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Introduction

The theory of stochastic processes is a powerful tool to study a vast diversity of problems in
the natural sciences, in which randomness is required as a component to describe phenomena. In
this book we consider two general classes of problems arising when studying random models.

Let X = {X(t) : t ∈ T} be a stochastic process with parameter set T defined on some proba-
bility space (Ω,A,P). We will be mainly interested in the following subjects:

1) For each value u in the range space of X(.), understanding the properties of the level sets
of the paths of X , that is, the random sets {t ∈ T : X(t) = u};

2) whenever the process has real values, studying and computing the distribution function of
the random variable MT = supt∈T X(t), that is, the function FMT

(u) = P(MT ≤ u), u ∈ R.

These are classical subjects in Probability Theory and have been considered for a long time in
a variety of contexts. Generally speaking, our framework will be continuous parameter processes,
which means here that T is a subset of the real line (such as a finite or infinite interval) or of some
higher dimensional Euclidean space. When the parameter set T is multidimensional, we will call
X a “random field”.

In most of the theory and the applications that we will consider, the parameter set T will have
some geometric regularity, such as being a manifold embedded in a finite dimensional Euclidean
space or having some more general structure. As for the paths tÃ X(t) of the stochastic function,
we will require that they satisfy regularity properties, such as differentiability of a certain order.
We will also need results on the supremum of random sequences, in which the geometry of the
domain or the regularity of the paths does not play any role. This will provide us of basic and
useful ingredients (such as in Chapter 2) but the emphasis will be on random functions possessing
certain regularities.

For random level sets, our main tools are Rice Formulas. Assume that T is a Borel subset
of the Euclidean space Rd and X a stochastic process or field having regular paths, defined on
some open set containing T and taking values in Rd. For given u ∈ Rd denote by Nu(X;T ) the
number of roots of X(t) = u lying in the set T . Rice Formulas allow one to express the k−th
factorial moment of the random variable Nu(X;T ) as an integral over T k of a some function,
which depends upon the joint distribution of the process and its derivative and is evaluated at the
k−tuples (t1, ..., tk) ∈ T k.

In fact, the main interest lies in the probability distribution of the random variable Nu(X,T ),
which remains unknown: the authors are not aware of any non-trivial situation in which one can
compute this distribution by means of some reasonable formula. Rice formulas appear to be a
contribution to understand the distribution of Nu(X,T ), giving a general expression for its mo-
ments. One can measure to what extent this remains an open subject by the fact that no useful
formula exists - for the time being - to compute the expectation of f [Nu(X,T )] where f : R → R

is some simple function, as for example f(x) = xα when α is not an integer.
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6 INTRODUCTION

When the dimension d of the domain is strictly larger than that of the range space , say d′,
generically the random level set has dimension d−d′ so that the interesting questions do not refer
to the number of points lying in a set, but should aim to understand its geometry, which is of
course richer than in the d = d′ case. The natural questions concern the probabilistic properties
of the geometric measure of the level set, its Euler-Poincaré characteristic and so on. We give
expressions and the corresponding proofs for the moments of the geometric measure of the level
set under quite general conditions. Even though this is generally considered to be known, to our
knowledge rigorous proofs are only available in special cases, such as real-valued random fields
or particular probability laws. Chapter 11 presents some applications to sea-waves. We should
say that the results we present are only a minor part of an important subject which, however ,
remains quite unexplored.

The name of Rice’s formula honors the pioneering work of S.O. Rice, who computed the ex-
pectation of Nu(X;T ) for one-parameter Gaussian stationary processes in the 1940’s and used it
in telecommunications in an early stage of this discipline (this is formula 3.2 of Chapter 3 below).
In the 1950’s and 60’s one can find applications of Rice’s formula to physical oceanography (for
example, in the series of papers by M.S. Longuett-Higgins and collaborators on the statistical
properties of ocean waves, including some useful formulas in the multiparameter case). Applica-
tions to other areas of random mechanics were also developed somewhat later (see the book by
Krée and Soize, 1983).

H. Cramér and M.R. Leadbetter’s excellent book contains a systematic presentation of what
was known by the time it was published (1967), together with connected subjects in Probability
Theory and various applications. The book is on one-parameter processes and most of the mate-
rial concerns Gaussian stationary processes. We still use it as a reference on various subjects.

Around 1970, for one-parameter Gaussian processes rigorous proofs of Rice formulas had al-
ready been given for certain classes of processes, with the contribution among others of K. Ito
(1964), D. Ylvisaker (1965) and Y. Belayev (1966, 1972b). Some of this work included non-
Gaussian processes and the multiparameter case but, to our knowledge, the first treatment of the
multiparameter case in book form is Adler’s “Geometry of Random Fields” (1981).

