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Abstract: In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance
derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a
discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with
bounded integral curvature. 10
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1 Introduction
It is known that a �nite dimensional Alexandrov space (X, d) can be equipped with a Riemannian metric de-
�ned almost everywhere that induces the original distance d. On the manifold part of the Alexandrov space,
the Riemannian metric components are known to be BVloc functions, as proved by Perelman in [12]. For geo-
metric purposes it would be convenient to �nd an atlas where there is no Cantor part in the derivatives of the
metric. Indeed, it is well-known that a continuous function f of a real variable and with bounded variation
does not satisfy, in general, the fundamental theorem of calculus:

f (b) − f (a) =
ˆ b

a
f ′(s) ds,

while a Sobolev function does.
In this note, we show that an Alexandrov surface with a lower curvature bound admits a weak Rieman- 15

nian metric with components in the Sobolev space.

Theorem 1.1. Let (S, d) be a closed surface with curvature bounded below. Then S is a topological (smooth)
surface and the distance d derives from a Riemannian metric g de�ned H2-almost everywhere. Furthermore,
for all p ∈ [1, 2) there exists a discrete setSp ⊂ S such that the components of g, read in a local chart, belong
toW1,p

loc (S \Sp ,H2). Moreover,

Reg(S) := {x ∈ S; TxS = R2} ⊂ S \Sp .

Last, there exists a well-de�ned Levi-Civita connection (acting on smooth vector �elds) with components locally
in Lp for any p ∈ [1, 2).

Remark 1.2. H2 stands for the 2-Hausdor� measure relative to d. In [11, 12], the weak Riemannian metric is
de�ned at (and only at) each point of Reg(S), S being a �nite dimensional Alexandrov space. 20
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Remark 1.3. This result applies to convex surfaces in Euclidean space. Using the di�erential structure induced
by the ambient space, it can be proved that themetric components are functions of locally bounded variation
(indeed, the charts as well as their inverse functions are convex, their �rst derivatives are then in BVloc), this
estimate is sharp. Therefore, even in this simple case the above result leads to something new. By analogy
one can think to the graph of the Cantor-Vitali function that, when viewed in a tilted system of coordinates,5
is the graph of a Lipschitz function; more generally this is true for the graph of any (multivalued) monotone
operator in n variables, see [1].

Our proof strongly relies on Reshetnyak’s work on the more general class of surfaces with bounded in-
tegral curvature [14]. Reshetnyak’s work is recalled in the next section where we present all the necessary
material to prove our result. The proof itself is given in the last part of this note.10

2 Surfaces with bounded integral curvature

2.1 De�nition and properties

De�nition 2.1 (Upper angle and excess). Let (S, d) be a complete geodesic space and let bac be a geodesic
triangle. The upper angle∠bac at a is de�ned as the upper limit of the angle∠0bac of a (Euclidean) compar-
ison triangle (namely a Euclidean triangle whose sidelengths are the same as the ones of the geodesic triangle
bac in S) when b, c go to a along the given geodesics. The excess of bac is then de�ned as

δ(bac) = ∠bac +∠abc +∠bca − π.

De�nition 2.2 (Surface with bounded integral curvature). Let (S, d) be a complete godesic space such that
S is a closed topological surface. Then (S, d) is said to be a surface of bounded integral curvature if for any
point in S there exists a neighborhood homeomorphic to a disc such that the sum of the excesses of �nitely15
many non overlapping simple triangles is bounded from above by a constant depending only on the chosen
neighborhood. A triangle is said to be simple if its boundary is made of three geodesic segments, it is convex
with respect to its boundary and homeomorphic to a disc.

Remark 2.3. This de�nition is taken from [14].

De�nition 2.4 (Curvature measure). Let (S, d) a surface of bounded integral curvature. Then its curvature
measure ω is de�ned as ω = ω+ − ω− where for any open set O,

ω+(O) = sup
Ti

∑
max{δ(Ti), 0}

where the supremum is taken over �nite sums of simple triangles contained in O. Analogously

ω−(O) = sup
Ti

∑
−min{δ(Ti), 0}.

Then, for an arbitrary Borel set E,
ω±(E) := inf

O⊃E
ω±(O)

where the in�mum is taken over open sets.20

The above de�nition gives rise to a signed measure, as proved by Alexandrov and Zalgaller:

Theorem 2.5 ([2, Chapter 5]). Let (S, d) be a surface with bounded integral curvature. Then the curvaturemea-
sure ω de�ned in De�nition 2.4 is the restriction to open sets of a signed Borel measure with locally �nite total
variation on S.
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2.2 Reshetnyak’s subharmonic metric

Reshetnyak proved the existence of non-trivial coordinates on a surface with bounded integral curvature.

