

||w(r)
n−1
p −

n−1
2 (z −∆g)−1w(r)

n−1
2 −

n−1
p ||Lp(M,dg)→Lp(M,dg) <∞,

for all p ∈ (1,∞) and z /∈ spec(∆g). More generally, if W is a temperate weight (see Definition 1.6
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below), we have

||W (r)−1w(r)
n−1
p −

n−1
2 (z −∆g)−1w(r)

n−1
2 −

n−1
p W (r)||Lp(M,dg)→Lp(M,dg) <∞.

This works in particular for the hyperbolic case where (z −∆g)−1 is not bounded on Lp(M, dg)
in general. In the conical case, or more generally if w itself is a temperate weight, we recover
the natural (unweighted) boundedness on Lp(M, dg) by choosing W = w

n−1
p −

n−1
2 . The latter

boundedness can be seen as a consequence of [22] since, if w is temperate, the volume growth of
balls is polynomial. The above estimates are therefore complementary to the results of [22]: if z is
too close to the spectrum of the Laplacian, (z −∆g)−1 may not be bounded on Lp = Lp(M, dg)
but it is bounded if we accept to replace Lp by weighted Lp spaces. Furthermore, these weighted
spaces are natural since they contain Lp itself when w is temperate (ie essentially if w−1 is of
polynomial growth).

Let us now state our results precisely.

Manifolds, atlas, partition of unity. In the sequelM will be a smooth manifold of dimension n ≥ 2,
without boundary and which is diffeomorphic to a product outside a compact set in the following
sense : we assume that there exist a compact subset K bM, a real number R, a compact manifold
S and a function r ∈ C∞(M,R) such that

1. r is a coordinate near M\K such that

r(x)→ +∞, x→∞,

2. there is a diffeomorphism of the form

Ψ :M\K → (R,+∞)× S, (1.2)
x 7→ (r(x), πS(x)) . (1.3)

Under these assumptions, we can specify an atlas on M and a partition of unity as follows. If we
consider a chart on S,

ψι : Uι ⊂ S → Vι ⊂ Rn−1, (1.4)

with ψι(y) = (θ1(y), . . . , θn−1(y)), then the open sets

Uι = Ψ−1 ((R,+∞)× Uι) ⊂M, Vι = (R,+∞)× Vι ⊂ Rn, (1.5)

and the map

Ψι : Uι → Vι, with Ψι(x) = (r(x), ψι ◦ πS(x))
= (r(x), θ1(πS(x)), . . . , θn−1(πS(x))) ,

define a coordinate chart onM\K. With a standard abuse of notation, we will denote for simplicity
these coordinates (r, θ1, . . . , θn−1) or even (r, θ).

Definition 1.1. We call Uι a coordinate patch at infinity and the triple (Uι,Vι,Ψι) a chart at
infinity.
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Since S is compact, there is a finite set I∞ such that the family (Uι,Vι,Ψι)ι∈I∞ is an atlas on
M\K. Choosing another finite collection of coordinate charts for a neighborhood of K, which we
denote1 by (Uι,Vι,Ψι)ι∈Icomp for some finite set Icomp, we get a finite atlas on M by considering
(Uι,Vι,Ψι)ι∈I with

I = I∞ ∪ Icomp.

In particular, we can find a finite partition of unity∑
ι∈I

fι = 1 on M, (1.6)

such that, for all ι ∈ I, fι is supported in Uι. We also set

χι = fι ◦Ψ−1
ι . (1.7)

If Uι is a patch at infinity, we can assume that fι is such that

χι(r, θ) = %(r)κι(θ), (1.8)

for some smooth functions % and κι such that, for some R′ > R,

%(r) = 1 for r � 1, supp % ⊂ [R′,+∞), κι ∈ C∞0 (Vι). (1.9)

Definition 1.2. The manifold (M, g) is called almost asymptotic if g is a riemannian metric such
that, for some function w : R→ (0,+∞), the metric reads, in any chart at infinity,

g = Gunif

(
r, θ, dr, w(r)−1dθ

)
(1.10)

and the following conditions hold:

1. if θ = (θ1, . . . , θn−1) are local coordinates on S (with values in Vι, see (1.4)),

Gunif(r, θ, v) :=
∑

1≤j,k≤n

Gjk(r, θ)vjvk, v = (v1, . . . , vn) ∈ Rn,

for some symmetric matrix (Gjk(r, θ))1≤j,k≤n with smooth coefficients such that, for all com-
pact subset K ⊂ Vι ∣∣∂jr∂αθ Gjk(r, θ)

∣∣ ≤ CjαK , r > R, θ ∈ K, (1.11)

and which is uniformly positive definite in the sense that, for some C > 0 depending on K,

C−1|v|2 ≤ Gunif(r, θ, v) ≤ C|v|2, r > R, θ ∈ K, v ∈ Rn. (1.12)

2. The function w is smooth and satisfies, for some C > 0 and all k ∈ N,

0 < w(r) ≤ C, (1.13)
C−1 ≤ w(r)/w(r′) ≤ C, if |r − r′| ≤ 1 (1.14)∣∣dkw(r)/drk

∣∣ ≤ Ckw(r), (1.15)

for all r, r′ ∈ R.
1we keep the notation Uι,Vι, Ψι but, of course, the corresponding new Uι and Vι are not defined by (1.5). In the

core of the paper, there should be anyway no confusion for we shall work almost only on M\K.
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Note that (1.14) is equivalent to the fact that, for some C > 0,

C−1e−C|r−r
′| ≤ w(r)

w(r′)
≤ CeC|r−r

′|.

In particular, this implies that w(r) & e−C|r|.
Asymptotically conical manifolds, for which g = dr2 + r2gS(r, θ, dθ) (near infinity), or asymp-

totically hyperbolic manifolds for which g = dr2 + e2rgS(r, θ, dθ), with gS(r, θ, dθ) a metric on S
depending smoothly on r, satisfy our definition. More precisely, for such asymptotic structures
one usually requires that gS(r, θ, dθ) is a small perturbation of a metric g∞S (θ, dθ) in the sense that
gS(r, θ, dθ)− g∞S (θ, dθ)→ 0 as r →∞. See for instance [16] for more precise statements. Here we
do not require such a condition which is the reason why we use the terminology almost asymptotic.

Differential operators on M. We first compute the Laplacian ∆g in a chart at infinity. Let us
define ∂w1 , . . . , ∂

w
n by

∂w1 = ∂r, ∂w2 = w(r)∂θ1 , . . . , ∂
w
n = w(r)∂wθn−1

.

We also set (Gjk)1≤j,k≤n := (Gjk)−1
1≤j,k≤n and det Gunif := det(Gjk) (see (1.10)). We then have

∆g = (det Gunif)−1/2∂wj G
jk(det Gunif)1/2∂wk + (1− n)

w′(r)
w(r)

G1k∂wk , (1.16)

using the summation convention for j, k ≥ 1. This formula motivates the introduction of the
following class of differential operators.

Definition 1.3. For m ∈ N, Diffmw (M) is the space of differential operators P of order ≤ m,
acting on functions on M, such that, for any chart at infinity (Uι,Vι,Ψι),

Ψι∗PΨ∗ι =
∑

k+|α|≤m

aιkα(r, θ) (w(r)Dθ)
α
Dk
r , (1.17)

with
∂jr∂

β
θ a

ι
kα ∈ L∞ ((R,+∞)×Kι) ,

for all j, β and all Kι b Vι. Here we used the standard notation Ψ∗ιu = u ◦Ψι and Ψι∗v = v ◦Ψ−1
ι .

By (1.11), (1.15) and (1.16), we see that −∆g ∈ Diff2
w(M) and that its principal symbol takes

the following form in Vι, for ι ∈ I∞,

pι2(r, θ, ρ, w(r)η) = G11(r, θ)ρ2 + 2G1k(r, θ)ρw(r)ηk +Gjk(r, θ)w(r)2ηjηk, (1.18)

using the summation convention for j, k ≥ 2. Here and below ρ and η denote respectively the dual
variables to r and θ. If ι ∈ Icomp, the principal symbol of −∆g in Vι takes the standard form

pι2(x, ξ) = gjk(x)ξjξk (1.19)

for some smooth (gjk(x)) such that gjk(x)ξjξk & |ξ|2 for ξ ∈ Rn locally uniformly with respect to
x.

Remark. Recall that, if ι ∈ I∞, the principal symbol of −∆g is given by (1.18) but not by pι2 itself
(see the factor w(r) in the left hand side of (1.18)). This notation (which is perhaps confusing)
will be convenient to state Theorem 1.5.
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Lebesgue spaces. We now describe volume densities. In coordinates (r, θ) at infinity, the Rieman-
nian volume density associated to g, denoted by dg, reads

dg = w(r)1−n(det Gunif(r, θ))1/2drdθ, (1.20)

where, for all ι ∈ I∞ and all Kι b Vι (see (1.5)), (1.12) shows the existence of CKι > 0 such that

C−1
Kι
≤ det Gunif(r, θ) ≤ CKι , θ ∈ Kι, r > R. (1.21)

Define another density d̃g on M by

d̃g = wn−1(r)dg, (1.22)

we then have

Lp(M, dg) = w
n−1
p (r)Lp(M, d̃g), p ∈ [1,∞). (1.23)

The map

L2(M, d̃g) 3 u 7→ w(r)(n−1)/2u ∈ L2(M, dg), (1.24)

is clearly unitary and the operator

∆̃g := w(r)
1−n

2 ∆gw(r)
n−1

2 , (1.25)

is symmetric on C∞0 (M) with respect to d̃g. By (1.15), we have

∆̃g ∈ Diff2
w(M).

We also note that ∆g and ∆̃g are essentially self-adjoint on C∞0 (M) (following the usual method of
[17] for instance) respectively with respect to dg and d̃g. Since (1.24) is unitary, their self-adjoint
realizations are unitarily equivalent.

We next record that, for all ι ∈ I∞ and all Kι b Vι (see (1.5)), we have the equivalence of
norms

||u||
Lp(M,d̃g)

≈ ||u ◦Ψ−1
ι ||Lp(Rn,drdθ), supp(u ◦Ψ−1

ι ) ⊂ (R,+∞)×Kι, (1.26)

for p ∈ [1,∞]. This is a simple consequence of (1.21). On compact subsets, the same equivalence
holds trivially. For the measure dg, we have, if ι ∈ I∞,

||u||Lp(M,dg) ≈
∣∣∣∣∣∣w(1−n)/p(r)u ◦Ψ−1

ι

∣∣∣∣∣∣
Lp(Rn,drdθ)

, supp(u ◦Ψ−1
ι ) ⊂ (R,+∞)×Kι. (1.27)

Pseudo-differential operators. We now define a class of semi-classical pseudo-differential operators
associated to the partition of unity (1.6). We will choose symbols

aι ∈ Smι (Vι × Rn),

where Vι ⊂ Rn is defined by (1.5) if ι ∈ I∞. By definition, this means, if ι ∈ I∞, that for all
Kι b Vι,

|∂jr∂αθ ∂kρ∂βη aι(r, θ, ρ, η)| ≤ C(1 + |ρ|+ |η|)m−k−|β|, r > R, θ ∈ Kι, ρ ∈ R, η ∈ Rn−1,
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and, if ι ∈ Icomp, that for all Kι b Vι,

|∂αx ∂
β
ξ a

ι(x, ξ)| ≤ C(1 + |ξ|)m−|β|, x ∈ Kι, ξ ∈ Rn.

In both cases, the topology of Smι (Vι × Rn) is given by the best constants C which define semi-
norms.

