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Jérôme Bertrand & Benôıt Kloeckner

Abstract. — Optimal transport enables one to construct a metric on the set
of (sufficiently small at infinity) probability measures on any (not too wild)
metric space X, called its Wasserstein space W2(X).

In this paper we investigate the geometry of W2(X) when X is a Hadamard
space, by which we mean that X has globally non-positive sectional curvature
and is locally compact. Although it is known that –except in the case of
the line– W2(X) is not non-positively curved, our results show that W2(X)
have large-scale properties reminiscent of that of X. In particular we define
a geodesic boundary for W2(X) that enables us to prove a non-embeddablity
result: if X has the visibility property, then the Euclidean plane does not
admit any isometric embedding in W2(X).

1. Introduction

The goal of this paper is to contribute to the understanding of the geometry
of Wasserstein spaces. Given a metric space X, the theory of optimal transport
(with quadratic cost) gives birth to a new metric space, made of probability
measures on X, often called its Wasserstein space and denoted here by W2(X)
(precise definitions are recalled in the first part of this paper). One can use this
theory to study X, for example by defining lower Ricci curvature bounds as in
the celebrated works of Lott-Villani [LV09] and Sturm [Stu06]. Conversely,
here we assume some understanding of X and try to use it to study geometric
properties of W2(X). A similar philosophy underlines the works of Lott in
[Lot08] and Takatsu and Yokota in [TY12].

In a previous paper [Klo10], the second named author studied the case
when X is a Euclidean space. Here we are interested in the far broader class of
Hadamard spaces which are roughly the globally non-positively curved spaces.
The first part of the paper gives the classical definitions and property we need
both on optimal transport and Hadamard spaces; in particular the precise
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hypotheses under which we shall work are given there (Definition 2.1, see also
examples 2.2). Let us stress that we allow X to be branching; trees, product
involving trees, some buildings are in particular treated in the same framework
than, for example, symmetric spaces of non-compact type.

While non-negative curvature is an assumption that is inherited by Wasser-
stein spaces, it is well-known that non-positive curvature is not (an argument
is recalled in Section 2.2.3). We shall however show that some features of
Hadamard spaces still hold in their Wasserstein spaces. Let us now describe
the main results of the article.

A Hadamard space admits a well-known geometric compactification, ob-
tained by adding a boundary at infinity made of asymptote classes of geodesic
rays. In sections 3 and 4, we study the geodesic rays of W2(X). Using a dis-
placement interpolation procedure (Proposition 3.2), we associate to each ray
its asymptotic measure which lies in a subset P1(c∂X) of probability mea-
sures on the cone c∂X over the boundary of X (Definition 4.1). It encodes the
asymptotic distribution of the direction and speed of a measure running along
the ray. Our first main result is the asymptotic formula (Theorem 4.2) which
enables one to compute the asymptotic behavior of the distance between two
rays in terms of the Wasserstein distance of the asymptotic measures, with
respect to the angular cone distance on c∂X. This asymptotic distance is
either bounded or asymptotically linear, so that the boundary ∂W2(X) of the
Wasserstein space, defined as the set of asymptote classes of unit geodesic
rays, inherits an angular metric, just like X does. A striking consequence of
the asymptotic formula concerns the rank of W2(X), and partially answers a
question raised in the previous paper cited above.

Theorem 1.1. — If X is a visibility space (e.g. if it has curvature bounded
from above by a negative constant), then it is not possible to embed the Eu-
clidean plane isometrically in W2(X).

In other words, when X is strongly negatively curved –which implies that its
has rank 1–, then although W2(X) is not negatively curved it has rank 1 too.
Note that our large-scale method in fact implies more general non-embedding
results, see Proposition 5.3 and the discussion below. It is important to stress
that asking for isometric embedding is the right regularity: more flexible con-
ditions are easily dealt with, see example 5.5. Besides this property on the
rank, the Wasserstein space over a visibility space can also be differentiated
from the one over an Euclidean space through its isometry group Isom W2(X).
Indeed, contrary to the Euclidean case where the isometry group Isom W2(Rn)
is larger than IsomRn [Klo10], negatively curved spaces seem to have iso-
metrically rigid Wasserstein spaces in the sense that Isom W2(X) = IsomX.
This holds at least in the case of manifolds and trees, as proved in a previous
version of this paper [BK10]; this result uses different methods from the ones
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developped here and we aim at extending it, it shall therefore appear in a
subsequent article.

Section 6 is devoted to the definition of a so-called cone topology on ∂W2(X)

and W2(X) = W2(X) ∪ ∂W2(X), see Proposition 6.1. Note that the angular
metric alluded to above, however useful and meaningful, does not define a
satisfactory topology (just as in ∂X, where the angular metric is usually not
separable and can even be discrete). The point is that many monotony prop-
erties used in the case of Hadamard spaces hold when one restricts to angles
based at a Dirac mass. This enables us to carry out the construction of this
topology despite the presence of positive curvature. The main result of this
part is the following, restated as Theorem 7.2.

Theorem 1.2. — The asymptotic measure map defined from the boundary
∂W2(X) to the set of measures P1(c∂X) is a homeomorphism.

Note that the two natural topologies on ∂W2(X), namely the cone topology
and the quotient topology of the topology of uniform convergence on compact
sets, coincide. The set P1(c∂X) is simply endowed with the weak topology
(where the topology on c∂X is induced by the cone topology of ∂X).

The possibility to identify ∂W2(X) to P1(c∂X) should be thought of as
an interversion result, similar to displacement interpolation. The latter says
that “a geodesic in the set of measures is a measure on the set of geodesics”,
while the former can be roughly restated as “a boundary point of the set of
measures is a measure on the (cone over the) set of boundary points”. Note

that W2(X) is not compact; this is quite inevitable since W2(X) is not locally
compact.

2. Reminders and notations

As its title indicates, this part contains nothing new. We chose to give quite
a lot of recalls, so that the reader familiar with non-positively curved spaces
can get a crash-course on Wasserstein spaces, and the reader familiar with
optimal transport can be introduced to Hadamard spaces.

2.1. Hadamard spaces. — Most properties of Hadamard spaces stated
here are proved in [Bal95]. Another more extensive reference is [BH99].

2.1.1. Geodesics. — Let us first fix some conventions for any metric space Y
(this letter shall be used to design arbitrary spaces, while X shall be reserved
to the (Hadamard) space under study).

A geodesic in Y is a curve γ : I → Y defined on some interval I, such that
there is a constant v that makes the following hold for all times t, t′:

d(γt, γt′) = v|t− t′|.
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In particular, all geodesics are assumed to be globally minimizing and to have
constant, non necessarily unitary speed. A metric space is geodesic if any pair
of points can be linked by a geodesic.

When v = 0 we say that the geodesic is constant and it will be necessary to
consider this case. We denote by G T,T ′(Y ) the set of geodesics defined on the
interval [T, T ′]. A geodesic ray (or ray, or complete ray) is a geodesic defined
on the interval [0,+∞). A complete geodesic is a geodesic defined on R. The
set of rays is denoted by R(Y ), the set of unit speed rays by R1(Y ) and the
set of non-constant rays by R>0(Y ). We shall also denote by G R(Y ) the set of
complete geodesics, and by G R

1 (Y ) the set of unit-speed complete geodesics.

2.1.2. Non-positive curvature. — A triangle in a geodesic space Y is the da-
tum of three points (x, y, z) together with three geodesics parametrized on
[0, 1] linking x to y, y to z and z to x. Given a triangle, one defines its com-
parison triangle (x̃, ỹ, z̃) as any triangle of the Euclidean plane R2 that has
the same side lengths: d(x, y) = d(x̃, ỹ), d(x, z) = d(x̃, z̃) and d(y, z) = d(ỹ, z̃).
The comparison triangle is defined up to congruence.