Theorem 2.6 ([14, Theorem 7.1.2]). Let (S, d) be a closed surface of bounded integral curvature ω and let

Ω1 =
{
z ∈ S : ω+({z}) < 2π

}
. (2.1)

Then, for all z ∈ Ω1 there exist a chart (U, ϕ)with z ∈ U and a Riemannian metric g de�ned on V = ϕ(U) ⊂ R2

by the formula
g(x1, x2) = exp(−2u(x1, x2)) (dx21 + dx22)

where u = u+ − u− with u± ∈ L1loc(V) pointwise de�ned and satisfying

∆u± = ω± in V (2.2)

in the weak sense. 5

Remark 2.7. In the above theorem, we adopt the convention ∆ = ∂2x1x1 + ∂2x2x2 . In particular, the functions u±
are subharmonic. Let us recall that when gij = exp(−2u)δij with u smooth, then ∆u = Kg, where Kg is the
sectional curvature of g (see for instance [3]).

Proposition 2.8. With the same hypotheses as in the above theorem, setting for q ≥ 4

Ωq =
{
z ∈ S : ω+({z}) < 2π

q

}
,

and given z ∈ Ωq, we can choose (U, ϕ) in such a way that:

(a) the metric components gij and the volume form
√
det(g) belong to Lq(V , dx1dx2); 10

(b) the distributional derivatives ∂gij
∂xk of g belong to Lp(V ,

√
det(g) dx1dx2) where p = 2 − 6/(q + 2).

(c) the Christo�el symbols Γkij belong to Lp(V ,
√
det(g) dx1dx2) where p = 2 − 2/q.

The proof of the above proposition follows from some classical facts in potential theory that we brie�y
recall. First, the logarithmic potential v of a signed Borel measure µ with �nite total variation inR2 is de�ned
by the formula 15

v(x) = 1
2π

ˆ
R2
ln |x − ξ |dµ(ξ ) x ∈ R2. (2.3)

The logarithmic potential satis�es the following properties (see, for instance, [7, 8, Chap 3,4, and 16] for
proofs).

Theorem 2.9. Let µ be a signed Borel measure with �nite total variation in R2 and let v be de�ned as in (2.3).
Then

(a) v is smooth in the complement of the support of µ; 20
(b) v ∈ W1,p

loc (R
2) for any p ∈ [1, 2) if µ has compact support;

(c) one has
∆v = µ in the weak sense in R2. (2.4)

Notice that if µ is nonnegative and supported in D then v is pointwise de�ned in D, possibly equal to −∞,
with

v(x) ≤ 1
2π ln(1 + |x|)µ(D) ∀x ∈ D. (2.5)

The followingmore re�ned estimate is taken from [16, Corollary 4.3] (note that in this paper, the Laplacian 25
operator as well as the logarithmic potential di�er from ours by a sign).
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Lemma 2.10. Let µ be a nonnegative and �nite Borel measure concentrated on D with µ(D) < 2π/q for some
q > 1. Then the logarithmic potential v of µ satis�es

‖ exp(−2v)‖Lq(D) ≤
(

2π
δ + 22

δ+2
)1/q

,

where δ = −qµ(D)/π > −2.

Building on these results, we can now prove the estimates on the metric components.

2.3 Proof of Proposition 2.8

We prove statements (b) and (c) for q > 4 and with the strict inequalities p < 2 − 6/(q + 2), p < 2 − 2/q in (b)
and (c) respectively. Then the case q = 4 and the cases when p reachs the extremal value can be proved using5
Ωq = ∪q′>qΩq′ , hence any compact subset of Ωq is contained in Ωq′ for some q′ > q.

According to Theorem 2.6 we can work in local coordinates, assuming that z = 0 and that gij =
exp(−2u)δij in the open unit Euclidean disc D. With the aim of proving (a) and (b), let us also note that
gii =

√
det(g) = exp(−2u).

De�ning
h±(x) := u±(x) −

1
2π

ˆ
D
ln |x − ξ | dω±(ξ ),

it follows that h± are harmonic in the weak sense in D, thus smooth in (the open set) D. Therefore, in order to10
obtain local estimates in D on u, we need only to estimate the logarithmic potentials v± relative to ω±.

Under the further assumption
ω+(D) < 2π

q (2.6)

we get that v± are uniformly bounded from above in D, more precisely

v± ≤
ln 2
2π |ω|(D). (2.7)

Moreover, since we have assumed (2.6), Lemma 2.10 applies to v+ yields exp(−2v+) ∈ Lq(D). By combining
the two estimates, we obtain that

exp(−2u) ∈ Lqloc(D)

and (a) is proved.
To prove (b), we �x p ∈ [1, 2) and any r > 1 such that pr < 2. Then, we choose q = (p + 1)r/(r − 1) and

assume that (2.6) holds. By de�nition of the metric g, we have that gij = e−2uδij thus

∂gii
∂xk

= −2 ∂u∂xk
e−2u .

