On the scattering theory of asymptotically flat manifolds and Strichartz inequalities

Jean-Marc Bouclet
Institut de Mathématiques de Toulouse

23 Juin 2016 - Cergy Pontoise
Conférence en I'honneur de Vladimir Georgescu

Introduction

Purpose of the talk

- Take the question of Strichartz inequalities (for the Schrödinger equation) on asymptotically flat manifolds as a case study to review some related scattering estimates (resolvent estimates, time decay, smoothing estimates), either for comparison or because they are crucial inputs in the proofs of Strichartz inequalities
- Present some recent results (joint with H. Mizutani) on Strichartz inequalities on asymptotically flat manifolds

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}
$$

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2 .
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2 .
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}.

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2 .
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]
Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2 .
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities $(2 \leq q<\infty)$

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}} \lesssim\left\|e^{i t \Delta} u_{0}\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}, \quad s=\frac{n}{2}-\frac{n}{q}
$$

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2 .
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities $(2 \leq q<\infty)$

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}} \lesssim\left\|e^{i t \Delta} u_{0}\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}, \quad s=\frac{n}{2}-\frac{n}{q}
$$

2. Important to solve non linear equations at low regularity

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2 .
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities $(2 \leq q<\infty)$

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}} \lesssim\left\|e^{i t \Delta} u_{0}\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}, \quad s=\frac{n}{2}-\frac{n}{q}
$$

2. Important to solve non linear equations at low regularity
3. For $T=+\infty$

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2 .
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities $(2 \leq q<\infty)$

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}} \lesssim\left\|e^{i t \Delta} u_{0}\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}, \quad s=\frac{n}{2}-\frac{n}{q}
$$

2. Important to solve non linear equations at low regularity
3. For $T=+\infty$ (= global in time estimates),

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities $(2 \leq q<\infty)$

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}} \lesssim\left\|e^{i t \Delta} u_{0}\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}, \quad s=\frac{n}{2}-\frac{n}{q}
$$

2. Important to solve non linear equations at low regularity
3. For $T=+\infty$ ($=$ global in time estimates), shows that $\left\|e^{i t \Delta} u_{0}\right\|_{L q} \rightarrow 0$ as $t \rightarrow \infty$ (on L^{p} average if $q>2$)

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities $(2 \leq q<\infty)$

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}} \lesssim\left\|e^{i t \Delta} u_{0}\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}, \quad s=\frac{n}{2}-\frac{n}{q}
$$

2. Important to solve non linear equations at low regularity
3. For $T=+\infty$ (= global in time estimates), shows that $\left\|e^{i t \Delta} u_{0}\right\|_{L q} \rightarrow 0$ as $t \rightarrow \infty$ (on L^{p} average if $q>2$) \sim local energy decay (RAGE Theorem)

Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation take the form

$$
\left(\int_{-T}^{T}\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{p} d t\right)^{\frac{1}{p}} \leq C\left\|u_{0}\right\|_{L^{2}}
$$

provided (p, q) is admissible (scaling condition)

$$
\frac{2}{p}+\frac{n}{q}=\frac{n}{2}, \quad p, q \geq 2, q \neq \infty \text { if } n=2
$$

[Strichartz], [Ginibre-Velo], [Keel-Tao]

Interests:

1. Shows that $e^{i t \Delta} u_{0} \in L^{q}$ for a.e. t without using any derivative on u_{0}. Compare with Sobolev inequalities $(2 \leq q<\infty)$

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}} \lesssim\left\|e^{i t \Delta} u_{0}\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}, \quad s=\frac{n}{2}-\frac{n}{q}
$$

2. Important to solve non linear equations at low regularity
3. For $T=+\infty$ (= global in time estimates), shows that $\left\|e^{i t \Delta} u_{0}\right\|_{L q} \rightarrow 0$ as $t \rightarrow \infty$ (on L^{p} average if $q>2$) \sim local energy decay (RAGE Theorem) since

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{2}(K)} \lesssim K\left\|e^{i t \Delta} u_{0}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}, \quad K \Subset \mathbb{R}^{n}
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates:

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$.

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side \leftrightarrow decaying functions on the spatial side.

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side \leftrightarrow decaying functions on the spatial side. Examples.

1. High energy estimates:

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side \leftrightarrow decaying functions on the spatial side. Examples.

1. High energy estimates: if $\nu>1 / 2$,

$$
\left\|\langle x\rangle^{-\nu} R_{0}(\lambda \pm i 0)\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-1 / 2}, \quad \lambda \geq 1
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side \leftrightarrow decaying functions on the spatial side. Examples.

1. High energy estimates: if $\nu>1 / 2$,

$$
\left\|\langle x\rangle^{-\nu} R_{0}(\lambda \pm i 0)\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-1 / 2}, \quad \lambda \geq 1
$$

2. Low energy estimates:

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side \leftrightarrow decaying functions on the spatial side. Examples.

1. High energy estimates: if $\nu>1 / 2$,

$$
\left\|\langle x\rangle^{-\nu} R_{0}(\lambda \pm i 0)\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-1 / 2}, \quad \lambda \geq 1
$$

2. Low energy estimates: if $\nu=1$ and $n \geq 3$

$$
\left\|\langle x\rangle^{-1} R_{0}(\lambda \pm i 0)\langle x\rangle^{-1}\right\|_{L^{2} \rightarrow L^{2}} \lesssim 1, \quad|\lambda| \leq 1
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side \leftrightarrow decaying functions on the spatial side. Examples.

1. High energy estimates: if $\nu>1 / 2$,

$$
\left\|\langle x\rangle^{-\nu} R_{0}(\lambda \pm i 0)\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-1 / 2}, \quad \lambda \geq 1
$$

2. Low energy estimates: if $\nu=1$ and $n \geq 3$

$$
\left\|\langle x\rangle^{-1} R_{0}(\lambda \pm i 0)\langle x\rangle^{-1}\right\|_{L^{2} \rightarrow L^{2}} \lesssim 1, \quad|\lambda| \leq 1
$$

3. One may (actually, one has to) also consider estimates on

$$
R_{0}(\lambda \pm i 0)^{k}
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

- Resolvent estimates: give the behaviour with respect to $\lambda \in \mathbb{R}$ of

$$
R_{0}(\lambda \pm i 0)=\lim _{\delta \rightarrow 0^{ \pm}}(-\Delta-\lambda-i \delta)^{-1}
$$

In general, the existence of the limit is called limiting absorption principle Intuition. $R_{0}(\lambda+i \delta)$ is the Fourier multiplier by $\left(|\xi|^{2}-\lambda-i \delta\right)^{-1}$. This multiplier has a limit as $\delta \rightarrow 0^{ \pm}$(\sim principal value) provided it is tested against smooth enough functions on the Fourier side \leftrightarrow decaying functions on the spatial side. Examples.

1. High energy estimates: if $\nu>1 / 2$,

$$
\left\|\langle x\rangle^{-\nu} R_{0}(\lambda \pm i 0)\langle x\rangle^{-\nu}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \lambda^{-1 / 2}, \quad \lambda \geq 1
$$

2. Low energy estimates: if $\nu=1$ and $n \geq 3$

$$
\left\|\langle x\rangle^{-1} R_{0}(\lambda \pm i 0)\langle x\rangle^{-1}\right\|_{L^{2} \rightarrow L^{2}} \lesssim 1, \quad|\lambda| \leq 1
$$

3. One may (actually, one has to) also consider estimates on

$$
R_{0}(\lambda \pm i 0)^{k}=\frac{1}{(k-1)!} \frac{d^{k-1}}{d \lambda^{k-1}} R_{0}(\lambda \pm i 0)
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates:

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates: given a (spectral) cutoff $\varphi \in C_{0}^{\infty}(0,+\infty)$, understand the time decay of

$$
\varphi(-\Delta / \lambda) e^{i t \Delta}
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates: given a (spectral) cutoff $\varphi \in C_{0}^{\infty}(0,+\infty)$, understand the time decay of

$$
\varphi(-\Delta / \lambda) e^{i t \Delta}
$$

as $t \rightarrow \infty$,

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates: given a (spectral) cutoff $\varphi \in C_{0}^{\infty}(0,+\infty)$, understand the time decay of

$$
\varphi(-\Delta / \lambda) e^{i t \Delta}
$$

as $t \rightarrow \infty$, in term of the parameter $\lambda>0$.

