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Chapter 1

Definition of Linear models

In this chapter general linear models are defined . A very short list of fundamental formulas
and properties is given

1 Matrix form of basis models

1.1 Simple linear regression.

The word “regression” comes mainly from the work of Sir Francis Galton with the paper
Regression towards mediocrity in hereditary stature. Galton’s first studied the sizes of
daughter peas against the sizes of mother peas and then the stature of persons. Galton
observed that extreme characteristics (e.g., height) in parents are not passed on completely
to their offspring. Rather, the characteristics in the offspring regress towards a mediocre
point (a point which has since been identified as the mean). This is the ethymology of the
(strange) word “regression” .

Let us consider a more pedagogical example of the regression of the blood pressure on
age
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Figure 1.1: Scatter point of (Zi, Yi), Zi mean age of group of women i, Yi mean blood
pressure
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The linear relation between the age and the blood pressure leads us to set the following
model

Yi = β1 + β2Zi + εi i = 1, s, n = 5.

Let us consider the vectors Y = (Yi)1≤i≤5 and ε = (εi)1≤i≤5.
The model above can be written

Y1

Y2

Y3

Y4

Y5

 =


1 Z1

1 Z2

1 Z3

1 Z4

1 Z5


(
β1

β2

)
+


ε1

ε2

ε3

ε4

ε5

 .

Matricially :

Y = Xβ + ε with β =

(
β1

β2

)
et X =


1 Z1

1 Z2

1 Z3

1 Z4

1 Z5

 . (1.1)

N.B. To keep classical notation, we will denote matrix and vectors with the same kind
of symbols. Nevertheless X will be in general a matrix, while Y et Z will be size-n-vectors.

1.2 One way analysis of variance

We consider the example of the measurement of the heights of several trees of three forests
using the model

Yij = µi + εij ,

where Yij is the height of the j th tree of Forest i and µi is the true (unobservable) mean
of Forest i. This model can be written
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

Y11

Y12

Y13

Y14

Y15

Y16

Y21

Y22

Y23

Y24

Y25

Y31

Y32

Y33

Y34

Y35

Y36

Y37



=



1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1



 µ1

µ2

µ3

+



ε11

ε12

ε13

ε14

ε15

ε16

ε21

ε22

ε23

ε24

ε25

ε31

ε32

ε33

ε34

ε35

ε36

ε37


In matricial form

Y = Xβ + ε with β =

 µ1

µ2

µ3

 . (1.2)

N. B.: In the example above Y the coordinate of Y are indexed by two indices(i, j) and
will still call it “vector” and not “matrix”. On one hand, strictly speaking, a vector is
a member of a vectorial space that has to be closed under addition and multiplication,
in that sense, matrices or even functions can be viewed as vectors. In that sense Y is
indeed a vector. But on the other hand, we will use matrix calculation and its conventions
that demand a vector to be a column vector. In this case it is necessary to “unroll” the
two-way array Y in lexicographic order to make it a “vector ”in this strict sense, as it is
done above.

1.3 Multiple linear regression

The main message of the two examples above is that the analysis of variance model and
the simple regression model are very similar. In fact they are almost the same and the
class of such model is even larger. Let us consider, for example, the observation of

• Y , a vector of the n yields of a chemical reaction (expressed as percentage);

• Z(1), a vector that consists of the n measurements of the associated temperature of
the substratum ;
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• Z(2), a vector that consists of the n measurements of the pH of the substratum.

We assume that the variable to be explained, the dependent variable, the yield Y
depends linearly on temperature and pH (explanatory variables or independent variables)
Z(1) and Z(2). We set the following multiple regression model :

Yi = β1 + β2Z
(1)
i + β3Z

(2)
i + εi, (1.3)

for i = 1, s, n. In matrix form:
Y1

Y2
...
Yn

 =


1 Z

(1)
1 Z

(2)
1

1 Z
(1)
2 Z

(2)
2

...
...

...

1 Z
(1)
n Z

(2)
n


 β1

β2

β3

+


ε1

ε2
...
εn


Or

Y = Xβ + ε with β =

 β1

β2

β3

 and X =


1 Z

(1)
1 Z

(2)
1

1 Z
(1)
2 Z

(2)
2

...
...

...

1 Z
(1)
n Z

(2)
n

 . (1.4)

2 Linears models: basic definition and fundamental hy-
potheses

Fundamental definition: we will say that the variable Y that consists of n observations
Yi, i = 1, ...n obeys to a linear model in the statistical sense if we can write :

Y = Xβ + ε (1.5)

where

i. X is a known n, k matrix k < n

ii. β is an unknown vector of size k

iii. the random vector ε, that represents the error of the model, satisfies the four fun-
damental hypotheses .

• FH1 : The errors are centered

E (ε) = 0.

In other words it means that the assumed model is correct in the sense that no
relevant effect has been forgotten. A counter-example is given by the following
linear regression example:
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In this example it is clear that a curvature has been forgotten and that a better
model would be

Yi = β + β2Zi + β3(Zi)
2 + εi.

• FH2 : The variance of the error is constant (homoscedaticity) :

Var(εi) = σ2, for all i.

In practice this fundamental assumption in one of the most difficult to check. In par-
ticular it is not in general automatically implied by a smpling design.(see examples
after).

let us consider the following counter-example. The survival of insects to the adminis-
tration of insecticides A and B. Four repetitons are performed yielding the following
data.

Survival rate
product A product B

rep1 0,01 0,37
rep2 0.02 0.26
rep3 0.02 0.60
rep4 0.04 0.44

...
...

...

At first sight , Insecticide A is much more efficient than insecticide B implying that
the survival rate with A is close to 0 but also less variable than with Insecticide B.
This is an heteroscedastic situation.

• FH 3 : The variables εi are independent .
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It is generally considered than this assumption is true when each observation (sta-
tistical unit) is the resultant of an independent sampling. This is the case in the
forest example if each tree has been correctly sampled ( which is not that easy and
demands spatial method and GPS positioning) . In contrast in temporal problems,
as it is the case often in econometrics, some inertia may occur as in the following
counter-example.

�
�
�
�
�
�
�
�
�
�

-

6

time

Y

*
*
**

* * * *
******

****

In this example you can easily check that if the curve is above (for example) the line
at some time, it is more likely to be also above at the next time.

• FH4 : The errors are Gaussian (or normal), i.e. :

εi ∼ N (mi, σ
2
i ) for all i,

Where mi and σ2
i are some parameters. Consequently to FH1 and FH2 , in fact,

εi ∼ N (0, σ2) for all i.

It is an easy consequence of FH1-FH4 that ε is a Gaussian vector, more precisely

ε ∼ N (0, σ2In),

where In is the identity matrix of size n. Consequently Y is also a Gaussian vector

Y ∼ N (Xβ, σ2In).

This last equality could have been chosen as a definition of a linear model, this is formally
correct but in practice it is better to distinguish the four hypotheses. In particular, as
we shall see, the hypothesis of Gaussianity FH4 is of less importance, especially for large
data. In several cases we shall consider non Gaussian linear model where FH4 is simply
removed or replaced by a weaker form, for example that the error are i.i.d with finite
fourth moment.

To check FH4 is not easy. For small data, classical normality tests as Kolmogorov-
Smirnov or Shapiro-Wilks tests are not directly applicable because we observe not directly
the errors but their estimation, the residuals. For large data theses tests are worthless
because FH4 it is not needed, see Chapter 6.

A crude graphical method to check FH4 is to compute a Quantile-Quantile plot : Q-Q
plot on the residuals
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3 Fondamental formulas

3.1 Four formulas

We consider the general linear model given by (1.5) that we can call the X linear model,
since X is known. X is often called the “design matrix”. Of course we assume FH1-FH4.
In addition, and for simplification, up to Chapter 5 we will assume that X is full ranked.
That is equivalent to

• Rank(X) = k

• Ker(X) = 0

• X ′X is invertible, where the prime means the transpose.

The ingredients
- The first remark is that the linear model is a statistical model with k+ 1 parameters

θ = (β, σ). In fact it is even an exponential model in the sense of theoretical statistics
implying some optimality of estimators that will be admitted and described later.

-The method used is least squares method we define the residual sum of squares

RSS(β) =‖ Y −Xβ ‖2= (Y −Xβ)′(Y −Xβ),

and we minimize it. Let β̂ be the argument minimum and RSS := RSS(β̂) be the
minimum.

The formulas

• F1 : The minimum of the sum of squares is attained at a single point

β̂ = (X ′X)−1X ′Y. (1.6)

This formula has several consequences. Firstly, the solution is explicit that means
that we can easily compute its distribution. Secondly, it is of low complexity because
we have to solve a k, k linear system which is in general easy. So linear models can
have large sizes and can adapt very well to the reality . Thirdly it implies that β̂ is
itself Gaussian as a linear function of the Gaussian vector Y .

In fact numerically, we solve the normal equations : X ′Xβ̂ = X ′Y .

• F2 :
E (β̂) = β. (1.7)

This is a direct consequence of (1.6). It means that the least square estimator is
unbiased.

As announced this implies that the unbiased estimator, function of a sufficient statis-
tics, is optimal ( of minimum variance) among all unbiased estimators. This is the



10 CHAPTER 1. DEFINITION OF LINEAR MODELS

Rao-Blackwell Theorem. This means that if β̃ is another unbiased estimator and if
C is any vector in R k defining a linear combination C ′β, then

Var (C ′β̃) ≥ Var (C ′β̂).

• F3 : Var (β̂) = σ2(X ′X)−1.

This expression gives the variance-covariance matrix of the vector β̂ at the cost of
the estimation of σ2 . It achieves one of the most important goals of Statistics: not
only estimate but estimate also the precision of the estimation.

• F4 : Set:

RSS = (Y −Xβ̂)′(Y −Xβ̂) =‖ Y −Xβ̂ ‖2=‖ Y − Ŷ ‖2,

Then RSS is a random variable that is independent of β̂ and with distribution
σ2χ2(n−k) . This last distribution is a Chi-square distribution with (n−k) degrees
of freedom multiplied by the scalar factor σ2.

If you keep in mind that, because of the law of large number, a χ(d) is close to d ,
a natural unbiased estimator is

σ̂2 = CMR =
RSS

n− k
=
‖ Y − Ŷ ‖2

n− k
, (1.8)

This implies also, as for β̂,that it is optimal by sufficiency techniques.

Proof : We will make a geometrical proof of F1-4 using orthogonal projections. Let us
recall first that if u ∈ R n is a vector and if E is a sub-linear space of R n and PE the
orthogonal projector on E then PEu can be characterized by

-either : PEu belongs to E and u− PEu is orthogonal to E.
-or : PEu is the minimizer in v ∈ E of the program

‖ u− v ‖2 minimum.
The equivalence of the two characterization is due to the Pythagore Theorem.
We will prove the following lemma

Lemma 1.1 Suppose that E = [X] := Im(X) when X is a full rank matrix and [X] is
the space generated by the columns of X. Then

PE = X(X ′X)−1X ′

Proof of the lemma
We use the first characterization. Since PEu belongs to E we search it as Xw. We

want u − Xw to be orthogonal to E, it suffices that it is orthogonal to the generating
system X1, ...Xk where XJ is the jth column of X. So we have to solve

for all j = 1, ..., k : 〈u,XJ〉 = 〈Xw,XJ〉.
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This system can be rewritten

X ′Xw = X ′u ; w := (X ′X)−1X ′u ; PEu := X(X ′X)−1X ′u

We now turn to the proof of F1-F4
F1 : Because of the characterization of the projection Ŷ := Xβ̂ = P[X]Y ∈ R n, mini-

mizing ‖ Y − YX ‖2. Then it suffices to apply the lemma.

F2 : Since the expectation is a linear operator it commutes with matrices:

E (β̂) = E
[
(X ′X)−1X ′Y

]
= (X ′X)−1X ′E (Y ) = (X ′X)−1X ′(Xβ) = β.

On the other side, at a cost of change of parameterization, see Coursol [6] p. 13-14 or, for
example Bickel and Docksum [4], the linear model is a statistical exponential family with
sufficient statistics Xβ̂ and RSS. This implies that β̂ which is a linear function of Xβ̂ and
is an unbiased estimator with minimal variance among the unbiased estimators.

F3 :

Var (β̂) = (X ′X)−1X ′(Var(Y ))X(X ′X)−1 = σ2(X ′X)−1.

F4 : Because projection is linear P[X]Y = Xβ + P[X]ε. Ainsi,

RSS(β̂) =‖ Y − P[X]Y ‖2=‖ ε− P[X]ε ‖2 .

Let [X]⊥ be the orthogonal of [X] (the image of X)

ε− P[X]ε = P[X]⊥ε.

The dimension of [X]⊥ is n−k. Because of classical results on isotropic Gaussian variables
or beacause of the Cochran theorem (see Appendix ) the random variable RSS = RSS(β̂)
has a σ2χ2(n− k) distribution.

Note that a χ2(n − k) variable can be represented as the sum of (n − k) squares of
standard Gaussian variables so it has expectation (n− k). As a consequence

E (σ̂2) = σ2.

The same sufficiency arguments as above imply optimality .

Last but not least

β̂ depends on the projection of the data on [X]

and
σ̂2 depends on the projection of the data on [X]⊥,
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so they are independent.

Remark : If we don’t assume normality FH4 and without any other hypothesis, the
least squares estimator β̂ remains optimal among the linear unbiased estimators. This is
Gauss-Markov theorem (see Exercises).

3.2 A worked example : explicit equation in case of simple linear re-
gression .

We consider the classical particular case of Model (1.5) corresponding to simple linear
regression . We will compute the expression of estimator and their variance using matrix
calculations. The unique clever argument is a change of parameterization. We start from
the model

Yi = β1 + β2Zi + εi,

and we define Z as the mean of the regressor: Z = Z1 + · · ·+ Zn and we can rewrite the
model as

Yi = β1 + β2Z + β2(Zi − Z) + εi = β̃1 + β2Z̃i + εi,

Where β̃1 := β1 + β2Z and Z̃i := Zi − Z. Z̃ is a centered variable. In fact doing that,
we have made the model orthogonal and this will be presented in details in Chapter
5. This simplify drastically the computation, at the end we can return to the original
parameterization.

In matrix form we have and forgetting the tilde for notational ease Y1
...
Yn

 =

 1 Z1
...

...
1 Zn

( β1

β2

)
+

 ε1
...
εn

 .

We set

X =

 1 Z1
...

...
1 Zn


and, of course,

β =

(
β1

β2

)
,

We can use

X ′X =

(
n

∑
Zi∑

Zi
∑

(Zi)
2

)
=

(
n 0
0
∑

(Zi)
2

)
yielding (X ′X)−1 =

(
n−1 0

0
(∑

(Zoi )2
)−1

)
.

In addition,

X ′Y =

(
1 . . . 1
Z1 . . . Zn

) Y1
...
Yn

 =

( ∑
Yi∑
YiZi

)
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thus

β̂ =

(
β̂1

β̂2

)
=

(
n−1 0

0
(∑

(Zi)
2
)−1

)( ∑
Yi∑
YiZi

)
=

(
n−1

∑
Yi

(
∑
YiZi)

(∑
(Zi)

2
)−1

)
.

We can compute the variance-covariance matrix

Var (β) = σ2(X ′X)−1 =

(
σ2n−1 0

0 σ2
(∑

(Zi)
2
)−1

)
.

Now we reintroduce the tildes with this notation we havễ
β1 = Ȳ

β̂2 =
̂̃
β2 =

∑n
i=1 Yi(Zi − Z̄)∑n
i=1(Zi − (̄Z))2

=

∑n
i=1(Yi − Ȳ )(Zi − Z̄)∑n

i=1(Zi − Z̄)2

β̂1 =
̂̃
β1 − β̂2Z̄.