We basically would like to use operators of the form

aι(r, θ, hDr, hw(r)Dθ)χι, if ι ∈ I∞,

(see (2.1) below) and
aι(x, hDx)χι, if ι ∈ Icomp,

where χι is defined by (1.7) and h ∈ (0, 1] is the semi-classical parameter. Actually, we need
to consider properly supported operators so we construct first suitable cutoffs near the diagonal.
Choose a function ζ ∈ C∞0 (Rn) and ε > 0 such that

ζ(x) = 1 for |x| ≤ ε, ζ(x) = 0 for |x| > 2ε. (1.28)

For ι ∈ I∞, the function

χζι (r, θ, r
′, θ′) := χι(r′, θ′)ζ ((r, θ)− (r′, θ′)) , (1.29)

is smooth on R2n and, if Kι b Vι is an arbitrarily small neighborhood of supp(κι) (see (1.9)), we
may choose ε small enough such that

supp(χζι ) ⊂ ((R,+∞)×Kι)
2
. (1.30)

Proceeding similarly for ι ∈ Icomp, we obtain a family of functions (χζι )ι∈I supported close to the
diagonal of R2n, with also supp(χζι ) ⊂ Vι × Vι, and such that

χζι|diagonal
= χι. (1.31)

Definition 1.4. For aι ∈ Smι (Vι × Rn), the pseudo-differential operator

opιw,h(aι) : C∞0 (Rn)→ C∞0 (Vι)

is the operator with kernel

(2π)−n
∫ ∫

ei(r−r
′)ρ+i(θ−θ′)·ηaι(r, θ, hρ, hw(r)η)dρdη × χζι (r, θ, r′, θ′), if ι ∈ I∞, (1.32)

(2π)−n
∫
ei(x−x

′)·ξaι(x, hξ)dξ × χζι (x, x′), if ι ∈ Icomp. (1.33)

In other words, opιh,w(aι) is obtained by multiplying the kernel of aι(r, θ, hDr, hw(r)Dθ)χι
(resp. of aι(x, hDx)χι) by ζ((r, θ)− (r′, θ′)) (resp. by ζ(x− x′)).

If m < −n the integrals in (1.32) and (1.33) are absolutely convergent, otherwise they must be
understood as oscillatory integrals in the usual way. That opιw,h(aι) maps C∞0 (Rn) into C∞0 (Vι)
follows from the construction of χζι . Note also that

opιw,h(1) = χι, (1.34)
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since the oscillatory integral is the Dirac measure along the diagonal and χζι (r, θ, r
′, θ′) = χι(r′, θ′)

for |r − r′|+ |θ − θ′| small enough.

Remark. Note the factor w(r) in front of η in the amplitude of (1.32). The choice of notation
of Definition 1.4 is thus consistent with the expressions of the principal symbol of −∆g given by
(1.18) and (1.19).

We are now ready to state our results. We consider

ϕ ∈ S−σ(R), σ > 0,

that is |ϕ(k)(λ)| ≤ Ck〈λ〉−σ−k for all λ ∈ R. The best constants Ck are semi-norms defining the
topology of S−σ(R).

Theorem 1.5. Let P denote either −∆g or −∆̃g. For all N ≥ 0, the following holds:

ϕ(h2P ) =
∑
ι∈ι
QιN (P,ϕ, h) + hN+1RN (P,ϕ, h), h ∈ (0, 1],

where, for all ι ∈ I,

Ψι∗QιN (P,ϕ, h)Ψ∗ι =
N∑
j=0

hjopιw,h(aιj)

with symbols aι0, . . . , a
ι
N of the form

aι0 = ϕ ◦ pι2, aιj =
∑

k≤k(j)

dιjkϕ
(k) ◦ pι2, j ≥ 1, (1.35)

using the functions pι2 given by (1.18) for ι ∈ I∞ and (1.19) for ι ∈ Icomp. Here k(j) <∞ and

dιjk ∈ S2k−j
ι (Vι × Rn)

is polynomial in the momentum variable (dιjk ≡ 0 if 2k − j < 0) and independent of ϕ.

In addition, for all m,m′ ∈ N, all A ∈ Diffmw (M), B ∈ Diffm
′

w (M), all p ∈ [2,∞] and all N
such that N > n− 2σ +m+m′, there exists C such that∣∣∣∣∣∣hmARN (−∆g, ϕ, h)hm

′
B
∣∣∣∣∣∣
L2(M,dg)→Lp(M,dg)

≤ Ch−n( 1
2−

1
p ), (1.36)

and, for P = −∆̃g,∣∣∣∣∣∣w(r)
n−1

2 −
n−1
p hmARN (−∆̃g, ϕ, h)hm

′
B
∣∣∣∣∣∣
L2(M,d̃g)→Lp(M,d̃g)

≤ Ch−n( 1
2−

1
p ), (1.37)

for all h ∈ (0, 1] in both cases.

This theorem roughly means that, near infinity, ϕ(h2P ) is well approximated by pseudo-
differential operators with symbols of the form a(r, θ, ρ, w(r)η). The principal symbol is for instance

ϕ(pι2(r, θ, ρ, w(r)η)).

Note that, when ϕ ∈ C∞0 (R), this symbol is compactly supported with respect to ρ but not
uniformly with respect to η: if w(r)→ 0 as r →∞, η is not confined in a fixed compact set, since
we only have |η| . w(r)−1.

The estimates (1.36) and (1.37) follow from the Sobolev embedding D((−∆g)k) ⊂ L∞(M) for
k > n/4 (see Proposition 2.11) and, to that extent, Theorem 1.5 is an L2 theorem.

We now consider the Lp → Lp properties. Recall first a classical definition.

8



Definition 1.6. A function W : R→ (0,+∞) is a temperate weight if, for some positive constants
C,M ,

W (r′) ≤ CW (r)(1 + |r − r′|)M , r, r′ ∈ R. (1.38)

The meaning of this definition is that W can neither grow nor decay too fast. For instance
if dkw−1/drk is bounded on R, w is a temperate weight. This is an elementary consequence of
Taylor’s formula to order k and of the fact that |djw−1/drj | . w−1, by (1.15).

The operators opιw,h(aιj) of Theorem 1.5 are bounded on Lp(M, dg), Lp(M, d̃g), or more gen-

erally on Lp(M,W (r)dg) and Lp(M,W (r)d̃g) for all temperate weight W and all p ∈ [1,∞] (see
Proposition 2.3). We therefore focus on the remainder terms RN (P,ϕ, h).

Theorem 1.7. For all N ≥ 0, all temperate weight W and all 1 < p <∞,∣∣∣∣∣∣W (r)−1RN (−∆̃g, ϕ, h)W (r)
∣∣∣∣∣∣
Lp(M,d̃g)→Lp(M,d̃g)

≤ CN,p,ϕ,W , h ∈ (0, 1]. (1.39)

The constant CN,p,ϕ,W depends (linearly) on a finite number of semi-norms of ϕ ∈ S−σ(R).

Corollary 1.8. For all 1 < p < ∞ all temperate weight W and all ϕ ∈ S−σ(R) there exists C
such that ∣∣∣∣∣∣W (r)−1ϕ(−h2∆̃g)W (r)

∣∣∣∣∣∣
Lp(M,d̃g)→Lp(M,d̃g)

≤ C, h ∈ (0, 1].

Equivalently, we have∣∣∣∣∣∣W (r)−1w(r)
n−1
p −

n−1
2 ϕ(−h2∆g)w(r)

n−1
2 −

n−1
p W (r)

∣∣∣∣∣∣
Lp(M,dg)→Lp(M,dg)

≤ C, h ∈ (0, 1].

Observe that Theorem 1.7 and Corollary 1.8 hold in particular if w(r) = e−r in which case
ϕ(−h2∆g) is in general not bounded on Lp(M, dg). Theorem 1.7 is a consequence of a stronger
result, namely Proposition 3.8, showing that, in any chart, the resolvent (z − ∆̃g)−1 is a pseudo-
differential operators whose full symbol belongs to a suitable class. Since this result is of more
technical nature, we prefer not to state it in this part.

If the function w itself is a temperate weight, for instance if w(r) = r−1 for r large, Theorem
1.7 also implies the following result.

Corollary 1.9. If w is a temperate weight, then for all temperate weight W , all N ≥ 0 and all
1 < p <∞,∣∣∣∣W−1(r)RN (−∆g, ϕ, h)W (r)

∣∣∣∣
Lp(M,dg)→Lp(M,dg)

≤ CN,p,ϕ,W , h ∈ (0, 1]. (1.40)

The constant CN,p,ϕ,W depends (linearly) on a finite number of semi-norms of ϕ ∈ S−σ(R). In
particular, for fixed ϕ and W there exists C > 0 such that∣∣∣∣W (r)−1ϕ(−h2∆g)W (r)

∣∣∣∣
Lp(M,dg)→Lp(M,dg)

≤ C, h ∈ (0, 1]. (1.41)

Of course, (1.41) holds with W = 1. As explained in the introduction, this last result can be
considered as essentially well known (see for instance [22] for h = 1). We quote it to emphasize the
difference with Corollary 1.8 where w is not assumed to be a temperate weight. It follows directly
from Theorem 1.7, using (1.23), (1.25) and the fact that products or real powers of temperate
weights are temperate weights.
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2 Parametrix of the resolvent and applications

In the main part of this section, namely until (2.19), we work in coordinate patches Uι of the form
(1.5) (ie with ι ∈ I∞).

2.1 Elementary pseudo-differential calculus

In this part, we give elementary composition formulas and the related remainder estimates for
pseudo-differential operators of the form opιw,h(a). We will not develop a systematic study of the
symbolic calculus but only record the basic results required for the calculation of parametrices of
(z − h2∆g)−1 and (z − h2∆̃g)−1.

For Ω ⊂ RD, D ≥ 1, C∞b (Ω) will denote the space of smooth functions bounded on Ω as well
as their derivatives.

For b ∈ Smι (Vι × Rn) and h ∈ (0, 1], we set

[b(r, θ, hDr, hw(r)Dθ)v] (r, θ) = (2π)−n
∫ ∫

ei(rρ+θ.η)b(r, θ, hρ, hw(r)η)v̂(ρ, η)dρdη (2.1)

with v̂(ρ, θ) =
∫∫

e−irρ−iθ.ηv(r, θ)drdθ the usual Fourier transform. In the special case of a poly-
nomial symbol in ρ and η, a(r, y, ρ, η) =

∑
ajα(r, θ)ρjηα, we have

a(r, θ, hDr, hw(r)Dθ) =
∑

ajα(r, θ)(hw(r)Dθ)α(hDr)j , (2.2)

where one must notice that Dr and w(r)Dθ don’t commute.
We have the following elementary result.

Proposition 2.1. Let a ∈ Sm1
ι (Vι × Rn) be polynomial in (ρ, η) and let b ∈ Sm2(Vι × Rn) with

m2 ∈ R. We have

a(r, θ, hDr, hw(r)Dθ)b(r, θ, hDr, hw(r)Dθ) =
m1∑
l=0

hl(a#b)l(r, θ, hDr, hw(r)Dθ) (2.3)

where, if we set

Dw = Dr +
w′(r)
w(r)

η ·Dη,

the symbol (a#b)k = (a#b)k(r, θ, ρ, η) ∈ Sm1+m2−k(Vι × Rn) is given by

(a#b)k =
∑

j+|β|=k

1
j!β!

w(r)|β|
(
∂jρ∂

β
η a
) (
Dβ
θD

j
wb
)
.

When w ≡ 1, this proposition is of course the usual composition formula for pseudo-differential
operators. Note that, since a is polynomial of degree ≤ m1, we have (a#b)l ≡ 0 for l > m1 and
the composition formula is exact (there is no remainder term).