A triangle with vertices (x, y, z) is said to satisfy the CAT(0) inequality
along its [yz] side (parametrized by a geodesic γ ∈ G 0,1(Y )) if for all t ∈ [0, 1],
the following inequality holds:

(1) d(x, γ(t)) 6 d(x̃, (1− t)ỹ + tz̃)

see figure 1. A geodesic space is said to be locally CAT(0) if every point admits
a neighborhood where all triangles satisfy the CAT(0) inequality (along all
there sides). When Y is a Riemannian manifold, this is equivalent to ask that
Y has non-positive sectional curvature. A geodesic space is said to be globally
CAT(0) if all its triangles satisfy the CAT(0) inequality. Globally CAT(0)
is equivalent to simply connected plus locally CAT(0). We shall simply say
CAT(0) for “globally CAT(0)”, but this is not a universal convention.

y

x

z
γ(t)

ỹ

x̃

z̃

Figure 1. The CAT(0) inequality: the dashed segment is shorter in
the original triangle on the left than in the comparison triangle on

the right.
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2.1.3. Angles. — The CAT(0) condition can be translated in terms of angles
as follows. Given any geodesic triangle, choose any of its vertices, say x,
and assume that the sides containing x are parametrized by two geodesics

σ, γ ∈ G 0,1(Y ). If Y is CAT(0), then the Euclidean angle ∠̃γ̃sx̃σ̃t at x̃ is a
nondecreasing function of s and t.

One then defines in Y the angle ∠γ1xσ1 at x as the limit, when s and t go

to zero, of ∠̃γ̃sx̃σ̃t . As a consequence, one gets that for any geodesic triangle
with vertices (x, y, z) in a CAT(0) space, angle and comparison angle satisfy

∠xyz 6 ∠̃x̃ỹz̃.

2.1.4. Distance convexity. — In a CAT(0) space, given two geodesics γ and
β, the distance function t 7−→ d(γt, βt) is convex. This important property
shall be kept in mind since it will be used very often in the sequel.

2.1.5. Hadamard spaces: definition and examples. — We can now introduce
the class of spaces we are interested in.

Definition 2.1. — A metric space is a Hadamard space if it is:

– Polish (i.e. complete and separable),
– locally compact,
– geodesic,
– CAT(0), implying that it is simply connected.

In all what follows, we consider a Hadamard space X. The Hadamard
assumption may not always be made explicit, but the use of the letter X shall
always implicitely imply it. Not all authors assume Hadamard spaces to be
locally compact, and this assumption excludes for example real trees.

Example 2.2. — There are many important examples of Hadamard spaces.
Let us give some of them:

– the Euclidean space Rn,
– the real hyperbolic space RHn,
– the other hyperbolic spaces CHn, HHn, OH2,
– more generally the symmetric spaces of non-compact type, like the quo-

tient SL(n;R)/SO(n) endowed with the metric induced by the Killing form of
SL(n;R),

– more generally any simply connected Riemannian manifold whose sec-
tional curvature is non-positive,

– trees,
– any product of Hadamard spaces,
– some buildings, like product of trees having unit edges and no leaf or Ipq

buildings (see [Bou97, BP99]),
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– the gluing of any two Hadamard spaces along isometric, convex subsets;
for example any Hadamard space with an additional geodesic ray glued at some
point, or three hyperbolic half-planes glued along their limiting geodesics, etc.

2.1.6. Geodesic boundary. — The construction of the geodesic boundary that
we will shortly describe seems to date back to [EO73], but note that [Bus55]
is at the origin of many related ideas.

Two rays of X are asymptotic if they stay at bounded distance when t →
+∞, and this relation is denoted by ∼. The asymptote class of a ray γ is often
denoted by γ(∞) or γ∞, and is called the endpoint or boundary point of γ.

The geodesic (or Hadamard) boundary of X is defined as the set

∂X = R1(X)/ ∼ .

Using the convexity of distance along geodesics, one can for example prove
that, given points x ∈ X and ζ ∈ ∂X, there is a unique unit ray starting at x
and ending at ζ.

The union X̄ = X ∪ ∂X can be endowed with its so-called cone topology,
which makes X̄ and ∂X compact. Without entering into the details, let us
say that this topology induces the original topology on X, and that given a
base point x0 a basic neighborhood of a point ζ = γ(∞) ∈ ∂X (where γ starts
at x0) is the union, over all rays σ starting at x0 such that d(σt, γt) < ε for all
t < R, of σ([R,+∞]) (see figure 2).

x0

ζ

R

∂X

ε

Figure 2. A basic neighborhood of a point ζ ∈ ∂X in the cone topology.

Consistently whith the cone topology, all previously defined sets of geo-
desics, as well as the larger sets C(I,X) of continuous curves defined on an
interval I with values in X, are endowed with the topology of uniform conver-
gence on compact sets. With this topology, since X is Hadamard, a geodesic
segment is uniquely and continuously defined by its endpoints and a geodesic
ray is uniquely and continuously defined by its starting point, its endpoint in
the boundary and its speed. As a consequence, there are natural homeomor-
phisms

G T,T ′(X) ' X2, R(X) ' X × c∂X
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where c∂X is the cone over ∂X, that is the quotient of ∂X × [0,+∞) by the
relation (x, 0) ∼ (y, 0) for all x, y ∈ ∂X. We usually use the same notation
(x, s) for a couple and its equivalence class under this relation; here s shall be
considered as a speed. In particular one has (R(X)/ ∼) ' c∂X.

Note that in view of our assumptions on X, all these spaces are locally
compact Polish topological spaces (that is, metrizable by a metric that is
separable and complete). It ensures that all finite measures on these spaces
are Radon.

2.1.7. Possible additional assumptions. — At some points, we shall make ex-
plicitely additional hypotheses on X. One says that a space is:

– geodesically complete if every geodesic can be extended to a complete
geodesic,

– non-branching if two geodesics that coincide on an open set of parameters
coincide everywhere on their common definition interval,

– CAT(κ) fo some κ < 0 if its triangles satisfy the (1) inequality when
the comparison triangle is taken in RH2

κ, the hyperbolic plane of curvature κ,
instead of R2.

– a visibility space if for all pairs of distinct points α, ω ∈ ∂X there is a
complete geodesic γ such that γ(−∞) = α and γ(+∞) = ω.

Note that for all κ < 0, the condition CAT(κ) implies that X is a visibility
space.

Geodesic completeness is quite mild (avoiding examples as trees with leafs),
while the other are strong assumptions (for example non-branching rules out
trees and visibility rules out products). Another possible assumption, that we
shall not use directly, is for X to have rank one, meaning that it admits no
isometric embedding of the Euclidean plane. It is a weaker condition than
visibility. More generally the rank of a space Y is the maximal dimension
of an isometrically embedded Eulidean space, and it has been proved a very
important invariant in the study of symmetric spaces. For example the hy-
perbolic spaces RHn, CHn, HHn and OH2 are the only rank one symmetric
spaces of non-compact type.

2.1.8. Asymptotic distance. — Given two rays γ, σ, one defines their asymp-
totic distance by

d∞(γ, β) = lim
t→+∞

d(γt, βt)

t
.

This limit always exists because of the convexity of the distance function along
geodesics. Moreover d∞ defines a metric on c∂X and, by restriction, on ∂X (in
particular two rays whose distance grows sub-linearly must be asymptotic). It
can be proved that d∞ is the cone metric over ∂X endowed with the angular
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metric. Namely, for any (ξ, s), (ξ′, t) ∈ c∂X,

(2) d2
∞((ξ, s), (ξ′, t)) = s2 + t2 − 2st cos∠(ξ, ξ′)

where ∠(ξ, ξ′) = supx∈X ∠x(ξ, ξ′) is the supremum of angles between rays
issuing from x and asympotic to ξ and ξ′ respectively (we refer to [BH99,
Section II.9] for more details and proof).

It is most important to keep in mind that the metric d∞ does not induce
the cone topology, but a much finer topology. The most extreme case is that
of visibility spaces, where d∞(γ, σ) is 0 if γ ∼ σ and the sum of the speeds
of γ and σ otherwise: the topology induced on ∂X is discrete. However,
the function d∞ is lower semi-continuous with respect to the cone topology
[BH99, Proposition II.9.5], so that it is a mesurable function.

In higher rank spaces, it can be useful to turn d∞ into a length metric,
called the Tits metric, but we shall not use it so we refer the interested reader
to the books cited above. Let us just note that d∞ resembles in some aspects
the chordal metric on a sphere. In particular, it is naturally isometric to this
metric when X is a Euclidean space.