Concerning variances and covariance

Var (β̂2) =
σ2∑n

i=1(Zi − Z̄)2

Cov (β̂1, β̂2) = −Z̄Var (β̂2) = − σ2Z̄∑n
i=1(Zi − Z̄)2

Var (β̂1) = σ2

(
1/n+

(Z̄)2∑n
i=1(Zi − Z̄)2

)
=

σ2

n
∑n

i=1(Zi − Z̄)2

( n∑
i=1

(Zi − Z̄)2 + n(Z̄)2

)

=
σ2

n
∑n

i=1(Zi − Z̄)2

( n∑
i=1

Z2
i

)
So we found out all classical formulas about simple linear regression.

4 Fundamental tests and confidence intervals

4.1 Student’s test for a linear combination

Let us consider for example the slope β2 in the simple linear regression model. A natural
question is whether β2 = 0 and this can be generalized, in the general linear model (1.5),
into the question C ′β = 0 ? where C is the coefficient of a linear combination. Other
examples are µ1 − µ2 = 0 or 2µ1 − µ2 − µ3 = 0 in the forest example.

More precisely we want to test

against
H0 : C ′β = 0
H1 : C ′β 6= 0

.
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Proposition 1.1 In the case of the general linear model and under the null hypothesis
H0 (C ′β = 0), Then

T̂ =
C ′β̂√

σ̂2C ′(X ′X)−1C

follows a Student’s distribution with parameter (n− k).

Proof : Using F2 and F3,

Var (C ′β̂) = σ2C ′(X ′X)−1C.

A natural estimator of Var (C ′β̂) is σ̂2C ′(X ′X)−1C. We normalize C ′β̂ by its estimated
standard error which is a classical demarche. In some sense we can say that we have
“Studentized” the variable C ′β̂ . We obtain

T̂ =
C ′β̂√

σ2C ′(X ′X)−1C
×
√
σ2

√
σ̂2
.

Under H0, since C ′β = 0, C ′β̂ is a centered Gaussian variable so after making is variance
equal to 1

C ′β̂√
σ2C ′(X ′X)−1C

∼ N (0, 1).

Moreover ,
n− k
σ2

σ̂2 =
n− k
σ2
‖P[X]⊥ε‖2follows a χ2(n− k) distribution and is independent

of C ′P[X]ε since the two spaces are orthogonal.
This corresponds strictly to the definition a Student distribution with (n− k) degrees

of freedom

This proposition permits to contruct the test of H0 against H1 by choosing as rejection
(of H0) region |T̂ | > Tn−k,1−α/2 where Tn−k,1−α/2 is the 1 − α/2 quantile of the Student
T (n−k) distribution. The properties of symmetry of the T distribution imply that, under
H0, the rejection probability is α ensuring that the level is at the nominal value.

Under H1 some calculations proves that the probability of rejection (which is now the
good decision) is always greater than α. Furthermore it is close to 1 if C ′β is far from
zero.

Remark: C ′β = 0 defines a sub-model of the general linear model (1.5), in that case a
general Fisher test exists as described in the next session. Some calculation show that
these two tests are the same.



4. FUNDAMENTAL TESTS AND CONFIDENCE INTERVALS 15

4.2 Fisher test of a sub-model

The Fisher test is a generalization of the Student test when the co-dimension of H0 is
larger than one. In other words H0 consists of assuming the nullity of more than one
parameter. An obvious example is given by the equality of means in one-way analysis of
variance. The general model H1 is

Yij = µi + εij i = 1, ..., I, j = 1, ...nij > 0.

H0 is the sub-model corresponding to the equality of means

Yij = µ+ εij .

The framework

We consider general model (1.5) with X being a rank k matrix k < n . Here we don’t
need X to be full-ranked. We define
RSS as the residual sum of squares of this model.
Xβ̂ =‖ Y −Xβ̂ ‖2 is the estimated response.

We consider the sub-linear model

Y = X(0)β(0) + ε, (1.9)

Since it is a sub-model [X(0)] is strictly included in [X] and dim[X(0)] = k0 < k = dim[X].
In this model X(0)β̂(0) is the estimated response and

RSS0 =‖ Y −X(0)β̂(0) ‖2 .

is the residual sum of square. To give a general presentation of the two models we set

Y = R+ ε

and the test problem can be written as

versus
H0 : R ∈ [X(0)]

H1 : R ∈ [X] \ [X(0)]
.

Proposition 1.2 With the notation above, we define the test statistics of H0 against H1

by

F̂ =
( RSS0 − RSS)/(k − k0)

RSS/(n− k)
.

Then,under H0, the statistics F̂ follows a Fisher distribution with parameters (k −
k0, n− k). Under H1 it takes larger values.
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Figure 1.2: A graphical presentation of the Fisher test

The consequence of this proposition is that the rejection region (of H0) will be defined
by:

F̂ > F(k−k0,n−k,1−α),

where F(k−k0,n−k,1−α) is the 1 − α fractile of the Fisher distribution. This ensure, as for
the Student test, that the level is effectively α.

Proof : The geometrical proof refers to Figure 4.2. Under H0

RSS = ‖Y − P[X]Y ‖2 = ‖P[X]⊥Y ‖2 = ‖P[X]⊥ε‖2 = ‖V ‖2,

Where V = P[X]⊥ε is indicated in Figure 4.2. We have used the fact that because R ∈ [X],
P[X]⊥(R) = 0 .

Similarly,

RSS0 = ‖Y − P[X(0)]Y ‖
2 = ‖P[X(0)]⊥Y ‖

2 = ‖P[(X(0))]⊥ε‖
2 = ‖U‖2,

with U := P[(X(0))]⊥ε. Let now A be the orthogonal of [X(0)] in [X] :

A
⊥
⊕ [X0] = [X].

Let W = PAε (see Figure 4.2). By the Pythagore theorem

‖U‖2 = ‖V ‖2 + ‖W‖2
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or
‖P[X(0)]⊥ε‖

2 = ‖P[X]⊥ε‖2 + ‖PAε‖2.

Since ε is a isotropic Gaussian vector (zero expectation with a variance which is multiple
of the identity). The projections onto two orthogonal spaces are independent with σ2χ2

distribution. More precisely

RSS = ‖P[X]⊥ε‖2 has a distribution σ2χ2(n− k),

RSS0 − RSS = ‖P[X(0)]⊥ε‖
2 − ‖P[X]⊥ε‖2 = ‖PAε‖2 has a distribution σ2χ2(k − k0),

and they are independent. Thus

F̂ =
‖PAε‖2/(k − k0)

‖P[X]⊥ε‖2/(n− k)

corresponds strictly to the definition of the Fisher distribution with parameters (k−k0, n−
k): F(k−k0,n−k).

4.3 Fisher test of the joint nullity of several linear combinations

Suppose that in a medical experiment we want to study the 5 level of a factor “treatment
with 5 levels with a one-way analysis of variance model

Yij = βi + εij i = 1, ..., 5

and that the relevant null hypothesis is H0 : β1 = β2 = β3 and β4 = β5, that can be
written C ′β = 0 with

C ′ =

 1 −1 0 0 0
0 1 −1 0 0
0 0 0 1 −1

 .

In the general case where C is of dimension p, k by some calculations it can be proved
that

F̂ =
β̂′C(C ′(X ′X)−1C)−1C ′β̂

pσ̂2
.

follows, under H0 C
′β = 0 , a distribution F (p, n− k).

4.4 Confidence intervals; confidence region

Let us begin with the simplest case on a linear combination C ′β. We can extend the
results of Section 4.1 to the test of

versus
H0 : C ′β = c0

H1 : C ′β 6= c0
,
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where c0 is some value that doesn’t need to be null. The relevant test statistics is now

T̂ =
C ′β̂ − c0√

σ̂2C ′(X ′X)−1C
,

the rest being identical.
In statistics, there is an equivalence between confidence intervals (or regions) and

family of tests. If we have a family of tests of level α of the hypotheses C ′β = c0, the set
of c0 that are accepted gives a confidence region (which is here an interval ) which is of
confidence 1− α. This is direct. In ou case it yields

CI =
[
C ′β̂ − Tn−k,1−α/2

√
σ̂2C ′(X ′X)−1C , C ′β̂ + Tn−k,1−α/2

√
σ̂2C ′(X ′X)−1C

]
.

In exactly the same manner, the resuts of Section 4.3 can be applied to the case C ′β
of dimension p > 1 . If

c0 is some value R p, The statistics of the Fisher test of

versus
H0 : C ′β = c0

H1 : C ′β 6= c0
.

is

F̂ =
(β̂′C − c′0)(C ′(X ′X)−1C)−1(C ′β̂ − c0)

pσ̂2

that still follows, under H0 a distribution F (p, n−k). The set of the c0 accepted at a level
α is now the ellipsoid CR defined by

CR = {c ∈ R p : (β̂′C − c′0)(C ′(X ′X)−1C)−1(C ′β̂ − c0) ≤ pσ̂2F(p,n−k),1−α}.

Remark 1: The Scheffé method that will be presented in Chapter 3, Section 3, is
based on the projections of this ellipsoid.
Remark 2 : In a linear model, a classical tool to measure the adequation of a model is
the determination coefficient or R-square defined by

R2 =

∑n
i=1(Ŷi − Ȳi)2∑n
i=1(Yi − Ȳi)2

=
‖Ŷ − Y ‖2

‖Y − Y ‖2
.

This R-square must be carefully interpreted. Firstly the larger the model, the larger the R-
square. Thus the R-square prefers always the largest model and is not a criterion of choice
of models, see Chapter 7. Secondly, depending on the randomness of the phenomenon to
explain, a R-square of 0.8, for example, can be either very good or very bad. So comparison
of R-squares must be conducted between models of approximatively the same size and on
the same kind of data.
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5 About the fundamental hypotheses.

The hypothesis of Gaussianity is difficult to check in practice. Classical Gaussianity tests
(Kolmogorov-Smirnov, Cramer-Von Mises, Anderson-Darling or Shapiro-Wilks) demands
the observation of the εi that are non-observables. When applied to their estimation : the
residuals ε̂i = (Y − Ŷ )i, they loose their properties. As already said a visual method like
QQ-plots permit to detect huge departure from Gaussianity. But as explained in Chapter
6 and as anyone can check by a small simulation, except for very small data sets and
for very non Gaussian data, most of the properties remains approximatively true without
FH4. We say that the linear model is robust to non-Gaussianity.

Concerning all the fundamental hypotheses here is a list without details or proofs of
the properties that are conserved.

Properties of the least squares estimator β̂

We consider
β̂ = (X ′X)−1X ′Y.

• β̂ is unbiased as soon as FH1 is true : E (β̂) = β,

• The variance-covariance matrix of β̂ remains equal to σ2(X ′X)−1 under FH2 et
FH3, But this has little interest unless FH1is true.

• Under FH1-FH3 β̂ is not optimal among the unbiased estimators but among the
linear unbiased estimators only.

• Under FH3-FH4 β̂ is Gaussian. But it converges to a Gaussian distribution under
a very large set of hypotheses,see, for example, Chapter 6.

Properties of the estimator σ̂2

Of course we need FH2 in order σ2 to be defined. Then

• Without Gaussianity, under FH1-3, σ̂2 remains unbiased (see exercise 6).

• Under the same framework σ̂2 converges to σ2 for large data but the speed of con-
vergence depend on the Kurtosis of the distribution of errors , see Chapter 6.

Properties of the tests F and T

In this section we assume FH1-3 and not FH4 . Without entering into the details , It is
proved in Chapter 6 that the properties of the T and F test remains true for large data.
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Correlated errors

Some correlation can be assumed beween the errors, for example that they form an ARMA
process. This is the ARMAX model: Autoregressive?moving-average model with exoge-
nous inputs model. We refer to the literature ,Amemiya [2], Green [8], Guyon [9] ou
Jobson [10].

6 Exercises

Exercise 1.1

(*) Let Y obey to a X-linear model and let T ∈ R n be a deterministic vector. Prove that

E (‖T − Y ‖2) = nσ2 + ‖T −Xβ‖2.

Exercise 1.2

(**) [Gauss-Markov Theorem ] We assume a X-linear model without FH4 and we prove
the optimality of β̂ among linear unbiased estimators.
This means that is β̃ is another unbiased estimator

Var (β̃)−Var (β̂) is a semi-definite positive matrix ,

or equivalently for every linear combination C ′β of the parameters

Var (C ′β̃) ≥ Var (C ′β̂).

i. Set β̃ = MY where M est une matrice de taille (k, n). Show that MX = In.

ii. Write β̂ = TP[X]Y , and show that MP[X] = TP[X].

iii. Show that β̃ = β̂ +MP[X]⊥Y , The sum being orthogonal. Conclude.

Exercise 1.3

(**)Let β1 et β2 two real unknown parameters and let :

• Y1 an unbiased estimator of β1 + β2 with variance σ2;

• Y2 an unbiased estimator of 2β1 − β2 with variance 4σ2;
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• Y3 an unbiased estimator of 6β1 + 3β2 with variance 9σ2,

These estimators are assumed to be independent. What estimator of β1 and β2 could you
propose ? You can use the preceding exercise.

Exercise 1.4

(**) [Estimation of the variance] We consider the non-Gaussain X-linear model (without

FH4) and we want to compute E σ̂2.

i. Show that (n− k)σ̂2 = Tr(ε′P[X]⊥ε) where Tr is the trace.

ii. Using the well-known identity Tr(AB) = Tr(BA), show that (n−k)E (σ̂2) = σ2Tr(P[X]⊥ε
′ε).

iii. Conclude .
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Chapter 2

Regression

In this chapter, after some presentation of linear and non-linear regression models, we will
try to answer to twoquestions :

• What kind of phenomenon can be modeled by regression ?

• How to improve a regression model to get a better fit to the data ?

1 Linear and non-linear models

We have seen that multiple regression is a linear model. Polynomial regression is a particu-
lar case where the explanatory variables, the regressors, are linked by a nonlinear formula.
Periodic regression on sine and cosine functions is an other example. More precisely if Y
is a periodic function of t with period 2π:

Yi = µ+ α1 cos(ti) + β1 sin(ti) + α2 cos(2ti) + β2 sin(2ti) + ...+ εi

is the general form of the periodic regression model which is again a linear regression
model.

A classical non linear model can be encountered in pharmacokinetics. If you consider
the plasmatic concentration of a drug after a bolus injection or an oral administration,
general considerations based on differential equations lead to a compartment model. More
precisely we can set

Yi = β1 exp(−α1ti) + β2 exp(−α2ti) + εi for i = 1, · · · , n.

The unknown parameters are α1, α2, β1, β2 and the dependence in α1, α2 is definitively
non-linear because on the non linearity of the exponential function.

An other classical example is given by the logistic regression. More precisely

Yi =
β1 + β2 exp(β3xi)

1 + β4 exp(β3xi)
+ εi for i = 1, · · · , n.

23
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The unknown parameters are β1, β2, β3, β4 and the relations again non-linear .

In such a case, the least squares method is also used. But the solution is no longer
explicit: in fact the non linear model can be linearized by a Taylor formula around a prior,
defining a tangent linear model, the estimator of which are easy to obtain. In second step
this estimate is used as a prior and the process is iterated. Finally the complexity is much
higher.

2 Graphical control

Once a regression model has used, it is mandatory to check graphically the validity of
the fondamental hypotheses.
• In simple linear regression a scatter plot of Z, Y with the regression line gives an

almost exhaustive information. For example

�
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�
�
�
�
�
�
�
�

-
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régresseur Z

Y

*
*

*
*

*
*

* *** * * * *

On this plot we see a curvature of the cloud of points and there is a strong evidence
that FH1 is no longer true.
• In case of multiple regression, this kind of graphics is not possible. Remember that the
fundamental hypotheses concerns the errors εi that are unobservables, so we must use
their estimations

ε̂i = Yi − Ŷi.