Remark. A simple induction shows that the operator Dj
w is a linear combination of(

w′(r)
w(r)

)(j1)

· · ·
(
w′(r)
w(r)

)(jk)

Dl
rη
αDα

η (2.4)

with j1 + · · ·+ jk + k + l = j, |α| ≤ k and k ≥ 0. If k = 0 then (w′/w)(j1) · · · (w′/w)(jk) = 1. The
notation (w′/w)(ji) stands for the ji-th derivative of w′/w with ji ≥ 0.
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Proof of Proposition 2.1. Applying the right and side of (2.2) to (2.1), the result follows from the
Leibniz rule and the fact that

Dr (b(r, θ, hρ, hw(r)η)) = (Dwb) (r, θ, hρ, hw(r)η).

We omit the standard details of the calculation. That (a#b)k belongs to Sm1+m2−k(Vι × Rn)
follows from (1.15) using (2.4). �

We next consider the pseudo-differential quantization opιw,h(·) given by (1.32).

Proposition 2.2. Let a ∈ Sm1
ι (Vι × Rn) be polynomial in (ρ, η) and let b ∈ Sm2(Vι × Rn) with

m2 ∈ R. Let W be a positive function on R such that

W (r) ≤ CW (r′), |r − r′| ≤ 1. (2.5)

Then, for all N > 0,

a(r, θ, hDr, hw(r)Dθ)opιw,h(b) =
m1∑
l=0

hlopιw,h ((a#b)l) + hN+1R
ι

N (h, a, b),

where, for all k1, k2 ∈ N, all A1 ∈ Diffk1w (M), A2 ∈ Diffk2w (M) and all p ∈ [1,∞],∣∣∣∣∣∣W (r)A1Ψ∗ιR
ι

N (h, a, b)Ψι∗A2W (r)−1
∣∣∣∣∣∣
Lp(M,d̃g)→Lp(M,d̃g)

. 1, (2.6)∣∣∣∣∣∣w(r)
n−1

2 W (r)A1Ψ∗ιR
ι

N (h, a, b)Ψι∗A2W (r)−1
∣∣∣∣∣∣
L2(M,d̃g)→L∞(M)

. 1, (2.7)

for h ∈ (0, 1]. More precisely the norms in (2.6) and (2.7) are controlled by a finite number of
semi-norms of a and b independent of h.

Note that the condition (2.5) is satisfied if W is a temperate weight but also by any power of w.
In particular, W (r) = eγr is a possible choice although it is not a temperate weight. In particular,
(2.6) and (2.7) are respectively equivalent to∣∣∣∣∣∣W (r)A1Ψ∗ιR

ι

N (h, a, b)Ψι∗A2W (r)−1
∣∣∣∣∣∣
Lp(M,dg)→Lp(M,dg)

. 1, (2.8)∣∣∣∣∣∣W (r)A1Ψ∗ιR
ι

N (h, a, b)Ψι∗A2W (r)−1
∣∣∣∣∣∣
L2(M,dg)→L∞(M)

. 1, (2.9)

They are simply obtained by replacing W (r) respectively by W (r)w(r)
1−n
p and W (r)w(r)

1−n
2 which

both satisfy (2.5).
By opposition to Proposition 2.1, we now have a remainder. It is due to the derivatives of cutoff

near the diagonal in the definition of opιw,h(·) but not to the tail of the expansion
∑
l h
l(a#b)l for

this sum is finite.
Before proving this proposition, we state two lemmas which will be useful further on and whose

proofs are very close to the proofs of the estimates (2.6) and (2.7).

Lemma 2.3. Let c ∈ Smι (Vι × Rn) with m < 0 and let W be a positive function satisfying (2.5).
Then, for all p ∈ [1,∞], we have∣∣∣∣W (r)opιw,h (c)W (r)−1

∣∣∣∣
Lp(Rn)→Lp(Rn)

. 1, h ∈ (0, 1].
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Proof. Consider first the case W ≡ 1. If ĉ is the Fourier transform of c with respect to ρ, η, the
kernel of opιw,h (c) reads

Cι(r, θ, r′, θ′, h) = h−nw(r)1−nĉ

(
r, θ,

r′ − r
h

,
θ′ − θ
hw(r)

)
W (r)
W (r′)

χζι (r, θ, r
′, θ′).

For (r, θ) ∈ Vι, c(r, θ, ., .) ∈ Lε+n/|m|(Rnρ,η), with norm uniformly bounded with respect to (r, θ),
thus ĉ(r, θ, ., .) belongs to a bounded subset of L1

loc(Rnρ̂,η̂) by Young’s theorem. Therefore, for all
N we can write

|ĉ(r, θ, ρ̂, η̂)| ≤ CN (1 + f0(r, θ, ρ̂, η̂))(|ρ̂|+ |η̂|+ 1)−N , (r, θ) ∈ Vι, ρ̂ ∈ R, η̂ ∈ Rn−1, (2.10)

with f0(r, θ, ., .) bounded in L1
comp(Rnρ̂,η̂) Thus, the family ĉ(r, θ, ., .) is bounded in L1(Rnρ̂,η̂). Ele-

mentary changes of variables show that

sup
(r,θ)∈Rn

∫
R

∫
Rn−1

|Cι(r, θ, r′, θ′, h)|dr′dθ′ . 1, sup
(r′,θ′)∈Rn

∫
R

∫
Rn−1

|Cι(r, θ, r′, θ′, h)|drdθ . 1,

for h ∈ (0, 1]. Recall that Cι is globally defined on R2n so the above quantities makes sense. The
result is then a consequence of the standard Schur lemma. For a general W the same proof applies
since we only have to multiply the kernel Cι by the bounded function W (r)χζι (r, θ, r

′, θ′)W (r′)−1

on the support of which r − r′ is bounded. �

Lemma 2.4. Let c ∈ Smι (Vι × Rn) with m < −n/2 and let W be a positive function satisfying
(2.5). Then ∣∣∣∣∣∣w(r)

n−1
2 W (r)opιw,h (c)W (r)−1

∣∣∣∣∣∣
L2(Rn)→L∞(Rn)

. h−n/2, h ∈ (0, 1].

Proof. With the notation of the proof of Lemma 2.3, the result is a direct consequence of the
estimate

sup
(r,θ)∈Rn

∫
R

∫
Rn−1

|w(r)
n−1

2 W (r)Cι(r, θ, r′, θ′, h)W (r′)−1|2dr′dθ′ . h−n, h ∈ (0, 1]

which follows again from elementary changes of variables, using that ĉ(r, θ, ., .) belongs to a bounded
subset of L2(Rn) as (r, θ) varies and that W (r)/W (r′) is bounded on the support of Cι. �

Remark. The proofs of both lemmas still hold if the kernel of opιw,h (c) is multiplied by a bounded
function. We shall use it in the following proof.

Proof of Proposition 2.2. We may clearly assume that (2.2) is reduced to one term. Applying this
operator to (1.32) (with a = b) on the r, θ variables, we get the kernel of

∑
k h

kopιw,h ((a#b)k)
(using Proposition 2.1) plus a linear combination of integrals of the form

ajα(r, θ)
∫∫

ei(r−r
′)ρ+i(θ−θ′).η(hρ)j1(hη)α1(∂α2

θ Dj2
w b)(r, θ, hρ, hw(r)η) dρdη∂j3r ∂

α3
θ χζι (r, θ, r

′, θ′)

where j1 + j2 + j3 = j, α1 + α2 + α3 = α and j3 + |α3| ≥ 1. The latter implies that ∂j3r ∂
α3
θ χζι is

supported in |(r, θ)− (r′, θ′)| ≥ ε which allows to integrate by parts using |(r, θ)− (r′, θ′)|−2∆ρ,η.
We thus obtain integrals of the form

h2N

∫∫
ei(r−r

′)ρ+i(θ−θ′).ηcN (r, θ, hρ, hw(r)η) dρdη
BN (r, θ, r′, θ′)
|(r, θ)− (r′, θ′)|2N

(2.11)
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with N as large as we want, cN ∈ Sm+|α|+j−2N (Vι × Rn) and BN ∈ C∞b (R2n) with support in
{ε ≤ |(r, θ)− (r′, θ′)| ≤ 2ε}. With no loss of generality, we may assume that

Ψι∗A1Ψ∗ι = (w(r)Dθ)βDk
r , Ψι∗A2Ψ∗ι = (w(r)Dθ)β

′
Dk′

r .

Applying (w(r)Dθ)βDk
r to (2.11) yields an integral of the same form, using the boundedness of w

and its derivatives. To apply (the transpose of) (w(r′)Dθ′)β
′
Dk′

r′ to the kernel of R
ι

N (a, b, h), we
rewrite this operator as (w(r′)/w(r))|β

′|(w(r)Dθ′)β
′
Dk′

r′ . We still obtain integrals of the same form
as (2.11) multiplied by derivatives of (w(r′)/w(r))|β

′|. By (1.14), these derivatives are bounded
since |r − r′| ≤ 2ε on the support of BN . Then (2.6) and (2.7) follow respectively from the proofs
of Lemma 2.3 and 2.4. �

So far, we have considered the composition with differential operators to the left. Since our
operators are properly supported, the composition to the right can be also easily considered.

Proposition 2.5. Let a and b be as in Proposition 2.2 and let W be a positive function satisfying
(2.5). Then, for all N > m1 +m2 + n, we have

opιw,h(b)a(r, θ, hDr, hw(r)Dθ) =
N∑
l=0

hlopιw,h (cl) + hN+1RιN (h, a, b)

with cl ∈ Sm1+m2−l
ι (Vι×Rn) depending continuously on a and b, and RιN (h, a, b) an operator with

continuous kernel supported in Vι × Vι. Moreover, for all N , all k1, k2 ∈ N such that

N > m1 +m2 + n+ k1 + k2,

all A1 ∈ Diffk1w (M), A2 ∈ Diffk2w (M) and for all p ∈ [1,∞], we have∣∣∣∣W (r)A1Ψ∗ιR
ι
N (h, a, b)Ψι∗A2W (r)−1

∣∣∣∣
Lp(M,d̃g)→Lp(M,d̃g)

. 1,∣∣∣∣∣∣W (r)w(r)
n−1

2 A1Ψ∗ιR
ι
N (h, a, b)Ψι∗A2W (r)

∣∣∣∣∣∣
L2(M,d̃g)→L∞(M)

. 1,

for h ∈ (0, 1]. More precisely, these norms are controlled by a finite number of semi-norms of a
and b independent of h.

We will not need the explicit forms of the symbols cl since we will only use this proposition for
the analysis of some remainder terms.

Note also that the estimates on RιN (h, a, b) have analogues with respect to the measure dg,
similar to (2.8) and (2.9),

Proof. We have to apply the transpose of a(r′, θ′, hDr′ , hw(r′)Dθ′) to the Schwartz kernel of
opιw,h(b). For simplicity we assume first that a(r′, θ′, ρ, η) = w(r′)η1. By Taylor’s formula, we have

w(r′) = w(r)

1 +
N∑
j=1

1
j!
w(j)(r)
w(r)

(r′ − r)j +
(r′ − r)N+1

N !

∫ 1

0

(1− t)N w
(N+1)(r + t(r′ − r))

w(r)
dt

 .

Integrating by parts with respect to ρ in the kernel of opιw,h(b), the principal part of the Taylor
expansion yields the expected expansion with

cl(r, θ, ρ, η) =
1
j!
Dj
ρb(r, θ, ρ, η)

w(j)(r)
w(r)

η1.
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The remainder is given by two types of terms: first by the derivatives Dθ′1
falling on χζ(r, θ, r′, θ′),

which yields kernels of the form (2.11), and second by the remainder in the Taylor formula thanks
to which we can integrate by parts N times with respect to ρ. In this case, we get a kernel of
the form (2.11), with N instead of 2N and a symbol cN ∈ Sm1+m2−N

ι (Vι × Rn). Since r − r′ is
bounded on the support of χζ , w(N)(r+ t(r′ − r))/w(r) is bounded too, uniformly with respect to
t ∈ [0, 1], and the study of the remainder is similar to the one of Proposition 2.2. By induction,
we obtain the result if a = (w(r′)η)α. Derivatives with respect to r or multiplication operators are
more standard and studied similarly. �

2.2 Parametrix of the resolvent

In this subsection, we construct a parametrix of the semi-classical resolvent of an operator P ∈
Diff2

w(M). Recall that this means that P is a differential operator of order 2 such that, in any
chart at infinity,

Ψι∗PΨ∗ι =
2∑
k=0

pι2−k(r, θ,Dr, w(r)Dθ) (2.12)

with pι2−k ∈ S2−k
ι (Vι × Rn).