2.2. The Wasserstein space. — In this section, we recall the definition of
Wasserstein space and some of its main properties. For more details, we refer
to the books [Vil03] and [Vil09].

2.2.1. Optimal transport. — Let us start with the concept of optimal trans-
port which is the theory aimed at studying the Monge-Kantorovich problem.

Standard data for this problem are the following. We are given a Polish
metric space (Y, d), a lower semicontinuous and nonnegative function c : Y ×
Y → R+ called the cost function and two Borel probability measures µ, ν
defined on Y . A transport plan between µ and ν is a measure on Y × Y
whose marginals are µ and ν. One should think of a transport plan as a
specification of how the mass in Y , distributed according to µ, is moved so as
to be distributed according to ν. We denote by Γ(µ, ν) the set of transport
plans which is never empty (it contains µ⊗ν) and most of the time not reduced
to one element. The Monge-Kantorovich problem is now

min
Π∈Γ(µ,ν)

∫
Y×Y

c(x, y) Π(dxdy)

where a minimizer is called an optimal transport plan. The set of optimal
transport plans is denoted by Γo(µ, σ).

Let us make a few comments on this problem. First, note that under these
assumptions, the cost function is measurable (see, for instance, [Vil03, p. 26]).
Now, existence of minimizers follows readily from the lower semicontinuity of
the cost function together with the following compactness result which will be
used throughout this paper. We refer to [Bil99] for a proof.
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Theorem 2.3 (Prokhorov’s Theorem). — Given a Polish space Y , a set
P ⊂ P(Y ) is totally bounded (that is, has compact closure) for the weak
topology if and only if it is tight, namely for any ε > 0, there exists a compact
set Kε such that µ(Y \Kε) 6 ε for any µ ∈ P .

For example, the set Γ(µ, ν) is always compact.
We also mention that, compared to the existence problem, the issue of the

uniqueness of minimizers is considerably harder and requires, in general, addi-
tional assumptions. To conclude this introduction, we state a useful criterium
to detect optimal transport plan among other plans, named cyclical monoto-
nicity.

Definition 2.4 (cyclical monotonocity). — Given a cost function c : Y ×
Y −→ R+, a set Γ ⊂ Y × Y is called c-cyclically monotone if for any finite
family of pairs (x1, y1), · · · , (xm, ym) in Γ, the following inequality holds

(3)
m∑
i=1

c(xi, yi+1) >
m∑
i=1

c(xi, yi)

where ym+1 = y1.

In other words, a c-cyclically monotone set does not contain cycles of pairs
(starting point, ending point) along which a shift in the ending points would
reduce the total cost.

Theorem 2.5. — Let (Y, d) be a Polish space and c : Y ×Y −→ R+ be a lower
semi-continuous cost function. Then, a transport plan is optimal relatively to
c if and only if it is concentrated on a c-cyclically monotone set.

If c is continuous, this is equivalent to its support being c-cyclically monot-
one.

Under these assumptions, this result is due to Schachermayer and Teich-
mann [ST09]; see also [Vil09] for a proof.

2.2.2. Wasserstein space. — Wasserstein spaces arise in a particular variant
of the setting above.

Definition 2.6 (Wasserstein space). — Given a Polish metric space Y ,
its (quadratic) Wasserstein space W2(Y ) is the set of Borel probability mea-
sures µ on Y with finite second moment, that is such that∫

Y
d(x0, x)2 µ(dx) < +∞ for some, hence all x0 ∈ Y,

endowed with the Wasserstein metric defined by

W
2(µ0, µ1) = min

Π∈Γ(µ0,µ1)

∫
Y×Y

d2(x, y) Π(dx, dy).



10 JÉRÔME BERTRAND & BENOÎT KLOECKNER

From now on, the cost c will therefore be c = d2.
The fact that W is indeed a metric follows from the so-called “gluing lemma”

which enables one to propagate the triangular inequality, see e.g. [Vil09].

Remark 2.7. — In this paper, we will also consider the Wasserstein space
over the cone c∂X relative to the cost d2

∞. Since d∞ is lower semi-continuous,
the usual theory of optimal transport applies, and we do get a metric on the
suitable space of measures. We shall denote by W∞ the Wasserstein metric
derived from d∞.

The Wasserstein space has several nice properties: it is Polish; it is compact
as soon as Y is, in which case the Wasserstein metric metrizes the weak topol-
ogy; but if Y is not compact, then W2(Y ) is not even locally compact and the
Wasserstein metric induces a topology stronger than the weak one (more pre-
cisely, convergence in Wasserstein distance is equivalent to weak convergence
plus convergence of the second moment). A very important property is that
W2(Y ) is geodesic as soon as Y is; let us give some details.

2.2.3. Displacement interpolation. — The proof of what we explain now can
be found for example in chapter 7 of [Vil09], see in particular corollary 7.22
and Theorem 7.30. Note that the concept of displacement interpolation has
been introduced by McCann in [McC97]. We write this section in the case of
a Hadamard space X, but most of it stays true for any Polish geodesic space.

Definition 2.8. — Define a dynamical transport plan between two measures
µ0, µ1 ∈ W2(X) as a probability measure µ on C([t0, t1];X) such that for
i = 0, 1 the law at time ti of a random curve drawn with law µ is µi. In other
words we ask eti#µ = µi where et is the map C([t0, t1];X) → X defined by

et(γ) = γt.
The cost of µ is then

|µ|2 =

∫
`(γ)2µ(dγ)

where `(γ) is the length of the curve γ (possibly +∞). A dynamical transport
plan is optimal if it minimizes the cost over all dynamical transport plans

It is known that a dynamical transport plan exists. Morevover, if µ is an
optimal dynamical transport plan then:

(1) the law (et0 , et1)#µ of the couple (γt0 , γt1) where γ is a random curve
drawn with law µ, is an optimal transport plan between µ0 and µ1,

(2) µ-almost all γ ∈ C([t0, t1];X) are geodesics.

Conversely, if Π is a (non-dynamical) optimal transport plan, then one can
construct for any t0 < t1 an optimal dynamical transport plan by the following
construction. Let F : X2 → C([t0, t1];X) be the map that sends a couple (x, y)
of points to the unique geodesic parametrized on [t0, t1] that starts at x and
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ends at y. Then µ = F#Π is an optimal dynamical transport plan, whose
associated optimal transport plan is obviously Π.

Given a dynamical plan µ ∈P(G I(X)) where I is an arbitrary interval, µ
is said to be c-cyclically monotone if for any s, t ∈ I, the support of the plan
(es, et)#µ is c-cyclically monotone (note that here the cost is continuous). As
soon as µt have finite second moments, this is equivalent to µ being optimal,
but cyclical monotonicity has the advantage of being well-defined without any
integrability assumption.

The main use of optimal dynamical transport plans is that they define
geodesic segments. Indeed, let as before et be the map γ 7→ γt defined on the
set of continuous curves. If µ is an optimal dynamical transport plan, consider
the law µt = et#µ at time t of a random geodesic drawn with law µ: then
(µt)t06t6t1 is a geodesic of W2(X). Displacement interpolation is the converse
to this principle.

Proposition 2.9 (Displacement interpolation). — Given (µt)t06t6t1 any
geodesic segment in W2(X), there is a probability measure µ on G t0,t1(X) such
that for all t, µt = et#µ.

If µ is a dynamical transport plan on I, for all t0, t1 ∈ I define the time
restriction of µ to [t0, t1] as µt0,t1 = rt0,t1#µ where rt0,t1(γ) is the restriction

of the curve γ to the interval [t0, t1].
Let µ be an optimal dynamical transport plan on [0, 1]. For all t0, t1 ∈ [0, 1]

the following holds (see [Vil09, Theorem 7.30]):

(1) µt0,t1 is an optimal dynamical transport plan,
(2) if X is non-branching and (t0, t1) 6= (0, 1), then µt0,t1 is the unique (up

to parametrization) optimal dynamical transport plan between µt0 and µt1 .