1/To check FH1 et FH2: adequacy of the model and homoscedasticity we use
the classical plot of residuals against fitted value (Ŷi)i. This graphics must be almost
systematically done.

Rougly speaking two main pathological patterns can be detected. The first one is
”banana shape ” as in the following example
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In such an example, it can be considered that the adequacy hypothesis FH1 is not
satisfied. In other words the regression formula must be enriched by proposing other
regressors.

The other typical pathological pattern is the ”trumpet shape” as in the following
example:
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In this example there is a strong evidence that the variance is not homogenous. A possible
solution is to use a transformation of variable.

Remark: Some authors and some software use Studentized residuals. These last vari-
ables are the residuals ε̂i divided by the estimation of their standard error. They follow a
Student distribution, i.e. almost a normal distribution. Ordinary residual are in the same
unit as the observation. For example if we observe a residual of 0.5 cm on the height of
man, we know that the fit is very good. On the other hand, Studentized residuals are
a-dimensional. We know that a Studentized residual of 5.1 is very large but we have no
practical interpretation of this 5.1.

Can we transform the model ?

• We can freely transform the regressors (dependent variables) Z(1), · · · , Z(p) using ev-
ery possible algebraic transformation : power, square root, exponential circular functions,
etc... as soon as the resulting regression formula can be interpreted. This has to be done
in case of residual plot of the first kind (”banana”). In second step a selection of model
procedure as in Chapter 7 can be performed to remove un-necessary variables.

• On the other hand, the response Y can be transformed only in the case the graphics
of residual show some evidence of heteroscedasticity. The linear model assumes that the
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Kind of relation Domain for Y Transformation

σ = (const)Y k, k 6= 1 R ∗+ Y 7→ Y 1−k

σ = (const)
√
Y R ∗+ Y 7→

√
Y

σ = (const)Y R ∗+ Y 7→ log Y
σ = (const)Y 2 R ∗+ Y 7→ Y −1

σ = (const)
√
Y (1− Y ) [0, 1] Y 7→ arcsin

(√
Y
)

σ = (const)
√

1− Y .Y −1 [0, 1] Y 7→ (1− Y )1/2 − 1/3(1− Y )3/2

σ = (const)(1− Y 2)−2 [−1, 1] Y 7→ log(1 + Y )− log(1− Y )

Table 2.1: Table of the changes of variable for the response Y

absolute error is constant, i.e. independent of the amplitude of the response. In many
case the error is proportional to the response: the larger the response the larger the error.
In such a case, a logarithmic transform of the response will fix the problem. A list of the
transformations to be used is given in Table 2.1 depending on the relation between the
mean response and the standard error. An alternative which is more rigorous but much
more complex is to use a generalized liner model with a all chosen link function see for
example McCullagh et Nelder [14].

Note that these transformations are based on Talylor expansion and are valid for rather
large data in the other cases the use of a generalized linear model is necessary.

2/ To check independence FP 3, The relevant graph consist of a scatterplot of
residuals against the time that can, in most of the times, be found as the order in the file.
An example is given by the following graph:

-
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time or order

̂residuals

***
* **

* *
*

* *
* **

***
***

On the graph we can see some ”runs” of residual with the same sign. This can be checked
by a special test ”run test”. See Exercise 5

In case of evidence of correlation between residuals and thus between errors, a classical
approach is to use an ARMA model. The resulting model of regression with ARMA errors
is called ARMAX. See Amemiya [2], Green [8], Guyon [9] ou Jobson [10]).
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3/ To check normality FH4

The QQ plot is a scatterplot with in abscissa the order statistics of the residuals (the
residual after sorting) ε̂(i) where the (i) means the sorting and in ordinate the quantile
i/n of the standard normal distribution.

More precisely the two coordinates are
- ε̂(i) is the fractile i/n of the empirical distribution. -Zi/n is is the fractile of the

N(0, 1)
and if the residuals are approximatively of distribution N(0, σ2) we know that ε̂(i) is

closed to σZi/n. So the scatter plot is closed to a line.

3 Random regressors

The presentation we made assumes that the regressors are deterministic variables and
that they are perfectly known. This is rarely the case. Or presentation can be generalized
using conditional models.

Suppose now that the regressors are random Z(1), Z(2), · · · , Z(p), exactly observed and
independent of the errors ε. In that (good) case we can put us conditionally to the n
observations of Z(1), Z(2), · · · , Z(p). The distribution of the errors doesn’t change because
of independence so the conditional model is indeed a linear model in the sense of our
definition and the generalization is free.

Alternatively, suppose that the regressor are random because they are observed with
error. Consider for example the yield of a chemical reaction that depends on the temper-
ature of the substratum. The following temperature has been design for the experiment :
150:10: 210 but that in fact the actual temperature differs from the nominal in an unknown
manner. In that case we obtain an error in variable model whose solution is not given
by least square method. The method is called “total least squares”, based on principal
component analysis, is difficult to implement see Exercise ??. In practice, as soon as the
errors are small, regression is still used though not perfectly rigorous.

4 Choosing among the regressors

This topic will be considered in detail in Chapter 7. Basically if the number of regressor
is large, it is very likely to this that some of them are superfluous. In the whole model,
classical outputs of softwares give a T test of significance of each variable.

This test, for variable Z(i), means “if I keep all others variables, can I remove variable
i”

Suppose that they are 10 regressors and that the T tests of the variables 1,5,8 are non
significative. Can we remove all three variables ? No because each test is performed keep-
ing all other variables ! A very crude but recommended method is backward selection:

We start with the whole model
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At each step the least significative variable is identified.

• if it is not significative (at a given level) the variable is removed and we pass to the
next step

• if it is significative, the algorithm stops, the last model is the chosen one .

This algorithm has a variant which is forward regression which is just the contrary :
starting from the void model and adding stepwise the most significant variable until the
variable added is non-significative.

A third variant “stepwise” mixes forward and backward steps.

Note that the Rsquare defined by :

R2 =
‖Ŷ − Y ‖2

‖Y − Y ‖2

always prefers the whole model.

4.1 Measure of colinearity

The colinearity between regressors is an important issue. It implies correlation between
the estimates of the coefficients βi and also an inflation of variance. This last inflation with
respect to an ideal situation where the model is orthogonal is measured by the Variance
inflation factor VIF which is defined as follows

V IFi =
1

1−R2
i

whereR2
i is defined as the Rsquare of the regression of Z(i)on all the others regressor.

By definition this coefficient is always larger than 1. It take the value 1 in case of
orthogonality. A value larger than 10 is generally considered as an indication of large
colinearity.

Some authors define the Tolerance TOL defined as 1/ VIF.

5 Exercises

(English version coming soon)

Exercise 2.1

(Transformation de variables) Soit des observations Yij qui suivent le modèle suivant :

Yij = µi + εij ·
√
µi(1− µi), pour i = 1, · · · , I, j = 1, · · · , J, (2.1)

où les erreurs εij vérifient les postulats habituels P1-4. Ce modèle correspond au 5ème
cas du tableau 2.1. On pose

Zij = arcsin(
√
Yij).
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i. Écrire un développement limité à l’ordre 1 de la fonction x 7→ arcsin(
√
x) au point x0.

ii. On admet que l’on peut négliger le reste : soit c’est une hypothèse que l’on assume,
soit on suppose que σ2 tend vers zéro. Dans ce dernier cas on utilise ce que l’on
appelle la δ méthode ou Théorème de Slutsky (voir Van der Vaart [21] ou Dacunha-
Castelle et Duflo [7] p. 91). Montrer que Zij suit un modèle d’analyse de la variance
à un facteur.

iii. Montrer que si les Yij sont des données de comptage sur de grands effectifs, avec
une probabilité de succès qui dépend de l’indice i on est approximativement dans la
situation du modèle (2.1).

iv. Traiter de même tous les cas du tableau 2.1.

Exercise 2.2

(Test de runs) Ce test est utilisé pour tester la présence ou non de corrélations dans les εi.
On commence d’abord par le décrire dans le cas où l’on observe des variables aléatoires
Y1, . . . , Yn dont on veut tester l’indépendance. On les suppose de médiane zéro. On compte
en fait le nombre de ”paquets” ou ”runs” R de même signe que Y1, · · · , Yn.
Par exemple, si Y1, . . . , Y9 = (1.1, 1.3,−2,−1, 4.5, 1.6,−2.7,−1.3, 4), il y a 5 runs pour
n = 9 données.

i. Montrer que si on suppose qu ’aucun des Yi n’est nul, alors :

R = 1 +
n−1∑
i=1

1IYiYi+1<0 := 1 +
n−1∑
i=1

Zi

ii. On suppose que les Yi sont indépendantes et de loi diffuse (c’est-à-dire absolument

continue par rapport à la mesure de Lebesgue). Montrer que E (R) =
n+ 1

2
,

iii. Montrer que si |i− j| > 1, Zi et Zj sont indépendants. Montrer que Zi et Zi+1 sont
également indépendants. En déduire Var (R).

iv. En utilisant le théorème de la limite centrale, construire pour des grands échantillons
une statistique libre qui suit une loi normale centrée réduite sous l’hypothèse H0

d’indépendance et qui tend vers ±∞ sous les alternatives H1 d’intrication et de
répulsion. Nous laissons au lecteur le soin de deviner le sens de ces deux derniers
mots.
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Remarque : Pour ce qui est du test de l’indépendance des erreurs dans un modèle
linéaire, on appliquera ce test aux estimateurs ε̂i en négligeant leurs liaisons (toujours
présentes, même sous l’hypothèse d’indépendance des εi) et en négligeant le fait que leur
médiane n’est qu’approximativement nulle. Il existe d’autres versions de ce test sous des
hypothèses d’échangeabilité (voir par exemple Lecoutre et Tassi, [11]).

6 Software examples

We will use a data set from Tomassone et al [20] that studies Pine Processionary (Thaume-
topoea pityocampa), one of the most destructive species to pines. We want to study the
influence of several variables on the density, X11 (or X12 = log(X11) ) of the population.

A list of explanatory variables is used. More precisely we consider

• the altitude of the plot : X1;

• its step in degrees : X2;

• the number of pine of the plot : X3;

• the height of the tree at the center of the plot: X4;

• the diameter of this tree : X5;

• a note on the density of population of trees : X6;

• The orientation of the plot (from 1=south, 2=others) : X7;

• the mean heigh of main trees : X8;

• number of strata of vegetation : X9;

• A measure of mixture of populations (de 1=mixed , to 2=non mixed) : X10.

The observations are really quantitative even for X7 or X9 because a mean is taken
over many sub-plots. This example will be considered in other chapters and in particular
in chapter 7. In the present chapter we consider the regression of X11 or X12 on X1, X2,
X4 et X5.

Sofware : R :

The commands are

library(car)

lm.proc=lm(X11~X1+X2+X4+X5,proc)

Anova(lm.proc,type="III")

par(mfrow=c(2,2))

plot(lm.proc,las=1)
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Software : SAS :

We assume that the data sasuser.proc has been created :

proc reg data=sasuser.proc all;

model X11=X1 X2 X4 X5;

plot r.*p.;run;quit;

Here is an extract of the output (which is very long because of the command all) :

Correlation

Variable X1 X2 X4 X5 X11

X1 1.0000 0.0861 0.3211 0.2876 -0.5337

X2 0.0861 1.0000 0.1346 0.1175 -0.4647

X4 0.3211 0.1346 1.0000 0.9050 -0.3576

X5 0.2876 0.1175 0.9050 1.0000 -0.1578

X11 -0.5337 -0.4647 -0.3576 -0.1578 1.0000

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 13.10487 3.27622 11.51 <.0001

Error 27 7.68670 0.28469

Corrected Total 31 20.79157

Root MSE 0.53357 R-Square 0.6303

Dependent Mean 0.81406 Adj R-Sq 0.5755

Coeff Var 65.54360

Parameter Estimates

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 6.60309 1.02423 6.45 <.0001

X1 X1 1 -0.00281 0.00078216 -3.60 0.0013

X2 X2 1 -0.04565 0.01346 -3.39 0.0022

X4 X4 1 -0.75510 0.21591 -3.50 0.0016

X5 X5 1 0.16847 0.05154 3.27 0.0029
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Parameter Estimates

Variance

Variable Label DF Tolerance Inflation 95% Confidence Limits

Intercept Intercept 1 . 0 4.50153 8.70464

X1 X1 1 0.89499 1.11733 -0.00442 -0.00121

X2 X2 1 0.97975 1.02067 -0.07326 -0.01803

X4 X4 1 0.17631 5.67193 -1.19810 -0.31209

X5 X5 1 0.18093 5.52696 0.06273 0.27422

Output Statistics

Dep Var Predicted Std Error

Obs X11 Value Mean Predict 95% CL Mean 95% CL Predict -2-1 0 1 2

1 2.3700 1.6964 0.1625 1.3631 2.0298 0.5520 2.8409 | |** |

2 1.4700 1.2602 0.1799 0.8912 1.6293 0.1049 2.4155 | | |

3 1.1300 1.3642 0.2090 0.9353 1.7931 0.1884 2.5400 | | |

4 0.8500 1.0823 0.1651 0.7436 1.4210 -0.0637 2.2283 | | |

5 0.2400 0.3341 0.1658 -0.0060 0.6743 -0.8123 1.4806 | | |

6 1.4900 1.0255 0.1084 0.8031 1.2479 -0.0916 2.1427 | |* |

7 0.3000 0.0136 0.2569 -0.5135 0.5407 -1.2015 1.2287 | |* |

8 0.0700 -0.1807 0.2677 -0.7299 0.3686 -1.4055 1.0442 | |* |

9 3.0000 1.8174 0.1836 1.4406 2.1942 0.6596 2.9752 | |**** |

10 1.2100 0.8020 0.2604 0.2677 1.3364 -0.4162 2.0203 | |* |

: : : : : : : : : :

Discussion : The global Fisher test is significative, which is a minimal property. The
Q-Q plot is coherent with normality. But the two residual plots : raw and studentized
show a strange behavior and in particular a triangle left and below with no observations.
This is due to the constraint of positivity of the observation. This is why in other studies
X12 = log(X11) will be used. A very fast interpretation of the signs of the coefficients is
that the processionary is less present on plots with difficult access.
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Figure 2.1: Graphics from the regression (R)
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Chapter 3

Analysis of variance

This chapter presents the notion of interaction between to qualitative variables or factors; a
generalization to several factors; a definition of nested and crossed situations; and multiple
comparison problem.

1 The general framework

Analysis of variance (Abbreviated as ANOVA) consists of explaining a quantitative
variable by several qualitative variables of factors. Let us consider two examples :

a. Varieties comparison : the dependent variable: the variable to explain is the yield.
It can be explained by:

• 2 factors : variety × location,

• 3 factors : variety × location × year

• 4 factors : genetic family × individual× location × year.

b. Annual income of an executive. The dependent variable is the annual income of an
executive as a function of seven factors: domain of activity× age group × size of the
firm × region × diploma× position × sex.

As we can see, a high number of factor may permit to better modell complex situations.
We don’t have to hesitate to put a large number of factors in the model. Limitations are :
A) we must learn how to build models with many factors. This has to do with Aa) defining
order-two and larger interaction, Ab) defined relations between factors : crossed factors,

35
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nested factors, factors included one into the other. B) the second limitation concerns the
dimension of the model that grows exponentially with the number of factors and must
remain smaller than the number n of observations. We will present now the more classical
model : the model with two crossed factors. The reason why the factors are called ”
crossed” will be explained only in Section 3.2

2 Two crossed factors

2.1 Presentation

Let us consider the historical example of varieties comparisons. The first problem Ronald
Fisher had to consider when he began his career at Rothamsted experimental station. To
compare, for example I cereal varieties on a quantitative criterion as the yield per hectare,
we have at our disposition J locations that are mainly J different regions of culture. In
Location i Variety j is experimented ni,j times with ni,j > 0. In most experiments this
number of replication is designed to be constant ni,j = r > 1 (balanced case) but, because
of missing data, this number is eventually unbalanced .