We assume that

P is locally elliptic, (2.13)

ie, in any chart, its principal symbol pιpr(x, ξ) satisfies |pιpr(x, ξ)| & |ξ|2 for ξ ∈ Rn, locally uniformly
with respect to x. If ι ∈ I∞ , using the notation (2.12), we furthermore assume that, for all Kι b Vι
(see (1.5)),

|pι2(r, θ, ρ, η)| & ρ2 + |η|2, r > R, θ ∈ Kι, ρ ∈ R, η ∈ Rn−1. (2.14)

Note that this is not a lower bound for the principal symbol of Ψι∗PΨ∗ι , namely pι2(r, θ, ρ, w(r)η),
whose modulus is only bounded from below by ρ2 + w(r)2|η|2. This is nevertheless the natural
(degenerate) global ellipticity condition in this context. We next define C ⊂ C as

C = closure of the range of the principal symbol of P, (2.15)

which is invariantly defined for the principal symbol is a function on T ∗M. We assume that C 6= C.
In the final applications, with P = −∆ or −∆̃g, we will of course have C = [0,+∞).

We now seek an approximate inverse of h2P − z, for h ∈ (0, 1] and z ∈ C \ C.

We work first in a patch at infinity. Using the notation of (2.12), we set for simplicity

p2 = pι2 − z, p1 = pι1, p0 = pι0.

Observe that p0, p1 don’t depend on z but that p2 does. We then have

h2Ψι∗PΨ∗ι − z =
2∑
k=0

hkp2−k(r, θ, hDr, hw(r)Dθ).

For a given N ≥ 0, we look for symbols q−2, q−3, . . . , q−2−N satisfying(
2∑
k=0

hkp2−k(r, θ, hDr, hw(r)Dθ)

) N∑
j=0

hjopιw,h(q−2−j)

 = χι +O(hN+1), (2.16)
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where χι is defined by (1.8) and where O(hN+1) will be given a precise meaning below. Of course,
we need to find such a family of symbols for each patch, ie q−2−j depends on ι, but we omit this
dependence for notational simplicity. By Proposition 2.2, the left hand side of (2.16) reads∑

k+j+l≤N

hk+j+lopιw,h ((p2−k#q−2−j)l) + hN+1RιN (h, z)

where

RιN (h, z) =
∑

k+j+l≥N+1

hk+j+l−N−1opιw,h ((p2−k#q−2−j)l) +
∑
k,j

R
ι

N (h, hkp2−k, h
jq−2−j), (2.17)

with R
ι

N defined in Proposition 2.2. In the above sums, we have 0 ≤ k ≤ 2, 0 ≤ j ≤ N and
0 ≤ l ≤ 2. Thus, by (1.34), requiring (2.16) leads to the following equations for q−2, . . . , q−2−N∑

k+l+j=ν

(p2−k#q−2−j)l =

{
1 if ν = 0,
0 if ν ≥ 1,

0 ≤ ν ≤ N.

This system is triangular and, since (a#b)0 = ab, its unique solution is given recursively by

q−2 =
1
p2
, q−2−j = − 1

p2

∑
k+j1+l=j
j1<j

(p2−k#q−2−j1)l for j ≥ 1.

Proposition 2.6. For all j ≥ 1, q−2−j is a finite sum (with a number of terms k(j) depending on
j but not on z) of the form

q−2−j =
k(j)∑
k=1

djk

p1+k
2

where, for each k, djk ∈ S2k−j
ι (Vι × Rn) is a polynomial in ρ, η which is independent of z (in

particular djk ≡ 0 when 2k−j < 0). More precisely, the coefficients of these polynomials are linear
combinations of products of derivatives of w, w′/w and of the coefficients of p0, p1 and ∂αp2 with
α 6= 0.

Proof. This follows from an induction using (2.4) and the fact that, for any multi-index α 6= 0,
∂α(1/p1+k

2 ) is a linear combination of

∂α1p2 · · · ∂αk′p2

p1+k+k′

2

,

with α1 + · · ·+ αk′ = α, 1 ≤ k′ ≤ |α| and αi 6= 0 for all i ∈ {1, . . . , k′}. �

With the notation (2.17), we set

RιN (h, z) = Ψ∗ιR
ι
N (h, z)Ψι∗.

Lemma 2.7. Let dµ denote either dg or d̃g. Then, for all positive function W satisfying (2.5), all
p ∈ [1,∞] and all N ≥ 0, there exists ν > 0 such that, for all A ∈ Diffmw (M) and B ∈ Diffm

′

w (M)
with m+m′ −N < 0, we have∣∣∣∣∣∣W (r)hmARιN (h, z)hm

′
BW (r)−1

∣∣∣∣∣∣
Lp(M,dµ)→Lp(M,dµ)

.

(
1 + |z|

dist(z, C)

)ν
,

for all h ∈ (0, 1] and all z /∈ C.
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Proof. We first assume that A = B = 1 (and that m = m′ = 0). By (1.30), the kernel of RιN (h, z)
is supported in ((R,+∞) ×Kι)2 for some Kι b Vι. Thus, using the equivalence of norms (1.26),
the result, with dµ = d̃g, is a direct consequence of the bound

∣∣∣∣W (r)RιN (h, z)W (r)−1
∣∣∣∣
Lp(Rn)→Lp(Rn)

.

(
1 + |z|

dist(z, C)

)ν
, h ∈ (0, 1], z /∈ C, (2.18)

which follows from Proposition 2.2 and Lemma 2.3 once noticed that each semi-norm of q−2−j in
S−2−j
ι (Vι ×Rn) is bounded by some power of (1 + |z|)/dist(z, C). The latter is due to Proposition

2.6 and ∣∣∣∣1 + ρ2 + η2

pι2 − z

∣∣∣∣ ≈
∣∣∣∣1 + pι2
pι2 − z

∣∣∣∣ . 1 + |z|
dist(z, C)

,

in which we used (2.14). When dµ = dg, we use the equivalence (1.27) so that it is now sufficient
to get the bound (2.18) with RιN (h, z) replaced by w(r)

1−n
p RιN (h, z)w(r)

n−1
p . The latter is clear for

this amounts to multiply the kernel of RιN (h, z) by (w(r′)/w(r))(n−1)/p (which is bounded, using
the boundedness of r − r′ on the support of χζι and (1.14)) so the (proofs of) Proposition 2.2 and
Lemma 2.3 still hold.

For general A and B, we use Propositions 2.2 and 2.5 so that we are reduced to the previous
case with an operator of the same form as RιN (h, z) except that the symbols of the first sum in
(2.17) now belong to S−N+m+m′

ι (Vι × Rn). We can apply Lemma 2.3 to this term and the result
follows. �

Let us now define

QιN (h, z) =
N∑
j=0

hjopιw,h(q−2−j), QιN (h, z) = Ψ∗ιQ
ι
N (h, z)Ψι∗.

Then, with fι given by (1.6), we obtain the relation

(h2P − z)QιN (h, z) = fι + hN+1RιN (h, z). (2.19)

So far, we have always assumed that ι ∈ I∞, ie worked in patches at infinity, but the same
analysis still holds for relatively compact patches, ie for ι ∈ Icomp. We don’t give the details of the
construction in the latter case for two reasons: the first is that this is essentially well known for
this is like working on a compact manifold and the second is that the proofs are formally the same
with the simpler assumptions that w ≡ 1 and that χι is compactly supported.

Thus, by setting

QN (h, z) =
∑
ι∈I
QιN (h, z), RN (h, z) =

∑
ι∈I
RιN (h, z),

then summing the equalities (2.19) over I and using (1.6), Lemma 2.7 gives the following result
where we recall that C is defined by (2.15).

Theorem 2.8. Let P ∈ Diff2
w(M) be a second order differential operator satisfying (2.13) and

(2.14). Then, for all N ≥ 0, we have

(h2P − z)QN (h, z) = 1 + hN+1RN (h, z), h ∈ (0, 1], z /∈ C. (2.20)
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If dµ denotes either dg or d̃g, and m,m′ ∈ N satisfy m+m′ < N , then for all p ∈ [1,∞] and for
all positive function W satisfying (2.5), there exists ν ≥ 0 such that, for all A ∈ Diffmw (M) and
B ∈ Diffm

′

w (M), we have∣∣∣∣∣∣W (r)hmARN (h, z)hm
′
BW (r)−1

∣∣∣∣∣∣
Lp(M,dµ)→Lp(M,dµ)

.

(
1 + |z|

dist(z, C)

)ν
, (2.21)

for all h ∈ (0, 1] and all z /∈ C.

This theorem gives a parametrix of the resolvent of h2P under the natural ellipticity conditions
(2.13) and (2.14) (recall that if w is not bounded from below, this corresponds to a degenerate
ellipticity).

From now on, we assume that

P is self-adjoint with respect to dµ = dg or d̃g.

This condition is actually equivalent to the symmetry of P on C∞0 (M). Indeed, (2.20) and (2.21)
implies that h2P ± i is injective for h small enough, which shows that P is essentially self-adjoint.

The resolvent (h2P − z)−1 is then well defined for all z /∈ R and

(h2P − z)−1 = QN (z, h)− hN+1(h2P − z)−1RN (h, z), z /∈ R, h ∈ (0, 1]. (2.22)

Theorem 2.8 implies, for z = i, that in the operator norm on L2(M, dµ), we have

||hN+1RN (h, i)||L2(M,dµ)→L2(M,dµ) . h
N+1, h ∈ (0, 1].

Thus, for some h0 > 0 small enough and some bounded operator B1 on L2(M, dµ), we get

(h2
0P − i)−1 = QN (i, h0)B1.

More generally, for k ≥ 1, we can write

(h2P − z)−k =
1

(k − 1)!
∂k−1
z (h2P − z)−1

so applying (k − 1)!−1∂k−1
z to (2.22) shows that (h2P − z)−k reads

(k − 1)!−1∂k−1
z QN (z, h) + hN+1(h2P − z)−k

k−1∑
j=0

1
j!

(h2P − z)j∂jzRN (z, h), (2.23)

using the holomorphy of QN (z, h) and RN (z, h) with respect to z ∈ C\R which standardly follows
from Proposition 2.6. Therefore, by choosing N large enough so that the sum above is bounded
on L2 (uniformly in h) and choosing then h = h0 small enough, we obtain

(h2
0P − i)−k = (k − 1)!−1∂k−1

z QN (z, h0)|z=iBk, (2.24)

for some operator Bk bounded on L2(M, dµ).

Lemma 2.9. For all A ∈ Diff2k
w (M), A∂k−1

z QN (z, h0) is bounded on L2(M, dg) and L2(M, d̃g).