Remark 2.10 (The Wasserstein space is not non-positively curved)
It is well known that the non-positive curvature assumption on X is not

inherited by W2(X) except if X is the real line or a subset of it. Let us give a
brief explanation of this fact.

The affine structure makes the Wasserstein space contractible, so it cannot
be locally CAT(0) without being uniquely geodesic. But as soon as X is not
reduced to a geodesic, there exists four distinct points x, x′, y, z such that
d(x, y) = d(x, z) and d(x′, y) = d(x′, z). Between the measures µ = 1

2δx + 1
2δx′

(where δ’s are Dirac masses) and ν = 1
2δy+ 1

2δz, all transport plans are optimal.
Each one of them defines a geodesic in W2(Y ) from µ to ν, therefore W2(Y ) is
very far from being uniquely geodesic, and is in particular not non-positively
curved.
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3. Displacement interpolation for rays

When X is a Hadamard space, the geodesic boundary of W2(X) is simply
defined as the set of asymptote classes of unitary geodesic rays:

∂W2(X) = R1(W2(X))/ ∼ .

To study its structure, we need a good understanding of the geodesic rays
in the Wasserstein space, starting with the displacement interpolation of rays.
There is not much, but some work needed to extend the case of geodesic
segment; the crucial point being to handle the branching case. Note that the
case of complete geodesic is not different than that of the rays.

Proposition 3.1 (Displacement interpolation for rays in the non-
branching case)

If X is non-branching, any geodesic ray (µt) of W2(X) admits a unique
displacement interpolation, that is a probability measure µ on R(X) such that
µt is the law of the time t of a random ray having law µ (in other words, such
that µt = (et)#µ).

Note that since (µt) is a geodesic, the time restriction of µ to any segment
is an optimal dynamical transport plan.

Proof. — Since X is non-branching and (µt) is defined for all positive times,
we know that there is a unique optimal dynamical transport plan µ̃(T ) from
µ0 to µT , and that µ̃(T ) = µ̃(T ′)0,T whenever T < T ′ (see the discussion after
Proposition 2.9). The fact that X is non-branching also implies that for any
two points x, y ∈ X there is a unique maximal geodesic ray F (x, y) starting
at x and passing at y at time 1; moreover this ray depends continuously and
therefore measurably on (x, y). In other words, (r0,1)# identifies P(G 0,T (X))
and P(G 0,1(X)). It follows that all µ̃(T ) are uniquely defined by µ̃(1) and
that the probability measure µ = F#(Π), where Π is the optimal transport
plan associated to µ̃(1), has the required property.

When X is branching, the previous proof fails for two reasons. The first
one is that we cannot determine µ̃(T ) and define µ from µ̃(1) alone; although
Prokhorov’s theorem will do the trick. The second problem is that there may
exist several optimal dynamical transport plans corresponding to the same
geodesic; but the set of these transports is always compact and a diagonal
process will solve the problem. However, we lose uniqueness in the process
and it would be interesting to single out one of the dynamical transport plan
obtained.

Proposition 3.2 (Displacement interpolation for rays)
Any geodesic ray of W2(X) admits a displacement interpolation.
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Proof. — Let (µt)t>0 be a geodesic ray in W2(X) and for all T > 0, let M(T )
be the set of all optimal dynamical transport plans parametrized on [0, T ]
that induce the geodesic segment (µt)06t6T . It is a compact set according
to [Vil09], Corollary 7.22. For all T ∈ N, choose µ̃(T ) in M(T ) and for all

integer 0 6 T ′ 6 T define µ̃(T ′|T ) as the restriction µ̃(T )0,T ′ .
By a diagonal process, one can extract an increasing sequence Tk of integers

such that for all T ′ ∈ N, µ̃(T ′|Tk) has a limit µ̄(T ′) ∈ M(T ′) when k → +∞.
Since for all T ′ < T the restriction maps

pT,T
′

: G 0,T → G 0,T ′

are continuous, we get that pT,T
′
(µ̄(T )) = µ̄(T ′). We therefore have a projec-

tive system of measures; the projection map

pT : R(X)→ G 0,T (X)

commutes with the pT,T
′

thus, according to a variant of Prokhorov’s theorem
2.3 in the setting of projective system of measures [Sch70], if we prove tight-
ness, i.e. that for all ε > 0 there is a compact K ⊂ R(X) such that for all T ,
µ̄(T )(pTK) > 1−ε, then we can conclude that there is a unique measure µ on
R(X) such that pT#µ = µ̄(T ) for all T . This measure will have the required

property since µ̄(T ) ∈M(T ).
Fix any ε > 0. Let K0,K1 be compact subsets of X such that µi(Ki) >

1 − ε/2 for i = 0, 1. Let K be the compact subset of R(X) consisting in all
geodesic rays starting in K0 and whose time 1 is in K1. Then for all T > 1,
µ̄(T )(pT (K)) > 1− ε, as needed.

The following result shall make displacement interpolation particularly use-
ful.

Lemma 3.3 (lifting). — Let µ, σ be probability measures on R(X) (or sim-

ilarly G T,T ′(X), ...) and denote by µt = (et)#µ and σt = (et)#σ their time
t.

Any transport plan Πt ∈ Γ(µt, σt) admits a lift, that is a transport plan
Π ∈ Γ(µ, σ) such that Πt = (et, et)#Π.

Note that, as shall be apparent in the proof, the same holds for example
with the map (es, et) when s 6= t.

Proof. — Disintegrate µ along µt: there is a family (ζx)x∈X of probability
measures on R(X), each one supported on the set e−1

t (x) of geodesic rays
passing at x at time t, such that µ =

∫
ζx µt(dx) in the sense that

µ(A) =

∫
R(X)

ζx(A)µt(dx)
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for all measurable A. Similarly, write σ =
∫
ξy σt(dy) the disintegration of σ

along σt.
Define then

Π(A×B) =

∫
R(X)2

ζx(A)ξy(B)Πt(dxdy).

It is a probability measure on R(X)2, and for any measurable sets A,B in X
we have Π(e−1

t (A), e−1
t (B)) = Πt(A×B) because ζx

(
e−1
t (A)

)
is 1 if x ∈ A, 0

otherwise (and similarly for ξy
(
e−1
t (B)

)
). A similar computation gives that Π

has marginals µ and σ.

Note that we gave the proof for the sake of completness, but one could
simply apply twice the gluing lemma, after noticing that the projection et
from R(X) to X gives deterministic transport plans in Γ(µ, µt) and Γ(σ, σt).

The lift of Πt need not be unique; the one constructed in the proof is very
peculiar, and can be called the most independent lift of Πt. It is well defined
since other disintegration families (ζ ′x)x and (ξ′y)y must coincide with (ζx)x
and (ξy)y for µt-almost all x and σt-almost all y respectively.

The lifting lemma shall be used to translate the optimal transport problems
between µt and σt, where these measures move (usually along geodesics) to
transport problems between the fixed µ and σ, where it is the cost that moves.
In other words, we have just shown that minimizing

∫
c(x, y) Πt over the Πt ∈

Γ(µt, σt) is the same than minimizing
∫
c(γt, βt) Π(dγdβ) over the Π ∈ Γ(µ, σ).

4. Asymptotic measures

Let us denote by e∞ the map defined by the formula

(4)
e∞ : R(X) −→ c∂X

γ 7−→ ([γ1], s(γ))

where γ1 is the unitary reparametrization of γ, [γ1] is its asymptote class and
s(γ) is the speed of γ. It is to be understood that whenever s(γ) = 0, [γ1] can
be taken arbitrarily in ∂X and this choice does not matter.

Definition 4.1 (asymptotic measure). — Let (µt)t>0 be a geodesic ray in
W2(X) and µ be a displacement interpolation (so that µt = et#µ). We define
the asymptotic measure of the ray by

µ∞ := e∞#µ.

We denote by P1(c∂X) the set of probability measures ν on c∂X such that∫
v2ν(dv) = 1.
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In the branching case, the dynamical optimal transport plan is not unique
in general. Therefore, the asymptotic measure depends a priori on the choice
of the dynamical optimal transport plan. We will see soon that it is not the
case.