Let Yijk be the observation on the kth observation of Variety i in Location j. In a first
step we assume that the response depends on the couple (i, j) and we set the following
one-way analysis of variance model.

Yijk = βij + εijk, where (3.1)

• i is the variety index , i = 1, ..., I;

• j is the location index , i = 1, ..., J ;

• k is the repetition index k = 1, ..., nij > 0.

We assume in addition that at least one combination (i, j) is observed at least two times:
nij ≥ 2. This ensures that the number of observations

n =
∑
i,j

nij ,

is greater than the dimension of the model which is IJ as we will see.
Suppose for example that I = 2, J = 3 and nij = 2 for all i, j. The model can be
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written in matrix form as

Y111

Y112

Y121

Y122

Y131

Y132

Y211

Y212

Y221

Y222

Y231

Y232



=



1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1





β11

β12

β13

β21

β22

β23

+



ε111

ε112

ε121

ε122

ε131

ε132

ε211

ε212

ε221

ε222

ε231

ε232


For the moment, the model we have set is a a one-way (or one factor) analysis
of variance model associated to the qualitative variable variety× location that takes IJ
values. This proves that the dimension is IJ . As it is easy to check, the model is regular
and since the least squares estimator of d reals X1, ..., Xd is their mean X we have

β̂ij = Yij. =
1

nij

nij∑
k=1

Yijk .

Our goal is now to introduce the two original factors, but carefully avoiding to write non
regular models. We define

• The general mean µ = β.., where the dots means the a mean over the indices replaced
by the dots. it is estimated by β̂.. = 1

IJ

∑
i=1,...,I;j=1,...,J β̂ij ;

• The differential effect of the modality i of the first factor. This is defined with respect
to the preceding mean:

αi = βi. − β.., estimated by par β̂i. − β̂.. ;

• The differential effect of the modality j of the second factor. This is defined with
respect to the preceding mean facteur γj = β.j − β.., estimated by β̂.j − β̂..;

• The quantity we need to arrive to βij is called the interaction. As a matter of fact,
in general we don’t have βij = βi. + β.j + β.. and the quantity missing is :

δij = βij − βi. − β.j + β.. = (βij − β..)− (βi. − β..)− (β.j − β..).
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The main message of this section is the necessity of this term to achieve the decompo-
sition. Finally the initial model (3.1) : Yijk = βij + εijk can be rewritten in the form

Yijk = µ+ αi + γj + δij + εijk, (3.2)

with k ∈ {1, · · · , nij} pour (i, j) ∈ {1, · · · , I} × {1, · · · , J}, and the following implicitly
defined constraints.

•
I∑
i

αi = 0 and

J∑
j

γj = 0;

• for all j = 1, · · · , J :
∑
i

δij = 0;

• for all i = 1, · · · , I :
∑
j

δij = 0.

But we insist on the fact that this model must not be regarded as a model on its own ( that
would be irregular) but as a rewriting of Model 3.1. In other words, when a calculation
has to be performed it is in general simpler to make it with Model 3.1.

The matrix form of Model 3.2 in the example I = 2, J = 3 and nij = 2 for all i, j, is:

Y111

Y112

Y121

Y122

Y131

Y132

Y211

Y212

Y221

Y222

Y231

Y232



=



1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0 0 0 0 1





µ
α1

α2

γ1

γ2

γ3

δ11

δ12

δ13

δ21

δ22

δ23



+



ε111

ε112

ε121

ε122

ε131

ε132

ε211

ε212

ε221

ε222

ε231

ε232



.

Remind that the design matrix X is not full-ranked and that special techniques that will
be presented in Chapter 5 are needed to study it directly.

Testing strategies

The model (3.2) is very different depending on whether the δ part is present or not. If not
we introduce the following definition

Definition 3.1 When the interaction part (δ) is absent in Model (3.2), the model is called
”additive”. In the other case the model is called general or ”interactive”. Finally the
quantities αi, i = 1, ..., I and γj , j = 1, ..., j define the main effect of the two factors.
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There is a huge difference between the additive model and the interactive model.
Firstly the size of the general model: IJ is much more important than the size of the

additive model I + J − 1. For example if I = 20, J = 10 the respective sizes are 200 and
29.

Secondly the behaviors are different. If we represent βij or its estimation β̂ij as a
function of each of the factors, the typical behaviors are as in its example with I = 6 and
J = 4.
Additive model

-
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response β̂ij

modality of
factor “variety”
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The curves are strictly parallels meaning that if we compare for example two varieties,
their difference of yield are constant in every location.

General interactive model

-
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There is no typical behavior in this case. The response is as general as possible.

2.2 General model in case in case of equi-replication

To simplify we assume that the number of replications is constant. In other words, nij =
(const) = K ≥ 2 The model is:

Yijk = µ+ αi + βj + γij + εijk , i = 1, · · · , I , j = 1, · · · , J , k = 1, · · · ,K,

with the above constraints. We define the hypotheses :
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• H(1)
0 : ”all the αi’s are zero ”: test of the principal effect of the first factor ;

• H(2)
0 : ”all the γj ’s are zero”: test of the principal effect of the second factor;

• H(3)
0 : ”all the γij ’sare zero”: test of the interaction.

Note that all these hypotheses can be expressed in Model (3.1) and this is the good point
of view. Let us introduce some extra notation.

• E := R n is the space of the observations (n = I · J ·K) equipped with the classical
Euclidean norm. An element of E is denoted (Yijk)ijk.

• E0 = [1I] = {(Yijk)ijk ∈ E : Yijk = (const) = m} is the space of constants generated
by the principal diagonal.

• E1 = {(Yijk)ijk ∈ E : Yijk = ai for some a′is such that
∑

i ai = 0.
E1 consist of the vectors whose coordinates depend on i only and that are centered.

• E2 = {(Yijk)ijk ∈ E : Yijk = bjfor some b′js such that
∑

j bj = 0}.
E2 consist of the vectors whose coordinates depend on j only and that are centered.

• E3 = {(Yijk)ijk ∈ E : Yijk = cij for some c′ijs such that ,∀i,
∑

j cij = 0;∀j,
∑

i cij =
0}.
E3 is the space of the interaction.

We have the following easy relations :

• E0, E1 E2 et E3 are orthogonal;

• E0 + E1 corresponds to the model with the first factor ;

• E0 + E2 corresponds to the model with the second factor;

• E0 + E1 + E2 corresponds to the additive model ;

• E0 + E1 + E2 + E3 correspond to the whole model.

• PE0(Y ) =
(
Y...
)
ijk
,
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• PE0+E1(Y ) = PE0 + PE1(Y ) =
(
Yi..
)
ijk
,

• PE0+E2(Y ) = PE0 + PE2(Y ) =
(
Y.j.
)
ijk
,

• PE0+E1+E2+E3(Y ) =
(
Yij.
)
ijk
,

By combination it is easy to deduce the expression of each projector. Let us consider,

for example, the case of the interaction, i.e. the test of H
(3)
0 . The sum of squares (SS)

associated to this effect is defined as the difference of RSS between the models with and
without interaction. It is a consequence of orthogonality that this quantity is ‖PE3Y ‖2.
The numerator of the Fisher test statistics is just the mean square: the SS divided by
(I − 1)(J − 1). As for the denominator, it is the estimator of the variance. Finally

F̂ =

(∑
i,j,k(Yij. − Yi.. − Y.j. + Y...)

2
)
/(I − 1)(J − 1)(∑

i,j,k(Yijk − Yij.)2
)
/(n− I.J)

.

Considering in details all the other cases we get the following analysis of variance table
that gives the exact expression of every test.

Source Sum of squares Degrees of F̂

freedom

Factor 1
∑

i,j,k(Yi.. − Y...)2 I − 1
(n− I.J)

(I − 1)

∑
i,j,k(Yi.. − Y...)2∑
i,j,k(Yi,j,k − Yij.)2

Factor 2
∑

i,j,k(Y.j. − Y...)2 J − 1
(n− I.J)

(J − 1)

∑
i,j,k(Y.j. − Y...)2∑
i,j,k(Yi,j,k − Yij.)2

Fac 1 × Fac 2
∑

i,j,k(Yij. − Yi.. − Y.j. + Y...)
2 (I − 1)(J − 1)

(n− I.J)
∑

i,j,k(Yij. − Yi.. − Y.j. + Y...)
2

(I − 1)(J − 1)
∑

i,j,k(Yijk − Yij.)2

Residual
∑

i,j,k(Yijk − Yij.)2 n− I · J

To avoid making the presentation more cumbersome, we have not indicated the mean
squares as it is classical in the software outputs.
Remark 1 : Note that for example

SC1 =
∑
i,j,k

(Yi.. − Y...)2

can be written also
SC1 = J ·K ·

∑
i

(Yi.. − Y...)2.
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The chosen form is more simple and more coherent with Euclidean norms.

Remark 2: Is the analysis of variance table relevent ? A careful exploration
of the table shows that most of information is redundant: basically the F̂ are sufficient.

2.3 Additive model : equi-replicated case

Removing E3 and H
(3)
0 , we can perform the same kind of computations, obtaining the

following table. The main difference is that, for dimension reasons, K can take now the
value 1.

We get

Source Sum of squares Degres of F̂

freedom

Factor 1
∑

i,j,k(Yi.. − Y...)2 I − 1
(n− I − J + 1)

∑
i,j,k(Yi.. − Y...)2

(I − 1)
∑

i,j,k(Yijk − Yi.. − Y.j. + Y...)2

Factor 2
∑

i,j,k(Y.j. − Y...)2 J − 1
(n− I − J + 1)

∑
i,j,k(Y.j. − Y...)2

(J − 1)
∑

i,j,k(Yijk − Yi.. − Y.j. + Y...)2

Residual
∑

i,j,k(Yijk − Yi.. − Y.j. + Y...)
2 n− I − J + 1

2.4 Choosing a model

Remark first that in the equireplicated case with K = 1, the interactive model can’t be
assumed because it is too large.

In the other cases, we have to set the complete model and the first question is to test
the interaction. If it is significative, the two factors are relevant, the model is the good
one and the test of the mains effect can have only an interest for the description of the
magnitude of the effects.

If it is not, two strategies are possible.
- The pooling strategy. In that case we will assume that non significative means null

: the non significative interaction term is removed from the model and its sum of squares
is pooled with the residual sum of square.

In a second step, mains effects are tested, and removed if non significative, with the
problem that they can be both non significative and a kind of backward procedure can be
used as in regression. See for example proc glmselect in SAS.

-The non pooling strategy. As a precaution we don’t consider non-significative as
null and we keep the interaction in the model. We must then define the hypothesis of
nullity of main effect in the complete model. In case of equi-repetition this is again easy
and we can define the absence of the first factor in the regular model 3.1 as

βi. = (const) (3.3)

In the non equi-replicated case, there are several definition and thus several analysis of
variance table . (3.3) is a possible choice that corresponds in the classical terminology to
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the type III analysis of variance and it is recommended as a first choice. An other possible
choice is type I analysis of variance that is sequential and depend on the order of writing.
For example the type I analysis of variance of the interactive model A,B,A*B defines

• the sum of squares associated to the first factor A, by difference between the void
model (with the constant only) and the model with the first factor A.

• the sum of squares associated to B, by difference between the model with A and the
additive model with A,B

• the sum of squares associated to the interaction by its only possible definition: dif-
ference between A,B and A,B,A*B.

We see that the Type I analysis of A,B,A*B differs from that of B,A,A*B.

Except from special models, as polynomial regression where there is natural order
between the terms of the model, this make little sense.

2.5 Difference between balanced experiments and others

First remark that in real life the unbalanced case (non equireplicated) is the most common
because mainly of missing data: even if a balanced experiment has been designed, in most
of the cases some data disappear and the final data set is unbalanced.

The balanced case has the property that analysis of variance table is unique and explicit
as explained is Section 2.2. More precisely the model is orthogonal (under some constraint
system) in the sense of Chapter 5.

In the unbalanced case, several analysis of variance table can be constructed. We
have briefly described Type I and Type III that are the most classical. Note that the
different estimators are means of means and are, in general, not ordinary means. The
sum of squares have in general no explicit expression because mainly the least squares
estimators are solutions of a linear system and are not explicit. The computation cost
is more important That’s for example the difference between proc anova (for balanced
experiments) and proc glm in SAS.

As a curiosity we mention that the sum of square associated to one factor is given in
the book [18] p. 87-93 :

SC =
I∑
i=1

wi

([∑
wi β̂i.∑
wi

]
β̂i.

)2

where for every i = 1, · · · , I, the weight wi is defined by :

Var
(
β̂i.

)
=
σ2

wi
et donc

σ2

wi
=
σ2

J2

I∑
j=1

1

nij
.

3 Extensions
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3.1 Multiple comparisons

Let us consider, for example, a comparative experiment with two factors. One is the factor
of interest, for example drug, and the second is a control factor, for example subject.
Traditionally, in design of experiment technology, the first one is called ”treatment” and
the second ”bloc”.

The main purpose of the experiment is the test on the ”treatment” factor. If it non
significative, the experiment is negative and the story stops. But in the other case a
natural question arises: If among the I levels of the treatment, some difference exists
what form do they take ? For example, can we sort the I treatments or can we perform
comparison with the control which is, for example, Treatment 1 ?

If we have decided, a priori, to compare Treatments 1 and 2, this can be done easily
by the T test on H0 α1 = α2 or equivalently β1. = β2.

T̂12 =
β̂1. − β̂2.√

V̂ar (β̂1. − β̂2.)

.

This test has a level α (note that α has nothing to do with αi ). But suppose, for example,
that I = 12 , if we test each one of 12 × 11/2 = 66 pairwise comparisons by a α T test,
the probability of making at least an error : the FWER ( FamilyWise Error Rate) will be
much larger that α. Below we present briefly some method to control this FWER.

Case of Pairwise comparisons

i. Tukey method : it is adapted to balanced casee or to one way analysis of variance.
It gives simultaneous confidence intervals (All of them are correct with probability
1−α) for all the difference between the means αi−αj ; 1 ≤ i < j ≤ I. In the balanced
case it is the most precise .

ii. Bonferroni’s method : This a very crude method based on a simple union bound :
if we want to control a global risk of α on I(I − 1)/2 comparisons, a solution is to
perform each of the T tests at the level

α′ =
α

I(I − 1)/2
.

It is particularly adapted to the case where I is small and the design is unbalanced.

iii. Scheffé method : It is a very robust method which consist of constructing a confidence
ellipsoid for the vector α1, ..., αI , using a general Fisher test. In a second step, this
ellipsoid is projected on the axes that correspond to the coordinates αi − αi′ .

Comparison to a control. :
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In some situations, the aim of the experiment is the comparison to a particular treat-
ment (say I): the control. This can be the placebo in medical experiments. In that case,
all the I(I−1)/2 comparisons do not have to be considered, but only the I−1 comparisons
to the control. The Bonferroni method is easily adapted by choosing

α′ =
α

(I − 1)
.

The equivalent of the Tukey method is now the Dunnet method that constructs simul-
taneous confidence intervals for the

αi − αI ; 1 ≤ i ≤ (I − 1).

The reader can find a detailed presentation in Miller [16].

3.2 Several factors, crossed factors and nested factors

When more than two factors are present, we can define: the mean, the main effects, the
interactions of order two, of order three etc... A particular case has to be detailed: the
nested case.