Our aim is to make a contribution to update the subject of Rice Formulas, including the
improvements that have taken place during the last decades both in the basic theory and its ap-
plications.

There is a part of Probability Theory which refers to level sets of random functions which are
not differentiable. This may have started with Paul Lévy’s definition of local time (see for example
Ikeda and Watanabe (1981) or Karatzas and Shreeve (1998) for a modern presentation of the sub-
ject) and has led to the study of the geometry of level sets of semimartingales or some other classes
for one-parameter processes and similar problems for random fields. A short list of references on
this subject can also consider the books by Kahane (1985) and Revuz-Yor (1998), and the paper
by Ehm (1981). We are not considering this kind of problems in this book, our processes and fields
have regular paths and for fixed height, almost surely, the level sets are nice sets. One can build
up a bridge between these two worlds: take a process with non-differentiable paths, smooth it by
means of some device, and try to reconstruct relevant properties of the geometry of the level sets
of the original (irregular) paths, from the regularized ones. This leads to asymptotic expansions
which are interesting by themselves and have important applications (See for example Jacod (1998,
2000) for polygonal and related approximations and Wschebor (2006) for a review without proofs).

With respect to the second main subject of this book, the general situation is that the com-
putation of the distribution function of the supremum by means of a closed formula is known only
for a very restricted number of stochastic processes (and trivial functions of them). The following
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is a list of one-dimensional parameter processes for which - as far as the authors know - an actual
formula exists for the distribution of M =M[0,T ]:

• The Brownian Motion or Wiener process {W (t) : t ≥ 0}, for which the distribution of
M has in fact been known since the 19 th century (Kelvin, D. André).

• The Brownian Bridge, B(t) :=W (t)− tW (1) (0 ≤ t ≤ 1).

• B(t)−
∫ 1
0
B(s)ds (Darling, 1983).

• The Brownian Motion with a linear drift (Malmquist, 1954, Shepp, 1979).

•
∫ t
0
W (s)ds+ yt (McKean, 1963, Goldman, 1971, Lachal, 1991).

• The restriction to the boundary of the unit square of the Wiener sheet (Paranjape, Park,
1973)

• Each one of the stationary Gaussian processes with covariance equal to:
– Γ(t) = e−|t| (Ornstein-Uhlenbeck process, DeLong, 1981),
– Γ(t) = (1− |t|)+, T a positive integer (Slepian process, Slepian 1961, Shepp, 1971),
– Γ(t) even, periodic with with period 2, Γ(t) = 1 − α|t| for 0 ≤ |t| ≤ 1, 0 < α ≤ 2,

(Shepp and Slepian 1976),
– Γ(t) =

(
1−|t|/(1−β)

)
∨
(
−β/(1−β)

)
, |t| < (1−β)/β, 0 < β ≤ 1/2, T = (1−β)/β

(Cressie 1980),
– Γ(t) = cos t (Berman 1971b, Delmas 2003),
– Γ(t) = [2|t| − 1]2, T = 1 (Cabaña, 1991).

The methods to find formulas for the distribution of the supremum over an interval of this list
of processes, are ad hoc, hence non transposable to more general random functions, even in the
Gaussian context. Given the interest in the distribution of the random variable MT , arising in a
diversity of theoretical and technical questions, a large body of mathematics has been developed
beyond these particular formulas.

A first way has been to obtain general inequalities for the distribution function FMT
(u). Of

course, if one can not compute, then one tries to get upper or lower bounds. This is the subject
of Chapter 2, which concerns Gaussian processes. The inequalities therein are essential starting
points for the remainder of the book: a good part of the theory in the Gaussian case depends on
these results.

However, generally speaking the situation is that these inequalities, when applied to the com-
putation of the distribution of the random variable MT , have two drawbacks. First, the bounds
depend on certain parameters for which it is hard or impossible to obtain sharp estimates, im-
plying that the actual computation of probabilities can become inaccurate or plainly useless, for
statistical or other purposes. Second, these bounds hold for general classes of random functions,
but may become rough when applied to a particular stochastic process or field. Hence, a crucial
question is to improve the estimations derived from the general theory contained in Chapter 2.
This is one of the purposes of this book, which is attained to a certain extent but at the same
time, leaves a good deal of open problems. This question is considered in Chapters 4, 5, 8 and 9.