Note that the speed of the geodesic (µt) is

(∫
s2(γ)µ(dγ)

)1/2

=

(∫
v2 s#µ(dv)

)1/2

and we denote it by s(µ). In particular, P1(c∂X) is the set of measures that
correspond to unit speed geodesics. We shall use that the speed function s
defined in R(X) is in L2(µ) several times.

The main result of this section is the following.

Theorem 4.2 (asymptotic formula). — Consider two geodesic rays (µt)t>0

and (σt)t>0, let µ and σ be any of their displacement interpolations and µ∞,
σ∞ be the corresponding asymptotic measures. Then (µt) and (σt) are asymp-
totic if and only if µ∞ = σ∞, and we have

lim
t→∞

W(µt, σt)

t
= W∞(µ∞, σ∞).

Therefore: as in X itself, the distance between two rays is either bounded
or of linear growth, and two displacement interpolations of the same ray define
the same asymptotic measure.

The rôle of the asymptotic formula goes far beyond justifying Definition
4.1 in the branching case: it gives us a very good control on geodesic rays
of W2(X) on which several of our results rely. To cite one, the asymptotic
formula is the main ingredient of Theorem 1.1 on the rank of W2(X).

For every t > 0, let dt be the function defined on R(X)×R(X) by dt(γ, β) =
d(γt, βt). We start with an implementation of a classical principle.

Lemma 4.3. — The function dt is in L2(Γ(µ, σ)), by which we mean that
there is a constant C = C(µ, σ) such that for all Π ∈ Γ(µ, σ),

∫
d2
t Π 6 C.

In the following, it will be of primary importance that C does not depend
on Π.



16 JÉRÔME BERTRAND & BENOÎT KLOECKNER

Proof. — Denoting by x any base point in X we have∫
d2
t Π 6

∫
(d(γt, x) + d(x, βt))

2 Π(dγdβ)

6 2

∫ (
d2(γt, x) + d2(x, βt)

)
Π(dγdβ)

= 2

∫
d2(γt, x)µ(dγ) + 2

∫
d2(x, βt)σ(dβ)

= 2 W
2(µt, δx) + 2 W

2(σt, δx).

Proof of the asymptotic formula. — We shall use several times the following
translation of the convexity of the distance function: given any geodesic rays
γ, β of X, the function

ft(γ, β) :=
d(γt, βt)− d(γ0, β0)

t

is nondecreasing in t and has limit d∞(γ, β).
Assume first that µ∞ = σ∞, and let us prove that W(µt, σt) is bounded.

The lifting lemma gives us a transport plan Π ∈ Γ(µ, σ) such that for all
(γ, β) in its support, γ∞ = β∞ (simply observe that the lifting Lemma applies
equally well to t =∞, and lift the trivial transport (Id× Id)#µ∞). If ft(γ, β)
is positive for some t, then d∞(γ, β) > 0. It follows that on supp Π, dt 6 d0.
Therefore:

W(µt, σt) 6
∫
d2
t Π 6

∫
d2

0 Π

which is bounded by the previous lemma.
Let now Π∞ be a transport plan from µ∞ to σ∞ that is optimal with

respect to d∞. Such a minimizer exists since d∞ is non-negative and lower-
semicontinuous with respect to the cone topology of c∂X; note that taking
an almost minimizer would be sufficient anyway. Denote by Π̃ a lift of Π∞ to
Γ(µ, σ); then

W2(µt, σt)

t2
6
∫
d2
t

t2
Π̃.

We have 2 > d∞ > ft > f1 > −d0 for all t > 1, so that t−1dt is bounded
by 2 + d0 and −d0. We can thus apply the dominated convergence theorem,
which gives

lim sup
W2(µt, σt)

t2
6
∫
d2
∞ Π̃ = W2

∞(µ∞, σ∞).

To prove the other inequality, we introduce gt := max(0, ft). It is a nonde-
creasing, nonnegative function with d∞ as limit, and it satisfies t2g2

t 6 d2
t .
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Let Πt be an optimal transport plan between (µt) and (σt) and Π̃t be a
lift to Γ(µ, σ), which by Prokhorov Theorem is compact in the weak topology.
Let (tk)k be an increasing sequence such that

lim
k

W(µtk , σtk) = lim inf
t

W(µt, σt)

and Π̃tk weakly converges to some Π̃∞.
For all k′ < k, we have

W2(µtk , σtk)

t2k
=

1

t2k

∫
d2
tk

Π̃tk

>
∫
g2
tk

Π̃tk

>
∫
g2
tk′

Π̃tk .

Letting k →∞ and using that the gt are continuous, we obtain

lim inf
t

W2(µt, σt)

t2
>
∫
g2
tk′

Π̃∞

for all k′. But gtk′ 6 2 and the dominated convergence theorem enables us to
let k′ →∞:

lim inf
t

W2(µt, σt)

t2
>
∫
d2
∞ Π̃∞ > W

2(µ∞, σ∞).

This ends the proof of the asymptotic formula, and shows that if (µt) and (σt)
stay at bounded distance then µ∞ = σ∞.

5. Complete geodesics and the rank

In this section we study complete geodesics in W2(X), in particular to under-
stand its rank. Recall that the rank of a metric space is the highest dimension
of a Euclidean space that embeds isometrically in it.

The main result of this section is the following.

Theorem 5.1. — If X is a visibility space, in particular if it is CAT(κ) with
κ < 0, then W2(X) has rank 1.

We expect more generally that for most, if not all Hadamard space X, the
rank of W2(X) is equal to the rank of X. Theorem 5.1 is a first step in this
direction. Note that the fact that we ask the embedding to be nothing weaker
than an isometry and to be global is important, as shown by example 5.5 at
the end of the section.

To prove Theorem 5.1, let us first see that the asymptotic measure of a
complete geodesic is much more constrained than that of a mere ray.
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Proposition 5.2. — Let (µt)t∈R be a complete unit speed geodesic of W2(X),
and µ be one of its displacement interpolations. Then µ is concentrated on the
set of unit speed geodesics of X.

Note that here we do not use any assumption on X (besides the existence
of displacement interpolations).

Proof. — Let γ, β be two geodesics in the support of µ and let a = s(γ) and
b = s(β). Fix some point x ∈ X. Then we have the equivalents d(x, γt) ∼ at
and d(x, βt) ∼ bt when t→ ±∞. In particular, we get that

d2(γt, β−t) 6 (d(γt, x) + d(x, β−t))
2

6 (a+ b)2t2 + o(t2)

and similarly d2(βt, γ−t) 6 (a+ b)2t2 + o(t2). We also have d2(γt, γ−t) = 4a2t2

and d2(βt, β−t) = 4b2t2. But since (µt) is a geodesic, the transport plan
Πt ∈ Γ(µt, µ−t) induced by µ must respect the cyclical monotonicity. In
particular we have

d2(γt, γ−t) + d2(βt, β−t) 6 d2(γt, β−t) + d2(βt, γ−t).

From this and letting t→∞ we get 4a2 + 4b2 6 2a2 + 2b2 + 4ab, which is only
possible when a = b.

We proved that the speed of geodesics in the support of µ is constant,
and since their square integrates (with respect to µ) to 1 we get the desired
conclusion.

As a consequence, the asymptotic measure of a unit speed ray that can be
extended to a complete geodesic lies in the subset P(∂X) of P1(c∂X) (where
we identify a space Y with the level Y × {1} in its cone).

Proposition 5.3. — If X is a visibility space, the space P(∂X) endowed
with the metric W∞ (where a ray is identified with its asymptote class) con-
tains no non-constant rectifiable curve.