Definition 3.2 Two factor are crossed if their levels make sense independently one to
another.
Factor B is nested to factor A is for example B = 2 makes sense only if we know the value
of A

Here are some example of factors that are usually crossed.

• variety *location=⇒ to predict a yield;

• Type of car ∗ type of traject =⇒ to predict fuel consomption ;

• Type of supermarket ∗ region =⇒ To predict annual sales of a supermarket

Here are some examples of nested factors :

• Burger / sample in burger =⇒ for a bacteriological test ;

• Plant / worker =⇒ for the yield of a worker ;

• doe/ number of the litter / number of rabbit. =⇒ in animal genetics.
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If the first example, suppose that 3 samples are taken at random in a burger. There
are no relation between all the samples sharing the same number.

The case of nested factor must be declared with you favorite software. Indeed the main
effect of the nested factor must not be introduced. More precisely, in case of two factors,
the second nested to the first the decomposition is

Yijk = µ+ αi + γ′ij + εijk, (3.4)

with then constraints
∑

i αi = 0 and for all i,
∑

j γ
′
ij = 0.

Remark: consider the burger example and suppose we have 4 burgers and that we take
3 samples by burger numbered 1, 2 or 3. Then we are in the nested situation. Suppose that
alternatively we decide to number the samples globally from 1 to 12. This can definitively
be done and gives another relation between the two factors . The factor burger with 4
levels is now included in the sample factor with 12 levels. We give no details.

3.3 Testing homogeneity of variances

The graphs of residuals can show a larger dispersion in some region of the experience.
This is the case in particular if we suspect that the variance depend on the level of some
factor. A natural test is the Bartlett test which is the likelihood ratio test between the
homosedastic and the heteroscedastic models. Nevertheless this test if very affected by
non normality of residuals, even for large data sets. A safer choice can be the Levene (
[12]) test or its modification based on squares. Let us present them in the case of one-way
analysis of variance.

Let the Yij be the observations. From the analysis of variance analysis we compute
the residuals: ε̂ij .

In a second step we perform an new analysis of variance and the corresponding Fisher
test on

|ε̂ij |.
or

(ε̂ij)
2.

Both give a test of homogeny of the variance.
As for regression the two solutions in case of heterogeny are

• transformation of the response variable Y with the same rules ;

• using a generalized linear model.

4 Computer example

4.1 Balanced two ways ANOVA

Data are taken from Calas et al. (1998) [5]. In this experiment two solution for disinfecting
the roots of teeths are compared of two strains of germs of Prevotella nigrescens, a wild
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sampled strain and a reference one (NCTC 9336).
The response in the mean number of germs remaining after the treatment.
SAS software :

proc glm data=sasuser.dents;

class trait germe;

model lnbac=trait germe trait*germe;

output out=sortie predicted=p student=r;

lsmeans trait germe trait*germe/out=graph;

run; quit;

proc gplot data=sortie;

plot r*p;run; quit;

proc gplot data=graph;

plot lsmean*germe=trait;run; quit;

Comments :

• The second line declares trait and germe as qualitative variables or factors

• The third line declares the standard two-ways ANOVA model.

• The forth line writes the outputs on a new data.

• The fifth ask for ajusted means (commandelsmeans) and write them in the data
”graph”.

• Le last lines make the graphs

Note that the Levene test is available only in case of one-way ANOVA by means .../hovtest=levene;.
In the other cases you have to save the residuals and to reanalyze them.

Dependent Variable: LNBAC

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 26.8258464 8.9419488 22.43 0.0001

Error 60 23.9183125 0.3986385

Corrected Total 63 50.7441589

R-Square C.V. Root MSE LNBAC Mean

0.528649 98.91739 0.63138 0.63829
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Figure 3.1: Residual Plot

Source DF Type III SS Mean Square F Value Pr > F

TRAIT 1 0.10378062 0.10378062 0.26 0.6118

GERME 1 16.70226119 16.70226119 41.90 <.0001

TRAIT*GERME 1 10.01980464 10.01980464 25.14 <.0001

Least Squares Means

TRAIT LNBAC GERME LNBAC TRAIT GERME LNBAC

LSMEAN LSMEAN LSMEAN

1 0.67855719 1 1.14914344 1 1 1.58508813

2 0.59801969 2 0.12743344 1 2 -0.22797375

2 1 0.71319875

2 2 0.48284063

R software :

The same analysis can be performed by

dents=read.table("C:/Donnees/dents.txt",header=TRUE)

attach(dents)

germe=as.factor(germe)

trait=as.factor(trait)

library(car)
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Figure 3.2: Plot of interactions

dents.lm=lm(LNBAC~germe:trait-1,contrasts=list(germe=contr.sum,trait=contr.sum))

summary(dents.lm)

anova(dents.lm)

Anova(dents.lm,type="II")

Anova(dents.lm,type="III")

plot(dents.lm$fit,dents.lm$res)

interaction.plot(trait,germe,LNBAC,fixed=TRUE,col = 2:3,leg.bty = "o")

interaction.plot(germe,trait,LNBAC,fixed=TRUE,col = 2:3,leg.bty = "o")

plotMeans(LNBAC,germe,trait)

library(Rcmdr)

levene.test(LNBAC,trait:germe)

Comments on the commands :

• Before making an ANOVA it must be checked that the factors have been declared
as qualitative variables. This is the object of commands 3 and 4.

• Once the model stated the types I, II and III analysis of variance (commands 8, 9
and 10) are performed once you have called the command car (command 5). You
must use the option lcontrasts in lm as shown, unless type III analysis
will be false.
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• Graphs are constructed in the last 4 commands ( plotMeans makes the same as
interaction.plot but with another presentation ).

• last command performs the Levene test.

here is a partial output + :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

germe1:trait1 1.5851 0.1578 10.042 1.82e-14 ***

germe2:trait1 -0.2280 0.1578 -1.444 0.15386

germe1:trait2 0.7132 0.1578 4.518 2.98e-05 ***

germe2:trait2 0.4828 0.1578 3.059 0.00332 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6314 on 60 degrees of freedom

Multiple R-Squared: 0.6886, Adjusted R-squared: 0.6679

F-statistic: 33.18 on 4 and 60 DF, p-value: 1.36e-14

>Anova Table (Type III tests)

Response: LNBAC

Sum Sq Df F value Pr(>F)

(Intercept) 26.0744 1 65.4086 3.475e-11 ***

germe 16.7023 1 41.8983 1.968e-08 ***

trait 0.1038 1 0.2603 0.6118

germe:trait 10.0198 1 25.1351 5.033e-06 ***

Residuals 23.9183 60

>Levene’s Test for Homogeneity of Variance

Df F value Pr(>F)

group 3 2.3318 0.08315 .

60

General comments : This data set is perfectly balanced implying that type I II and III
coincide. Note that the listing propose a Student test of individual terms (including the
intercept) and that this test makes no sense in our case. An examination of the Fisher
tests shows that the interaction is significative but that mains effect are not. Looking at
the graphics permits to understand this paradox: one treatment is efficient on one strain
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and the other treatment on the other strain. Eventually the Leven test is coherent with
homoscedasticity.

4.2 Unbalanced two-ways ANOVA

We consider the time for germination of carrots seeds (variable jg), measured in days as
a function of the variety and of the type of soil. This data is extracted from Searle [18].
The data is unbalanced: the number of replication varies from 1 to 3. The commands are

R software :

attach(carotte)

sol=as.factor(sol)

var=as.factor(var)

library(car)

carotte.lm=lm(jg~var*sol,contrasts=list(var=contr.sum,sol=contr.sum))

anova(carotte.lm)

Anova(carotte.lm,type="II")

Anova(carotte.lm,type="III")

Giving the results :

> anova(carotte.lm)

Analysis of Variance Table

Response: jg

Df Sum Sq Mean Sq F value Pr(>F)

var 2 93.333 46.667 3.5000 0.075085 .

sol 1 83.901 83.901 6.2926 0.033393 *

var:sol 2 222.766 111.383 8.3537 0.008888 **

Residuals 9 120.000 13.333

> Anova(carotte.lm,type="II")

Anova Table (Type II tests)

Response: jg

Sum Sq Df F value Pr(>F)

var 124.734 2 4.6775 0.040475 *

sol 83.901 1 6.2926 0.033393 *

var:sol 222.766 2 8.3537 0.008888 **

Residuals 120.000 9
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> Anova(carotte.lm,type="III")

Anova Table (Type III tests)

Response: jg

Sum Sq Df F value Pr(>F)

(Intercept) 3497.5 1 262.3114 5.784e-08 ***

var 192.1 2 7.2048 0.013546 *

sol 123.8 1 9.2829 0.013865 *

var:sol 222.8 2 8.3537 0.008888 **

Residuals 120.0 9

SAS software :

proc glm data=carotte;

class var sol;

model jg=var sol var*sol;

lsmeans var*sol;

run; quit;

Giving the results :

Dependent Variable: JG

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 400.000000 80.000000 6.00 0.0103

Error 9 120.000000 13.333333

Corrected Total 14 520.000000

R-Square C.V. Root MSE JG Mean

0.769231 24.34322 3.65148 15.0000

Source DF Type I SS Mean Square F Value Pr > F

VAR 2 93.3333333 46.6666667 3.50 0.0751

SOL 1 83.9007092 83.9007092 6.29 0.0334

VAR*SOL 2 222.7659574 111.3829787 8.35 0.0089

Source DF Type III SS Mean Square F Value Pr > F

VAR 2 192.127660 96.063830 7.20 0.0135

SOL 1 123.771429 123.771429 9.28 0.0139
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VAR*SOL 2 222.765957 111.382979 8.35 0.0089

Least Squares Means

VAR SOL JG

LSMEAN

1 1 9.0000000

1 2 16.0000000

2 1 14.0000000

2 2 31.0000000

3 1 18.0000000

3 2 13.0000000

General comments : The unbalanced character of the design is easily checked by
comparing type I and Type III analysis. For the rest of the discussion we focus on type
III analysis. The experiment shows clearly (everything is significative) that the time to
germination depend in a complex manner on the soil and the variety. To have a reliable
prediction, it is necessary to use the lsmeans at the crossed level sol*var.

4.3 Nested ANOVA

The data set is from the book of Milliken et Johnson [17]). We want to compare 8
insecticides (variable produit) originated from 4 firms . Each firm produces exactly two
products numbered 1 or 2. Three replications have been made and the final observation
is the number of alive mosquitos out of a box of 400.

SAS software :

proc glm data=sasuser.insect;

class firme produit;

model nb=firme produit(firme);

means firme/tukey;

run;quit;

thart gives:

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 7 20605.33333 2943.61905 49.33 <.0001

Error 16 954.66667 59.66667

Corrected Total 23 21560.00000
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R-Square Coeff Var Root MSE nb Mean

0.955720 7.022200 7.724420 110.0000

Source DF Type I SS Mean Square F Value Pr > F

firme 3 19971.66667 6657.22222 111.57 <.0001

produit(firme) 4 633.66667 158.41667 2.66 0.0714

Source DF Type III SS Mean Square F Value Pr > F

firme 3 19971.66667 6657.22222 111.57 <.0001

produit(firme) 4 633.66667 158.41667 2.66 0.0714

Tukey’s Studentized Range (HSD) Test for nb

NOTE: This test controls the Type I experimentwise error rate, but it generally has a

higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 16

Error Mean Square 59.66667

Critical Value of Studentized Range 4.04609

Minimum Significant Difference 12.759

Means with the same letter are not significantly different.

Tukey Grouping Mean N firme

A 141.167 6 b

A

A 134.667 6 a

B 91.833 6 c

C 72.333 6 d

R software :

attach(insect)

firme=as.factor(firme)

produit=as.factor(produit)

insect.lm=lm(nb~produit:firme+firme,contrasts=list(produit=contr.sum,firme=contr.sum))

anova(insect.lm)
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Anova(insect.lm,type="III")

insect.aov=aov(nb~firme)

TukeyHSD(insect.aov,ordered=TRUE)

The results are :

Response: nb

Df Sum Sq Mean Sq F value Pr(>F)

firme 3 19971.7 6657.2 111.574 6.135e-11 ***

produit:firme 4 633.7 158.4 2.655 0.0714 .

Residuals 16 954.7 59.7

Anova Table (Type III tests)

Response: nb

Sum Sq Df F value Pr(>F)

(Intercept) 290400 1 4867.039 < 2.2e-16 ***

firme 19972 3 111.574 6.135e-11 ***

produit:firme 634 4 2.655 0.0714 .

Residuals 955 16

Tukey multiple comparisons of means

95% family-wise confidence level

factor levels have been ordered

Fit: aov(formula = nb ~ firme)

$firme

diff lwr upr

c-d 19.50000 5.099148 33.90085

a-d 62.33333 47.932481 76.73419

b-d 68.83333 54.432481 83.23419

a-c 42.83333 28.432481 57.23419

b-c 49.33333 34.932481 63.73419

b-a 6.50000 -7.900852 20.90085

Discussion : Since Type I and Type III are equals the design is balanced. The residual
plots have nothing particular and have been omitted. The nested effect is rather non-
significative but the result is not clear-cut. The firm clearly differ and the Tukey multiple
comparison procedure show that firm a and b don’t differ .
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5 Exercises

Exercise 3.1

(*) Soit le jeu de données suivant pour deux facteurs à deux niveaux (données totalement
inventées pour que les calculs tombent juste) :

facteur 1 1 1 1 1 1 2 2 2
facteur 2 1 1 1 2 2 1 1 2
réponse 19 15 14 10 6 9 11 6

Calculez les estimateurs dans le cas des paramétrisations (3.1) et (3.2). On calculera plus
rapidement si on représente les données dans un tableau 2× 2.

Exercise 3.2

(*) [Hétéroscédasticité] Soit un modèle d’analyse de la variance à un facteur, vérifiant les
postulats P1, P3 et P4 et tel que pour les I modalités du facteur on ait Var (εij) = σ2

i

pour tout j = 1, . . . , ni. La variance des erreurs dépend donc de la modalité considérée.
Déterminer alors les estimateurs µ̂i et σ̂2

i par maximum de vraisemblance des différents
paramètres du modèle (soit 2I paramètres). Si on suppose maintenant que µi = µ pour
i = 1, . . . , I, que valent alors les σ̂2

i et µ̂ ?

Exercise 3.3

(**) Montrer que H
(1)
0 est équivalente à βi. = (cte) dans le modèle (3.1). Montrer que

H
(3)
0 est équivalente à ∀(i, j) 6= (i′, j′) ∈ {1, . . . , I}×{1, . . . , J} : βij−βi′j−βij′+βi′j′ = 0.

Exercise 3.4

(**) Pour introduire des effets différentiels dans un modèle d’analyse de la variance à un
facteur,

Yik = µ+ αi + εik,

quel type de contrainte doit-on utiliser ?

I∑
i=1

αi = 0 ou bien
I∑
i=1

niαi = 0 ?

Eléments de solution : Par cohérence avec la décomposition marginale utilisée dans le cas
où il y a deux facteurs, on serait tenté de poser la première contrainte. Ce n’est pas la
bonne réponse. En effet :
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• L’estimation et donc la définition précise du paramètre µ importe peu, puisque ce
paramètre de moyenne générale est souvent sans intérêt. N’oublions pas que le but
d’une expérience est de comparer; toute l’attention est donc focalisée sur les effets
différentiels αi. Le premier type de contraintes a peu d’intérêt.

• Le second type n’a d’autre intérêt que calculatoire. Si on l’utilise, l’estimateur µ̂ de
µ est la moyenne générale : Y.. (estimateur sous l’hypothèse nulle), nécessaire pour la

construction du test de Fisher. En particulier, la formule SC =
∑
ik

(Yi. − Y..)2 =
∑
ik

(α̂i)
2

ne serait pas vraie sinon.