A second way has been to describe the behavior of FMT
(u) under various asymptotics. This

subject is considered in several chapters. Especially, a part of Chapter 8 is devoted to the asymp-
totic behavior of the tail 1 − FMT

(u) for a random field defined on a fixed domain as u → +∞.
For extensions and a diversity of results concerning asymptotic behavior as u→ +∞ that are not
mentioned here, we refer the reader to the books (and the references therein) by Berman (1992
a), Lifshits (1995) and Piterbarg (1996).

The third way consists of studying the regularity of the function u Ã FMT
(u). This is con-

sidered in Chapter 7.

————————————————-



8 INTRODUCTION

We have attempted to make the book as self-contained as possible. The reader is expected
ed to have attained at least the level of a postgraduate student with basic training in Probability
Theory and Analysis, including some elementary Fourier Analysis. However, given the intention
to limit its total size, in certain points we have not respected the rule of being self-contained. Here
is a list of what we consider the most relevant cases in which we use ideas and results and do not
give proofs: Kolmogorov’s extension theorem (Chapter 1); the definition and main properties of
the Itô integrals and its basic properties, which are used in the first two chapters, including Itô’s
formula, the quadratic variation and the exponential martingales; the convergence of empirical
measures and asymptotic methods in Statistics, of which we give a quick account without proofs
of the results we need in Chapter 4; the co-area formula (Chapter 6) from integral geometry; er-
godicity, which is underlies certain number of results of Chapter 10; and finally, the computation
of the density of the eigenvalues of random matrices, used in Chapter 8. From another point of
view, in the applied examples the discussion of the underlying non-mathematical background has
not been performed in detail, and other references should be consulted to go more deeply into the
subjects. In all these cases we refer the reader to other books or scientific papers, expecting that
this will suffice for a complete understanding .

At the same time, we would like this book to be useful for people working in research. In
fact, we think that the mathematical reader looking for active research problems will find here
a variety of open and interesting questions. These problems have a wide spectrum, from those
which are tractable by the methods contained here to others which appear to be harder and seem
to require new ideas. We would be happy if this book could be useful researchers in various
areas of Mathematics (of course, Probability and Mathematical Statistics, but also Numerical
Analysis and Algorithmic Complexity). At the same time, we believe the results should be useful
for people using statistical modelling in Engineering, Econometrics and Biology, and hope to have
contributed at least a little to build bridges in these directions.

Applications deserve a good deal of our attention. In what concerns applications to problems
outside Mathematics we must recognize that our choice is strongly dependent on the taste and
experience of the authors: the reader will find a section on Genetics, one on Inference on mixtures
of populations and another one on Statistical Modelling of ocean waves. However, we have not
included applications to Mathematical Physics or Econometrics in which the fine properties of the
distribution of the maximum of a stochastic process play a central role.

We have also included applications of random fields methods to other parts of Mathematics,
especially to systems of equations and condition numbers. This is a new field, even though some
of the problems it considers are quite old, and has become a very important theme that mixes up
different branches of Mathematics. One of the aims is to help understanding algorithm complexity,
via the randomization of the problems which algorithms are designed to solve. One can also apply
random field methods to study the conditioning of systems of inequalities (as it has been done in
Cucker and Wschebor, 2003) but this is a subject which is only starting and we preferred not to
include it in this book.

Numerical methods appear in various chapters. They are by no means simple and are in fact
crucial to be able to apply the mathematical results, so that we want to stress their importance.
Some are solved, we can for example refer to the Matlab toolbox MAGP described in Chapter
9. Some of them appear to be difficult: even in the simplest cases of Gaussian one-dimensional
parameter processes defined on an interval, the numerical computation of the moments of the
number of crossings of the paths with a given level, presents hard obstacles and is a source of
interesting open problems.

————————————————-
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Let us now give a quick overview of the contents of each chapter. This may help the reader
to choose. At the end, we also add our advice on the order in which the various chapters might
be read, especially on account of the chain of pre-requisites they require.

Chapter 1 contains the basic definitions of stochastic processes and Kolmogorov-type condi-
tions implying that, almost surely, the paths have a certain regularity property (continuity, Hölder
condition, differentiability). These classical and well-known results are not optimal, but they are
sufficient for most uses. We have also included a reminder on the Gaussian distribution and its
elementary properties, since a large part of the book is devoted to Gaussian processes and the
reader may appreciate to have them in situ. We have not included X. Fernique (1974) and M.
Talagrand (1985) beautiful results giving necessary and sufficient conditions for the continuity of
the paths of Gaussian processes in the stationary and non-stationary cases respectively. We are
not using them in this book.