Proof. — First, the visibility assumption implies that whenever γ and β are
non asymptotic, unit speed geodesic rays of X, we have d∞(γ, β) = 2. Let us
prove that for all displacement interpolation µ, σ of rays in W2(X), assumed
to be concentrated on R1(X), we have

(5) W∞(µ∞, σ∞) = 2|µ∞ − σ∞|1/2v

where | · |v is the total variation norm. Let us recall that, using the Jordan
measure decomposition of µ∞ − σ∞, one can find positive (not probability)
measures µ′∞, σ′∞ and ν such that µ′∞ and σ′∞ are mutually singular, µ∞ =
ν + µ′∞ and σ∞ = ν + σ′∞. By definition, |µ∞ − σ∞|v is the total mass of µ′∞
(or, equivalently, of σ′∞). To find an optimal transport plan, one can simply
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leave the common mass in place and move arbitrarily what is left, for example
taking

Π = (Id, Id)#ν + µ′∞ ⊗ σ′∞
where ⊗ denotes the product measure normalized to have the same mass as
each factor. Since Π moves a mass |µ∞ − σ∞|v by a distance of 2, it has cost
4|µ∞ − σ∞|v. More generally, due to the behavior of d∞, any transport plan
Π′ has cost

4Π′({(ζ, ξ) | ζ 6= ξ})
which cannot be smaller than the cost of Π.

The proposition now results from the more general following lemma, which
is well-known at least in the case of Euclidean space.

Lemma 5.4 (Snowflaked metrics). — Let (Y, d) be any metric space and
α < 1 be a positive number. Then (Y, dα) is a metric space not containing any
non-constant rectifiable curve.

The fact that dα is a metric comes from the inequality a+ b 6 (aα + bα)1/α

for positive a, b.
Let c : I → Y be a non-constant curve. Up to restriction and reparame-

trization, we can assume that I = [0, 1] and c0 6= c1. Take any positive integer
n; since d is continuous, by the intermediate value theorem there are numbers
t1 = 0 < t2 < · · · < tn < 1 such that d(cti−1 , cti) = d(c0, c1)/n and d(ctn , c1) >
d(c0, c1)/n. Denoting by ` the length according to the “snowflaked” metric
dα, we get that

`(c) > n

(
d(c0, c1)

n

)α
> dα(c0, c1)n1−α.

Since this holds for all n, `(c) =∞ and c is not rectifiable.

Proof of Theorem 5.1. — Assume that there is an isometric embedding ϕ :
R2 → W2(X). Let rθ be the ray starting at the origin and making an angle
θ with some fixed direction. Then, since rθ extends to a complete geodesic,
so does ϕ ◦ rθ. The displacement interpolation µθ of this ray of W2(X) must
be concentrated on R1(X) by Proposition 5.2, so that µθ∞ ∈ P(∂X). But
ϕ being isometric, the map θ → µθ∞ should be an isometric embedding from
the boundary of R2 (that is, the unit circle endowed with the chordal metric)
to (P(∂X),W∞). In particular its image would be a non-constant rectifiable
curve, in contradiction with Proposition 5.3.

Note that the same method yields more general results: we can rule out
the isometric embedding of Minkowski planes (R2 endowed with any norm),
and of their cones of the form {x2 < εy2} for any ε > 0. This contrasts with



20 JÉRÔME BERTRAND & BENOÎT KLOECKNER

above-mentionned fact that even when X is reduced to a line, some Euclidean
half -cones of arbitrary dimension embeds isometrically in W2(X).

Example 5.5. — Let us remind an example of [Klo10] showing that there
are plenty of weaker Euclidean embedding in most Wasserstein spaces. Con-
sider the set Rn< of increasingly ordered real n-tuples. The map

f : Rn< → W2(R)

(x1, . . . , xn) 7→ 1

n
δ√nx1 + · · ·+ 1

n
δ√nxn

is an isometric embedding. Assume X contains a complete geodesic; then its
Wasserstein space contains a copy of W2(R) so that Rn< embeds isometrically
into W2(X). But Rn< is an open half-cone invariant under a 1-parameter group
of translations so that:

– W2(X) contains round Euclidean half-cones of arbitrary dimension, in
particular Rn−1 admits bi-Lipschitz emdedding in W2(X) for arbitrary n,

– the cylinder R×Bn(r) where Bn(r) is a Euclidean ball of arbitrary radius
r embeds isometrically in W2(X) for all n.

We see that under a very mild assumption, most weak ranks of W2(X) are
infinite (examples of weak ranks include the largest dimension of a bi-Lipshitz
embedded Euclidean space and the largest rank of a quasi-isometrically em-
bedded Zn).

Another customary definition of rank for Hadamard manifolds uses Jacobi
fields; one could try to extend the notion of Jacobi fields in the setting of
Wasserstein spaces, but our example seems to indicate that with such a defin-
ition even W2(R) should have infinite rank. Let us give a precise result showing
this.

Proposition 5.6. — Given any geodesic (µt) in W2(R) and any n ∈ N, there
are independent unit vectors v1, . . . , vn in Rn and a positive ε such that the set

C = {tv1 + s2v2 + · · ·+ snvn | t ∈ R, si ∈ [0, ε)}
embeds isometrically in W2(R), with tv1 sent to µt for all t.

In particular, for any sensible metric definition of Jacobi fields, a geodesic
admits arbitrarily many independent pairwise commuting Jacobi fields.

Proof. — It is easy to see and proved in [Klo10] that there is some measure
µ on R such that µt = Tt#µ for all t, where Tt is the translation x 7→ x+ t.

If µ has finite support, then an embedding similar to the one described in
example 5.5 gives the conclusion. Assume that the support of µ contains at
least n− 1 points x2, . . . , xn and choose disjoint neighborhoods U2, . . . , Un of
these points. Let X2, . . . , Xn be smooth vector fields on R, each Xi having
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support in Ui, define Φ(t, s2, . . . , sn)(x) = x+ t+
∑

i siXi(x) and consider the
map

f : R× [0,+∞)n−1 → W2(R)

(t, s2, . . . , sn) 7→ Φ(t, s2, . . . , sn)#µ

Using convexity of the cost and cyclical monotonocity, one sees that optimal
transport plans in W2(R) are exactly those where no inversion of mass occurs
(i.e. whose support does not contain pairs (x, y) and (x′, y′) such that x > x′

and y < y′). In particular, the push forward by the map Φ(t, s2, . . . , sn) defines
an optimal transport plan between a measure and its image as soon as si’s are
small enough. It follows that for small enough si’s we have

W
(
f(t, (si)), f(t′, (s′i))

)2
=(t− t′)2 +

∑
i

(si − s′i)2

(∫
Ui

X2
i (x)µ(dx)

)
+ 2(t− t′)

∑
i

(si − s′i)
∫
Ui

Xi(x)µ(dx)

which is a quadratic expression in (t − t′, s2 − s′2, . . . , sn − s′n). Modifying f
by a linear change of coordinates, we get the desired embedding.

Note that when the support of µ contains at least n points, we can in fact
construct a n dimensional uniformly large Euclidean neighborhood of (µt).
However, we only get the announced “corner” when the support of µ is too
small, in particular when µ is a Dirac mass.

As a last remark, let us point out that the Jacobi fields constructed here
have well-defined flows only for small times. The study (and definition) of
fully integrable Jacobi fields on W2(X) could lead to an understanding of its
flats even when X has higher rank.

6. The geodesic boundary and its cone topology

In this section, we adapt to W2(X) the classical construction of the cone
topology on the geodesic compactification of Hadamard space, see for instance
[Bal95]. We introduce this topology on W2(X) = W2(X)∪∂W2(X). We shall

prove in Proposition 6.1 that the cone topology turns W2(X) into a first-
countable Hausdorff space and that the topology induced on W2(X) coincides
with the topology derived from the Wasserstein metric.

In the next section, we shall show in Theorem 7.2 that ∂W2(X) is homeo-
morphic to

P1(c∂X) =

{
ζ ∈P(c∂X);

∫
s2 ζ(dξ, ds) = 1

}
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endowed with the weak topology. In Corollary 7.3, we rewrite the above result
in terms of Wasserstein space over c∂X.

From now on, we will use the following notations. Let (Y, d) be a geodesic
space and y ∈ Y . We set Ry(Y ) (respectively Ry,1(Y )) the set of geodesic
rays in Y starting at y (respectively the set of unitary geodesic rays starting
at y). These sets are closed subsets of R(Y ) endowed with the topology of
uniform convergence on compact subsets.