Cette réponse est en contradiction avec celle que l’on fait pour deux facteurs. Nous voyons
donc une fois de plus sur cet exemple, l’intérêt de travailler avec des modèles réguliers,
comme l’est le modèle de notre première présentation.

Exercise 3.5

(**) [Décomposition de type I] Soit un modèle linéaire et supposons que l’on ait scindé
le paramètre β en différents sous-ensembles β1, · · · , βm. Une telle décomposition est ap-
pelée une partition. Une partition naturelle est la décomposition en effet principaux et
interaction dans le modèle à deux facteurs croisés (3.2). En toute rigueur, ce modèle est
non-régulier et le lecteur pourra consulter le chapitre 5. La partition fait que l’on peut
écrire

Y = X1 · β1 + · · ·+Xm · βm + ε.

Notez bien que l’ordre importe dans l’écriture du mode et que nous supposerons toujours
que les effets principaux sont avant les interactions, que les interactions doubles sont avant
les triples, etc... De manière générale, on définit les espaces Vi i = 1, · · · ,m de la façon
suivante :

Vi est l’orthogonal de [X1, · · · , Xi−1] dans [X1, · · · , Xi].

On définit le test associé au i-ème élément du modèle comme le test de l’hypothèse nulle :

P[Vi]X · β = 0.

On considère désormais un modèle d’analyse de la variance à deux facteurs et on désire
pondérer la décomposition par les effectifs :

Yijk = µ+ αi + βj + γij + εijk,

avec maintenant les contraintes suivantes : ∀j,
∑
i

nijγij = 0, ∀i,
∑
j

nijγij = 0, et également∑
i

ni+αi = 0,
∑
j

n+jβj = 0 (le + veut dire la somme sur l’indice qu’il remplace). Mon-

trer que l’hypothèse ∀i, αi = 0 s’écrit dans le modèle (3.1) sous la forme : ”hi :=
∑
j

nijβij ,

ne dépend pas de i”. Montrer que le test de cette hypothèse est obtenu par la décomposition
de type I.
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Exercise 3.6

(**) Nous allons illustrer une nouvelle fois l’abominable complexité de l’option solution

de SAS en analyse de la variance à deux facteurs. Voici un exemple volontairement simple
et dont les données ont été inventées. L’utilisation de solution donne la valeur −12 à la
fin du tableau pour a ∗ b = (1, 1). Comment s’interprète t-elle ?

Les données sont
a 1 1 1 1 1 2 2 2
b 1 1 2 2 2 1 2 2
Y 5 3 25 27 32 12 12 21

proc glm ;

class a b;

model y= a b a*b/solution;

lsmeans a b a*b;run; quit;

Voici un extrait des résultats numériques obtenus :

Source DF Squares Mean Square F Value Pr > F

Model 3 792.0000000 264.0000000 22.96 0.0055

Error 4 46.0000000 11.5000000

Corrected Total 7 838.0000000

R-Square Coeff Var Root MSE y Mean

0.945107 17.84824 3.391165 19.00000

Source DF Type III SS Mean Square F Value Pr > F

a 1 6.8571429 6.8571429 0.60 0.4831

b 1 555.4285714 555.4285714 48.30 0.0023

a*b 1 61.7142857 61.7142857 5.37 0.0814

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 24.00000000 B 2.39791576 10.01 0.0006

a 1 4.00000000 B 3.09569594 1.29 0.2659

a 2 0.00000000 B . . .

b 1 -12.00000000 B 4.15331193 -2.89 0.0446

b 2 0.00000000 B . . .

a*b 1 1 -12.00000000 B 5.18009009 -2.32 0.0814

a*b 1 2 0.00000000 B . . .

a*b 2 1 0.00000000 B . . .

a*b 2 2 0.00000000 B . . .

NOTE: The X’X matrix has been found to be singular, and a generalized inverse

was used to solve the normal equations. Terms whose estimates are followed by

the letter ’B’ are not uniquely estimable.
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a y LSMEAN b y LSMEAN a b y LSMEAN

1 16.0000 1 8.0000 1 1 4.0000

2 18.0000 2 26.0000 1 2 28.0000

2 1 12.0000

2 2 24.0000
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Chapter 4

Analysis of covariance

In this chapter the way of mixing quantitative and qualitative variable in a linear model
is presented. We define ”heterogeneity of the slopes” which is in some sense a kind of
interaction between a factor and a variable.

1 The model

In many situations, the set of explanatory variable contains both quantitative and quali-
tative variables. The Analysis of Covariance model (ANACOVA) is the linear model that
mixes these variables. We begin with the simplest case of aone variable and one factor.

1.1 An exemple

We consider the stature, the height, of young girls at different ages from 6 to 10. For a
fixed girl and in this particular period, a linear growth gives a very good fit. But every one
knows that some individuals are taller and they may grow more rapidly. To take this into
account the intercept and the slope of the regression must be specific to the individual.

Let Yij be the height of individual i at age number j, a possible model is

Yij = µi + βi · agej + εij .

It is easy to check that this model is linear.
Two main questions are to be considered :

i. Are the slopes βi different ? If yes, the model will be called ”with heterogeneity of
slopes”.

ii. Are the intercepts µi different ? If yes, the model will be called ”with heterogeneity
of intercepts ” .

61
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As for analysis of variance, we can introduce differential effects i = 1, · · · , I :

µi = µ+ αi et βi = β + γi

with the usual conditions ∑
i

γi =
∑
i

αi = 0.

Giving the model :

Yij = µ+ αi + β · agej + γi · agej + εij , (4.1)

This model, which is not regular, must be viewed as a rewriting of the first one. The last
term corresponding to the ” heterogeneity of slopes” that depends both on the quantitative
and the qualitative variable can be viewed as an interaction. It has to be declared in this
manner for example in SAS

heigth= individual + age + age * individual.

We test, first, the heterogeneity of slopes

• for all i = 1, · · · , I, γi = 0.

If this test is non-significative, it is worth testing the heterogeneity of intercepts.

• for all i = 1, · · · , I, αi = 0.

If again this test is non-significative, the factor can removed from the model.

1.2 The general model

In case of several variables and factors we can mix all the methods of regression (transfor-
mation of regressors) and analysis of variance (constructing interactions) to obtain rather
complicated models. It difficult to describe all possible model and large size example are
tedious.

Finally the analysis of covariance model are all linear models and the general formula
apply. Only the interpretation is a little particular as you can see in the numerical example.

2 Numerical example

Data are from Tanner [19]. the, height (cm) of young girls has been measured at every
age between 6 and 10 years.
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ind 6 ans 7 ans 8 ans 9 ans 10 ans

1 116 122 126.6 132.6 137.6

2 117.6 123.2 129.3 134.5 138.9

3 121 127.3 134.5 139.9 145.4

4 114.5 119 124 130 135.1

5 117.4 123.2 129.5 134.5 140

6 113.7 119.7 125.3 130.1 135.9

7 113.6 119.1 124.8 130.8 136.3

In this period that excludes early childhood and puberty the growth of an human being
is almost linear with some differences between males an females.

To make the interpretation easier we introduce the variable agec which is age after
centering. SAS software :

To have tests and estimators in a convenient form we need 3 call of proc glm

proc glm data=...;

class ind;

model taille=agec ind agec*ind;run;quit;

proc glm data=...;

class ind;

model taille=age ind age*ind;run;quit;

proc glm data=...;

class ind;

model taille=agec*ind/solution noint;run;quit;

-------------------------------------------------------------------------------------

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 13 2491.474429 191.651879 981.39 <.0001

Error 21 4.101000 0.195286

Corrected Total 34 2495.575429

R-Square Coeff Var Root MSE taille Mean

0.998357 0.346566 0.441911 127.5114

-------------------------------------------------------------------------------------

Source DF Type I SS Mean Square F Value Pr > F

age 1 2169.515571 2169.515571 11109.4 <.0001

ind 6 316.459429 52.743238 270.08 <.0001 (A)
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age*ind 6 5.499429 0.916571 4.69 0.0035

Source DF Type III SS Mean Square F Value Pr > F

age 1 2169.515571 2169.515571 11109.4 <.0001

ind 6 4.253299 0.708883 3.63 0.0125 (B)

age*ind 6 5.499429 0.916571 4.69 0.0035

-------------------------------------------------------------------------------------

Source DF Type I SS Mean Square F Value Pr > F

agec 1 2169.515571 2169.515571 11109.4 <.0001

ind 6 316.459429 52.743238 270.08 <.0001 (C)

agec*ind 6 5.499429 0.916571 4.69 0.0035

Source DF Type III SS Mean Square F Value Pr > F

agec 1 2169.515571 2169.515571 11109.4 <.0001

ind 6 316.459429 52.743238 270.08 <.0001 (C)

agec*ind 6 5.499429 0.916571 4.69 0.0035

-------------------------------------------------------------------------------------

Standard

Parameter Estimate Error t Value Pr > |t|

ind 1 126.9600000 0.19762880 642.42 <.0001

ind 2 128.7000000 0.19762880 651.22 <.0001

: : : : :

agec*ind 1 5.3800000 0.13974467 38.50 <.0001

agec*ind 2 5.3900000 0.13974467 38.57 <.0001

: : : : :

The last command uses a regular model giving estimator with the /solution option in a
nice form.

R software :

ind=as.factor(ind)

library(car)

fille.new=groupedData(taille~age|ind,data=fille)

plot(fille.new)

anova(lm(taille~age*ind))

Anova(lm(taille~age*ind),type="III",contrasts=list(age=contr.sum,ind=contr.sum))

anova(lm(taille~agec*ind))

summary(lm(taille~(agec:ind-1)+ind))
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Giving the results (extract) :

Response: taille

Df Sum Sq Mean Sq F value Pr(>F)

age 1 2169.52 2169.52 11109.4433 < 2.2e-16 ***

ind 6 316.46 52.74 270.0824 < 2.2e-16 *** (A)

age:ind 6 5.50 0.92 4.6935 0.003547 **

Residuals 21 4.10 0.20

Anova Table (Type III tests)

Response: taille

Sum Sq Df F value Pr(>F)

(Intercept) 1067.06 1 5464.0736 < 2.2e-16 ***

age 289.44 1 1482.1565 < 2.2e-16 ***

ind 4.25 6 3.6300 0.012520 * (B)

age:ind 5.50 6 4.6935 0.003547 **

Residuals 4.10 21

Response: taille

Df Sum Sq Mean Sq F value Pr(>F)

agec 1 2169.52 2169.52 11109.4433 < 2.2e-16 ***

ind 6 316.46 52.74 270.0824 < 2.2e-16 *** (C)

agec:ind 6 5.50 0.92 4.6935 0.003547 **

Residuals 21 4.10 0.20

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ind1 126.9600 0.1976 642.42 <2e-16 ***

ind2 128.7000 0.1976 651.22 <2e-16 ***

: : : : :

agec:ind1 5.3800 0.1397 38.50 <2e-16 ***

agec:ind2 5.3900 0.1397 38.57 <2e-16 ***

: : : : :

Comments : The fit is excellent . First R2 ' 0.998 but moreover the standard error is
of about 4 mn which is very good and imply the use of data of high quality. The analysis
shows that the growth is linear (because of the excellent fit) and that the speed of growing
(the slope) depends on the individual. As for the test of ind three tests are proposed

• Type I with age (A);

• Type III with age (B);
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• Type I or III with agec (C)(they are identical, since the model is orthogonal)

It is easy to check that (A) and (C) are identical and test the hypothesis ” the mean height
are identical”

This is the one that makes sense and the hypothesis is rejected.
(B) tests ” the height extrapolated at age 0 are equal’. This mean little since in the

early ages, the growth of human being is not linear. For example this extrapolated is
about 70 cm which is not the size of a newborn.

We see one of the few interests of The TypeI decomposition : we don’t
need to center the variable to get the good test.
Discussion: The experiment shows that in the period considered, the growth is linear.
Some individuals are taller and some grow faster than the others.



Chapter 5

Non regular models and
orthogonality

In this chapter we present the main tools to study non regular linear models and to define
orthogonality that simplify the processing of models.

1 Non regular models

Some models cannot be parametrized in a regular manner : they are over-paramterized.
The most common model is the additive model in two-ways analysis of variance. Consider,
for example, the very simple case where I = J = 2 and each combination is observed once.
With the notation of Chapter 3 :

Y11 = µ+ a1 + b1 + ε11

Y12 = µ+ a1 + b2 + ε12

Y21 = µ+ a2 + b1 + ε21

Y22 = µ+ a2 + b2 + ε22.

The design matrix X is defined by

X =


1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

 .

We can see that every vector of the form (α+β,−α,−α,−β,−β) returns the value 0 when
multiplied by X.

The values µ, ai, bi, (i = 1, 2) are not uniquely determined : they are not identifiable.

Definition 5.1 A linear model is said non regular when the design matrix X is not full
ranked, i.e. when the kernel of X, Ker(X) is not restricted to {0}
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let K :=Ker(X) := {z ∈ R n, X · z = 0} the kernel of X. let us make two remarks :

• Xβ̂ remains unique because it is the projection of X on Y sur [X],

• β̂ cannot be unique because if β̂ is a solution and if z ∈ K , β̂+z is another solution.
The set of solution is indeed {β̂ + z, z ∈ K}.

We use pseudo-inverses

Definition 5.2 Let M a matrix, M− is the pseudo-inverse of M if MM−M = M .

Proposition 5.1 If (X ′X)− is a pseudo-inverse of X ′X, then β̂ = (X ′X)−X ′Y is a
solution of the normal equations.

(X ′X)β̂ = X ′Y.

Proof : We know that P[X]Y is uniquely defined, as a consequence, there exists u ∈ R k

such that X ′Y = X ′P[X]Y = X ′ ·X ·u. Define β̂ = (X ′X)−X ′Y . Then, if is easy to check

that β̂ satisfies the normal equations.

X ′Xβ̂ = (X ′X)(X ′X)−X ′Y

= (X ′X)(X ′X)−X ′Xu

= X ′Xu = X ′Y

from the definition of pseudo inverse.

Among all possible pseudo-inverse of X ′X some are more interessant than others .

Identifiability constraints Suppose that rg(X) = dim[X] = h < k. There is (k − h)
redondant parameters. We define a matrix H with (k − h) rows and k columns and with
full rank such that:

Ker(H) ∩Ker(X) = {0}.

This means that if we restrict our attention to the β’s that satisfy Hβ = 0 the kernel of
X is now {0} and the model is identifiable. In addition we have

Proposition 5.2 • The matrix (X ′X + H ′H) is invertible, its inverse is a pseudo-
inverse of X ′X

• The vector β̂ = (X ′X +H ′H)−1X ′ Y is the unique solution of the normal equations
that satisfies Hβ̂ = 0.
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Proof : Dimensions considerations imply that there exists a unique β̂ such that

Xβ̂ = P[X]Y with KHβ̂ = 0.

Let us consider the minimization problem in β of ‖Y −Xβ‖2 + ‖Hβ‖2.
The value of β̂ obtained above is indeed a solution of this minimization problem because

it minimize separately each term. The problem can be expressed as∥∥∥∥(Y0
)
−
(
X

H

)
β

∥∥∥∥2

is minimum,

where the bar means the concatenation of matrices. The matrix in the right hand side is
full-ranked because.(

X

H

)
β = 0 ⇒ Xβ = 0 = Hβ

⇒ β ∈ Ker([H]) ∩Ker([X])⇒ β = 0.

We know that the least squares solution of this problem is given by :

β̂ =

((
X

H

)′ (
X

H

))−1(
X

H

)′ (
Y

0

)
= (X ′X +H ′H)−1X ′Y.