Chapter 2 is about inequalities for Gaussian processes, mainly related to the distribution of
the supremum. For comparison inequalities (which we call of “Slepian-type”) the main result
is the Li and Shao inequality (2002), which includes and improves a large set of similar results
that have been in use during fifty years or so, apparently starting in a paper by Plackett in 1954,
motivated by statistical linear models with Gaussian noise.

The remainder of this chapter is devoted to the classical upper-bounds for the tails of the
distribution of the supremum. They roughly say that if X is a centered Gaussian process with
bounded paths, then 1 − FMT

(u), is bounded above by some constant times a Gaussian density.
This was already known around 1975, due to a series of key contributions: Dudley (1967), Lan-
dau and Shepp (1970), Marcus and Shepp (1972), Fernique (1974), Sudakov and Tsirelson (1974)
and Borell (1975). To present isoperimetric inequalities, the basis is a quite recent proof of C.
Borell (2003) of the extension to a general case of Ehrhard’s inequality (1983), a Minkowski-type
inequality for the Gaussian measure in Rn.

Rice formulas are proved in Chapters 3 and 6. Chapter 3 starts with a proof for Gauss-
ian one-parameter processes, which is very simple; then, we consider the general non-Gaussian
case. For various uses, one only wants to know whether the moments of crossings are finite, or
to give upper-bounds for them, but without direct use of Rice formulas, since these can lead to
non-tractable calculations. This has been the motivation for a series of papers deducing bounds
from hypothesis on the process, mainly in the Gaussian case, which are cited in Chapter 3. In
the same chapter we give a general simple criterion to ensure finiteness and obtain some rough
bounds for the moments. To illustrate this kind of results, a corollary is that if X is a Gaussian
process defined on a compact interval [0, T ] of the real line having C∞−paths and satisfying the
non-degeneracy condition Var(X(t)) > 0 for every t ∈ [0, T ] then, all the moments of crossings of
any level are finite.

Rice formulas for random fields are considered in Chapter 6. Proofs are new and self con-
tained, except for the already mentioned co-area formula. In all cases, formulas for the moments
of weighted (or “marked”) crossings are stated and proved. They are used in the sequel for various
applications and moreover, are important by themselves.

Chapter 4 contains two parts: 1) in Sections 1,2,3, X is a Gaussian process defined on a
bounded interval of the real line, and some initial estimates for P(M > u) are given, based on
computations of the first two moments of the number of crossings; 2) in Sections 4, and 5 two
statistical applications are considered, the first one to genomics and the second one to statistical
inference on mixtures of populations. The common feature of these two applications is that the
relevant statistic for hypothesis testing is the maximum of a certain Gaussian process, so that
the calculation of its distribution appears to be naturally related to the methods in the previous
sections.
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Chapter 5 establishes a bridge between the distribution of the maximum on an interval of a
one-parameter process and the factorial moments of up-crossings of the paths. The main result is
the general formula 5.2, which expresses the tail of the distribution of the maximum as the sum
of a series (the “Rice series”) defined in terms of certain factorial moments of the up-crossings
of the given process. Rice series have been used for a long time with the aim of computing the
distribution of the maximum of some special one-parameter Gaussian processes, as for example
in the work of Miroshin (1974). The main point in theorems 5.1, 5.6 and 5.7 is that they provide
general sufficient conditions to compute or approximate the distribution of the maximum. Even
though some of the theoretical results are valid for non-Gaussian processes, if one wishes to apply
them in specific cases, it becomes hard to compute the factorial moments of up-crossings for non-
Gaussian processes. An interesting feature of Rice series is its enveloping property: replacing the
total sum of the series by partial sums gives upper and lower bounds for the distribution of the
maximum, and a fortiori, the error when one replaces the total sum by a partial sum is bounded
by the absolute value of the last computed term. This allows one to perform the calculation of
the distribution of the maximum with some efficiency. We have included a comparison with the
computation based upon Monte-Carlo simulation of the paths of the process. However, in various
situations more efficient methods exist; they are considered in Chapter 9.

In the first section of Chapter 7 we prove a general formula for the density of the probabil-
ity distribution of the maximum which is valid for a large class of random fields. This is used
in the next section to give strong results on the regularity of the distribution of one-parameter
Gaussian process; as an example, if the paths are of class C∞ and the joint law of the process
and its derivatives is non-degenerate (in the sense specified in the text), then the distribution of
the maximum is also of class C∞. When it comes to random fields, the situation is more compli-
cated and the known results are essentially weaker, as one can see in the last section of this chapter.