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates: given a (spectral) cutoff $\varphi \in C_{0}^{\infty}(0,+\infty)$, understand the time decay of

$$
\varphi(-\Delta / \lambda) e^{i t \Delta}
$$

as $t \rightarrow \infty$, in term of the parameter $\lambda>0$. Intuition. For $\lambda=1$, the Schwartz kernel of $\varphi(-\Delta) e^{i t \Delta}$ is the oscillatory integral

$$
\int e^{i(x-y) \cdot \xi-i t|\xi|^{2}} \varphi\left(|\xi|^{2}\right) \frac{d \xi}{(2 \pi)^{n}}
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates: given a (spectral) cutoff $\varphi \in C_{0}^{\infty}(0,+\infty)$, understand the time decay of

$$
\varphi(-\Delta / \lambda) e^{i t \Delta}
$$

as $t \rightarrow \infty$, in term of the parameter $\lambda>0$. Intuition. For $\lambda=1$, the Schwartz kernel of $\varphi(-\Delta) e^{i t \Delta}$ is the oscillatory integral

$$
\int e^{i(x-y) \cdot \xi-i t|\xi|^{2}} \varphi\left(|\xi|^{2}\right) \frac{d \xi}{(2 \pi)^{n}}=\frac{i}{2 t} \int\left(\frac{\xi}{2|\xi|^{2}} \cdot \partial_{\xi} e^{-i t|\xi|^{2}}\right) e^{i(x-y) \cdot \xi} \varphi\left(|\xi|^{2}\right) \frac{d \xi}{(2 \pi)^{n}}
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates: given a (spectral) cutoff $\varphi \in C_{0}^{\infty}(0,+\infty)$, understand the time decay of

$$
\varphi(-\Delta / \lambda) e^{i t \Delta}
$$

as $t \rightarrow \infty$, in term of the parameter $\lambda>0$. Intuition. For $\lambda=1$, the Schwartz kernel of $\varphi(-\Delta) e^{i t \Delta}$ is the oscillatory integral

$$
\int e^{i(x-y) \cdot \xi-i t|\xi|^{2}} \varphi\left(|\xi|^{2}\right) \frac{d \xi}{(2 \pi)^{n}}=\frac{i}{2 t} \int\left(\frac{\xi}{2|\xi|^{2}} \cdot \partial_{\xi} e^{-i t|\xi|^{2}}\right) e^{i(x-y) \cdot \xi} \varphi\left(|\xi|^{2}\right) \frac{d \xi}{(2 \pi)^{n}}
$$

which leads to

$$
\left\|\langle x\rangle^{-k} \varphi(-\Delta) e^{i t \Delta}\langle x\rangle^{-k}\right\|_{L^{2} \rightarrow L^{2}} \lesssim\langle t\rangle^{-k} .
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

- Propagation / time decay estimates: given a (spectral) cutoff $\varphi \in C_{0}^{\infty}(0,+\infty)$, understand the time decay of

$$
\varphi(-\Delta / \lambda) e^{i t \Delta}
$$

as $t \rightarrow \infty$, in term of the parameter $\lambda>0$. Intuition. For $\lambda=1$, the Schwartz kernel of $\varphi(-\Delta) e^{i t \Delta}$ is the oscillatory integral

$$
\int e^{i(x-y) \cdot \xi-i t|\xi|^{2}} \varphi\left(|\xi|^{2}\right) \frac{d \xi}{(2 \pi)^{n}}=\frac{i}{2 t} \int\left(\frac{\xi}{2|\xi|^{2}} \cdot \partial_{\xi} e^{-i t|\xi|^{2}}\right) e^{i(x-y) \cdot \xi} \varphi\left(|\xi|^{2}\right) \frac{d \xi}{(2 \pi)^{n}}
$$

which leads to

$$
\left\|\langle x\rangle^{-k} \varphi(-\Delta) e^{i t \Delta}\langle x\rangle^{-k}\right\|_{L^{2} \rightarrow L^{2}} \lesssim\langle t\rangle^{-k} .
$$

By scaling

$$
\left\|\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-k} \varphi(-\Delta / \lambda) e^{i t \Delta}\left\langle\lambda^{\frac{1}{2}} x\right\rangle^{-k}\right\|_{L^{2} \rightarrow L^{2}} \lesssim\langle\lambda t\rangle^{-k}
$$

Strichartz and scattering estimates on the Euclidean space

 Scattering inequalities (end)- Integrated decay/ smoothing estimates:

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (end)

- Integrated decay/ smoothing estimates: Integrated space-time decay estimates are of the form

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-\nu} \varphi(-\Delta / \lambda) e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim \lambda\left\|u_{0}\right\|_{L^{2}}
$$

with $\nu>1 / 2$.

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (end)

- Integrated decay/ smoothing estimates: Integrated space-time decay estimates are of the form

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-\nu} \varphi(-\Delta / \lambda) e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim \lambda\left\|u_{0}\right\|_{L^{2}}
$$

with $\nu>1 / 2$. By tracking the dependence on λ, one may obtain the non spectrally localized estimate ($n \geq 3$)

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-1}\langle D\rangle^{\frac{1}{2}} e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim\left\|u_{0}\right\|_{L^{2}}
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (end)

- Integrated decay/ smoothing estimates: Integrated space-time decay estimates are of the form

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-\nu} \varphi(-\Delta / \lambda) e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim \lambda\left\|u_{0}\right\|_{L^{2}}
$$

with $\nu>1 / 2$. By tracking the dependence on λ, one may obtain the non spectrally localized estimate ($n \geq 3$)

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-1}\langle D\rangle^{\frac{1}{2}} e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim\left\|u_{0}\right\|_{L^{2}}
$$

which is the $\frac{1}{2}$-smoothing effect for the Schrödinger equation.

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (end)

- Integrated decay/ smoothing estimates: Integrated space-time decay estimates are of the form

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-\nu} \varphi(-\Delta / \lambda) e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim \lambda\left\|u_{0}\right\|_{L^{2}}
$$

with $\nu>1 / 2$. By tracking the dependence on λ, one may obtain the non spectrally localized estimate ($n \geq 3$)

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-1}\langle D\rangle^{\frac{1}{2}} e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim\left\|u_{0}\right\|_{L^{2}}
$$

which is the $\frac{1}{2}$-smoothing effect for the Schrödinger equation. Note that even locally in time (i.e. with \mathbb{R} replaced by $[-T, T]$) this is non trivial.

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (end)

- Integrated decay/ smoothing estimates: Integrated space-time decay estimates are of the form

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-\nu} \varphi(-\Delta / \lambda) e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim \lambda\left\|u_{0}\right\|_{L^{2}}
$$

with $\nu>1 / 2$. By tracking the dependence on λ, one may obtain the non spectrally localized estimate ($n \geq 3$)

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-1}\langle D\rangle^{\frac{1}{2}} e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim\left\|u_{0}\right\|_{L^{2}}
$$

which is the $\frac{1}{2}$-smoothing effect for the Schrödinger equation. Note that even locally in time (i.e. with \mathbb{R} replaced by $[-T, T]$) this is non trivial.

Intuition. More on the next slides.

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (end)

- Integrated decay/ smoothing estimates: Integrated space-time decay estimates are of the form

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-\nu} \varphi(-\Delta / \lambda) e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim \lambda\left\|u_{0}\right\|_{L^{2}}
$$

with $\nu>1 / 2$. By tracking the dependence on λ, one may obtain the non spectrally localized estimate ($n \geq 3$)

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-1}\langle D\rangle^{\frac{1}{2}} e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim\left\|u_{0}\right\|_{L^{2}}
$$

which is the $\frac{1}{2}$-smoothing effect for the Schrödinger equation. Note that even locally in time (i.e. with \mathbb{R} replaced by $[-T, T]$) this is non trivial.

Intuition. More on the next slides. Technically, they follow from resolvent estimates via a Parseval argument, using that $e^{i t \Delta}$ is the Fourier transform $(\lambda \rightarrow t)$ of the spectral measure

$$
R_{0}(\lambda+i 0)-R_{0}(\lambda-i 0)
$$

Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (end)

- Integrated decay/ smoothing estimates: Integrated space-time decay estimates are of the form

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-\nu} \varphi(-\Delta / \lambda) e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim \lambda\left\|u_{0}\right\|_{L^{2}}
$$

with $\nu>1 / 2$. By tracking the dependence on λ, one may obtain the non spectrally localized estimate ($n \geq 3$)

$$
\left(\int_{\mathbb{R}}\left\|\langle x\rangle^{-1}\langle D\rangle^{\frac{1}{2}} e^{i t \Delta} u_{0}\right\|_{L^{2}}^{2} d t\right)^{\frac{1}{2}} \lesssim\left\|u_{0}\right\|_{L^{2}}
$$

which is the $\frac{1}{2}$-smoothing effect for the Schrödinger equation. Note that even locally in time (i.e. with \mathbb{R} replaced by $[-T, T]$) this is non trivial.

Intuition. More on the next slides. Technically, they follow from resolvent estimates via a Parseval argument, using that $e^{i t \Delta}$ is the Fourier transform $(\lambda \rightarrow t)$ of the spectral measure

$$
R_{0}(\lambda+i 0)-R_{0}(\lambda-i 0)
$$

Rem. This correspondence $\lambda \rightarrow t$ also allows to convert resolvent estimates into time decay/propagation estimates (smoothness of $R_{0}(\lambda \pm i 0) \leftrightarrow$ decay of $\left.e^{i t P}\right)$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities
Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|
$$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right)
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$.