By the above discussion and Theorem 2.9 (b), we get the W1,α
loc (D) regularity of u for any α ∈ [1, 2). Now, by

integrating against the volume form (here sD denotes the concentric disk scaled by a factor s > 0), we get
ˆ
sD
|∂gii∂xk

|p
√
det(gi,j) dx = 2p

ˆ
sD
| ∂u∂xk

|pe−2(p+1)udx

≤ 4‖ ∂u∂xk
‖pLrp(sD)‖ exp(−2(p + 1)u)‖Lr/(r−1)(sD)

= 4‖ ∂u∂xk
‖pLrp(sD)‖ exp(−2u)‖

p+1
Lq(sD) < +∞

for all s ∈ (0, 1). To conclude the proof, notice that r < 2/p yields p < 2 − 6/(q + 2).15
Similarly, ˆ

sD
| ∂u∂xk

|p
√
det(gi,j) dx < +∞ (2.8)
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whenever p < 2 − 2/q.
It remains to prove the last item concerning the Christo�el symbols. Recall that for a smooth metric g

such that gij = exp(−2u)δij, it is a classical result that

D ∂
∂x1

∂
∂x2

= −∂x1u
∂
∂x2

− ∂x2u
∂
∂x1

,

D ∂
∂xi

∂
∂xi

= −∂xiu
∂
∂xi

+ ∂xi+1u
∂

∂xi+1
, (2.9)

see for instance [15, p 399] or [3] for a general formula relating the Levi-Civita connections of two conformal
metrics. This formula yields |Γkij| =

∣∣ ∂u
∂xs

∣∣with s = k or s = k+1 depending on whether i = j or not. In any case, 5
if we de�ne the Christo�el symbols using (2.9), the estimate (2.8) applies and completes the proof of (c).

We conclude this part by explaining why the Levi-Civita connection is well-de�ned as a tensor on S.
Using (2.9) as a de�nition, it is simple to check that given two smooth vectors �elds X, Y, the vector �eld DXY
satis�es the torsion free and the compatibility with themetric conditions locallywhen read in a chart. A result
due to Huber (see [9] or [14, Theorem 7.1.3]) guarantees that any transition map relative to the subharmonic 10
metric is a conformal map hence smooth. Therefore, the Levi-Civita connection is well-de�ned globally in
Ωq with components locally in Lp for p = 2 − 2/q. Note that the same global well-posedness holds for the
subharmonic metric.

3 Surfaces with curvature bounded from below
In this part, we prove Theorem 1.1. Prior to that, we report Alexandrov’s result concerning the curvature mea- 15
sure of a surface with curvature bounded below in Alexandrov’s sense (see [4] or [10]). There are several
equivalent de�nitions of Alexandrov space with curvature bounded below. We exhibit one such de�nition
and refer to [5] for more on this subject.

De�nition 3.1 (Surface with curvature bounded below). Let (S, d)be a complete geodesic spacewhoseHaus-
dor� dimension equals 2. Then (S, d) is a space with curvature bounded below by a number k if every point
has a neighborhood U such that for any a, b, c, d ∈ U the following inequality is satis�ed

∠kbac +∠kcad +∠kdab ≤ 2π,

where∠kbac stands for the angle at a of a comparison triangle in the 2-dimensional space form of curvature
k. 20

Theorem 3.2 ([4, 10]). Let (S, d) be a surface with curvature bounded from below by k ∈ R. Then, (S, d) has
bounded integral curvature. Moreover, its curvature measure ω satis�es

ω = fdH2 + ωs

where ωs, the singular part of ω w.r.t.H2, is a nonnegative and locally �nite Borel measure and the density f of
the absolutely continuous part of ω satis�es f ≥ kH2-almost everywhere in S.

The proof that a 2-dimensional Alexandrov space with curvature bounded below is a topological surface
is usually attributed to Alexandrov (and it is not true in general in higher dimension). This property can also
be deduced from results in [6] or in [13] where Perelman proves that any point x in an Alexandrov space 25
admits a neighborhood which is homeomorphic to a neighborhood of the apex of the cone over the space of
directions at x (indeeed, a closed 1-dimensional Alexandrov space is homeomorphic to a circle). The precise
statement on the curvature measure given above is [10, Proposition 4.5].
Proof of Theorem 1.1. Thanks to Theorem 3.2 and the results in Section 2, there exists a subharmonic metric
around any point of S such that ω({z}) = ω+({z}) < 2π. Moreover, it is a general property of surfaces with 30
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bounded integral curvature that around such a point, the distance induced by the subharmonicmetric locally
coincides with the distance d, see [14, Paragraph 7] for more details.

Now, for any point z in a surfacewith curvature bounded below,ω({z}) = 2π−L(Σz) (see for instance [10])
where L(Σz) stands for the (positive) length of the space of directions at z which is a 1−dimensional space
of curvature bounded below by 1. In particular, ω({z}) = ω+({z}) < 2π and therefore Ω1 = S. Moreover, the5
distance induced by the subharmonic metric globally coincides with d.

In this setting, the measure induced by the metric g coincides with the Hausdor� measure H2 (see [11]
for a proof). Proposition 2.8 then yields the result withSp = S \ Ωq, with q related to p by p = 2 − 6/(q + 2).
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