Chapters 4 and 5, as well as 8 and 9, point towards improving the computation of the dis-
tribution of the maximum on the basis of special properties of the process, such as the regularity
of the paths and the domain. In chapter 8 one profits from the implicit formula for the density
of the distribution of the maximum that has been proved in Chapter 7 to study second order
approximation of the tails of the distribution as the level u tends to +∞, as done in Adler and
Taylor’s recent book (2007) by other methods. The ”direct method” employed here is suited to
obtain also non-asymptotic results.

Chapter 10 contains a short account of limit theorems when the time domain grows to infinity,
including the Volkonskii-Rozanov theorem on the asymptotic Poisson character of the stream of
up-crossings for one-parameter stationary Gaussian processes under an appropriate normalization.
This implies that the distribution of the maximum, after re-scaling, converges to a Gumbel distri-
bution. The next section establishes a central limit theorem for non-linear functionals of Gaussian
process, which applies to the limit behavior of the number of crossings.

Chapter 11 describes the modelling of the surface of the sea using Gaussian random fields.
Some geometric characteristics of waves, as length of crests and velocities of contours are in-
troduced. The Rice formula is used to deduce, from the directional spectrum of the sea, some
properties of the distribution of these characteristics. Some non-Gaussian generalizations are pro-
posed in the last section.

In Chapter 12 we study random systems of equations over the reals, having more than one
unknown. For polynomial systems, the first significant results on the number or roots have been
published in the 1990’s, starting with the Shub-Smale theorem (1993) which gives a simple elegant
formula for the expectation of the number of roots. This is a fascinating subject in which, the
main questions remain unanswered. What can one say about the probability distribution of the
number of solutions and how does it depend on the probability law of the coefficients? What is
the probability of having no solution? What can one say about the distribution of the roots in
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space and how can this help to solve the system numerically? How all these things behave as
the number of unknowns grows indefinitely? What about the same questions for undetermined
systems? And so on...

Answering some of these natural questions would imply at the same time making progress in
key problems in Numerical Analysis and Algorithmic Complexity, as well as in other areas. The
content of the chapter is extremely modest with respect to the above mentioned questions, and it is
our hope that it may stimulate other people to work in the numerous problems arising in this field.

The last chapter is on condition numbers. Roughly speaking, the condition number of a
problem measures the difficulty of the problem to be solved by any algorithm. Of course, there
are many measures of this sort. The standard procedure is to give a metric on the space of
problems and define the condition number of a problem as the inverse of its distance to the set
of ill-posed problems, possibly with some additional normalization. In this chapter, we consider
the simplest situation, in which a “problem” is a square system of linear equations and the set
of ill-posed problems is the set of systems in which the matrix of coefficients is non-invertible.
The condition number turns out to be related to the singular values of the matrix of coefficients.
The role of condition numbers in numerical linear algebra is well-known since the 1940’s, when
they were introduced by Turing (1948) and Von Neumann and Goldstine (1947). See also Smale
(1997).

Condition numbers appear in the estimation of the complexity of algorithms in a natural way.
When the choice of the problem is performed at random, the condition number becomes a random
variable. Of course, its probability distribution will depend upon the underlying probability law
on the set of problems. In the linear case, computing the probability distribution of the condition
number becomes a problem on the spectrum of random matrices. The importance of studying
the distribution of condition numbers of random matrices has been put forward by Smale (1985).
The first precise result is due to A. Edelman (1988), who computed the equivalent of the expected
value of the logarithm of the condition number, when the matrix size n tends to infinity.

The methods we present to study the probability distribution of the condition number of
square random matrices rely again on random fields and Rice formula. They are not optimal in
some standard cases but, in some other ones, produce at present the best known bounds. We do
not consider the similar - and much harder - questions for non-linear systems. The reader can
consult the book by L. Blum et alt (1998) which includes a basic presentation of this subject or
Cucker et alt (2008) .
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CHAPTER 1

Classical results on the regularity of the paths.

This initial chapter contains a number of elements that will be repeatedly used along the book
and constitute a necessary background to read it.

We will need to study the paths of random processes and fields, and the analytical properties
of these functions play a relevant role. This arises a certain number of basic questions, such as
whether the paths belong to a certain regularity class of functions, what can one say about their
global or local extrema, about local inversion and so on. A typical situation is that the available
knowledge on the random function is given by its probability law. So, one is willing to know what
one can deduce from this probability law about these kind of properties of the paths. Generally
speaking, the results one can expect is the existence of a “version” of the random function having
good analytical properties. A version is a random function which, at each parameter value, coin-
cides almost surely with the given one.