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right) .
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$. This implies easily

$$
\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L q}=(2 / q)^{\frac{n}{2 q}}\left(\frac{1}{\pi h\langle t / h\rangle^{2}}\right)^{\frac{n}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}
$$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right) .
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$. This implies easily

$$
\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L q}=(2 / q)^{\frac{n}{2 q}}\left(\frac{1}{\pi h\langle t / h\rangle^{2}}\right)^{\frac{n}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}
$$

Remark. The translation by $(t / h) \zeta$ is not used. Only the spreading/dilation factor $\langle t / h\rangle$ plays a role.

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right) .
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$. This implies easily

$$
\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L q}=(2 / q)^{\frac{n}{2 q}}\left(\frac{1}{\pi h\langle t / h\rangle^{2}}\right)^{\frac{n}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}
$$

Remark. The translation by $(t / h) \zeta$ is not used. Only the spreading/dilation factor $\langle t / h\rangle$ plays a role.

In particular, for $q=2^{*}=2 n /(n-2)$,

$$
\int_{-T}^{T}\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L^{2^{*}}}^{2} d t
$$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right) .
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$. This implies easily

$$
\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L q}=(2 / q)^{\frac{n}{2 q}}\left(\frac{1}{\pi h\langle t / h\rangle^{2}}\right)^{\frac{n}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}
$$

Remark. The translation by $(t / h) \zeta$ is not used. Only the spreading/dilation factor $\langle t / h\rangle$ plays a role.

In particular, for $q=2^{*}=2 n /(n-2)$,

$$
\int_{-T}^{T}\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L^{2^{*}}}^{2} d t=c_{n} \int_{-T}^{T} \frac{1}{\langle t / h\rangle^{2}} \frac{d t}{h}
$$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right) .
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$. This implies easily

$$
\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L q}=(2 / q)^{\frac{n}{2 q}}\left(\frac{1}{\pi h\langle t / h\rangle^{2}}\right)^{\frac{n}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}
$$

Remark. The translation by $(t / h) \zeta$ is not used. Only the spreading/dilation factor $\langle t / h\rangle$ plays a role.

In particular, for $q=2^{*}=2 n /(n-2)$,

$$
\int_{-T}^{T}\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L^{2^{*}}}^{2} d t=c_{n} \int_{-T}^{T} \frac{1}{\langle t / h\rangle^{2}} \frac{d t}{h}=c_{n} \int_{-T / h}^{T / h} \frac{1}{1+\tau^{2}} d \tau \leq C
$$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right) .
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$. This implies easily

$$
\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L q}=(2 / q)^{\frac{n}{2 q}}\left(\frac{1}{\pi h\langle t / h\rangle^{2}}\right)^{\frac{n}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}
$$

Remark. The translation by $(t / h) \zeta$ is not used. Only the spreading/dilation factor $\langle t / h\rangle$ plays a role.

In particular, for $q=2^{*}=2 n /(n-2)$,

$$
\int_{-T}^{T}\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L^{2}}^{2} d t=c_{n} \int_{-T}^{T} \frac{1}{\langle t / h\rangle^{2}} \frac{d t}{h}=c_{n} \int_{-T / h}^{T / h} \frac{1}{1+\tau^{2}} d \tau \leq C
$$

for all $h \in(0,1]$

Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L^{2} normalized semiclassical wave packet

$$
G_{z, \zeta, h}(x)=(\pi h)^{-\frac{n}{4}} \exp \left(\frac{i}{h} \zeta \cdot(x-z)-\frac{|x-z|^{2}}{2 h}\right) .
$$

Then,

$$
\left|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|=\frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right)
$$

with $\langle\tau\rangle=\left(1+\tau^{2}\right)^{\frac{1}{2}}$. This implies easily

$$
\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L q}=(2 / q)^{\frac{n}{2 q}}\left(\frac{1}{\pi h\langle t / h\rangle^{2}}\right)^{\frac{n}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}
$$

Remark. The translation by $(t / h) \zeta$ is not used. Only the spreading/dilation factor $\langle t / h\rangle$ plays a role.

In particular, for $q=2^{*}=2 n /(n-2)$,

$$
\int_{-T}^{T}\left\|e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}\right\|_{L^{2}}^{2} d t=c_{n} \int_{-T}^{T} \frac{1}{\langle t / h\rangle^{2}} \frac{d t}{h}=c_{n} \int_{-T / h}^{T / h} \frac{1}{1+\tau^{2}} d \tau \leq C
$$

for all $h \in(0,1]$ and $z \in \mathbb{R}^{n}$.

Strichartz inequalities vs smoothing effect for a wave packet
Smoothing effect (local in time)
$\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right|$

Strichartz inequalities vs smoothing effect for a wave packet
Smoothing effect (local in time)

$$
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0,
$$

Strichartz inequalities vs smoothing effect for a wave packet
Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0, \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

Strichartz inequalities vs smoothing effect for a wave packet
Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0, \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$,

Strichartz inequalities vs smoothing effect for a wave packet
Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0, \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$

Strichartz inequalities vs smoothing effect for a wave packet

Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0, \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$.

Strichartz inequalities vs smoothing effect for a wave packet

Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0, \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$. Then

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{x}^{2}}^{2}
$$

Strichartz inequalities vs smoothing effect for a wave packet

Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0 \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$. Then

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{x}^{2}}^{2}=c_{n}\langle\zeta / h\rangle^{2 s}\langle t / h\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+t \zeta / h\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle t / h\rangle^{2}}\right) d y
$$

Strichartz inequalities vs smoothing effect for a wave packet

Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0 \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$. Then

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{x}^{2}}^{2}=c_{n}\langle\zeta / h\rangle^{2 s}\langle t / h\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+t \zeta / h\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle t / h\rangle^{2}}\right) d y
$$

If we further integrate in time on $[-T, T]_{t}$,

Strichartz inequalities vs smoothing effect for a wave packet Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0, \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$. Then

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{x}^{2}}^{2}=c_{n}\langle\zeta / h\rangle^{2 s}\langle t / h\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+t \zeta / h\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle t / h\rangle^{2}}\right) d y
$$

If we further integrate in time on $[-T, T]_{t}$,

$$
c_{n} h\langle\zeta / h\rangle^{2 s} \int_{-T / h}^{T / h}\langle\tau\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+\tau \zeta\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle\tau\rangle^{2}}\right) d y d \tau
$$

Strichartz inequalities vs smoothing effect for a wave packet Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0 \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$. Then

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{x}^{2}}^{2}=c_{n}\langle\zeta / h\rangle^{2 s}\langle t / h\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+t \zeta / h\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle t / h\rangle^{2}}\right) d y
$$

If we further integrate in time on $[-T, T]_{t}$,

$$
c_{n} h\langle\zeta / h\rangle^{2 s} \int_{-T / h}^{T / h}\langle\tau\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+\tau \zeta\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle\tau\rangle^{2}}\right) d y d \tau
$$

which is bounded by

$$
c_{n} h\langle 1 / h\rangle^{2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

Strichartz inequalities vs smoothing effect for a wave packet Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0 \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$. Then

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{x}^{2}}^{2}=c_{n}\langle\zeta / h\rangle^{2 s}\langle t / h\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+t \zeta / h\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle t / h\rangle^{2}}\right) d y
$$

If we further integrate in time on $[-T, T]_{t}$,

$$
c_{n} h\langle\zeta / h\rangle^{2 s} \int_{-T / h}^{T / h}\langle\tau\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+\tau \zeta\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle\tau\rangle^{2}}\right) d y d \tau
$$

which is bounded by

$$
c_{n} h\langle 1 / h\rangle^{2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

Remark. Up to the term $Y_{1}\langle\tau\rangle$, there is no more contribution of the spreading $\langle\tau\rangle$.

Strichartz inequalities vs smoothing effect for a wave packet Smoothing effect (local in time)

$$
\begin{aligned}
\left|\langle D\rangle^{s} e^{i \frac{t}{2} \Delta} G_{z, \zeta, h}(x)\right| & \sim\langle\zeta / h\rangle^{s} \frac{\pi^{-\frac{n}{4}}}{\left(h\langle t / h\rangle^{2}\right)^{\frac{n}{4}}} \exp \left(-\frac{|x-z-(t / h) \zeta|^{2}}{2 h\langle t / h\rangle^{2}}\right) \quad h \rightarrow 0 \\
& =\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}(x) .
\end{aligned}
$$

We assume that $\zeta \neq 0$, say $|\zeta|=1$ and then, by possibly rotating the axis, that $\zeta=(1,0, \ldots, 0)$. Then

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{x}^{2}}^{2}=c_{n}\langle\zeta / h\rangle^{2 s}\langle t / h\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+t \zeta / h\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle t / h\rangle^{2}}\right) d y
$$

If we further integrate in time on $[-T, T]_{t}$,

$$
c_{n} h\langle\zeta / h\rangle^{2 s} \int_{-T / h}^{T / h}\langle\tau\rangle^{-n} \int\left\langle h^{\frac{1}{2}} y+z+\tau \zeta\right\rangle^{-2 \nu} \exp \left(-\frac{y^{2}}{\langle\tau\rangle^{2}}\right) d y d \tau
$$

which is bounded by

$$
c_{n} h\langle 1 / h\rangle^{2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

Remark. Up to the term $Y_{1}\langle\tau\rangle$, there is no more contribution of the spreading $\langle\tau\rangle$.
Here, the main role will be played the translation by $(t / h) \zeta=\tau \zeta$.