17



Proof. Consider first the case of d̃g. By Proposition 2.6, for all ι ∈ I, Qι := ∂k−1
z QιN (z, h0) is of

the form Ψ∗ι opιw,h(qι)Ψι∗ for some symbol qι ∈ S−2k
ι (Vι × Rn). A direct calculation shows that

Ψι∗AΨ∗ι opιw,h(qι) has a kernel of the form

(2π)−n
∫
ei(x−y)·ξaι(x, y, ξ)dξ,

with aι ∈ C∞b (R3n). Hence, the corresponding operator is bounded on L2(Rn) by the Calderòn-
Vaillancourt theorem and thus its pullback AQι is bounded on L2(M, d̃g). The boundedness of AQι
on L2(M, dg) is equivalent to the one of w(r)(1−n)/2AQιw

(r)(n− 1)/2 on L2(M, d̃g). The latter
follows from the same reasoning since w(r)(1−n)/2Aw(r)(n−1)/2 ∈ Diff2k

w (M) and Qι is properly
supported. �

By setting || · || = || · ||L2(M,dµ)→L2(M,dµ) we obtain∣∣∣∣h2kA(h2P − z)−k
∣∣∣∣ ≤ ∣∣∣∣A(h2

0P − i)−k
∣∣∣∣h2k

∣∣∣∣(h2
0P − i)k(h2P − z)−k

∣∣∣∣
≤ Ch2k sup

λ∈R

∣∣∣∣ h2
0λ+ i

h2λ− z

∣∣∣∣k ,
using (2.24), Lemma 2.9 and the Spectral Theorem in the last line. By estimating the sup in the
right hand side, we obtain the following result.

Proposition 2.10. Let P ∈ Diff2
w(M) satisfy (2.13) and (2.14), and be self-adjoint with respect

to dµ = dg or d̃g . Then, for all k ≥ 1 and all A ∈ Diff2k
w (M), we have

∣∣∣∣h2kA(h2P − z)−k
∣∣∣∣
L2(M,dµ)→L2(M,dµ)

.
〈z〉k

|Im z|k
, z /∈ R, h ∈ (0, 1].

In the same spirit, we will prove the following Sobolev injections.

Proposition 2.11. Let P be as in Proposition 2.10 and let k > n/4 be an integer. Then, if P is
self-adjoint with respect to dµ = dg, we have

||(h2P − z)−k||L2(M,dg)→L∞(M) . h
−n2

〈z〉k

|Im z|k
, z /∈ R, h ∈ (0, 1].

If it is self-adjoint with respect to dµ = d̃g, we have

||w(r)
n−1

2 (h2P − z)−k||
L2(M,d̃g)→L∞(M)

. h−
n
2
〈z〉k

|Im z|k
, z /∈ R, h ∈ (0, 1].

Of course, by taking the adjoints, we have the corresponding L1 → L2 inequalities.

Proof. We assume that dµ = dg. By Lemma 2.4 with W (r) = w(r)
1−n

2 , we have∣∣∣∣∂k−1
z QN (i, h0)v

∣∣∣∣
L∞(M)

=
∣∣∣∣(∂k−1

z QN (z, h0)|z=iW (r)−1
)
W (r)v

∣∣∣∣
L∞(M)

≤ C||v||L2(M,dg),
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using the equivalence of norms (1.27). Using (2.24), this implies that (h2
0P − i)−k is bounded from

L2(M, dg) to L∞(M). Therefore, by writting

(h2P − i)−k = (h2
0P − i)−k

(h0P − i)k

(h2P − i)k
,

we get

||(h2P − i)−k||L2(M,dg)→L∞(M) ≤ C
∣∣∣∣∣∣∣∣ (h2

0P − i)k

(h2P − i)k

∣∣∣∣∣∣∣∣
L2(M,dg)→L2(M,dg)

. h−2k, (2.25)

the last upper bound following from the Spectral Theorem. Using (2.23) with z = i we can write

(h2P − i)−k = (k − 1)!∂k−1
z QN (i, h) + hN+1(h2P − i)−kRN,k(i, h) (2.26)

where, by Lemma 2.7, ||RN,k(i, h)||L2(M,dg)→L2(M,dg) is bounded uniformly in h if N is large
enough. On the other hand, we also know by Lemma 2.4 that

||∂k−1
z QN (i, h)|| . h−n/2.

Thus by choosing N large enough so that N + 1− 2k ≥ −n/2 and by using (2.25) for the resolvent
in the right hand side of (2.26), we obtain the improved estimate

||(h2P − i)−k||L2(M,dg)→L∞(M) . h
−n/2.

We then obtain the result from the estimate

||(h2P−z)−k||L2(M,dg)→L∞(M) ≤ ||(h2P−i)−k||L2(M,dg)→L∞(M)

∣∣∣∣∣∣∣∣ (h2P − i)k

(h2P − z)k

∣∣∣∣∣∣∣∣
L2(M,dg)→L2(M,dg)

whose second norm in right hand side is of order 〈z〉k/|Im(z)|k independently of h, by the Spectral
Theorem. The case of dµ = d̃g is similar. �

2.3 Proof of Theorem 1.5

We shall use the classical Helffer-Sjöstrand formula

ϕ(H) =
1
π

∫∫
R2
∂̄ϕ̃(x+ iy)(H − x− iy)−1dxdy (2.27)

with ∂̄ = (∂x+i∂y)/2, valid for any self-adjoint operator H. Here ϕ̃ ∈ C∞(C) is an almost analytic
extension of ϕ, ie such that ϕ̃|R = ϕ and ∂̄ϕ̃(z) vanishes to sufficiently high order on the real axis.

A justification of this formula for ϕ ∈ C∞0 (R) can be found in [11]. It is shown in [10] that, if
ϕ ∈ S−σ(R) with σ > 0, (2.27) holds with ϕ̃M defined by

ϕ̃M (x+ iy) = χ0(y/〈x〉)
M∑
k=0

f (k)(x)
(iy)k

k!
, (2.28)

with M ≥ 1 and χ0 ∈ C∞0 (R) such that χ0 ≡ 1 near 0. With this choice, one has

|∂̄ϕ̃M (x+ iy)| . |y|M/〈x〉σ+1+M , x, y ∈ R. (2.29)
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This implies in particular that, for all integers ν1 ≥ 1, ν2 ≥ 0 and M ≥ ν1 + ν2, we have∫ ∫
R2
|∂̄ϕ̃M (x+ iy)| × |y|−ν1

(
1 + |x|+ |y|

|y|

)ν2
dxdy <∞, (2.30)

which is easily seen by splitting the integral into two parts, where |y| ≤ 1 or |y| > 1, using the fact
that |y|/〈x〉 is bounded on the support of ϕ̃M in the latter case. If σ > 1 and M ≥ ν, we also have∫ ∫

R2
|∂̄ϕ̃M (x+ iy)|

(
1 + |x|+ |y|

|y|

)ν
dxdy <∞. (2.31)

Proof of Theorem 1.5. Let ι ∈ I. The form of Ψι∗QιN (P,ϕ, h)Ψ∗ι , namely (1.35), simply follows
by plugging the expansion (2.22) into (2.27) and applying Green’s formula. For the latter we use
Proposition 2.6 (recalling that p2 ≡ pι2 − z). All the integrals make sense by (2.30) if we choose
ϕ̃M with M ≥ maxj≤N (k(j) + 1).

Let us now prove (1.36) and (1.37). Since the proofs are very similar we only show (1.37) and
thus consider P = −∆̃g. Fix N ≥ 0. For N ′ > N and M large enough, both to be chosen later,
we set

RN ′(P,ϕ, h) =
1
π

∫∫
R2
∂z̄ϕ̃M (x+ iy)(h2P − x− iy)−1RN ′(x+ iy, h)dxdy. (2.32)

We next fix two integers k > n/4, m̃ ≥ m/2, and rewrite hmA(h2P − z)−1 (with z = x+ iy) as

(h2P − i)−k
{

(h2P − i)khmA(h2P − i)−k−m̃
}

(h2P − z)−1(h2P − i)k+m̃. (2.33)

Using Proposition 2.10, the term {· · · } is bounded on L2(M, d̃g) uniformly with respect to h since,
for any 0 ≤ j ≤ k, P jA belongs to Diff2j+m

w (M). On the other hand, by Theorem 2.8, there exists
ν2 > 0 such that∣∣∣∣∣∣(h2P − i)k+m̃RN ′(z, h)hm

′
B
∣∣∣∣∣∣
L2(M,d̃g)→L2(M,d̃g)

. 〈z〉ν2/|Im z|ν2 ,

for z /∈ R and h ∈ (0, 1], provided

N ′ > m′ + 2(k + m̃). (2.34)

By Propositions 2.10 and 2.11, we therefore get, for p ∈ {2,∞},∣∣∣∣∣∣w(r)
n−1

2 −
n−1
p hmA(h2P − z)−1RN ′(z, h)hm

′
B
∣∣∣∣∣∣
L2(M,d̃g)→Lp(M,d̃g)

.
hn(1/p−1/2)

|Im z|

(
〈z〉
|Im z|

)n2

,

where the extra power of |Im(z)|−1 comes from the term (h2P − z)−1 in (2.33). Using (2.30), this
estimate clearly proves that, for p ∈ {2,∞},∣∣∣∣∣∣w(r)

n−1
2 −

n−1
p hmARN ′(P,ϕ, h)hm

′
B
∣∣∣∣∣∣
L2(M,d̃g)→Lp(M,d̃g)

. h−n(1/2−1/p),

if we choose M ≥ ν2 + 1 in (2.32). Then, define QNN ′(P,ϕ, h) by∑
ι∈ι
QιN ′(P,ϕ, h) =

∑
ι∈ι
QιN (P,ϕ, h) + hN+1QNN ′(P,ϕ, h). (2.35)
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Using the explicit form of QNN ′(P,ϕ, h), namely the fact that its symbol is a linear combination
of terms of the form a(r, θ, ρ, w(r)η) with a ∈ S−2σ−N (this is due to (1.35)), one has∣∣∣∣∣∣w(r)

n−1
2 −

n−1
p hmAQNN ′(ϕ, h)hm

′
B
∣∣∣∣∣∣
L2(M,d̃g)→Lp(M,d̃g)

. h−n( 1
2−

1
p ), h ∈ (0, 1],

which is a consequence of Propositions 2.2, 2.5 and of Lemmas 2.3 and 2.4. Since

RN (P,ϕ, h) = hN
′−NRN ′(P,ϕ, h) +QNN ′(P,ϕ, h), (2.36)

by choosing N ′ such that N ′ −N − 2k ≥ −n/2 + n/p and (2.34) holds, we get (1.37) for p = 2 or
∞. The other cases follow by interpolation. �

3 Lp bounds for the resolvent

Consider a temperate weight W in the sense of Definition 1.6. The main purpose of this section is
to prove the following theorem.

Theorem 3.1. For all 1 < p <∞, there exists νp > 0 such that

||W (r)(z − ∆̃g)−1W (r)−1||
Lp(M,d̃g)

.

(
〈z〉
|Im z|

)νp
,

for all z ∈ C \ R.

Recall that ∆̃g is defined by (1.25) and is self-adjoint with respect to d̃g given by (1.22).

Translated in terms of ∆g, Theorem 3.1 gives

Corollary 3.2. For all 1 < p <∞, there exists νp > 0 such that

||W (r)w(r)(n−1)( 1
p−

1
2 )(z −∆g)−1w(r)(1−n)( 1

p−
1
2 )W (r)−1||Lp(M,dg) .

(
〈z〉
|Im z|

)νp
,

for all z ∈ C \ R.

Theorem 3.1 is a consequence of Proposition 3.8 showing a stronger result, namely that, in
local charts, (z − ∆̃g)−1 is a pseudo-differential operator with symbol in a class that guarantees
the Lp boundedness on Lp(M, d̃g). Using Proposition 3.8, we also obtain the following result.

Theorem 3.3. If w is itself a temperate weight, then for all temperate weight W and all 1 < p <∞,
there exists νp > 0 such that

||W (r)(z −∆g)−1W (r)−1||Lp(M,dg) .

(
〈z〉
|Im z|

)νp
,

for all z ∈ C \ R.

This holds in particular if W ≡ 1.
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3.1 Reduction

In this subsection, we explain how to reduce Theorem 3.1 to Proposition 3.8 below. This reduction
rests on classical results on pseudo-differential operators, namely the Calderòn-Zygmund Theorem
3.4 and the Beals Theorem 3.6.