The cone topology on W2(X) = W2(X) ∪ ∂W2(X) is defined by using as a
basis the open sets of W2(X) together with

U(x, ξ,R, ε) =
{
θ ∈ W2(X); θ 6∈ B(δx, R),W((µδx,θ)R, (µδx,ξ)R) < ε

}
where x ∈ X is a fixed point, ξ runs over ∂W2(X), R and ε run over (0,+∞)
and µδx,θ is the unitary geodesic between δx and θ (existence and uniqueness
follow from Lemma 6.3).

The main properties of the cone topology on W2(X) are gathered together
in the following proposition.

Proposition 6.1. — The cone topology on W2(X) is well-defined and is in-
dependent of the choice of the basepoint δx. Moreover, endowed with this topol-
ogy, W2(X) is a first-countable Hausdorff space. By definition, the topology
induced on W2(X) coincides with the topology derived from the Wasserstein
metric.

Remark 6.2. — We emphasize that the topology induced on ∂W2(X) by the
cone topology coincides with the quotient topology induced by the topology of
uniform convergence on compact subsets on the set of unitary rays in W2(X).

Moreover, since ∂W2(X) endowed with the cone topology is first-countable,
continuity and sequential continuity are equivalent in this topological space.

The scheme of proof is the same as in the nonpositively curved case. How-
ever, to get the result, we first need to generalize to our setting some properties
related to nonpositive curvature.

Lemma 6.3. — Given x ∈ X, the set of unitary rays in W2(X) starting at
δx is in one-to-one correspondence with the set P1(c∂X). Moreover, for any
ξ ∈ ∂W2(X), there exists a unique unitary ray starting at δx and belonging to
ξ.

Proof. — Recall that there exists a unique transport plan between a Dirac
mass and any measure in W2(X). Since there is a unique geodesic between
two given points in X, the same property remains true for dynamical trans-
portation plans. Using the previous remarks, we get that any µ ∈P(Rx(X))
such that

∫
s2(γ)µ(dγ) < +∞ induces a ray starting at δx. Moreover, since dis-

placement interpolation always exists (see Proposition 3.2), the set Rδx,1(W2(X))
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is in one-to-one correspondence with the unitary dynamical transportation
plans starting at δx, namely with the measures µ ∈ P(Rx(X)) such that∫
s2(γ)µ(dγ) = 1. Now, since X is a Hadamard space, we recall that R(X) is

homeomorphic to X × c∂X (where the left coordinate is the initial location of
the ray). Therefore, for any x ∈ X, the previous map induces a homeomor-
phism

(6) φx : Rx(X) −→ c∂X.

This gives us a one-to-one correspondence between the set of unitary dynam-
ical transportation plans starting at δx and the set P1(c∂X).

Given ξ ∈ ∂W2(X), consider a unit ray (µt) in W2(X) belonging to ξ and
µ∞ ∈P1(c∂X) its asymptotic measure. We claim that φ−1

x #µ∞ is the unique

ray starting at δx and belonging to ξ. Indeed, φ−1
x #µ∞ and (µt) have the

same asymptotic measure, thus they are asymptotic thanks to the asymptotic
formula (Theorem 4.2). The asymptotic formula also implies that two asymp-
totic rays (starting at δx) have the same asymptotic measure, thus they are
equal thanks to the first part of the lemma.

Lemma 6.4. — Let (µt), (σt) be two unitary geodesics (possibly rays) in W2(X)

starting at δx. Then, the comparison angle ∠̃µsδxσt at δx of the triangle
∆(δx, µs, σt) is a nondecreasing function of s and t. Consequently, the map
t −→W(µt, σt)/t is a nondecreasing function as well.

Proof. — We set dm, ds 6 +∞ the length of (µt) and (σt) respectively and µ,
σ the corresponding optimal dynamical plans. Thanks to the lifting lemma,
we set Θ ∈ Γ(µ, σ) a dynamical plan such that, for given s 6 dm and t 6 ds,
(es, et)#Θ is an optimal plan. By definition of the Wasserstein distance, we
get, for any s′ 6 s and t′ 6 t, the following estimate

W
2(µs′ , σt′) 6

∫
d2(γ(s′), γ′(t′)) Θ(dγ, dγ′).

Now, the fact that X is nonpositively curved yields

d2(γ(s′), γ′(t′)) 6
s′2

s2
d2(x, γ(s)) +

t′2

t2
d2(x, γ′(t))

− 2
s′t′

st
d(x, γ(s))d(x, γ′(t)) cos ∠̃γ(s)xγ′(t).

where ∠̃γ(s)xγ′(t) is the comparison angle at x (here, we use the fact that the
initial measure is a Dirac mass). By integrating this inequality against Θ, we
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get

W
2(µs′ , σt′) 6 s′2 + t′2

− 2
s′t′

st

∫
d(x, γ(s))d(x, γ′(t)) cos ∠̃γ(s)xγ′(t) Θ(dγ, dγ′).

We conclude by noticing that the inequality above is an equality when s = s′

and t = t′, so we get

W
2(µs′ , σt′) 6 s′2 + t′2 − 2s′t′ cos ∠̃µsδxσt

which is equivalent to the property ∠̃µs′δxσt′ 6 ∠̃µsδxσt . The remaining state-
ment follows readily.

Lemma 6.5. — Let (µt) be a unitary geodesic, possibly a ray, starting at δy
and δx 6= δy. For any θ ∈ W2(X) such that θ 6= δx, δy, the comparison angle
at θ satisfies

cos ∠̃δxθδy =
1

W(δx, θ) W(δy, θ)

∫
d(x, z)d(y, z) cos ∠̃xzy θ(dz).

Moreover, given two nonnegative numbers s 6= t, the following inequality holds
for 0 < t < T

∠̃µ0µtδx + ∠̃µTµtδx > π.

Proof. — For any z ∈ X, the following equality holds

d2(x, y) = d2(x, z) + d2(y, z)− 2d(x, z)d(y, z) cos ∠̃xzy.

By integrating this inequality against θ, we get the first statement by definition
of the comparison angle. Let µ be the unique optimal dynamical coupling that
induces (µt). The first step of the proof is to get the equality below:

(7) cos ∠̃µTµtδx =

1

W(µT , µt) W(µt, δx)

∫
d(γ(t), γ(T ))d(γ(t), x) cos ∠̃xγ(t)γ(T ) µ(dγ)

For γ ∈ supp µ, the following equality holds

d2(γ(T ), x) = d2(γ(t), x) + d2(γ(t), γ(T ))

− 2d(γ(t), x)d(γ(t), γ(T )) cos ∠̃xγ(t)γ(T ).
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By integrating this equality against µ, we get (7). Now, using that X is

nonpositively curved, we have ∠̃xγ(t)γ(T ) + ∠̃xγ(t)y > π. This gives

cos ∠̃µTµtδx

6 −1
W(µT ,µt) W(µt,δx)

∫
d(γ(t), γ(T ))d(γ(t), x) cos ∠̃xγ(t)y µ(dγ)

6 −1
(T−t) W(µt,δx)

∫
T−t
t d(γ(t), y)d(γ(t), x) cos ∠̃xγ(t)y µ(dγ)

6 −1
W(µt,δy) W(µt,δx)

∫
d(γ(t), y)d(γ(t), x) cos ∠̃xγ(t)y µ(dγ)

6 − cos ∠̃µ0µtδx
where the last inequality follows from the first statement and the result is
proved.

As a consequence, we get the following result.

Proposition 6.6. — Given ε > 0, a > 0, and R > 0, there exists a constant
T = T (ε, a,R) > 0 such that the followings holds: for any x, y ∈ X such that
d(x, y) = a and a unitary geodesic (possibly a ray) (µt) of length greater than
T and starting at δy, if (σst ) is the unitary geodesic from δx to µs then

W(σsR, σ
s′
R) < ε

for any s′ > s > T .
In particular, if (µt) is a ray and s goes to infinity, (σs)s>0 converges uni-

formly on compact subsets to the unitary ray µδx,ξ where ξ is the asymptote
class of (µt) (see Figure 3).