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$,

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$, we integrate in time by using the variable

$$
\tilde{\tau}=\tau+h^{\frac{1}{2}} Y_{1}\langle\tau\rangle \quad(\text { Jacobian }=1+O(\epsilon))
$$

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$, we integrate in time by using the variable

$$
\tilde{\tau}=\tau+h^{\frac{1}{2}} Y_{1}\langle\tau\rangle \quad(\text { Jacobian }=1+O(\epsilon))
$$

so we bound the integral by

$$
\begin{equation*}
h^{1-2 s} \int\left(\int_{-C T / h}^{C T / h}\left\langle z_{1}+\tilde{\tau}\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d \tilde{\tau}\right) d Y \tag{1}
\end{equation*}
$$

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$, we integrate in time by using the variable

$$
\tilde{\tau}=\tau+h^{\frac{1}{2}} Y_{1}\langle\tau\rangle \quad(\text { Jacobian }=1+O(\epsilon))
$$

so we bound the integral by

$$
\begin{equation*}
h^{1-2 s} \int\left(\int_{-C T / h}^{C T / h}\left\langle z_{1}+\tilde{\tau}\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d \tilde{\tau}\right) d Y \tag{1}
\end{equation*}
$$

- If $\left|h^{1 / 2} Y_{1}\right| \geq \epsilon$

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$, we integrate in time by using the variable

$$
\tilde{\tau}=\tau+h^{\frac{1}{2}} Y_{1}\langle\tau\rangle \quad(\text { Jacobian }=1+O(\epsilon))
$$

so we bound the integral by

$$
\begin{equation*}
h^{1-2 s} \int\left(\int_{-C T / h}^{C T / h}\left\langle z_{1}+\tilde{\tau}\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d \tilde{\tau}\right) d Y \tag{1}
\end{equation*}
$$

- If $\left|h^{1 / 2} Y_{1}\right| \geq \epsilon$, then $\left|Y_{1}\right| \gtrsim h^{-\frac{1}{2}}$ and

$$
\begin{aligned}
& \quad\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) \lesssim\left\langle z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2} / 2\right) O\left(h^{\infty}\right) \\
& \Rightarrow \text { Integral } \leq(1) \times O\left(h^{\infty}\right)
\end{aligned}
$$

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$, we integrate in time by using the variable

$$
\tilde{\tau}=\tau+h^{\frac{1}{2}} Y_{1}\langle\tau\rangle \quad(\text { Jacobian }=1+O(\epsilon))
$$

so we bound the integral by

$$
\begin{equation*}
h^{1-2 s} \int\left(\int_{-C T / h}^{C T / h}\left\langle z_{1}+\tilde{\tau}\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d \tilde{\tau}\right) d Y \tag{1}
\end{equation*}
$$

- If $\left|h^{1 / 2} Y_{1}\right| \geq \epsilon$, then $\left|Y_{1}\right| \gtrsim h^{-\frac{1}{2}}$ and

$$
\begin{aligned}
& \quad\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) \lesssim\left\langle z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2} / 2\right) O\left(h^{\infty}\right) \\
& \Rightarrow \operatorname{Integral} \leq(1) \times O\left(h^{\infty}\right)
\end{aligned}
$$

Conclusion: If $s=\frac{1}{2}$ and $\nu>\frac{1}{2}$

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{\frac{1}{2}} G_{z, \zeta, h}^{t}\right\|_{L^{2}\left([-T, T] \times \mathbb{R}^{n}\right)} \leq C
$$

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$, we integrate in time by using the variable

$$
\tilde{\tau}=\tau+h^{\frac{1}{2}} Y_{1}\langle\tau\rangle \quad(\text { Jacobian }=1+O(\epsilon))
$$

so we bound the integral by

$$
\begin{equation*}
h^{1-2 s} \int\left(\int_{-C T / h}^{C T / h}\left\langle z_{1}+\tilde{\tau}\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d \tilde{\tau}\right) d Y \tag{1}
\end{equation*}
$$

- If $\left|h^{1 / 2} Y_{1}\right| \geq \epsilon$, then $\left|Y_{1}\right| \gtrsim h^{-\frac{1}{2}}$ and

$$
\begin{aligned}
& \quad\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) \lesssim\left\langle z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2} / 2\right) O\left(h^{\infty}\right) \\
& \Rightarrow \operatorname{Integral} \leq(1) \times O\left(h^{\infty}\right)
\end{aligned}
$$

Conclusion: If $s=\frac{1}{2}$ and $\nu>\frac{1}{2}$

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{\frac{1}{2}} G_{z, \zeta, h}^{t}\right\|_{L^{2}\left([-T, T] \times \mathbb{R}^{n}\right)} \leq C \quad \text { uniformly in } h \in(0,1]
$$

Strichartz inequalities vs smoothing effect for a wave packet

Recall we are estimating

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{s} G_{z, \zeta, h}^{t}\right\|_{L_{t, x}^{2}}^{2} \lesssim h^{1-2 s} \int_{-T / h}^{T / h} \int\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d Y d \tau
$$

- In the region $\left|h^{1 / 2} Y_{1}\right| \leq \epsilon(\epsilon \ll 1$ fixed $)$, we integrate in time by using the variable

$$
\tilde{\tau}=\tau+h^{\frac{1}{2}} Y_{1}\langle\tau\rangle \quad(\text { Jacobian }=1+O(\epsilon))
$$

so we bound the integral by

$$
\begin{equation*}
h^{1-2 s} \int\left(\int_{-C T / h}^{C T / h}\left\langle z_{1}+\tilde{\tau}\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) d \tilde{\tau}\right) d Y \tag{1}
\end{equation*}
$$

- If $\left|h^{1 / 2} Y_{1}\right| \geq \epsilon$, then $\left|Y_{1}\right| \gtrsim h^{-\frac{1}{2}}$ and

$$
\begin{aligned}
& \quad\left\langle h^{\frac{1}{2}} Y_{1}\langle\tau\rangle+z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2}\right) \lesssim\left\langle z_{1}+\tau\right\rangle^{-2 \nu} \exp \left(-Y^{2} / 2\right) O\left(h^{\infty}\right) \\
& \Rightarrow \operatorname{Integral} \leq(1) \times O\left(h^{\infty}\right)
\end{aligned}
$$

Conclusion: If $s=\frac{1}{2}$ and $\nu>\frac{1}{2}$

$$
\left\|\langle x\rangle^{-\nu}\langle\zeta / h\rangle^{\frac{1}{2}} G_{z, \zeta, h}^{t}\right\|_{L^{2}\left([-T, T] \times \mathbb{R}^{n}\right)} \leq C \quad \text { uniformly in } h \in(0,1] \text { and in } z \in \mathbb{R}^{n} .
$$

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity (where one expects the same behavior as on \mathbb{R}^{n})

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity (where one expects the same behavior as on \mathbb{R}^{n}) from what happens inside a compact set

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity (where one expects the same behavior as on \mathbb{R}^{n}) from what happens inside a compact set (where the geometry/geodesic flow may be arbitrary and complicated)

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity (where one expects the same behavior as on \mathbb{R}^{n}) from what happens inside a compact set (where the geometry/geodesic flow may be arbitrary and complicated)
3. see the influence of the geometry on nonlinear equations

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity (where one expects the same behavior as on \mathbb{R}^{n}) from what happens inside a compact set (where the geometry/geodesic flow may be arbitrary and complicated)
3. see the influence of the geometry on nonlinear equations
4. the Schrödinger equation can be replaced by other dispersive PDE (wave, Klein-Gordon) which are relevant on asymptotically flat manifolds

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity (where one expects the same behavior as on \mathbb{R}^{n}) from what happens inside a compact set (where the geometry/geodesic flow may be arbitrary and complicated)
3. see the influence of the geometry on nonlinear equations
4. the Schrödinger equation can be replaced by other dispersive PDE (wave, Klein-Gordon) which are relevant on asymptotically flat manifolds
5. good motivation / test to understand which scattering properties are robust and relevant (in particular in the low energy analysis)

Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost
2. more specifically, try to decouple what happens near infinity (where one expects the same behavior as on \mathbb{R}^{n}) from what happens inside a compact set (where the geometry/geodesic flow may be arbitrary and complicated)
3. see the influence of the geometry on nonlinear equations
4. the Schrödinger equation can be replaced by other dispersive PDE (wave, Klein-Gordon) which are relevant on asymptotically flat manifolds
5. good motivation / test to understand which scattering properties are robust and relevant (in particular in the low energy analysis)

Scattering inequalities turn out to play a crucial role in this problem.