These are the contents of Section 4 of this chapter, which includes the classical theorems due
to A.N. Kolmogorov and the results of Bulinskaya and Ylvisaker about the existence of critical
points or local extrema having given values. The essence of all this has been well-known for a
long time and in some cases proofs are only sketched. In other cases, we give full proofs and some
refinements which will be necessary for further use.

As for the previous sections, the first one contains starting notational conventions and the
statement of the Kolmogorov extension theorem of Measure Theory and the other two are a quick
overview of the Gaussian distribution and some connected results. Even though this is completely
elementary, we call the attention of the reader upon Proposition 1.2 which is the Gaussian regres-
sion formula, which will appear once and again along the book, and can be considered as the basis
of the calculations with the Gaussian distribution.

1. Kolmogorov’s Extension Theorem.

Let (Ω,A,P) be a probability space and (F,F) a measurable space. For any measurable
function

Y : (Ω,A)→ (F,F),

that is, a random variable with values in F , the image measure

Q(A) = P(Y −1(A)) (A ∈ F)

is called the “distribution” of Y .
Except for explicit statement of the contrary, we will assume that probability spaces are

complete, that is, every subset of a set having zero probability, is measurable. Let us recall that
if (F,F , µ) is a measure space, one can always define its completion (F,F1, µ1) by putting:

(1.1) F1 = {A : ∃B,C,A = B 4 C, such that B ∈ F , C ⊂ D ∈ F , µ(D) = 0}
and for A ∈ F1, µ1(A) = µ(B) whenever A admits the representation in (1.1). One can check
that (F,F1, µ1) is a complete measure space and µ1 an extension of µ.

A “real-valued stochastic process indexed by the set T” is a collection of random variables
{X(t) : t ∈ T} defined on some probability space (Ω,A,P).

15
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In what follows, we will assume that the process is “bi-measurable”. This means that we have
a σ-algebra T of subsets of T and a Borel-measurable function of the pair (t, ω) to the reals:

X : (T × Ω, T × A)→ (R,BR)

(BR denotes the Borel σ-algebra in R) so that:

X(t)(ω) = X(t, ω).

Let T be a set and RT = {g : T → R} the set of real-valued functions defined on T (in what
follows in this section, one may replace R by Rd, d > 1).

For n = 1, 2, ... , t1, t2, . . . , tn n distinct elements of T and B1, B2, . . . , Bn Borel sets in R,
we denote:

C(t1, t2, . . . , tn;B1, B2, . . . , Bn) =
{
g ∈ R

T : g(tj) ∈ Bj , j = 1, 2, .., n
}

and C the family of all sets of the form C(t1, t2, . . . , tn;B1, B2, . . . , Bn). These are usually called
the “cylinder sets depending on t1, t2, . . . , tn”. The smallest σ-algebra of parts of RT containing
C will be called the Borel σ-algebra of RT and denoted by σ(C).

Consider now a family of probability measures

(1.2) {Pt1,t2,...,tn}t1,t2,...,tn∈T ; n=1,2,...
as follows: for each n = 1, 2, .. and each n-tuple t1, t2, . . . , tn of distinct elements of T , Pt1,t2,...,tn
is a probability measure on the Borel sets of the product space Xt1×Xt2× ...×Xtn where Xt = R

for each t ∈ T (so that this product space is canonically identified to Rn).
We say that the probability measures (1.2) satisfy the “consistency condition” if for any choice

of n = 1, 2, .. and distinct t1, . . . , tn, tn+1 ∈ T we have:

Pt1,...,tn,tn+1(B × R) = Pt1,...,tn(B)

for any Borel set B in Xt1× ...×Xtn . The following is the basic Kolmogorov’s Extension Theorem,
that we state and do not prove here.

Theorem 1.1 (Kolmogorov). {Pt1,t2,...,tn}t1,t2,...,tn∈T ; n=1,2,...,satisfy the consistency condi-

tion if and only if there exists one and only one probability measure P on σ(C) such that

(1.3) P (C(t1, . . . , tn;B1, . . . , Bn)) = Pt1,...,tn(B1 × · · · ×Bn)
for any choice of n = 1, 2, . . ., distinct t1, . . . , tn ∈ T and Bj Borel sets in Xtj , j = 1, . . . , n.

It is clear that if there exists a probability measure P on σ(C) satisfying (1.3) then the
consistency conditions must hold since

C(t1, . . . , tn, tn+1;B1, . . . , Bn, Xtn+1) = C(t1, . . . , tn;B1, . . . , Bn)

So, the question is to prove the converse. This can be done in two steps: 1) define P on the family
of cylinders C using (1.3) and show that the definition is unambiguous (note that each cylinder
has more than one representation); 2) apply Caratheodory’s Theorem on extension of measures
to prove that this P can be extended in a unique form to σ(C).