µδx,ξ

ξ

µ
∂X

δyσs

δx

Figure 3. Uniform convergence of σs on compact subsets.
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Proof. — Under these assumptions, the comparison angle ∠̃δyµsδx is arbitrary
small provided s is sufficiently large. Consequently, thanks to Lemma 6.5,

∠̃µs′µsδx is close to π; therefore the comparison angle ∠̃µsδxµs′ is small. This
gives the first part of the result since

∠̃
σs
Rδxσ

s′
R
6 ∠̃µsδxµs′

thanks to Lemma 6.4. Using Lemma 6.4 again, it only remains to prove the
pointwise convergence of (σs)s>0 to µδx,ξ. Thanks to the asymptotic formula,
there exists C > 0 such that

(8) W((µδx,ξ)t, µt) 6 C

for any nonnegative number t. Finally, we conclude by using s′ sufficiently
large and the bound

W((µδx,ξ)R, σ
s
R) 6 W((µδx,ξ)R, σ

s′
R) + W(σsR, σ

s′
R)

where the same reasoning as above and (8) show that the first term on the
right-hand side is small provided s′ is large.

Now, we can prove that the topology above is well-defined and does not depend
on the choice of the base point δx. This the content of the lemma below.

Lemma 6.7. — Given two positive numbers R, ε and y ∈ X, ξ ∈ U(x, η,R, ε)∩
∂W2(X), there exists S, ε′ > 0 such that

U(y, ξ, S, ε′) ⊂ U(x, η,R, ε).

Proof. — We set α = ε−W((µδx,η)R, (µδx,ξ)R) > 0. Let θ ∈ U(y, ξ, S, ε′) and
Θ (respectively Ξ) be the unitary geodesic µδy ,θ (respectively the unitary ray
µδy ,ξ). We have

W((µδx,θ)R, (µδx,η)R) 6 W((µδx,θ)R, (µδx,ΘS
)R)+W((µδx,ΘS

)R, (µδx,ΞS
)R)

+ W((µδx,ΞS
)R, (µδx,ξ)R) + W((µδx,ξ)R, (µδx,η)R)

The first and the third term on the right-hand side are smaller than α/3 for
large S thanks to Proposition 6.6 while the second term is smaller than α/3
for large S and small ε′ thanks to lemma 6.4.

7. The boundary of W2(X) viewed as a set of measures

To state the main result of this section, we first need to introduce a defini-
tion.
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Definition 7.1. — We set

Am : Rδx,1(W2(X)) −→ P1(c∂X)
(µt) 7−→ µ∞

the map that sends a unitary ray starting at δx to its asymptotic measure.

The main result of this part is the following theorem.

Theorem 7.2. — The map Am : Rδx,1(W2(X)) −→ P1(c∂X) induces a
homeomorphism from ∂W2(X) onto P1(c∂X).

Note that a straightforward consequence of the result above is

Corollary 7.3. — Let d be a metric on ∂X that induces the cone topology
on ∂X and dC the cone metric induced by d on c∂X (see (2) for a definition).
Let us denote by W2(c∂X) the quadratic Wasserstein space over the Polish
space (c∂X, dC). Then, ∂W2(X) is homeomorphic to the subset of probability
measures with unitary speed in W2(c∂X).

Remark 7.4. — In particular we get the more symmetric result that c∂W2(X)
is homeomorphic to W2(c∂X).

The rest of this part is devoted to the proof of the theorem above. Re-

call that we have proved in Lemma 6.3 that both Am and the map Ãm :
∂W2(X)→P1(c∂X) it induces are bijective.

The proof of Theorem 7.2 is in two steps. First, we prove that the map

Am is a homeomorphism. Then, we use this fact to prove that Ãm is a
homeomorphism as well.

We start the proof with a definition.

Definition 7.5. — Let x ∈ X. We denote by

ODTx =
{
µ ∈P(Rx(X));

∫
s2(γ)µ(dγ) = 1

}
the set of unitary dynamical transport plans endowed with the weak topology.
We also set

(et)>0# : ODTx −→ Rδx,1(W2(X))

µ 7−→ (µt)

and
e∞# : ODTx −→ P1(c∂X)

µ 7−→ φx#µ

where φx is defined in (6).
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Thanks to Lemma 6.3, we have the following commutative diagram where
all the maps are one-to-one.

ODTx
e∞#

>> P1(c∂X)

Rδx,1(W2(X))

(et)t>0# ∨∨

Am >>

We first prove that

Lemma 7.6. — The map e∞# is a homeomorphism onto P1(c∂X).

Proof. — The map φx : Rx(X) −→ c∂X is a homeomorphism. Therefore it
induces a homeomorphism between ODTx and P1(c∂X) when endowed with
the weak topology.

Lemma 7.7. — The map (et)>0# is a continuous map.

Proof. — Since the spaces we consider are metrizable, we just have to prove
the sequential continuity. Consequently, we are given a sequence (µn)n∈N such
that µn ⇀ µ in ODTx. Now, since et : Rx(X) −→ X is a continuous map, we
get that et#µn ⇀ et#µ in P(X). By definition of ODTx, we have∫

s2(γ)µn(dγ) =

∫
s2(γ)µ(dγ) = 1.

Since
∫
s2(γ)µn(dγ) =

∫
d2(x, γ(1))µn(dγ), the equality above implies the

convergence of the second moment. Namely, we have∫
d2(x, γ(t))µn(dγ) = t2

∫
d2(x, γ(1))µn(dγ) =

∫
d2(x, γ(t))µ(dγ).

This implies the convergence of et#µn to et#µ with respect to the Wasserstein
distance (see for instance [Vil09], Theorem 6.9). Thus, we have proved the
pointwise convergence of rays. Now, since t −→ W(et#µn, et#µ) is nonde-
creasing as proved in Lemma 6.4, we get the result.

We end the first part of the proof with the following lemma.

Lemma 7.8. — The map (et)>0# is a homeomorphism.

Proof. — Since the topology of both Rδx,1(W2(X)) and ODTx is induced by
a metric, it is sufficient to prove that (et)>0# is a proper map. Moreover,
we just have to prove sequential compactness. We set K a compact subset
of Rδx,1(W2(X)). Let (µn)n∈N ∈ (et)>0

−1
# (K). We first notice that (µn)n∈N

is tight. Indeed, by assumption on K, the sequence (e1#µn)n∈N is tight in
P(X). Therefore, by arguing as in the end of the proof of Proposition 3.2,
we obtain the claim. Consequently, since Rx(X) is a Polish space, we can
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apply Prokhorov’s theorem to get a converging subsequence (µnk
)k∈N to µ̃. It

remains to prove that µ̃ ∈ ODTx, namely that
∫
s2(γ) µ̃(dγ) = 1. Since K

is compact, we can also assume without loss of generality that (et#µnk
) −→

(µ̄t) in Rδx,1(W2(X)). Moreover, since et#µnk
⇀ et#µ̃ for any t, we get

(et)>0#(µ̃) = (µ̄t). Therefore, e1#µnk
−→ e1#µ̃ in W2(X). This implies the

convergence of the second moment
∫
d2(x, γ(1))µnk

(dγ) =
∫
s2(γ)µnk

(dγ) = 1
(see for instance [Vil09], Theorem 6.9) and the result is proved.

We are now in position to prove Theorem 7.2. We set p∂W2 the canonical
projection on ∂W2(X). We have the following commutative diagram.

Rδx,1(W2(X))
Am

>> P1(c∂X)

∂W2(X)

p∂W2 ∨∨

Ãm >>

We have seen at the beginning of the proof that all the maps above are one-
to-one. To conclude, it remains to prove that p−1

∂W2
is a continuous map.

Since ∂W2(X) is first-countable (see Remark 6.2), it is sufficient to prove
sequential continuity. To this aim, let ξn −→ ξ in ∂W2(X) and (et#µn), (µt) ∈
Rδx,1(W2(X)) such that p∂W2((et#µn)) = ξn and p∂W2((µt)) = ξ. Recall that
under these assumptions, the map t −→ W(et#µn, µt) is nondecreasing (see
Lemma 6.4), thus we just have to show the pointwise convergence of (et#µn).
This pointwise convergence follows readily from the definition of the cone
topology on W2(X).
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structure on the boundary of some hyperbolic buildings”, Proc. Amer.
Math. Soc. 127 (1999), no. 8, p. 2315–2324.
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