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right)$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)
$$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

$$
\dot{x}^{t}=\left(\partial_{\xi} p\right)\left(x^{t}, \xi^{t}\right), \quad \dot{\xi}^{t}=-\left(\partial_{x} p\right)\left(x^{t}, \xi^{t}\right)
$$

where

$$
p(x, \xi)=|\xi|^{2}=\xi \cdot G_{0}^{-1} \xi
$$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

$$
\dot{x}^{t}=\left(\partial_{\xi} p\right)\left(x^{t}, \xi^{t}\right), \quad \dot{\xi}^{t}=-\left(\partial_{x} p\right)\left(x^{t}, \xi^{t}\right)
$$

where

$$
p(x, \xi)=|\xi|^{2}=\xi \cdot G_{0}^{-1} \xi
$$

is the (principal) symbol of $-\Delta=D_{1}^{2}+\cdots+D_{n}^{2}$ with $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

$$
\dot{x}^{t}=\left(\partial_{\xi} p\right)\left(x^{t}, \xi^{t}\right), \quad \dot{\xi}^{t}=-\left(\partial_{x} p\right)\left(x^{t}, \xi^{t}\right)
$$

where

$$
p(x, \xi)=|\xi|^{2}=\xi \cdot G_{0}^{-1} \xi
$$

is the (principal) symbol of $-\Delta=D_{1}^{2}+\cdots+D_{n}^{2}$ with $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$

- Pertubed model: \mathbb{R}^{n}, equipped with a metric $\sum_{j, k} G_{j k}(x) d x_{j} d x_{k}$ such that

$$
G(x)-I \rightarrow 0 \text { as } x \rightarrow \infty, \quad G(x):=\left(G_{j k}(x)\right)
$$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

$$
\dot{x}^{t}=\left(\partial_{\xi} p\right)\left(x^{t}, \xi^{t}\right), \quad \dot{\xi}^{t}=-\left(\partial_{x} p\right)\left(x^{t}, \xi^{t}\right)
$$

where

$$
p(x, \xi)=|\xi|^{2}=\xi \cdot G_{0}^{-1} \xi
$$

is the (principal) symbol of $-\Delta=D_{1}^{2}+\cdots+D_{n}^{2}$ with $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$

- Pertubed model: \mathbb{R}^{n}, equipped with a metric $\sum_{j, k} G_{j k}(x) d x_{j} d x_{k}$ such that

$$
G(x)-I \rightarrow 0 \text { as } x \rightarrow \infty, \quad G(x):=\left(G_{j k}(x)\right)
$$

more precisely, $\partial^{\alpha}\left(G_{j k}(x)-\delta_{j k}\right)=O\left(\langle x\rangle^{-\mu-|\alpha|}\right)$ for some $\mu>0$.

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

$$
\dot{x}^{t}=\left(\partial_{\xi} p\right)\left(x^{t}, \xi^{t}\right), \quad \dot{\xi}^{t}=-\left(\partial_{x} p\right)\left(x^{t}, \xi^{t}\right)
$$

where

$$
p(x, \xi)=|\xi|^{2}=\xi \cdot G_{0}^{-1} \xi
$$

is the (principal) symbol of $-\Delta=D_{1}^{2}+\cdots+D_{n}^{2}$ with $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$

- Pertubed model: \mathbb{R}^{n}, equipped with a metric $\sum_{j, k} G_{j k}(x) d x_{j} d x_{k}$ such that

$$
G(x)-I \rightarrow 0 \text { as } x \rightarrow \infty, \quad G(x):=\left(G_{j k}(x)\right)
$$

more precisely, $\partial^{\alpha}\left(G_{j k}(x)-\delta_{j k}\right)=O\left(\langle x\rangle^{-\mu-|\alpha|}\right)$ for some $\mu>0$. The geodesic flow is defined analogously with

$$
p(x, \xi)=\xi \cdot G(x)^{-1} \xi
$$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

$$
\dot{x}^{t}=\left(\partial_{\xi} p\right)\left(x^{t}, \xi^{t}\right), \quad \dot{\xi}^{t}=-\left(\partial_{x} p\right)\left(x^{t}, \xi^{t}\right)
$$

where

$$
p(x, \xi)=|\xi|^{2}=\xi \cdot G_{0}^{-1} \xi
$$

is the (principal) symbol of $-\Delta=D_{1}^{2}+\cdots+D_{n}^{2}$ with $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$

- Pertubed model: \mathbb{R}^{n}, equipped with a metric $\sum_{j, k} G_{j k}(x) d x_{j} d x_{k}$ such that

$$
G(x)-I \rightarrow 0 \text { as } x \rightarrow \infty, \quad G(x):=\left(G_{j k}(x)\right)
$$

more precisely, $\partial^{\alpha}\left(G_{j k}(x)-\delta_{j k}\right)=O\left(\langle x\rangle^{-\mu-|\alpha|}\right)$ for some $\mu>0$. The geodesic flow is defined analogously with

$$
p(x, \xi)=\xi \cdot G(x)^{-1} \xi=\sum_{j, k} G^{j k}(x) \xi_{j} \xi_{k}
$$

Asymptotically flat manifolds

- The model: \mathbb{R}^{n}, equipped with the flat metric,

$$
G_{0}=d x_{1}^{2}+\cdots+d x_{n}^{2}=\sum_{j, k} G_{j k} d x_{j} d x_{k}, \quad G_{0}:=\left(G_{j k}\right)=I
$$

The geodesic flow $\phi^{t}: \mathbb{R}^{n} \times \mathbb{R}^{n}\left(=T^{*} \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ is given by

$$
\phi^{t}(x, \xi)=(x+2 t \xi, \xi)=:\left(x^{t}, \xi^{t}\right)
$$

it solves the Hamilton equations

$$
\dot{x}^{t}=\left(\partial_{\xi} p\right)\left(x^{t}, \xi^{t}\right), \quad \dot{\xi}^{t}=-\left(\partial_{x} p\right)\left(x^{t}, \xi^{t}\right)
$$

where

$$
p(x, \xi)=|\xi|^{2}=\xi \cdot G_{0}^{-1} \xi
$$

is the (principal) symbol of $-\Delta=D_{1}^{2}+\cdots+D_{n}^{2}$ with $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$

- Pertubed model: \mathbb{R}^{n}, equipped with a metric $\sum_{j, k} G_{j k}(x) d x_{j} d x_{k}$ such that

$$
G(x)-I \rightarrow 0 \text { as } x \rightarrow \infty, \quad G(x):=\left(G_{j k}(x)\right)
$$

more precisely, $\partial^{\alpha}\left(G_{j k}(x)-\delta_{j k}\right)=O\left(\langle x\rangle^{-\mu-|\alpha|}\right)$ for some $\mu>0$. The geodesic flow is defined analogously with

$$
p(x, \xi)=\xi \cdot G(x)^{-1} \xi=\sum_{j, k} G^{j k}(x) \xi_{j} \xi_{k}
$$

the (principal) symbol of the Laplace-Beltrami operator

$$
-\Delta_{G}=-\sum_{j, k} G^{j k}(x) \partial_{x_{j}} \partial_{x_{k}}+\sum_{j, k, \ell} G^{j k}(x) \Gamma_{j k}^{\ell}(x) \partial_{x_{\ell}}
$$

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$,

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$, and, for some metric $g(\infty)$ on S and some $\mu \in(0,1]$,

$$
\partial_{r}^{k}(g(r)-g(\infty))=O\left(\langle r\rangle^{-\mu-k}\right)
$$

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$, and, for some metric $g(\infty)$ on S and some $\mu \in(0,1]$,

$$
\partial_{r}^{k}(g(r)-g(\infty))=O\left(\langle r\rangle^{-\mu-k}\right)
$$

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$, and, for some metric $g(\infty)$ on S and some $\mu \in(0,1]$,

$$
\partial_{r}^{k}(g(r)-g(\infty))=O\left(\langle r\rangle^{-\mu-k}\right)
$$

Motivation to study such models:

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$, and, for some metric $g(\infty)$ on S and some $\mu \in(0,1]$,

$$
\partial_{r}^{k}(g(r)-g(\infty))=O\left(\langle r\rangle^{-\mu-k}\right)
$$

Motivation to study such models:

- Good models of scattering theory

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$, and, for some metric $g(\infty)$ on S and some $\mu \in(0,1]$,

$$
\partial_{r}^{k}(g(r)-g(\infty))=O\left(\langle r\rangle^{-\mu-k}\right)
$$

Motivation to study such models:

- Good models of scattering theory
- time slices of certain space-times

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$, and, for some metric $g(\infty)$ on S and some $\mu \in(0,1]$,

$$
\partial_{r}^{k}(g(r)-g(\infty))=O\left(\langle r\rangle^{-\mu-k}\right)
$$

Motivation to study such models:

- Good models of scattering theory
- time slices of certain space-times
- allow to describe the propagation into an inhomogeneous medium, with possible impurities (small perturbations) at infinity and strong perturbation inside a compact set

Asymptotically flat manifolds

- More general model: asymptotically conical manifolds.