It remains to show that (X ′X + H ′H)−1 is a pseudo-inverse of (X ′X), which is a direct
consequence of

(X ′X)(X ′X +H ′H)−1(X ′X) = X ′P[X]X = X ′X

because, by definition, P[X]X = X.

Example 5.1 Consider the one-way analysis of variance model

Yi,j = µi + εi,j } i = 1, · · · , 4 et j = 1, 2.

This is a regular model of dimension 4, but if we introduce differential effects

Yi,j = µ+ αi + εi,j i = 1, · · · , 4 and j = 1, 2,

we obtain a model of rank 4 but with 5 parameters. The constraint
∑4

i=1 αi = 0 will re-
store the identifiability. But the other constraint α4 = 0 will do the same but with another
parameterization

The sweep operator

Most of the statical softwares use the ”sweep” operator to handle colinearity between
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the columns of the design matrix X. In some situation this makes sense, in other not.
The program examine sequentially the columns of the matrix X. If the column j is nu-
merically considered (this depends arbitrary on a threshold on the singular values) as
collinear to the preceding columns, the column j is removed or, in others words, the con-
straint βj = 0 is chosen. This the default choice and it is not always the better choice. In
the introducing example of two-ways analysis of variance the sweep operator will use the
constraints a2 = b2 = 0 which violate symmetry between the levels of the factors.

Estimable functions and contrasts

Some linear function of β : C ′β have the nice property that they don’t depend on the
particular solution of the over-parameterized model. They don’t depend on the type of
constraint chosen. These functions are called ”estimable functions”. It can be checked
that they satisfy C ′β = D′Xβ, where D is a full ranked matrix.

A classical example of functions that are, in general, estimable in analysis of variance
is given by the contrasts: A linear combination C ′β is a contrast if the sum of the weights
Ci vanishes. In other word if C ′1I = 0. In the introducing example, a1 − a2 is a contrast.

2 Orthogonality for regular models

Orthogonality is a notion that permits to simplify the computation but also the interpre-
tation in a linear model. Orthogonality is associated to a partition of the parameter β
and consequently of the design matrix X and of information matrix X ′X. let us give first
some exemple of such a partition.

Example 5.2 Consider the multiple regression model on three variables Z(1), Z(2) and
Z(3) :

Yi = µ+ β1Z
(1)
i + β2Z

(2)
i + β3Z

(3)
i + εi , i = 1, · · · , n > 4.

The vector β contains 4 terms : µ = β0, β1, β2, β3 and the matrix X four columns. In this
case, as it is common in regression, we can consider the finest partition : {β0}, {β1}, {β2}, {β3}.
The orthogonality will correspond to the orthogonality, for the ordinary Euclidean metric,
of the four lines : [1I], [Z(1)], [Z(2)] et [Z(3)]. This is equivalent to the fact that the infor-
mation matrix is diagonal.

Example 5.3 Let us consider the quadratic regression model depending on two variables
Z(1) et Z(2)

Yi = β0 + β1Z
(1)
i + β2Z

(2)
i + γ1

(
Z

(1)
i

)2
+ γ2

(
Z

(2)
i

)2
+ δZ

(1)
i .Z

(2)
i + εi , i = 1, · · · , n > 6.

Here we can consider the partition

• the constant β0;
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• linear effects β1, β2;

• squares γ1, γ2;

• cross product δ.

Orthogonality is this the orthogonality of [1I], [(Z(1),Z(2))], [
((

Z(1)
)2
,
(
Z(2)

)2)
] and [Z(1)Z(2)].

And in that case the information matrix is block diagonal.

We state now our main definition.

Definition 5.3 (Orthogonality for regular models) Consider a partition in a regu-
lar linear model

Y = Xβ + ε = X1β1 + · · ·+Xmβm + ε,

where Xi is a matrix of size (n, ki) ; βi ∈ R ki and
∑
ki = k < n). This partition is said

orthogonal if the following sub-spaces of R n

[X1], · · · , [Xm]

are orthogonal.
Equivalently, the model is orthogonal if the the information matrix has a block diagonal

structure corresponding to the partition.

To make sense the partition must be natural.

• In regression the most common is the finest partition that separates every variables.

• In analysis of variance, the partition corresponds to the mean; the mains effects and
the interactions.

Orthogonality gives two nice properties:

Proposition 5.3 Consider a regular linear model equipped with and orthogonal partition.

Y = X1β1 + · · ·+Xmβm + ε.

Then :

• The estimators of the different components (β̂i)1≤i≤k are independent (non correlated
under non Gaussian model).
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• For ` = 1, · · · ,m, the expression of β̂` does not depend on the presence or absence
of the others βj′ in the model.

Proof : orthogonality implies that :

P[X]Y = P[X1]Y + P[X2]Y + · · ·+ P[Xm]Y.

For i = 1, · · · ,m, the estimator β̂i satisfies

Xiβ̂i = P[Xi]Y, (5.1)

which implies independence by the properties of the isotrope normal distribution. Note
that since X is full-ranked , Xi must also be full-ranked. From (5.1) we deduce

β̂i = (X ′iXi)
−1X ′iY, (5.2)

that gives the second assertion.

In addition we get an approximative independence of the Fisher tests on the compo-
nents of the partition. They are only linked by the estimation of σ2. When the number
of residual degrees of freedom is large, this estimation is almost exact and the link is very
small.

An example of application of the second property is the following : consider an or-
thogonal (for the finest partition) multiple regression model, then

β̂j =
n∑
i=1

Z
(j)
i Yi(
Z

(j)
i

)2 .
It is the same as in the simple regression model with the sole variable Z(j).

Example orthogonal polynomial regression:

Let us consider the quadratic regression model:

Y = µ+ β1Z + β2Z
2 + ε (5.3)

Where the variable Z takes equally spaced values from 1 to n, Z = (n+ 1)/2. let < ., . >
be the scalar product of R n and consider the variables :

T (0) := 1I ; T(1) := Z− Z ; T(2) := (Z− Z)2 − 1

n
< (Z− Z)2, 1I > .

Because it is one-to one, this define a good change of variable, Model (5.3) is equivalent
to

Y = γ0T
(0) + γ1T

(1) + γ2T
(2) + ε. (5.4)
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The information matrix takes the value

X ′X =

 ‖T (0)‖2 < T (0), T (1) > < T (0), T (2) >

< T (1), T (0) > ‖T (1)‖2 < T (1), T (2) >

< T (2), T (0) > < T (2), T (1) > ‖T (2)‖2

 .

This is the Gram matrix (matrix of scalar products) of T (0); T (1); T (2). By symmetry
< T (0), T (1) > and < T (1), T (2) > are zero. On the other hand T (2) has been chosen so
that < T (2), 1I >= 0, giving the fact that the information matrix is diagonal and thus the
model orthogonal.

We have in Model (5.4):

γ̂i =
< T (i), Y >

‖T (i)‖2
.

3 Orthogonality for non-regular models.

Definition 5.4 Let us consider a partition is a non-regular linear model:

Y = X1β1 + · · ·+Xmβm + ε.

Consider a system of constraints C1θ1 = 0, · · · , Cmθm = 0 that make the model identifiable.
We say that these constraints make the partition orthogonal if the vectorial sub-spaces

Vi = {Xiβi : βi ∈ Ker(Ci)} , i = 1, · · · ,m

are orthogonal.

This definition makes perfect sense with the exemple of two-ways analysis of variance.

Proposition 5.4 Consider the two-ways analysis of variance model:

Yi,j,k = µ+ αi + βj + γij + εi,j,k; i = 1, · · · , I, j = 1, · · · , J, k = 1, · · · , nij ,

with nij ≥ 1,
∑

ij nij = n > IJ . There exists a system of constraints making the partition
orthogonal if and only if

nij =
ni+n+j

n++
(5.5)

where for example, ni+ =
∑

i nij and n++ =
∑

j

∑
i nij.

In such a case the constraints are

(i)
I∑
i

αini+ = 0 and (ii)
J∑
j

βjn+j = 0;
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(iii) ∀i = 1, · · · , I,
J∑
j

nijγij = 0 and (iv) ∀j = 1, · · · , J,
I∑
i

nijγij = 0.

Remarks : 1/ A result very similar holds true for the additive model.
2/ Note that if we use the type III decomposition, we implicitly use the ”non weighted
system of constraints”∑

i

αi = 0;
∑
j

βj = 0; ∀i,
∑
j

γi,j = 0 et ∀j,
∑
i

γi,j = 0.

With this system, orthogonality demands equi-repetition nij = const.

Proof : a) Clearly the orthogonality of µ and α is equivalent to (i). The one of µ and
β is equivalent to (ii) .
The orthogonality of the space generated by µ and α with the space generated by γ is
equivalent to (iv).

b) it remains to study the orthogonality of [α], the space generated by α with [β]. Let us
define the two spaces:

A := {(α1, · · · , αI) ∈ R I :
∑
i

αini+ = 0},

and symmetrically B := {(β1, · · · , βJ) ∈ R J :
∑
i

βjn+j = 0}.

Let V (α) and V (β) be two vectors in [α] and [β] respectively, we have

V
(α)
ijk = αi with α = (αi)i ∈ A,

V
(β)
ijk = βj with β = (βj)j ∈ B.

As a consequence if (5.5) holds true

< V (α), V (β) >=
∑
ij

nijαiβj =
∑
ij

ni+αin+jβj
n++

= 0.

c) Reciprocal if [α] and [β] are orthogonal, for all α = (αi)i in A and β = (βj)j in B
we have ∑

ij

nijαiβj = 0. (5.6)

let us fix α. As (5.6) holds true for all β and that the only relation satisfied by the

βj is
∑

j βjn+j = 0, it implies that (
∑
i

nijαi) is proportional to n+j as a function of j.
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Summing in j , we see that the the coefficient of proportionality is necessarily zero. We
have proved that for every vector α in A :∑

ij

nijαi = 0, for all j = i, · · · , J.

Again it implies that the vector nij is proportional to ni+. Let Cj be the coefficient of
proportionality : nij = Cjni+, Summing in j

Cjn++ = n+j .

Plugging this formula in the preceding gives the result.

4 Exercices

Exercise 5.1

* Show the equivalence :

X full-ranked ⇔ X ′ ·X invertible.

Exercise 5.2

* Find the result for additive model corresponding to Proposition 5.4
Same question pour nested model.
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Chapter 6

Asymptotic properties

This chapter studies the behavior of the estimators and the test statistics in a linear model
with an increasing size. It shows that, under weak conditions, the estimators are constant,
asymptotically normal and that the T and F statistics converge to the asymptotic χ2 test.
(Coming soon !)
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Chapter 7

Asymptotic selection of models for
regression

1 Introduction

In many situations one uses several variables in a regression model as a precaution. Some
of the k variables are relevant and some not. Fitting the whole model with say k variables
seems to make sense but it often leads to disagreeable phenomenum : the over-fitting in
the sense that the estimated coefficients follow the data and thus the errors. They don’t
follow the model. A good example is given by Figure 1 where a smooth signal is observed
with some noise and is estimated by a piecewise constant model with 42 sub-intervals.

To avoid this kind of phenomenon, we must introduce the parsimony principle: to
estimate too many parameters leads to an inflation of variance and a poor performance
of the estimation of the response. Thus is is often better to set to zero the coefficients of
some explanatory variables that seem to have a small or non-significative influence.

More precisely, we consider a regression model with k regressors and n observations.

Yi =
∑
j=1,..k

βjZ
(j)
i + εi, i = 1, ..., n

We will assume in most of the parts of this paper that n > k and that the model is regular.

The whole model, the true model, the over-models and the false models

The model with all regressors will be called the ”whole model”. It will be denoted by
m̄. Among the coefficients β1, . . . , βk of the whole model, some may be zero and the
corresponding variables are not needed. They will be called the superfluous variables.
The goal of choice of model is to identify these variables and consequently the true model
that consists of all variables with non-zero beta. This model will be denoted m∗; to identify
m∗ instead of m̄ permits to avoid the over-fitting.

The identification can be false in two direction
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Figure 7.1: Over-fitting with a piecewise constant estimation over 42 sub-intervals.

• we can chose an ”over-model”: it is a model m that strictly contains m∗. As a
consequence in contains some superfluous variables.

• we can chose a ”false model” that does not contain some variables of m∗. For us a
false model may contain some superfluous variables, it does not matter.

As an example if (m̄) = {1, 2, 3, 4, 5} and m∗ = {1, 4, 5}

• {1, 3, 4, 5} is an over-model

• {1, 5} and {1, 3, 5}are two false-models. The first one is a sub-model (of the true
one) but it does not matter.

We will consider the ”all sub-set regression” in the sense that will search the true
model among the set M of the 2k sub-models of m̄. Some exception to that case are

• nested model, for example in polynomial regression : the jth regressor Z
(j)
i , i =

1, ..., n is a power of the second regressor Z
(2)
i (The first one is the constant) and we

want to chose the degree of the polynomial. There are k sub-models only of m̄ to
consider.

• model with an intercept. In almost all the cases, the first regressor is the ”all-one
vector” 1In and in many case one does not want to question the presence of this
vector in the model. In that case the set M of models to be considered is of size
2k−1. This case is very similar to all sub-set regression, so we will omit the details.
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Elementary methods

Test or thresholding.
Tests: Let two models m1 and m2 of the set M of considered models. Let α a level

that may depend on n. When m1 and m2 are nested, one method is to perform a classical
α F test between them. This method leads to two problems; first the number of tests to
perform is very large (3k − 2k) and second it may be non-consistent in the sense that m1

can be chosen preferable to m2 and m2 to m3 while m3 is chosen preferable to m1

Thresholding: One very crude method is to adjust the whole model and perform an α
T -test of each of the k variables and keep the significative ones. This certainly makes sense
if the model (or equivently the regressors) is orthogonal. In the other case it can lead to
strange decisions. For example if Z(1) and Z(2) are very collinear and very collinear to Y ,
the thresholding method will discard both variables because, when Z(1) is present, Z(2) is
no longer needed and vice versa. Nevertheless we will be able to prove some properties of
this method.

Backward regression: to avoid the problem encountered in the example above, the
backward selection method starts with the whole model and then

- at each step, the least significant variable is removed from the model and calculations
are made anew.

-this is done while the variable to be removed is non-significant at a α level. If the
variable is significant, of course it is kept, the procedure stops and the model is chosen .

Stepwise regression is a variant of the preceding where at every step we may add
or remove a variable. We skip the details.

Forward regression is exactly the contrary of backward regression: we start with
the empty model or the model with the sole constant and we add at each step the most
significative variable. We end when the variable to be add is non significative at α level.
The forward regression which is also called ”L2 boosting ” can be applied in the case
k > n.

PRESS or cross-validation
Let m ⊂ m̄ and let us consider the associated regression model

Yi =
∑
j∈m

βjZ
(j)
i + εi,

We denote by Xm the design matrix (the matrix of the linear model) associated to model
m ∈M. We want to estimate the quadratic error of model m

E
(
‖Xm∗β −Xmβ̂m‖2

)
.

A way of estimating this is a ”leave-one-out cross-validation”.
For i = 1, . . . , n we, define Y −i the vector obtained be removing the ith observation.

For m ∈M we define µ−im as the scalar which is the prediction
based on Y −i and on Model m
and taken at the point i.
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We define the PRESS as

PRESS m =

n∑
i=1

(Yi − µ−im )2. (7.1)

Note that one nice property of the PRESS is that the two random variables Yi and µ−im
are independent.
The chosen model is the one with the lowest PRESS.

In general, selection with PRESS is computationally very expensive and has properties
equivalent to Cp or AIC (see above ) see [13] . In particular, as we will see, it tends to
over-estimate the size of the model. For linear model the situation is nicer since we can
compute a simplified form: it can be proved that

PRESSm =
n∑
i=1

(Yi − Ŷ m
i )2

(1− hi)2
,

where hi = X ′i(X
′X)−1Xi, Xi being the ith row of X see, for example, [15] p. 252 for a

proof.
To remedy to this drawback one can use ”leave-p-out cross-validation, but in this case

the computational cost is even larger. A less costly alternative in v-fold cross-validation ,
see [3] for a detailed study .