Recall first the definitions of the usual classes of symbols S0 and S0
0 :

a ∈ S0(Rd × Rd)⇔ |∂αx ∂
β
ξ a(x, ξ)| . 〈ξ〉−|β|, (3.1)

a ∈ S0
0(Rd × Rd)⇔ |∂αx ∂

β
ξ a(x, ξ)| . 1. (3.2)

The following theorem is due to Calderòn-Zygmund.

Theorem 3.4. Let d ≥ 1 and a ∈ S0(Rd × Rd). Then, for all 1 < p <∞,

||a(x,D)v||Lp(Rd) ≤ Cp||v||Lp(Rd), v ∈ C∞0 (Rd),

where the constant Cp depends on a finite number of semi-norms of a in S0.

For a proof, see for instance [24].
We next introduce the class S−2,0

0,1 (Rn+1 × Rn) of functions b(x1, x
′
1, y, ρ, η) satisfying∣∣∣∂jx1

∂j
′

x′1
∂αy ∂

k
ρ∂

β
η b(x1, x

′
1, y, ρ, η)

∣∣∣ ≤ Cjαkβ〈ρ〉−2〈η〉−|β|, (3.3)

for x1, x
′
1 ∈ R, y ∈ Rn−1 , and (ρ, η) ∈ R× Rn−1. In particular, for fixed x1, x

′
1, ρ, these functions

belong to S0(Rn−1
y × Rn−1

η ). Consider the pseudo-differential operator B defined on Rn by the
Schwartz kernel

KB(x1, y, x
′
1, y
′) = (2π)−n

∫
ei(y−y

′)·η b̂(x1, x
′
1, y, x

′
1 − x1, η)dη (3.4)

where b̂ is the Fourier transform of b with respect to ρ. This kernel is continuous with respect to
x1, x

′
1 (with values in S ′(Rn−1 × Rn−1)). Integrating by parts with (x1 − x′1)−1∂ρ in the integral

defining b̂, one sees that, for all N and all α, β,

|∂αθ ∂βη b̂(x1, y, x
′
1 − x1, η)| ≤ CNαβ〈x1 − x′1〉−N 〈η〉−|β|. (3.5)

Thus, for all 1 < p <∞ and N > 0, Theorem 3.4 yields the existence of CNp such that

||(Bv)(x1, .)||Lp(Rn−1) ≤ CNp
∫
〈x1 − x′1〉−N ||v(x′1, .)||Lp(Rn−1)dx

′
1, (3.6)

for all v ∈ C∞0 (Rx′1×Rn−1
y′ ). Denoting by p′ the conjugate exponent to p, Hölder’s inequality yields

||(Bv)(x1, .)||pLp(Rn−1) .

(∫
〈x1 − x′1〉−Ndx′1

) p
p′
(∫
〈x1 − x′1〉−N ||v(x′1, .)||

p
Lp(Rn−1)dx

′
1

)
and thus, if N > 1, we conclude that

||Bv||pLp(Rn) .
∫ ∫
〈x1 − x′1〉−N ||v(x′1, .)||

p
Lp(Rn−1)dx

′
1dx1 . ||v||pLp(Rn), v ∈ C∞0 (Rn). (3.7)

More generally, if W is a temperate weight, estimates of the form (3.5) still hold if we replace
b̂(x1, y, x

′
1 − x1, η) by W (x1)b̂(x1, y, x

′
1 − x1, η)W (x′1)−1. All this gives the following result.
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Proposition 3.5. If b ∈ S−2,0
0,1 (Rn+1 × Rn) and B is defined by the kernel (3.4), then for all

temperate weight W , W (x1)BW (x1)−1 is bounded on Lp(Rn) for all 1 < p < ∞, and its norm
depends on a finite number of constants Cjαkβ in (3.3).

We shall essentially prove Theorem 3.1 by showing that the pull-backs on Rn of (z− ∆̃g)−1 by
local charts are pseudo-differential operators with symbols in S−2,0

0,1 (Rn+1×Rn). The main tool to
characterize these pull-packs as pseudo-differential operators on Rn is the Beals criterion which we
recall in Theorem 3.6 below. Let us fix first some notation. If A and L are operators on suitable
spaces, we set

adL ·A = LA−AL.

In our case, L will typically belong to

LRn = {x1, . . . , xn, ∂x1 , . . . , ∂xn}.

Theorem 3.6 (Beals). Let A : S(Rn) → S ′(Rn) be a continuous linear map. If A is bounded on
L2(Rn) and, more generally, for all N and all L1, . . . , LN ∈ LRn , if the operator adL1 . . . adLN ·A
is bounded on L2(Rn), then there exists a ∈ S0

0 such that

A = aW (x,D),

and each semi-norm of a in S0
0 is controlled by a finite number of ||adL1 . . . adLN ·A||L2→L2 .

Here aW (x,D) is the Weyl quantization of a namely the operator whose kernel is

(2π)−n
∫
ei(x−x

′)·ξa
(
(x+ x′)/2, ξ

)
dξ.

Theorem 3.6 is for instance proved in [2, 3, 11].
The characterization of operators with symbols in S−2,0

0,1 (Rn+1×Rn) is easily deduced from this
theorem as follows. Recall first the formula

(∂αx ∂
β
ξ a)W (x,D) = i−|β|adα∂xad

β
x · aW (x,D), (3.8)

where adαx = adα1
x1
. . . adαnxn and adβ∂x = adβ1

∂x1
. . . adβn∂xn

(note that adL1adL2 = adL2adL1 for all
L1, L2 ∈ LRn). On the other hand, we also have

(ξja)W (x,D) = Dja
W (x,D)− 1

2i
(∂xja)W (x,D). (3.9)

Proposition 3.7. Let A : S(Rn) → S ′(Rn) be linear and continuous. Assume that, for all
α, β ∈ Nn and all γ ∈ Nn such that

γ1 ≤ 2, γ2 + · · ·+ γn ≤ β2 + · · ·+ βn,

the operator

Aγαβ := Dγ
x

(
adα∂xad

β
x ·A

)
(3.10)

is bounded on L2(Rn). Then A is a pseudo-differential operator with symbol a ∈ S−2,0
0,1 (Rn+1×Rn)

(ie has a kernel of the form (3.4)). Each semi-norm of a in S−2,0
0,1 (Rn+1×Rn) depends on a finite

number of operator norms ||Aγαβ ||L2→L2 .
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Proof. Set B = (1 + D2
x1

)A. By Theorem 3.6, we can write B = bW (x,D) for some b ∈ S0
0 since

B = A0
00 +Aγ00, with γ = (2, 0, . . . , 0), which is bounded on L2 as well as adα∂xadβxB since adα∂xadβx

commute with the composition with ∂2
x1

. Define then Bγαβ similarly to (3.10) with B instead of A
and with γ = (0, γ2, . . . , γn). By (3.8) and (3.9), Bγαβ is the sum of

i−|β|
(
ξγ∂αx ∂

β
ξ b
)W

(x,D),

and of a linear combination of operators of the form(
ξγ
′
∂α
′

x ∂
β
ξ b
)W

(x,D), γ′ < γ, α′ ≤ α+ γ.

On the other hand, by Theorem 3.6 again, Bγαβ is of the form (bγαβ)W (x,D) for some bγαβ ∈ S0
0 .

Thus
bγαβ(x, ξ) = i−|β|ξγ∂αx ∂

β
ξ b(x, ξ) +

∑
γ′<γ,
α′≤α+γ

cγ′α′ξ
γ′∂α

′

x ∂
β
ξ b(x, ξ).

By induction on β, we deduce that

|∂αx ∂
β
ξ b(x, ξ)| . (1 + |ξ2|+ · · ·+ |ξn|)−β2−···−βn . (3.11)

Using then the standard fact that any cW (y,Dy), with c ∈ S0(Rn−1 × Rn−1), can be written
c1(y,Dy) for some c1 ∈ S0(Rn−1 ×Rn−1) depending continuously on c, we can write bW (x,Dx) =
b1(x,Dx) for some symbol b1 satisfying the estimates (3.11) and depending continuously on b.
Therefore A = (1 +D2

x1
)−1b1(x,Dx) and its symbol 〈ξ1〉−2b1(x, ξ) clearly belongs to S−2,0

0,1 . �

Let us now choose, for each ι ∈ I, three functions f (1)
ι , f

(2)
ι , f

(3)
ι ∈ C∞(M) such that, if we set

also
f (0)
ι = fι

fι being the ι-th element of the partition of unity (1.6), we have

f (j+1)
ι ≡ 1 near supp(f (j)

ι ), j = 0, 1, 2, (3.12)

and

supp(f (j)
ι ) ⊂ Uι, j = 1, 2, 3. (3.13)

If ι ∈ Icomp we may assume that f (j)
ι ∈ C∞0 (Uι) and if ι ∈ I∞ we may assume that

Ψι∗f
(j)
ι (r, θ) = %(j)(r)κ(j)

ι (θ),

with %(j) and κ
(j)
ι supported in small neighborhoods of supp(%) and supp(κι) respectively (see

(1.8)), κ(j)
ι being compactly supported and %(j)(r) = 1 for r large. Therefore, in all cases,

f (j)
ι ∈ Diff0

w(M).

By (1.6) we can write

(z − ∆̃g)−1 =
∑
ι∈I

f (0)
ι (z − ∆̃g)−1f (2)

ι +
∑
ι′∈I

∑
ι∈I

f (0)
ι (P − z)−1(1− f (2)

ι )f (0)
ι′ .

The first sum corresponds to ‘diagonal terms’ and the second double one to ’off diagonal terms’
since f (0)

ι and (1− f (2)
ι )f (0)

ι′ have disjoint supports.
By Proposition 3.5, Theorem 3.1 would be a direct consequence of the following proposition.
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Proposition 3.8. For all ι, ι′ ∈ I, the following operators, acting on L2(Rn),

Rι(z) ≡ Ψι∗f
(0)
ι (z − ∆̃g)−1f (2)

ι Ψ∗ι , z /∈ R,

and

Rιι′(z) = Ψι∗f
(0)
ι (z − ∆̃g)−1(1− f (2)

ι )f (0)
ι′ Ψ∗ι′ , z /∈ R,

have kernels of the form (3.4) with symbols whose semi-norms in S−2,0
0,1 (Rn+1 × Rn) are bounded

by (〈z〉/|Im z|)ν , for some ν (depending on the semi-norm).

We shall prove Proposition 3.8 using Proposition 3.7. To this end, it is convenient to introduce
the set of operators Cι(z) and Cιι′(z) defined as follows. Consider all operators RM(z) of the form

RM(z) =
N∏
j=1

(
w(r)kjAj(z − ∆̃g)−1

)
(z − ∆̃g)−1 (3.14)

the product standing for the composition, from the left to the right increasingly in j, with N ≥ 1,
k1, . . . , kN ≥ 0 and

Aj ∈ Diffmjw (M), 0 ≤ mj ≤ 2, m1 = 0.

Consider then all F (0)
ι , F

(2)
ι ∈ Diff0

w(M) such that

supp(F (0)
ι ) ⊂ supp(f (0)

ι ), supp(F (2)
ι ) ⊂ supp(f (2)

ι ). (3.15)

We then define the vector space

Cι(z) = span{Ψι∗F
(0)
ι RM(z)F (2)

ι Ψ∗ι }

obtained by considering all operators of the form (3.14) and all cutoffs F (0)
ι , F

(2)
ι satisfying (3.15).

Clearly

Rι(z) ∈ Cι(z). (3.16)

Similarly, consider the set of cutoffs F (2)
ιι′ ∈ Diff0

w(M) such that

supp(F (2)
ιι′ ) ⊂ supp

(
(1− f (2)

ι )f (0)
ι′

)
, (3.17)

and define
Cιι′(z) = span{Ψι∗F

(0)
ι RM(z)F (2)

ιι′ Ψ∗ι }.