In polar coordinates, $\mathbb{R}^{n} \backslash 0$ equipped with the Euclidean metric is isometric to

$$
(0,+\infty) \times \mathbb{S}^{n-1} \quad \text { equipped with } \quad d r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
$$

with $g_{\mathbb{S}^{n-1}}$ the standard metric on the sphere.
An asymptotically conical manifold is of the form $M=M_{\mathrm{c}} \sqcup M_{\infty}$ with M_{c} compact with boundary

$$
M_{\infty} \approx(R, \infty)_{r} \times S \quad \text { equipped with } \quad G=d r^{2}+r^{2} g(r)
$$

with S compact (without boundary), $\operatorname{dim}(S)=n-1$, and, for some metric $g(\infty)$ on S and some $\mu \in(0,1]$,

$$
\partial_{r}^{k}(g(r)-g(\infty))=O\left(\langle r\rangle^{-\mu-k}\right)
$$

Motivation to study such models:

- Good models of scattering theory
- time slices of certain space-times
- allow to describe the propagation into an inhomogeneous medium, with possible impurities (small perturbations) at infinity and strong perturbation inside a compact set

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Rem: recall that $\operatorname{spec}(P) \subset[0, \infty)$ since $(P u, u)_{L^{2}}=\| \| \nabla_{G} u \|_{L^{2}}^{2} \geq 0$

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Rem: recall that $\operatorname{spec}(P) \subset[0, \infty)$ since $(P u, u)_{L^{2}}=\left\|| | \nabla_{G} u\right\|_{L^{2}}^{2} \geq 0$

Facts:

- P has no (embbeded) eigenvalues, i.e. the spectrum is continuous (Froese-Herbst 82, Donnelly 99, Koch-Tataru 06, Ito-Skibsted 13)

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Rem: recall that $\operatorname{spec}(P) \subset[0, \infty)$ since $(P u, u)_{L^{2}}=\| \| \nabla_{G} u \|_{L^{2}}^{2} \geq 0$

Facts:

- P has no (embbeded) eigenvalues, i.e. the spectrum is continuous (Froese-Herbst 82, Donnelly 99, Koch-Tataru 06, Ito-Skibsted 13)
- there is a limiting absorption principle, i.e.

$$
\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}: L^{2}(M) \rightarrow L^{2}(M)
$$

exists at all positive energies if $\nu>\frac{1}{2}$,

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Rem: recall that $\operatorname{spec}(P) \subset[0, \infty)$ since $(P u, u)_{L^{2}}=\| \| \nabla_{G} u \|_{L^{2}}^{2} \geq 0$

Facts:

- P has no (embbeded) eigenvalues, i.e. the spectrum is continuous (Froese-Herbst 82, Donnelly 99, Koch-Tataru 06, Ito-Skibsted 13)
- there is a limiting absorption principle, i.e.

$$
\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}: L^{2}(M) \rightarrow L^{2}(M)
$$

exists at all positive energies if $\nu>\frac{1}{2}$, and is C^{k} on $(0, \infty)$ if $\nu>\frac{1}{2}+k$

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Rem: recall that $\operatorname{spec}(P) \subset[0, \infty)$ since $(P u, u)_{L^{2}}=\| \| \nabla_{G} u \|_{L^{2}}^{2} \geq 0$

Facts:

- P has no (embbeded) eigenvalues, i.e. the spectrum is continuous (Froese-Herbst 82, Donnelly 99, Koch-Tataru 06, Ito-Skibsted 13)
- there is a limiting absorption principle, i.e.

$$
\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}: L^{2}(M) \rightarrow L^{2}(M)
$$

exists at all positive energies if $\nu>\frac{1}{2}$, and is C^{k} on $(0, \infty)$ if $\nu>\frac{1}{2}+k$ (consequence of the Mourre Theory, [Jensen-Mourre-Perry])

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Rem: recall that $\operatorname{spec}(P) \subset[0, \infty)$ since $(P u, u)_{L^{2}}=\| \| \nabla_{G} u \|_{L^{2}}^{2} \geq 0$

Facts:

- P has no (embbeded) eigenvalues, i.e. the spectrum is continuous (Froese-Herbst 82, Donnelly 99, Koch-Tataru 06, Ito-Skibsted 13)
- there is a limiting absorption principle, i.e.

$$
\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}: L^{2}(M) \rightarrow L^{2}(M)
$$

exists at all positive energies if $\nu>\frac{1}{2}$, and is C^{k} on $(0, \infty)$ if $\nu>\frac{1}{2}+k$ (consequence of the Mourre Theory, [Jensen-Mourre-Perry])

- In particular, for any $\varphi \in C_{0}^{\infty}(0,+\infty)$ and $\lambda>0$,

$$
\begin{equation*}
\left\|\langle r\rangle^{-\nu} \varphi(P / \lambda) e^{-i t P}\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \leq C_{\lambda, \varphi, \nu}\langle t\rangle^{-k} \tag{2}
\end{equation*}
$$

if $\nu>\frac{1}{2}+k$

Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of $-\Delta_{G}$ on $L^{2}(M)$, with (M, G) an asymptotically flat manifold. We let

$$
R(z)=(P-z)^{-1}, \quad z \in \mathbb{C} \backslash[0,+\infty)
$$

Rem: recall that $\operatorname{spec}(P) \subset[0, \infty)$ since $(P u, u)_{L^{2}}=\| \| \nabla_{G} u \|_{L^{2}}^{2} \geq 0$

Facts:

- P has no (embbeded) eigenvalues, i.e. the spectrum is continuous (Froese-Herbst 82, Donnelly 99, Koch-Tataru 06, Ito-Skibsted 13)
- there is a limiting absorption principle, i.e.

$$
\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}: L^{2}(M) \rightarrow L^{2}(M)
$$

exists at all positive energies if $\nu>\frac{1}{2}$, and is C^{k} on $(0, \infty)$ if $\nu>\frac{1}{2}+k$ (consequence of the Mourre Theory, [Jensen-Mourre-Perry])

- In particular, for any $\varphi \in C_{0}^{\infty}(0,+\infty)$ and $\lambda>0$,

$$
\begin{equation*}
\left\|\langle r\rangle^{-\nu} \varphi(P / \lambda) e^{-i t P}\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \leq C_{\lambda, \varphi, \nu}\langle t\rangle^{-k} \tag{2}
\end{equation*}
$$

if $\nu>\frac{1}{2}+k$
Question: behavior of $R(\lambda \pm i 0)$ and (2) as $\lambda \rightarrow \infty$ (high energy) and $\lambda \rightarrow 0$ (low energy) ?

Scattering estimates on asymptotically flat manifolds

High energy estimates ($\lambda \rightarrow+\infty$)

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

- Worst case: general case

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

- Worst case: general case (everywhere below $\nu>1 / 2$)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim e^{C \lambda^{1 / 2}}
$$

[Burq, Cardoso-Vodev]

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

- Worst case: general case (everywhere below $\nu>1 / 2$)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim e^{C \lambda^{1 / 2}}
$$

[Burq, Cardoso-Vodev]

- Best case: non trapping geodesic flow

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

- Worst case: general case (everywhere below $\nu>1 / 2$)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim e^{C \lambda^{1 / 2}}
$$

[Burq, Cardoso-Vodev]

- Best case: non trapping geodesic flow

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{-1 / 2}
$$

[Robert-Tamura,] [C. Gérard-Martinez], [Vasy-Zworski]

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

- Worst case: general case (everywhere below $\nu>1 / 2$)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim e^{C \lambda^{1 / 2}}
$$

[Burq, Cardoso-Vodev]

- Best case: non trapping geodesic flow

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{-1 / 2}
$$

[Robert-Tamura,] [C. Gérard-Martinez], [Vasy-Zworski]
Rem: this estimate is equivalent to the non trapping condition [Wang]

- Intermediate cases: for "weak hyperbolic trapping" (hyperbolic trapping with negative topological pressure)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{-1 / 2} \log \lambda
$$

[Christianson, Datchev, Nonnenmacher-Zworski] (+ [Ikawa] for obstacles)

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

- Worst case: general case (everywhere below $\nu>1 / 2$)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim e^{C \lambda^{1 / 2}}
$$

[Burq , Cardoso-Vodev]

- Best case: non trapping geodesic flow

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{-1 / 2}
$$

[Robert-Tamura,] [C. Gérard-Martinez], [Vasy-Zworski]
Rem: this estimate is equivalent to the non trapping condition [Wang]

- Intermediate cases: for "weak hyperbolic trapping" (hyperbolic trapping with negative topological pressure)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{-1 / 2} \log \lambda
$$

[Christianson, Datchev, Nonnenmacher-Zworski] (+ [Ikawa] for obstacles) For certain surfaces of revolution

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{\kappa}
$$

[Christianson-Wunsch]

Scattering estimates on asymptotically flat manifolds

High energy estimates $(\lambda \rightarrow+\infty)$ depend on the behavior of the geodesic flow ϕ^{t}

- Worst case: general case (everywhere below $\nu>1 / 2$)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim e^{C \lambda^{1 / 2}}
$$

[Burq , Cardoso-Vodev]

- Best case: non trapping geodesic flow

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{-1 / 2}
$$

[Robert-Tamura,] [C. Gérard-Martinez], [Vasy-Zworski]
Rem: this estimate is equivalent to the non trapping condition [Wang]