2 Methods based on L0 penalties

As a general principle, the likelihood method choses always the largest model and this is
true for our regression model. Note that, as we will see later , maximizing the likelihood
is equivalent, for linear model to minimize the sum of square. Heuristic considerations
(based on Kullback information or on Bayesian models) have lead to use the following
penalized likelihood criterions [1]

AIC = −2 log(maximized likelihood) + 2|m|
BIC = −2 log(maximized likelihood) + log(n)|m|

where

• the maximized likelihood is the maximum of the likelihood

• the likelihood is computed on n independent observations.

• The penalty 2|m| or log(n)|m| favors small models( |m| is the size of m).

• the criterions have to be minimized.
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These criterion can be extended as

GIC = −2 log(maximized likelihood) + c(n)|m| (7.2)

where c(n) is a function to be fixed later.
We can define also

AICc = −2 log(maximized likelihood) + n
n+ |m|+ 1

n− |m| − 3

and

Cp(m) =
SS(m)

σ̂m
+ 2|m|

Lemma 7.1 In the linear model
Y = Xβ + ε

we have

• the maximum likelihood estimator of σ2 is σ̂2 = 1/nSS where SS is the sum of
squares

SS = ‖Y −Xβ̂‖2.

•
−2 log( maximized likelihood) = n log(σ̂2) + SS/σ̂2

•
−2 log( maximized likelihood) = n log(σ̂2) + n

•
−2 log( maximized likelihood) = n log(SS/n) + n = n log(SS) + (const).

The proof is omitted, each result being an easy consequence of the preceding one.
Note that the constants (const) appearing in the formulas above play no role and can be
omitted.

All the criterions as PRESS AIC BIC GIC permit a rather easy comparison of models
but , if we perform a ”all subset selection”, the number of sub-model to compare is 2k

which is soon very large. Some ”leaps and bounds algorithm” exist that permit to avoid
to examine all the possibilities but practical limitations are about k = 30. In the other
cases only a partial exploration is performed by a stepwise algorithm. This works rather
well in practice but no theoretical results are known in that case. For these reasons for
large size, one often prefers L1 penalties as LASSO.

The criterion PRESS AIC BIC GIC permit to consider the ”large dimension case” :
k > n only if we limit us to models of size |m| < S with S much smaller than n . Such
models are called sparse models. But in this case again computational problems are heavy.
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3 Comparison of models with AIC, GIC

This section is devoted to the study of the relations of AIC (BIC, GIC) with tests.

Assumption 7.1 Though we will use Gaussian likelihood to estimate and compute the
criterion, we will work under one of the two following hypotheses when n tend to infinity
and when k may depend on n but must satisfy kn = o(n)

• the Gaussian case : the εi, i = 1, . . . , n of the linear model errors are independent
with distribution N(0, σ2), the variance σ2 is of course unknown.

• the errors are centered independent with the same symmetric distribution and finite
variance σ2 and finite order four moment. We assume in addition the Huber condi-
tion : Hn the maximal diagonal element of the ”hat matrix” X(X ′X)−1X ′ tends to
zero (X is the matrix associated to the whole model).

3.1 AIC

Lemma 7.2 Suppose that m1 and m2 are two nested models m1 ⊂ m2, the model m1 is
preferable to m2 for AIC iff

F̂m2/m1
=

(SS(m1)− SS(m2))/(|m2| − |m1|)
SS(m2)/(n− |m2|

>
n− |m2|
|m2| − |m1|

(
exp

(
2

(|m2| − |m1|)
n

)
− 1

)
(7.3)

Again the proof can be omitted. The reader familiar with linear model has recognized
in the left-hand-size of (7.3 ) the statistics of the Fisher test. In other words, AIC performs
a Fisher test, but with a different critical value. We have obviously the same kind of result
for GIC replacing the 2 by c(n).

Suppose now that the number n tends to infinity that m1 is the true or an over-model
and that Assumption 1 is satisfied, then using law or large number and Central limit
theorem under Lindeberg condition (see for example Th 8.3 of Azäıs and Bardet) (since
we are under the null hypothesis) the limit distribution of F̂m2/m1

is

F̂m2/m1
⇒ χ2(p)/p

where ⇒ is the convergence in distribution. Obviously the right-hand side of (7.3 ) con-
verges to 2.

As a consequence AIC performs asymptotically a F test with critical value
2p where p is the difference of degrees of freedom between the two hypotheses.
This corresponds to the following levels.

difference p level
1 0.104
2 0.068
3 0.049
4 0.037
5 0.028
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As a consequence, considering the case where m1 is the true model, the result above shows
that AIC has a probability that tends to a positive limit to prefer every over-model m2 to
the true model. So the probability of choosing m∗ cannot tend to 1.

3.2 BIC, GIC

If we consider the GIC as defined by (7.2). The calculation above shows that the criterion
will prefer model m1 to m2 iff

F̂m2/m1
=

(SS(m1)− SS(m2))/(|m2| − |m1|)
SS(m2)/(n− |m2|)

>
n− |m2|
|m2| − |m1|

(
exp(c(n)

(|m2| − |m1|)
n

)−1

)
Now we assume that c(n)→ +∞ , c(n) = o(n) to get that the right hand side is equivalent
to c(n).

As a consequence the probability of preferring a given over-model is, for n suffiently
large, smaller that the probability of a ξ2(d) distribution to be smaller that K for every
K so it tends to zero.

Since k is assumed to be fixed, the number of over-models is bounded and we obtain
immediately that the probability of ”preferring an over-model to m∗” tends to zero.

3.3 Case of a false model

Suppose that m is ”false”. It is not in general a sub-model of the true model. But it
can be compared to the model m2 = m ∪ m∗. Since m ⊂ m2 we can appy Lemma 7.2
that shows that asymptotically m2 is prefered to m if F̂m2/m ≥ c̃(n) where c̃(n) ' c(n).
Using the same arguments of chapter 8 of Azäıs and Bardet (2005), we see that under
our hypotheses the denominator D = σ̂2 of F̂m2,m tends in probability to σ2 while the
numerator can be written as

N =
(
‖PV (Xβ) + PVXβ̂‖2

)
/d

where V is the orthogonal of [Xm] in [Xm2 ]. Using the normality of β̂ (Th 8.2 of the same
book) we see that what ever the non-centrality parameter ‖PV (Xβ) is, the numerator can
be written as

D = 1/d‖‖PV (Xβ) + Z‖2

where Z has for variance-covariance matrix

PVX(X ′X)−1X ′PV = PV .

Using a rotation argument, this matrix can be transformed, for example, into Id where Id
is the identity of size d and N can be written as the norm a vector in a space of dimension
d as

N =
σ2

d
‖ξ +Wn‖2

where ξ converges to the N(0, Id) distribution and

‖Wn‖2 =
1

σ2
‖PVXβ‖2 =

1

σ2
‖Pm⊥Xβ‖2.
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This last parameter will be called the non-centrality parameter and denoted by NCm:

NCm =
‖Pm⊥Xβ‖2

σ2

Note that this parameter depends additionally on n but we omit that in the notation.
We set now our uniform born on χ2 distributions

Lemma 7.3 - For all integer d ≥ 1 and for all real c(n) greater than 2

P {χ2(d) ≥ c(n)d} ≤ exp(−c(n)/2)

- If NC > 4c(n)d then

P {χ′2(d,NC) ≤ c(n)d} ≤ exp−(
NC

8d
)

Proof: The first part is easy to obtain by an exponential inequality or by exact computation
using integration by parts. Let χ′2 be a variable with distribution χ′2(d,NC). This variable
has the representation

χ′2 = ‖
√
NCe1 + Z‖2,

where e1 is the first vector of the basis and Z is standard normal in R d. Let χ2 = ‖Z‖2 .
Denoting c(n) by c for short, we have

P {χ′2 < cd} = P {χ′ <
√
cd} ≤ P {χ >

√
NC−

√
cd} ≤ P {χ > 1/2

√
NC} = P {χ2 > 1/4NC}.

It suffices to use the first relation.

We turn now to the main results. Suppose that the parameter c(n) satisfies 1 <<
c(n) << n and that every false model m has a non-centrality parameter that satifies
c(n) << NCm, then

(i) Suppose now that m is a false model then using the convergence in probability to
σ2 of the denominator of F̂m2,m we obtain that

P {m prefered to m2} = P {‖ξ +Wn‖2 ≤ dC(n)(1 + op(1))}

≤ P {‖ξ‖ ≥ d
(√

NCm −
√
c(n)(1 + op(1)

)
}

= P {‖ξ‖ ≥ d
(√

NCm(1 + op(1))
)
},

where W and ξ are defined as above. The convergence in distribution of ξ implies that
this probability tends to zero.

As a consequence mixing this case with the case of over-models, we have proven that
GIC chooses the true model with a probability that converges to 1.

(ii) Suppose now in addition that the model is Gaussian,then it is possible to give an
exponential bounds to the probability of a false model m to be preferred to m2 = m∪m∗.
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The false model m is prefered to m2 = m ∪m∗ if F̂m2,m ≤ C̃n. Firstly We can choose n

sufficiently large so that C̃n ≤ 2C(n), secondly we have

F̂m2,m
D
=

χ′2(d,NCm)/d

χ2(n− |m2|)/(n− |m2|)

Using large deviation inequality (in fact just the easier part), except with an exponentially
small (as a function of n ) probability,

χ2(n− |m2|) ≤ (2(n− |m2|))

so that it suffiices to give bound to

P {χ′2(d,NCm)/d ≤ 4C(n)}

and this by Lemma 7.3 is smaller than exp
(
− NCm

8d

)
so we have proved that

P {m prefered to m2} ≤ exp(−((const)n) + exp
(
− NCm

8d

)
.

A first example of application is the very simple case where k is fixed and the matrix
X associated to the whole model satisfies

1/n X ′X →M (7.4)

where M is some definite positive matrix. In that case the computation below proves that
for every false model m

NCm ' γmn

with γm > 0.

Computation of NC

Indeed by the Pythagore Theorem

NCm = ‖Pm⊥Xβ‖2 = ‖Xβ‖2 − ‖PmXβ‖2

We study the two terms separately. Because of our hypothesis

‖Xβ‖2 ' nβ′Mβ.

For the seond term

‖PmXβ‖2 = β′X ′Xm(X ′mXm)−1X ′mXβ ' nβ′Mm,mM
−1
m,mMm,mβ

where Mm1,m2 is the extraction of the matrix M choosing m1 for the lines and m2 for the
columns. So that

‖Pm⊥Xβ‖2 ' nβ′(M −Mm,mM
−1
m,mMm,m)β
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M can bee seen as the Gram matrix (the matrix of norms and scalar products ) of
some set of k vectors in R k, say V1, . . . , Vk (the choice is up to a rotation). Since M is non
singular these vectors are not collinear. A classical linear algebra calculation shows that

M −Mm,mM
−1
m,mMm,m

is the matrix of the quadratic form that associate to the vector b ∈ R k the quantity

‖Πm⊥

k∑
i=1

biVi‖2,

where Πm⊥ is the projector on the orthogonal of the space Sm generated by the vector
that are in m. Since m is a false model β has some coordinates that does not belong to
m and because of the linear independence of the vectors,

∑
βiVi does not belong to Sm.

and we obtain the result.

Note that

• the condition (7.4) is met for example if the regressors are draw from i.i.d. repli-
cates of some random distribution with a second order moment and non-degenerate
variance matrix. This is a direct consequence of the law of large numbers.

• under this condition, it is an exercise, to check that the thresholding method and
the backward method find the true model with a probability that tends to 1, as soon
as the tests are conducted at a level αn that tends to zero sufficiently slowly.

• The result can be generalized to the case where some normalization d(n) of the
information matrix exists such that

1/d(n) X ′X →M

In such a case c(n) must be negligible with respect to d(n).

• When k = kn tends to infinity, we cannot hope to have a property like (7.4) but
our result still prove that if k(n) = o(c(n)) , GIC will chose and over-model with a
probability that tends to zero.

4 Asymptotic oracle inequality

In this section we assume normality. Consider the quadratic risk of estimation and we still
assume a) condition (7.4) with M regular b) that k fixed and c) that 1 << c(n) << n.
Let m̂ the model chosen by GIC (with probability 1 it is unique). We define the risk of
estimation

Rn = E
(
‖Ŷm̂ −Xβ‖2

)
.
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This risk can be partitionned into the risks relative to the choice of a particular model

Rn =
∑
m∈M

Rn(m) :=
∑
m∈M

E
(
‖Ŷm −Xβ‖21Im̂=m

)
Using the decomposition bias, variance, a short computation shows that
if Z is some random variable that can be written

Z = E (Z) + ε = µ+ ε

with ε symmetric and E an event that may depend on ε but whose distribution is invariant
by change of sign of ε, then

E (Z1IE)2 = µ2P (E) + Var (ε1IE) + 2µE (ε1IE) = µ2P (E) + Var (ε1IE).

Remarking that a change of sign of the errors does not modify the choice of model and
using the assumed symmetry of the errors we get

E
(
‖Ŷm −Xβ‖21Im̂=m

)
= ‖Pm⊥(Xβ)‖2P (m̂ = m) + E

(
‖Pmε‖21Im̂=m

)
= J1,m + J2,m

Then every false model m satisfies

‖Pm⊥(Xβ)‖2 ' γmn with γm > 0.

Thus by Lemma 7.3 , for n sufficiently largeNCm ' γmn
σ2 > 4c(n):

P (m̂ = m) ≤ exp−(
γmn

8dm
),

Where dm is the number of missing variables in m: dm = |m∪m∗| − |m|. For over-models
the quantity ‖Pm⊥(Xβ)‖2 vanishes. This implies that∑

m∈M
J1,m → 0.

For the other terms we use the Schwarz inequality

E
(
‖Pmε‖21Im̂=m

)
≤
(
E ‖Pmε‖4P (m 6= m∗)

)1/2
.

Let us compute the quantity E ‖Pmε‖4. Let Pij denote the entry i, j of Pm

E ‖Pmε‖4 =
∑
iji′j′

E (εiPijεjεi′Pi′j′εj′)

=
∑
iji′j′

PijPi′j′E (εiεjεi′εj′).

Because of independance, the last expectation vanishes except if the four indices are pair-
wise equals. It remains three cases to consider
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• i = i′ = j = j′ which contribution is m4
∑

i P
2
ii where m4 is the order 4 moment of

the errors.

• i = j 6= i′ = j′ which contribution is σ4
∑

i 6=i′ PiiPPi′i′

• i = i′ 6= j = j′ or i = j′ 6= j = i′ which contribution is bounded by 2σ4
∑

i 6=j P
2
ij .

Since ∑
i

P 2
ii +

∑
i 6=j

P 2
ij = tr(P 2

m) = tr(Pm) = |m|

∑
i 6=i′

PiiPPi′i′ +
∑
i

P 2
ii = (tr(Pm))2 = |m|2,

it is easy to see that E ‖Pmε‖4 is bounded. Note that in the Gaussian case it
is the expectation of square of a χ2(|m|) variable which can be easily computed to be

σ4(|m|2 + 2|m|) . Finally ∑
m∈M,m 6=m∗

J2,m → 0‘

Finally we have proven that

Rn = E
(
‖Ŷm̂ −Xβ‖2

)
→ |m∗|

The risk we have if we know the true model. The risk with a choice of model by GIC is
asymptotically the same than the risk when the oracle tell us which is the true model.
Such an inequality is called an Oracle inequality
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