We have

Rιι′(z) ∈ Cιι′(z). (3.18)

To compute the commutators with elements of LRn , we start with a few remarks. For k = 1, . . . , n,
we have

xkΨι∗ = Ψι∗x
ι
k, Ψ∗ι′xk = xι

′

kΨ∗ι′ , (3.19)

if we denote by (xι1, . . . , x
ι
n) the coordinates in the ι-th chart and by (x1, . . . , xn) those of Rn.

Similarly

∂xkΨι∗ = Ψι∗∂xιk , Ψ∗ι′∂xk = ∂xι′k
Ψ∗ι′ . (3.20)
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Of course, both (3.19) and (3.20) hold only in coordinate patches. If ι and ι′ belong to I∞, (3.19)
reads, for k = 2, . . . , n,

xkΨι∗ = Ψι∗θ
ι
k−1, Ψ∗ι′xk = θι

′

k−1Ψ∗ι′ ,

and for k = 1,

x1Ψι∗ = Ψι∗r, Ψ∗ι′x1 = rΨ∗ι′ , (3.21)

where one should note that r is globally defined on M. We don’t write the analogous formulas
corresponding to (3.20) for ι, ι′ ∈ I∞ but we recall that ∂r is only defined where r is a coordinate,
namely for r > R.

By (3.12), (3.20) and (3.15), we have

∂k

(
Ψι∗F

(0)
ι RM(z)F (2)

ι Ψ∗ι
)

= Ψι∗

[
Lι,k, F

(0)
ι RM(z)F (2)

ι

]
Ψ∗ι +

(
Ψι∗F

(0)
ι RM(z)F (2)

ι Ψ∗ι
)
∂k,

with

Lι,k = f (3)
ι Ψ∗ι ∂kΨι∗. (3.22)

In particular, [
∂k,Ψι∗F

(0)
ι RM(z)F (2)

ι Ψ∗ι
]

= Ψι∗

[
Lι,k, F

(0)
ι RM(z)F (2)

ι

]
Ψ∗ι . (3.23)

For operators in Cιι′(z), we use (3.17), that f (1)
ι ≡ 1 near supp(f (0)

ι ) and that

(1− f (2)
ι ) ≡ 0 near supp(f (1)

ι ),

(1− f (1)
ι ) ≡

{
1 near supp(1− f (2)

ι )
0 near supp(f (0)

ι )
,

which follow from (3.12), to obtain

∂k

(
Ψι∗F

(0)
ι RM(z)F (2)

ιι′ Ψ∗ι′
)

= Ψι∗

[
Lι→ι′,k, F

(0)
ι RM(z)F (2)

ιι′

]
Ψ∗ι′ ,(

Ψι∗F
(0)
ι RM(z)F (2)

ιι′ Ψ∗ι′
)
∂k = Ψι∗

[
F (0)
ι RM(z)F (2)

ιι′ , Lι←ι′,k

]
Ψ∗ι′ ,

with

Lι→ι′,k = f (1)
ι Ψ∗ι ∂kΨι∗, Lι←ι′,k = (1− f (1)

ι )f (1)
ι′ Ψ∗ι′∂kΨι′∗. (3.24)

The main consequence is that[
∂k,Ψι∗F

(0)
ι RM(z)F (2)

ιι′ Ψ∗ι′
]

= Ψι∗

([
Lι→ι′,k, F

(0)
ι RM(z)F (2)

ιι′

]
−
[
F (0)
ι RM(z)F (2)

ιι′ , Lι←ι′,k

])
Ψ∗ι′ .

With the latter formula, (3.23) and the resolvent identity, namely

adL · (z − ∆̃g)−1 = −(z − ∆̃g)−1[L, ∆̃g](z − ∆̃g)−1, (3.25)

we are equipped to prove the following result.
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Proposition 3.9. For all α ∈ Nn and all ι ∈ I (resp. all ι, ι′ ∈ I), we have

adα∂xRι(z) ∈ Cι(z)
(
resp. adα∂xRιι′(z) ∈ Cιι′(z)

)
.

More precisely, it is a linear combination (with coefficients independent of z) of operators of the
form

F (0)
ι RM(z)F (2)

ι (resp. F (0)
ι RM(z)F (2)

ιι′ )

with N ≤ |α|+ 1 and

A1 ∈ Diff0
w(M), A2, . . . , AN ∈ Diff2

w(M), k1 = k2 = · · · = kN = 0.

Proof. It follows from elementary induction once observed that, if L is any of the operators in
(3.22) or (3.24), we have

A ∈ Diffmw (M) ⇒ [L,A] ∈ Diffmw (M).

Indeed, if L is compactly support this is trivial. Otherwise, if it is supported in chart a infinity,
this is a consequence of the identities

[∂r, %̃(r)κ̃(θ)∂θk ] =
(
%̃′(r)
w(r)

κ̃(θ)
)
w(r)∂θk ,[

w(r)∂θk′ , %̃(r)κ̃(θ)∂θk
]

=
(
%̃(r)∂θk′ κ̃(θ)

)
w(r)∂θk ,[

w(r)∂θk′ , %̃(r)κ̃(θ)∂r
]

=
(
w(r)%̃(r)∂θk′ κ̃(θ)

)
∂r −

(
w′(r)
w(r)

%̃(r)κ̃(θ)
)
w(r)∂θk′ ,

where all the brackets in the right hand sides are bounded as well as their derivatives, if %̃ and κ̃
are bounded with compactly supported derivatives, also using (1.13) and (1.15). �

To compute adβxad
α
∂x
Rι(z) and adβxad

α
∂x
Rιι′(z), we need the following lemma.

Lemma 3.10. Let ρ̃ be a smooth function on R with compactly supported derivative and supported
in r > R. Let κ̃(θ) be supported in patch of the manifold at infinity. Then, for any A ∈ Diffmw (M),
we have

[A, %̃(r)r] = A′, [A, %̃(r)κ̃(θ)θk] = w(r)A′′,

for some A′, A′′ ∈ Diffm−1
w (M). Furthermore, for all F ∈ C∞0 (M) and all k ∈ N, we can write

[A,F ] = w(r)kAk,

with Ak ∈ Diffm−1
w (M).

Proof. The first two identities follow simply from

[∂r, %̃(r)r] = (%̃′(r)r + %̃(r)) ,

[∂r, %̃(r)κ̃(θ)θk] = w(r)
(
%̃′(r)
w(r)

κ̃(θ)θk

)
,[

w(r)∂θk′ , %̃(r)κ̃(θ)θk
]

= w(r)%̃(r)
(
θk∂θk′ κ̃(θ) + δkk′ κ̃(θ)

)
,

since all brackets in the right hand sides are smooth and bounded, together with their derivatives.
For the third one, we simply observe that [A,F ] is a differential operator of order m − 1 with
compact support and can thus be written w(r)k(w(r)−k [A,F ]) since w doesn’t vanish. �
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The main sense of this lemma is that commutators of elements of Diffmw (M) with the multipli-
cation operators by coordinates (cut off to be globally defined) are operators in Diffm−1

w (M). More
precisely, we get a factor w(r) when commuting with angular coordinates or compactly supported
functions. Note also that it is crucial for the first commutator that we commute A with a function
of r only. Otherwise, we would have to consider for instance terms like

[w(r)∂θk′ , %̃(r)κ̃(θ)r] =
(
%̃(r)∂θk′ κ̃(θ)

)
w(r)r,

with w(r)r unbounded in general.

Proposition 3.11. For all α, β ∈ Nn and all ι ∈ I (resp. all ι, ι′ ∈ I), the operator

adβxad
α
∂xRι(z) (resp. adβxad

α
∂xRιι′(z)),

is a linear combination (with coefficients independent of z) of operators of the form

F (0)
ι RM(z)F (2)

ι (resp. F (0)
ι RM(z)F (2)

ιι′ )

where RM(z) is of the form (3.14) with N ≤ |α|+ |β|+ 1,

Aj ∈ Diffmjw (M), 0 ≤ mj ≤ 2

and
kj = 2−mj , k2 + · · ·+ kN = β2 + · · ·+ βn.

Proof. We repeat essentially the calculations prior to Proposition 3.9 with xk instead of ∂k except
for x1 when we work close to infinity. We proceed as follows. If ι ∈ Icomp, we define

Xι,k = f (3)
ι Ψ∗ιxkΨι∗, (3.26)

Xι→ι′,k = f (1)
ι Ψ∗ιxkΨι∗, (3.27)

for 1 ≤ k ≤ n. If ι′ ∈ Icomp and ι ∈ I, we also set

Xι←ι′,k = (1− f (1)
ι )f (1)

ι′ Ψ∗ι′xkΨι′∗, (3.28)

for 1 ≤ k ≤ n. In these cases, Xι,k, Xι→ι′,k and Xι←ι′,k are smooth functions compactly supported
in coordinates patches. If k ≥ 2 and ι, ι′ ∈ I∞, we still define Xι,k, Xι→ι′,k and Xι←ι′,k by the
right hand sides of (3.26), (3.27) and (3.28). Setting finally

Xι,1 = r, ι ∈ I∞ (3.29)
Xι→ι′,1 = r, ι ∈ I∞, ι′ ∈ I, (3.30)
Xι←ι′,1 = r ι ∈ I, ι′ ∈ I∞, (3.31)

we have defined Xι,k, Xι→ι′,k and Xι←ι′,k for all ι, ι′ ∈ I and all 1 ≤ k ≤ n. For operators of the
form (3.14) and cutoffs satisfying (3.15), (3.19) imply that[

xk,
(

Ψι∗F
(0)
ι RM(z)F (2)

ι Ψ∗ι
)]

= Ψι∗F
(0)
ι

[
Xι,k, R

M(z)
]
F (2)
ι Ψ∗ι ,

for all ι ∈ I and 1 ≤ k ≤ n. For off diagonal terms, namely with right cutoffs satisfying (3.17), we
have

xk

(
Ψι∗F

(0)
ι RM(z)F (2)

ιι′ Ψ∗ι
)

= Ψι∗F
(0)
ι Xι→ι′,kR

M(z)F (2)
ιι′ Ψ∗ι ,

= Ψι∗F
(0)
ι

[
Xι→ι′,k, R

M(z)
]
F

(2)
ιι′ Ψ∗ι′ +

Ψι∗F
(0)
ι RM(z)Xι→ι′,kF

(2)
ιι′ Ψ∗ι′
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where the last term vanishes if ι ∈ Icomp or k ≥ 2. In the remaining cases, namely k = 1 and
ι ∈ I∞, we have Xι→ι′,1 = r and

rF
(2)
ιι′ Ψ∗ι′ =

{
Fιι′Ψ∗ι′ with Fιι′ ∈ C∞0 (M) if ι′ ∈ Icomp ,

F
(2)
ιι′ Ψ∗ι′x1 if ι′ ∈ I∞.

Similarly, we have(
Ψι∗F

(0)
ι RM(z)F (2)

ιι′ Ψ∗ι
)
xk = Ψι∗F

(0)
ι RM(z)Xι←ι′,kF

(2)
ιι′ Ψ∗ι ,

= Ψι∗F
(0)
ι

[
RM(z), Xι←ι′,k,

]
F

(2)
ιι′ Ψ∗ι′ +

Ψι∗F
(0)
ι Xι←ι′,kR

M(z)F (2)
ιι′ Ψ∗ι′

where the last term vanishes if k ≥ 2 or ι′ ∈ Icomp and

Ψι∗F
(0)
ι Xι←ι′,1 =

{
Fιι′Ψ∗ι′ with Fιι′ ∈ C∞0 (M) if ι ∈ Icomp ,

x1Ψι∗F
(0)
ι if ι ∈ I∞.