1.1. Remarks.

(1) The above Theorem is interesting when T is an infinite set. The purpose is to be able
to measure the probability of sets of functions from T to R (i.e. subsets of RT ) which
can not be defined by means of a finite number of coordinates, which amounts to saying
only looking at the values of the functions at a finite number of t−values.

Notice that in the case of cylinders, if one wants to know whether a given function
g : T → R belongs to C(t1, . . . , tn;B1, . . . , Bn) it suffices to look at the values of g at
the finite set of points t1, . . . , tn and check if g(tj) ∈ Bj for j = 1, . . . , n. However, if one
takes for example, T = Z (the integers) and considers the sets of functions:

A =

{
g : g : T → R, lim

t→+∞
g(t) exists and is finite

}
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or

B =

{
g : g : T → R , sup

t∈T
|g(t)| ≤ 1

}

then it is clear that these sets are in σ(C) but are not cylinders (they “depend on an
infinite number of coordinates”).

(2) In general σ(C) is strictly smaller than the family of all subsets of RT . To see this, one
can check that

(1.4) σ(C) = {A ⊂ R
T : ∃TA ⊂ T, TA countable and BA a Borel set in R

TA , such that

g ∈ A if and only if g/TA ∈ BA}.
The proof of (1.4) follows immediately from the fact that the right-hand side is a σ-
algebra containing C. (1.4) says that a subset of RT is a Borel set if and only if it
“depends only on a countable set of parameter values”.
Hence, if T is uncountable, the sets

{
g ∈ R

T : g is a bounded function
}

or {
g ∈ R

T : g is a bounded function , |g(t)| ≤ 1 for all t ∈ T
}

do not belong to σ(C). Another simple example is the following: If T = [0, 1], then
{
g ∈ R

T : g is a continuous function
}

is not a Borel set in RT ,since it is obvious that there does not exist a countable subset
of [0, 1] having the determining property in (1.4). These examples lead to the notion of
“separable process” that we will introduce later on.

(3) In the special case when Ω = RT , A = σ(C) and X(t)(ω) = ω(t), {X(t) : t ∈ T} is called
a “canonical process”.

(4) We will say that the stochastic process {Y (t) : t ∈ T} is a “version” of the process
{X(t) : t ∈ T} if P(X(t) = Y (t)) = 1 for each t ∈ T .

2. Reminder on the Normal Distribution.

Let µ be a probability measure on the Borel subsets of Rd. Its Fourier transform µ̂ : Rd → C

is defined as

µ̂(z) =

∫

Rd

exp(i 〈z, x〉) µ(dx)

where 〈., .〉 denotes the usual scalar product in Rd.
We will use Bochner’s Theorem (see for example Feller, 1966): µ̂ is the Fourier transform of

a Borel probability measure on Rd if and only if the following three conditions hold true:

(1) µ̂(0) = 1
(2) µ̂ is continuous
(3) µ̂ is positive semi-definite, that is for any n = 1, 2, ... and any choice of the complex

numbers c1, . . . , cn and of the points z1, . . . , zn one has

n∑

j,k=1

µ̂(zj − zk) cj ck ≥ 0.

The random vector ξ with values in Rd is said to have the “normal distribution” - or the
“Gaussian distribution” - with parameters (m,Σ)” [m ∈ Rd and Σ a d × d positive semi-definite
matrix] if the Fourier transform of the probability distribution µξ of ξ is equal to:

µ̂ξ(z) = exp

[
i 〈m, z〉 − 1

2
〈z,Σz〉

]
, z ∈ R

d.
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When m = 0 and Σ = I = identity d× d matrix, the distribution of ξ is called “standard normal
in Rd”. For d = 1, we use the notation

ϕ(x) =
1√
2π
e−

1
2x
2

and Φ(x) =

∫ x

−∞
ϕ(y) dy

for the density and the cumulative distribution function of a standard normal random variable,
respectively.

If Σ is non-singular, then µξ is said to be ”non-degenerate” and one can verify that it has a
density with respect to Lebesgue measure given by

µξ(dx) =
1

(2π)
d
2 (det(Σ))

1
2

exp

[
−1

2
(x−m)TΣ−1(x−m)

]
dx

xT denotes the transpose of x. One can check that:

m = E(ξ) , Σ = Var(ξ) = E
(
(ξ −m)(ξ −m)T

)
,

so that m and Σ are respectively the mean and the variance of ξ.