- Intermediate cases: for "weak hyperbolic trapping" (hyperbolic trapping with negative topological pressure)

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{-1 / 2} \log \lambda
$$

[Christianson, Datchev, Nonnenmacher-Zworski] (+ [Ikawa] for obstacles) For certain surfaces of revolution

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim \lambda^{\kappa}
$$

[Christianson-Wunsch]

- Partial converse for trapping manifolds: if there are trapped geodesics

$$
\left\|\langle r\rangle^{-\nu} R(\lambda \pm i 0)\langle r\rangle^{-\nu}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \gtrsim \lambda^{-1 / 2} \log \lambda
$$

[Bony-Burq-Ramond]

Scattering estimates on asymptotically flat manifolds

Low energy estimates ($\lambda \rightarrow 0$)

Scattering estimates on asymptotically flat manifolds

Low energy estimates $(\lambda \rightarrow 0)$ In dimension $n \geq 3$, if $\nu_{1}, \nu_{2}>1 / 2$ and $\nu_{1}+\nu_{2}>2$

$$
\left\|\langle r\rangle^{-\nu_{1}} R(\lambda \pm i 0)\langle r\rangle^{-\nu_{2}}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim 1
$$

[Bony-Hafner]

Scattering estimates on asymptotically flat manifolds

Low energy estimates $(\lambda \rightarrow 0)$ In dimension $n \geq 3$, if $\nu_{1}, \nu_{2}>1 / 2$ and $\nu_{1}+\nu_{2}>2$

$$
\left\|\langle r\rangle^{-\nu_{1}} R(\lambda \pm i 0)\langle r\rangle^{-\nu_{2}}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim 1
$$

[Bony-Hafner]

- Sharp version:

$$
\left\|\langle r\rangle^{-1} R(\lambda \pm i 0)\langle r\rangle^{-1}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim 1
$$

[B.-Royer]

Scattering estimates on asymptotically flat manifolds

Low energy estimates $(\lambda \rightarrow 0)$ In dimension $n \geq 3$, if $\nu_{1}, \nu_{2}>1 / 2$ and $\nu_{1}+\nu_{2}>2$

$$
\left\|\langle r\rangle^{-\nu_{1}} R(\lambda \pm i 0)\langle r\rangle^{-\nu_{2}}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim 1
$$

[Bony-Hafner]

- Sharp version:

$$
\left\|\langle r\rangle^{-1} R(\lambda \pm i 0)\langle r\rangle^{-1}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim 1
$$

[B.-Royer]

- Robust estimates for powers

$$
\left\|\left\langle\lambda^{\frac{1}{2}} r\right\rangle^{-k}\left(\lambda^{-1} P-1 \pm i 0\right)^{-k}\left\langle\lambda^{\frac{1}{2}} r\right\rangle^{-k}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim 1
$$

[B.-Royer]

- consequence on time decay

$$
\left\|\left\langle\lambda^{\frac{1}{2}} r\right\rangle^{-k} \varphi\left(\lambda^{-1} P\right) e^{-i t P}\left\langle\lambda^{\frac{1}{2}} r\right\rangle^{-k}\right\|_{L^{2}(M) \rightarrow L^{2}(M)} \lesssim\langle\lambda t\rangle^{1-k}
$$

Strichartz on asymptotically flat manifolds

Several results for local in time estimates

- For general manifolds:

Strichartz on asymptotically flat manifolds

Several results for local in time estimates

- For general manifolds: estimates with loss of derivatives

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{H^{1 / P}(M)}
$$

Strichartz on asymptotically flat manifolds

Several results for local in time estimates

- For general manifolds: estimates with loss of derivatives

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{H^{1 / P}(M)}:=\left\|\left\langle-\Delta_{G}\right\rangle^{1 / 2 p} u_{0}\right\|_{L^{2}}
$$

[Burq-Gérard-Tzvetkov]

Strichartz on asymptotically flat manifolds

Several results for local in time estimates

- For general manifolds: estimates with loss of derivatives

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{H^{1 / p}(M)}:=\left\|\left\langle-\Delta_{G}\right\rangle^{1 / 2 p} u_{0}\right\|_{L^{2}}
$$

[Burq-Gérard-Tzvetkov]

- For non trapping asymptotically flat manifolds:

Strichartz on asymptotically flat manifolds

Several results for local in time estimates

- For general manifolds: estimates with loss of derivatives

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{H^{1 / p}(M)}:=\left\|\left\langle-\Delta_{G}\right\rangle^{1 / 2 p} u_{0}\right\|_{L^{2}}
$$

[Burq-Gérard-Tzvetkov]

- For non trapping asymptotically flat manifolds:

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{L^{2}}
$$

[Staffilani-Tataru], [Robbiano-Zuily], [B.-Tzvetkov], [Hassell-Tao-Wunsch], [Mizutani]

Strichartz on asymptotically flat manifolds

Several results for local in time estimates

- For general manifolds: estimates with loss of derivatives

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{P}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{H^{1 / P}(M)}:=\left\|\left\langle-\Delta_{G}\right\rangle^{1 / 2 p} u_{0}\right\|_{L^{2}}
$$

[Burq-Gérard-Tzvetkov]

- For non trapping asymptotically flat manifolds:

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{L^{2}}
$$

[Staffilani-Tataru], [Robbiano-Zuily], [B.-Tzvetkov], [Hassell-Tao-Wunsch], [Mizutani]

- For asymptotically flat manifolds with small hyperbolic trapped set

Strichartz on asymptotically flat manifolds

Several results for local in time estimates

- For general manifolds: estimates with loss of derivatives

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{H^{1 / p}(M)}:=\left\|\left\langle-\Delta_{G}\right\rangle^{1 / 2 p} u_{0}\right\|_{L^{2}}
$$

[Burq-Gérard-Tzvetkov]

- For non trapping asymptotically flat manifolds:

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{p}\left([-T, T], L^{q}\right)} \lesssim T\left\|u_{0}\right\|_{L^{2}}
$$

[Staffilani-Tataru], [Robbiano-Zuily], [B.-Tzvetkov], [Hassell-Tao-Wunsch], [Mizutani]

- For asymptotically flat manifolds with small hyperbolic trapped set

$$
\left\|e^{i \cdot P} u_{0}\right\|_{L^{P}\left([-T, T], L^{q}\right)} \lesssim_{T}\left\|u_{0}\right\|_{L^{2}}
$$

[Burq-Guillarmou-Hassell]
Intuition (non trapping case):

- Inside a compact set K, combine

$$
\left\|\mathbf{1}_{K} e^{i \cdot P} u_{0}\right\|_{L^{2}\left([-T, T], L^{*}\right)} \lesssim T\left\|u_{0}\right\|_{H^{1 / 2}(M)} \text { and }\left\|\mathbf{1}_{K} e^{i \cdot P} v_{0}\right\|_{L^{2}\left([-T, T], H^{1 / 2}\right)} \lesssim T\left\|v_{0}\right\|_{L^{2}}
$$

- Outside a compact set: use that the geometry is close to a nice model (...)

Strichartz on asymptotically flat manifolds

Few about global in time estimates (partially due to the low energy analysis)

- Tataru , Tataru-Marzuola-Metcalfe: asymptotically euclidean case, allow relatively weak trapping at infinity
- Hassell-Zhang:

Strichartz on asymptotically flat manifolds

Few about global in time estimates (partially due to the low energy analysis)

- Tataru , Tataru-Marzuola-Metcalfe: asymptotically euclidean case, allow relatively weak trapping at infinity
- Hassell-Zhang: non trapping assumption,

Strichartz on asymptotically flat manifolds

Few about global in time estimates (partially due to the low energy analysis)

- Tataru , Tataru-Marzuola-Metcalfe: asymptotically euclidean case, allow relatively weak trapping at infinity
- Hassell-Zhang: non trapping assumption, special type of conical ends

Results (joint with H. Mizutani)

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 2 (high frequency at infinity)

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 2 (high frequency at infinity) Assuming $n \geq 2$ and that $R(\lambda \pm i 0)$ grows at most polynomially in λ,

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 2 (high frequency at infinity) Assuming $n \geq 2$ and that $R(\lambda \pm i 0)$ grows at most polynomially in λ, there exists a compact set $K \Subset M$ such that for any (p, q) admissible

$$
\left\|\mathbf{1}_{M \backslash K}\left(1-f_{0}\right)(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 2 (high frequency at infinity) Assuming $n \geq 2$ and that $R(\lambda \pm i 0)$ grows at most polynomially in λ, there exists a compact set $K \Subset M$ such that for any (p, q) admissible

$$
\left\|\mathbf{1}_{M \backslash K}\left(1-f_{0}\right)(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 3 (global space-time estimates without loss of derivatives)

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 2 (high frequency at infinity) Assuming $n \geq 2$ and that $R(\lambda \pm i 0)$ grows at most polynomially in λ, there exists a compact set $K \Subset M$ such that for any (p, q) admissible

$$
\left\|\mathbf{1}_{M \backslash K}\left(1-f_{0}\right)(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 3 (global space-time estimates without loss of derivatives) If $n \geq 3$ and the trapping is hyperbolic with negative pressure,