This shows that, unless ι, ι′ ∈ I∞ and k = 1,
[
xk,
(

Ψι∗F
(0)
ι RM(z)F (2)

ιι′ Ψ∗ι
)]

is the sum of

Ψι∗F
(0)
ι

([
Xι→ι′,k, R

M(z)
]
−
[
RM(z), Xι←ι′,k,

])
F

(2)
ιι′ Ψ∗ι′

and of terms of the same form as Ψι∗F
(0)
ι RM(z)F (2)

ιι′ Ψ∗ι . If ι, ι′ ∈ I∞ and k = 1, we simply have[
x1,
(

Ψι∗F
(0)
ι RM(z)F (2)

ιι′ Ψ∗ι
)]

= Ψι∗F
(0)
ι

[
r,RM(z)

]
F

(2)
ιι′ Ψ∗ι′ .

Using lemma 3.10, the resolvent identity (3.25) and a simple induction, we get the result. �

The next proposition is the final step before being in position to use Proposition 3.7.

Proposition 3.12. Fix ι ∈ I (resp. ι, ι′ ∈ I). For all α, β ∈ Nn and all γ ∈ N satisfying γ1 ≤ 2,
γ2 + · · ·+ γn ≤ β2 + · · ·+ βn, the operator

Dγ
xad

β
xad

α
∂xRι(z) (resp. Dγ

xad
β
xad

α
∂xRιι′(z)),

is a linear combination (with coefficients independent of z) of operators of the form

F (0)
ι RM(z)F (2)

ι (resp. F (0)
ι RM(z)F (2)

ιι′ )

(see (3.14)) with N ≤ |α|+ |β|+ |γ|+ 1 and

A1, . . . , AN ∈ Diff2
w(M), k1 = · · · = kN = 0.

In particular, they are bounded on L2(Rn) with norms controlled by powers of 〈z〉/|Im(z)|.

Proof. We treat the case of Rι(z), the one of Rιι′(z) being completely similar. We start with a
simple model case. Consider an operator of the form

B(z) := Ψι∗F
(0)
ι (z − ∆̃g)−1w(r)A(z − ∆̃g)−1F (2)

ι Ψ∗ι ,
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with A ∈ Diff1
w(M). Such operators appear in Proposition 3.11 with N = 2 if β2 + · · · + βn = 1

and α = 0. Compute then ∂kB(z), with k ≥ 2. We get

Ψι∗

([
Lι,k, F

(0)
ι (z − ∆̃g)−1w(r)

]
A(z − ∆̃g)−1 + F (0)

ι (z − ∆̃g)−1w(r)Lι,kA(z − ∆̃g)−1F (2)
ι

)
Ψ∗ι .

The commutator reads[
Lι,k, F

(0)
ι

]
(z− ∆̃g)−1w(r) +F (0)

ι (z− ∆̃g)
[
∆̃g, Lι,k

]
(z− ∆̃g)−1w(r) +F (0)

ι (z− ∆̃g)−1 [Lι,k, w(r)]

and is bounded on L2(M, d̃g) since [Lι,k, ∆̃g] ∈ Diff1
w(M). The simple and crucial remark is that

w(r)Lι,kA ∈ Diff2
w(M),

although Lι,kA /∈ Diff2
w(M) in general. Therefore ∂kB(z) is a linear combination of operators of

the form (3.14) with A1 of order 0. This then implies that ∂2
1∂kB(z) is also of this form with A1 of

order 2. Iteration of this argument give the result since Proposition 3.11 shows there are at least
γ2 + · · ·+ γn powers w(r) in the expression of adβxad

α
∂x
Rι(z) to absorb ∂γ2x2

. . . ∂γnxn . �

3.2 Proof of Proposition 3.8

Proposition 3.8 follows from Proposition 3.7 since, by Proposition 3.12, the operators Rι(z) and
Rιι′(z) satisfy the assumptions of Proposition 3.7.

3.3 Proof of Theorem 3.1

This is a direct consequence of Proposition 3.5 and Proposition 3.8 using the equivalence of norms
(1.26).

3.4 Proof of Theorem 3.3

The boundedness of W (r)(z −∆g)−1W (r)−1 on Lp(M, dg) is equivalent to the one of

W (r)w(r)
n−1

2 −
n−1
p (z − ∆̃g)−1w(r)

n−1
p −

n−1
2 W (r)−1

on Lp(M, d̃g) so the result follows from Proposition 3.5, with the temperate weight Ww
n−1

2 −
n−1
p ,

and Proposition 3.8. �

3.5 Proof of Theorem 1.7

We note first that, by writing (z − h2∆̃g)−1 = h−2(zh−2 − ∆̃g)−1, Theorem 3.1 implies that

||W (r)(z − h2∆̃g)−1W (r)−1||
Lp(M,d̃g)→Lp(M,d̃g)

. h−2 〈z〉νp
|Im(z)|νp

, h ∈ (0, 1], z ∈ C \ R,(3.32)

by using the inequality 〈h−2z〉/|Im(h−2z)| . 〈z〉/|Im(z)|.
Assume next that ϕ ∈ S−σ(R) with σ > 1 so that we can use (2.31). By Theorem 2.8 and

(3.32), there exists νp,N such that∣∣∣∣∣∣W (r)(z − h2∆̃g)−1RN (z, h)W (r)−1
∣∣∣∣∣∣
Lp(M,d̃g)→Lp(M,d̃g)

. h−2

(
〈z〉
|Im z|

)νp+νN,p

,
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for h ∈ (0, 1] and z /∈ R. By choosing M ≥ ν = νp + νN,p, the above estimate and (2.31) give the
expected estimate up to a factor h−2. The latter is eliminated in the standard way: by pushing the
expansion to the order hN+2, we write RN (−∆̃g, ϕ, h) as the sum of properly supported pseudo-
differential operators bounded on W (r)−1Lp(M, d̃g) and of h2RN+2(−∆̃g, ϕ, h). This implies
(1.39).

If now ϕ ∈ S−σ(R) with σ > 0, we cannot use (2.31). We thus write ϕ(λ) = (λ+ i)ψ(λ) with
ψ ∈ S−σ−1(R) so that

ϕ(−h2∆̃g) = (i− h2∆̃g)ψ(−h2∆̃g). (3.33)

We then write again RN (−∆̃g, ϕ, h) as a finite sum of properly supported pseudo-differential
operators bounded on W (r)−1Lp(M, d̃g) and

hN+2

∫ ∫
R2
∂̄ψ̃M (z)(z − h2∆̃g)−1(i− h2∆̃g)RN+2(z, h)dxdy

where z = x+ iy. By Theorem 2.8, we have∣∣∣∣∣∣W (r)(i− h2∆̃)RN+2(z, h)W (r)−1
∣∣∣∣∣∣
Lp(M,d̃g)→Lp(M,d̃g)

.

(
〈z〉
|Im z|

)νN+2,p

,

and we proceed as above. �

A Non Lp → Lp boundedness on the hyperbolic space

Using the hyperboloid model of the hyperbolic space, namely

Hn = {x = (x0, . . . , xn) ∈ Rn+1 | x2
0 − x2

1 − · · · − x2
n = 1, x0 > 0},

we have polar coordinates by considering

x(r, ω) = (cosh r, ω sinh r), r > 0, ω ∈ Sn−1.

In this parametrization, the distance between x = x(r, ω) and x′ = x(r′, ω′) reads

d(x, x′) = arccosh (cosh r cosh r′ − ω · ω′ sinh r sinh r′)

= arccosh
{(

1− |ω − ω
′|2

4

)
cosh(r − r′) +

|ω − ω′|2

4
cosh(r + r′)

}
(A.34)

and the volume element is
(sinh r)n−1drdω,

where dω is the usual Riemannian measure on the sphere. Considering n = 3 for simplicity, the
resolvent

(−∆H3 − 1 + ε2)−1, ε > 0, (A.35)

is well defined since, in general, −∆Hn ≥ (n− 1)2/4. Its kernel with respect to the volume element
is then given by

1
4π

e−εd(x,x′)

sinh d(x, x′)
. (A.36)

(see for instance [23, p. 105]).
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Proposition A.1. Fix p ∈ (1,∞) with p 6= 2. If 0 < ε <
∣∣∣1− 2

p

∣∣∣, then (−∆H3 − 1 + ε2)−1 is not

bounded on Lp(H3).

We shall proceed by contradiction, using the following simple lemma.

Lemma A.2. Let K1,K2 be two locally integrable functions on (R+ × S2)2 such that

K2(r, ω, r′, ω′) ≥ |K1(r, ω, r′, ω′)|. (A.37)

Denote by Aj be the operator with kernel Kj with respect to drdω and set Lp = Lp(R+×S2, drdω).
Then

||A1||Lp→Lp ≤ ||A2||Lp→Lp .

Proof. By (A.37), we have, for all u ∈ C∞0 (R+ × S2),

|(A1u)(r, ω)| ≤ |(A2|u|)(r, ω)|

so, taking the Lp norm, we obtain

||A1u||Lp ≤
∣∣∣∣A2|u|

∣∣∣∣
Lp
≤ ||A2||Lp→Lp

∣∣∣∣|u|∣∣∣∣
Lp

= ||A2||Lp→Lp ||u||Lp

which gives the result. �

Proof of Proposition A.1. We argue by contradiction and assume that (−∆H3−1+ε2)−1 is bounded
on Lp(H3). This is equivalent to the boundedness on Lp(R+×S2, drdω) of the operator with kernel

K2(r, ω, r′, ω′) := (sinh r)
2
p

(
1

4π
e−εd(x,x′)

sinh d(x, x′)
(sinh r′)2

)
(sinh r′)−

2
p

with respect to drdω. Since cosh(r − r′) ≤ cosh(r + r′) for r, r′ ∈ R+, (A.34) gives

d(x, x′) ≤ r + r′

so, for r, r′ ≥ 1, we have

K2(r, ω, r′, ω′) & (er)
2
p

(
e−ε(r+r

′)

er+r′
(er
′
)2

)
(er
′
)−

2
p = e( 2

p−1−ε)re(1− 2
p−ε)r

′
. (A.38)

Denoting by K1(r, ω, r′, ω′) = K1(r, r′) the right hand side of (A.38) multiplied by the character-
istic function of [1,+∞)2, Lemma A.2 implies that the corresponding operator A1 is bounded on
Lp(R+ × S2, drdω). This is clearly not true if 2

p − 1 > ε, otherwise e( 2
p−1−ε)r should belong to

Lp(R). We also obtain a contradiction if 1− 2
p > ε by considering the adjoint of A1. �

We note that the right hand side of (A.38) also reads

e( 2
p−1)(r−r′)−ε(r+r′),

showing that the above reasoning gives no contradiction for p = 2 nor by restricting the kernel
close to the diagonal.
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We also recall that (n− 1)| 1p −
1
2 | (ie | 2p − 1| if n = 3) is exactly the width of the strip around

the real axis in which ϕ has to be holomorphic to ensure the boundedness on Lp(Hn) of

ϕ
(

(−∆Hn − (n− 1)2/4)1/2
)
,

as proved in [22]. The resolvent (A.35) corresponds to ϕ(λ) = (λ2 + ε2)−1 which is holomorphic
for |Im(λ)| < ε.

Remark. Proposition A.1 is a low frequency counterexample to the extent that it deals with
(−∆H3 + 1 − (λ + iε)2)−1 for λ = 0. However, a similar unboundedness result can be proved
for any λ > 0. In this case, the kernel (A.36) is no longer positive since it is modified by the
oscillatory factor exp(iλd(x, x′)) but one can overcome this problem as follows. Using the fact that
r − r′ ≤ d(x, x′) ≤ r + r′ and by testing the resolvent against positive radial functions ϕ and ψk
localized respectively in |λr′| ∼ ε and |r− 2kπλ−1| ≤ ε with ε small enough (but fixed) and k ∈ N,
one can bound from below Re(ψk, (−∆H3 + 1− (λ+ iε)2)−1ϕ) using (A.38) and get a contradiction
as k →∞.
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