Corrigé du partiel du 4 novembre

SOLUTION DE L'EXERCICE 1. Initialisation : Pour n=2, le membre de gauche vaut x^2-1 et le membre de droite (x-1)(x+1). On reconnaît une identité classique. Hérédité : Supposons la relation vraie à l'ordre n. Alors,

$$(x-1)(1+x+\cdots+x^n) = (x-1)(1+x+\cdots+x^{n-1}) + (x-1)x^n$$
$$= x^n - 1 + x^{n+1} - x^n$$
$$= x^{n+1} - 1,$$

où la deuxième égalité provient de l'hypothèse de récurrence. On a donc la relation à l'ordre n+1.

SOLUTION DE L'EXERCICE 2.

(a) Le nombre d'injections de $\{1,2,3\}$ dans $\{1,2,3,4,5,6,7\}$ est le nombre d'arrangements de 3 éléments parmi 7, à savoir,

$$A_7^3 = \frac{7!}{(7-3)!} = 7 \times 6 \times 5 = 210.$$

- (b) Comme card $\{1, 2, 3, 4, 5, 6, 7\} = 7 > 3 = \text{card}\{1, 2, 3\}$, il n'y aucune injection de $\{1, 2, 3, 4, 5, 6, 7\}$ dans $\{1, 2, 3\}$.
- (c) Le nombre N d'applications de $\mathscr{P}(\{1,2,3,4,5\})$ dans $\{1,2\}$ est égal au cardinal de $\{1,2\}$ à la puissance le cardinal de $\mathscr{P}(\{1,2,3,4,5\})$. Or, card $\mathscr{P}(\{1,2,3,4,5\})=2^5=32$, donc $N=2^{32}$.

SOLUTION DE L'EXERCICE 3. Voici le triangle de Pascal jusqu'à la ligne des coefficients C_8^k , $k \in \{0, \dots, 8\}$:

Rappelons la formule du binôme : $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$. Pour n=8, a=-x et b=1, on obtient :

$$(1-x)^8 = 1 - 8x + 28x^2 - 56x^3 + 70x^4 - 56x^5 + 28x^6 - 8x^7 + x^8.$$

SOLUTION DE L'EXERCICE 4.

- (a) Supposons que $A \subset B$. Soit $x \in A \cup B$; alors $x \in A$ (et donc $x \in B$) ou bien $x \in B$; donc $x \in B$. Ceci montre que $A \cup B \subset B$.
 - Réciproquement, supposons que $A \cup B \subset B$. Soit $x \in A$; alors $x \in A \cup B \subset B$, donc $x \in B$. Ceci montre que $A \subset B$.
- (b) Supposons que $A \subset B$. Soit $x \in A$; alors $x \in B$ et donc $x \in B \cap A$. Ceci montre que $A \subset B \cap A$. Réciproquement, supposons que $A \subset B \cap A$. Soit $x \in A$; alors $x \in A \subset B \cap A$, donc $x \in B$. Ceci montre que $A \subset B$.
- (c) Supposons que $A \subset B$ et montrons que $\forall x \in E$, $\mathbb{1}_A(x) \leq \mathbb{1}_B(x)$. Soit $x \in E$ quelconque. Si $x \notin A$ alors $\mathbb{1}_A(x) = 0 \leq \mathbb{1}_B(x)$. Si $x \in A$ alors comme $A \subset B$ on a aussi $x \in B$ et donc $\mathbb{1}_A(x) = \mathbb{1}_B(x) = 1$. Dans tous les cas $\mathbb{1}_A(x) \leq \mathbb{1}_B(x)$.
 - Réciproquement, supposons que $\mathbb{1}_A \leq \mathbb{1}_B$ et démontrons que $A \subset B$. Soit $x \in E$ quelconque. Si $x \in A$ alors $\mathbb{1}_A(x) = 1$. Mais par hypothèse $\mathbb{1}_B(x) \geq \mathbb{1}_A(x) = 1$. Comme $\mathbb{1}_B(x)$ ne peut valoir que 0 ou 1, on en déduit que $\mathbb{1}_B(x) = 1$, c'est-à-dire $x \in B$. On a montré que $(x \in A) \Longrightarrow (x \in B)$. Donc $A \subset B$.

SOLUTION DE L'EXERCICE 5.

- (a) On a : $\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$. Il y a 4 parties de cardinal pair et autant de parties de cardinal impair.
- (b) (1) Soit A quelconque dans $\mathscr{P}(E)$. Si $e \in A$, alors $f(A) = A \setminus \{e\}$, et donc $f(f(A)) = (A \setminus \{e\}) \cup \{e\} = A$. Si $e \notin A$, alors $f(A) = A \cup \{e\}$, et par suite $f(f(A)) = (A \cup \{e\}) \setminus \{e\} = A$. Donc $f \circ f$ est l'identité de $\mathscr{P}(E)$. D'après un théorème du cours, ceci montre que f est bijective.
 - (2) Soit $A \in \mathscr{P}_i$. Si $e \notin A$, alors $f(A) = A \cup \{e\}$. Comme card A est impair et $e \notin A$, card $(A \cup \{e\}) = 1 + \operatorname{card}(A)$ est pair. Si $e \in A$, alors $f(A) = A \setminus \{e\}$. Comme card A est impair et $e \in A$, card $(A \setminus \{e\}) = \operatorname{card}(A) 1$ est pair. Donc, dans les deux cas, $f(A) \in \mathscr{P}_p$. Si $e \notin A$, alors $f(A) = A \cup \{e\}$. Comme card A est pair et $e \notin A$, card $(A \cup \{e\})$ est impair. Si $e \in A$, alors $f(A) = A \setminus \{e\}$. Comme card A est pair et $e \notin A$, card $(A \setminus \{e\})$ est impair. Donc, dans les deux cas, $f(A) \in \mathscr{P}_i$.
 - (3) La question précédente montre que $\operatorname{card} f(\mathscr{P}_i) \leq \operatorname{card} \mathscr{P}_p$ et $\operatorname{card} f(\mathscr{P}_p) \leq \mathscr{P}_i$. Comme f est bijective, $\operatorname{card} f(\mathscr{P}_i) = \operatorname{card} \mathscr{P}_i$ $\operatorname{card} f(\mathscr{P}_p) = \operatorname{card} \mathscr{P}_p$. Donc $\operatorname{card} \mathscr{P}_i \leq \operatorname{card} \mathscr{P}_p \leq \operatorname{card} \mathscr{P}_i$. Donc $\operatorname{card} \mathscr{P}_i = \operatorname{card} \mathscr{P}_p$.