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 2 (high frequency at infinity) Assuming $n \geq 2$ and that $R(\lambda \pm i 0)$ grows at most polynomially in λ, there exists a compact set $K \Subset M$ such that for any (p, q) admissible

$$
\left\|\mathbf{1}_{M \backslash K}\left(1-f_{0}\right)(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 3 (global space-time estimates without loss of derivatives) If $n \geq 3$ and the trapping is hyperbolic with negative pressure, then for (p, q) admissible

$$
\left\|e^{-i \cdot P} u_{0}\right\|_{L^{p}(\mathbb{R} ; L q(M))} \leq C\left\|u_{0}\right\|_{L^{2}(M)}
$$

Results (joint with H. Mizutani)

Let $f_{0} \in C_{0}^{\infty}(\mathbb{R})$ be such that $f_{0}=1$ near 0 .
Theorem 1 (low frequency) If $n \geq 3$ and (p, q) is admissible

$$
\left\|f_{0}(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 2 (high frequency at infinity) Assuming $n \geq 2$ and that $R(\lambda \pm i 0)$ grows at most polynomially in λ, there exists a compact set $K \Subset M$ such that for any (p, q) admissible

$$
\left\|\mathbf{1}_{M \backslash K}\left(1-f_{0}\right)(P) e^{-i \cdot P} u_{0}\right\|_{L^{p}\left(\mathbb{R} ; L^{q}(M)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(M)} .
$$

Theorem 3 (global space-time estimates without loss of derivatives) If $n \geq 3$ and the trapping is hyperbolic with negative pressure, then for (p, q) admissible

$$
\left\|e^{-i \cdot P} u_{0}\right\|_{L^{p}(\mathbb{R} ; L q(M))} \leq C\left\|u_{0}\right\|_{L^{2}(M)}
$$

Theorem 4 (nonlinear scattering) Under the assumptions of Theorem 3, the L^{2} critical equation

$$
i \partial_{t} u-P u=\sigma|u|^{\frac{4}{n}} u, \quad u_{\mid t=0}=u_{0}, \quad \sigma= \pm 1
$$

with $\left\|u_{0}\right\|_{L^{2}} \ll 1$, has a unique solution in (a subspace of) $C\left(\mathbb{R}, L^{2}\right) \cap L^{2+\frac{4}{n}}(\mathbb{R} \times M)$ and

$$
\left\|u(t)-e^{-i t P} u_{ \pm}\right\|_{L^{2}(M)} \rightarrow 0, \quad t \rightarrow \pm \infty
$$

A quarter of the proof

Low frequency localization in the uncertainty region:

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})
$\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \lesssim$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})
$\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2^{*}}} \lesssim\left\|\nabla_{G} \chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})
$\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \lesssim\left\|\nabla_{G} \chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad$ (homogeneous Sobolev est.)

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} & \lesssim \| \nabla_{G \chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0} \|_{L^{2}} \quad \text { (homogeneous Sobolev est.) }} \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{u_{0}}\right\|_{L^{2}}+
\end{aligned}
$$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2^{*}}} & \lesssim \| \nabla_{G \chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0} \|_{L^{2}} \quad \text { (homogeneous Sobolev est.) }} \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{u_{0}}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2^{*}}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2^{*}}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2}} \tilde{f}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2}} \tilde{f}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2} \tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle r\rangle^{-1} \tilde{\tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2^{*}}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2} \tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle r\rangle^{-1} \tilde{\tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

où $\tilde{f}, \tilde{\tilde{f}} \in C_{0}^{\infty}(0,+\infty)$.

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2^{*}}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2} \tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle r\rangle^{-1} \tilde{\tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

où $\tilde{f}, \tilde{\tilde{f}} \in C_{0}^{\infty}(0,+\infty)$. One concludes by mean of an optimally weighted resolvent inequality [B-Royer, 2015]

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2^{*}}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2} \tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle r\rangle^{-1} \tilde{\tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

où $\tilde{f}, \tilde{f} \in C_{0}^{\infty}(0,+\infty)$. One concludes by mean of an optimally weighted resolvent inequality [B-Royer, 2015]
$\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i \cdot P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)} \lesssim$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2} \tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle r\rangle^{-1} \tilde{\tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

où $\tilde{f}, \tilde{f} \in C_{0}^{\infty}(0,+\infty)$. One concludes by mean of an optimally weighted resolvent inequality [B-Royer, 2015]

$$
\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i \cdot P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)} \lesssim\left(1+\sup _{|\lambda| \leq 2}\left\|\langle r\rangle^{-1}(P-\lambda \pm i 0)^{-1}\langle r\rangle^{-1}\right\|_{L^{2} \rightarrow L^{2}}\right)\left\|u_{0}\right\|_{L^{2}} .
$$

Rem. For the localization, $(1-\chi(\epsilon r)) f\left(P / \epsilon^{2}\right)$,

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} & \lesssim\left\|\nabla_{G \chi}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2} \tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle r\rangle^{-1} \tilde{\tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

où $\tilde{f}, \tilde{\tilde{f}} \in C_{0}^{\infty}(0,+\infty)$. One concludes by mean of an optimally weighted resolvent inequality [B-Royer, 2015]

$$
\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i \cdot P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)} \lesssim\left(1+\sup _{|\lambda| \leq 2}\left\|\langle r\rangle^{-1}(P-\lambda \pm i 0)^{-1}\langle r\rangle^{-1}\right\|_{L^{2} \rightarrow L^{2}}\right)\left\|u_{0}\right\|_{L^{2}} .
$$

Rem. For the localization, $(1-\chi(\epsilon r)) f\left(P / \epsilon^{2}\right)$, one has " $|\xi| \sim \epsilon$ " and " $|x| \gtrsim \epsilon^{-1 \text { " }}$

A quarter of the proof

Low frequency localization in the uncertainty region:in the regime $\lambda=\epsilon^{2} \rightarrow 0$, how to prove

$$
\int_{\mathbb{R}}\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)}^{2} d t C\left\|f\left(P / \epsilon^{2}\right) u_{0}\right\|_{L^{2}}^{2}
$$

with C independent of λ (and u_{0})

$$
\begin{aligned}
\left\|\chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} & \lesssim\left\|\nabla_{G} \chi(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \quad \text { (homogeneous Sobolev est.) } \\
& \lesssim\left\|\epsilon \chi^{\prime}(\epsilon r) f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\chi(\epsilon r) \nabla_{G} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle\epsilon r\rangle^{-1} P^{\frac{1}{2}} \tilde{f}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}} \\
& \lesssim\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}+\left\|\langle r\rangle^{-1} \tilde{\tilde{f}}\left(P / \epsilon^{2}\right) e^{i t P} u_{0}\right\|_{L^{2}}
\end{aligned}
$$

où $\tilde{f}, \tilde{f} \in C_{0}^{\infty}(0,+\infty)$. One concludes by mean of an optimally weighted resolvent inequality [B-Royer, 2015]

$$
\left\|\langle r\rangle^{-1} f\left(P / \epsilon^{2}\right) e^{i \cdot P} u_{0}\right\|_{L^{2}\left(\mathbb{R} ; L^{2}\right)} \lesssim\left(1+\sup _{|\lambda| \leq 2}\left\|\langle r\rangle^{-1}(P-\lambda \pm i 0)^{-1}\langle r\rangle^{-1}\right\|_{L^{2} \rightarrow L^{2}}\right)\left\|u_{0}\right\|_{L^{2}} .
$$

Rem. For the localization, $(1-\chi(\epsilon r)) f\left(P / \epsilon^{2}\right)$, one has " $|\xi| \sim \epsilon^{\prime}$ " and " $|x| \gtrsim \epsilon^{-1 \text { " } \Rightarrow}$ no problem of uncertainty principle to use microlocal techniques

Rest of the proof

At infinity: split $f(P / \lambda) e^{i t P}$ into sums of

$$
T_{\lambda}(t)=L_{\lambda} f(P / \lambda) e^{i t P}
$$

with suitable localization operators L_{λ}, and show

$$
\left\|T_{\lambda}(t)\right\|_{L^{2} \rightarrow L^{2}} \lesssim 1, \quad\left\|T_{\lambda}(t) T_{\lambda}(s)\right\|_{L^{1} \rightarrow L^{\infty}} \lesssim|t-s|^{-\frac{n}{2}}
$$

by writing

$$
T_{\lambda}(t) T_{\lambda}(s)=\text { approximation }+ \text { remainder }
$$

- the "approximation" is explicit enough operator to bound sharply its integral kernel by $|t-s|^{-\frac{n}{2}}$ (dispersion bound)
- the remainder is a remainder term in a Duhamel formula in which we combine L^{2} time decay/propagation estimates (for the time decay) and Sobolev estimates (to replace $L^{2} \rightarrow L^{2}$ by $L^{1} \rightarrow L^{\infty}$) to derive dispersion bounds.

Thank you for your attention