From the above definition it follows that if the random vector ξ with values in Rd has a normal
distribution with parameters (m,Σ), A is a real matrix with n rows and d columns and b is a
non-random element of Rn, then the random vector

Aξ + b

with values in Rn has normal distribution with parameters (Am+ b, AΣAT ). In particular, if Σ is
non-singular, the coordinates of the random vector

Σ−1/2(ξ −m)

are independent random variables with standard normal distribution on the real line.
Assume now that we have a pair ξ, η or random vectors in Rd and Rd

′

respectively, having
finite moments of order 2. We define the d× d′ covariance matrix as

Cov(ξ, η) = E
(
(ξ − E(ξ)(η − E(η)T

)
.

It follows that if the distribution of the random vector (ξ, η) in Rd+d′ is normal, and Cov(ξ, η) = 0,
then the random vectors ξ, η are independent. A consequence of this is the following useful formula,
which is standard in Statistics and gives a version for the conditional expectation of a function of
ξ given the value of η.

Proposition 1.2. Let ξ, η be two random vectors with values in Rd and Rd
′

respectively and
assume that the distribution of (ξ, η) in Rd+d′ is normal and Var(η) is non-singular. Then, for
any bounded function f : Rd → R we have:

(1.5) E
(
f(ξ)

∣∣η = y
)
= E(f(ζ + Cy))

for almost every y, where

(1.6) C = Cov(ξ, η)[Var(η)]−1

and ζ is a random vector with values in Rd, having normal distribution with parameters

(1.7)
(
E(ξ)− CE(η), Var(ξ)− Cov(ξ, η)[Var(η)]−1 [Cov(ξ, η)]T

)
.

Proof. The proof consists in choosing the matrix C so that the random vector

ζ = ξ − C η

becomes independent of η. For this purpose, we need that

Cov (ξ − C η, η) = 0

and this leads to the value of C given by (1.6). (1.7) follows immediately. ¤
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In what follows, we will call “Gaussian regression” the version of the conditional expectation
given by formula (1.5). To close this quick list of basic properties, we mention that a useful
property of the Gaussian distribution is stability under passage to the limit (See Exercise 1.5
below).

Let r : T × T → R be a positive semi-definite function, and m : T → R a function. In this
more general context, that r is a positive semi-definite function means that for any n = 1, 2, ...
and any choice of distinct t1, . . . , tn ∈ T the matrix

((r(tj , tk)))j,k=1,...,n

is positive semi-definite.
[This is consistent with the previous definition, which corresponds to saying that r(s, t) =

µ̂(s− t), s, t ∈ Rd is positive semi definite].
Take now for Pt1,...,tn the Gaussian probability measure in Rn with mean

mt1,...,tn := (m(t1), . . . ,m(tn))
T

and variance matrix

Σt1,...,tn := ((r(tj , tk)))j,k=1,...,n .

It is easily verified that the set of probability measures {Pt1,...,tn} verifies the consistency condition,
so that Kolmogorov’s Theorem applies and there exists a unique probability measure P on the
measurable space (RT , σ(C)) which restricted to the cylinder sets depending on t1, . . . , tn is
Pt1,...,tn for any choice of distinct parameter values t1, . . . , tn. P is called the “Gaussian measure
generated by the pair (m, r)”. If {X(t) : t ∈ T} is a real-valued stochastic process with distribution
P one verifies that:

- for any choice of distinct parameter values t1, . . . , tn, the joint distribution of the random
variables X(t1), . . . , X(tn) is Gaussian with mean mt1,...,tn and variance Σt1,...,tn

- E (X(t)) = m(t) for t ∈ T
- Cov(X(s), X(t)) = E ((X(s)−m(s)) (X(t)−m(t))) = r(s, t) for s, t ∈ T.
A class of examples which appears frequently in applications is the d-parameter real-valued

Gaussian processes which are centered and stationary, which means that

T = R
d, m(t) = 0, r(s, t) = Γ(t− s).

A general definition of strictly stationary processes will be given in Section 2 of Chapter 10.
If the function Γ is continuous, Γ(0) 6= 0, one can write

Γ(τ) =

∫

Rd

exp(i 〈τ, x〉) µ(dx),

where µ is a Borel measure on Rd with total mass equal to Γ(0). µ is called the “spectral
measure” of the process. We will usually assume that Γ(0) = 1, i.e. that µ is a probability
measure which is simply obtained by replacing the original process

{
X(t) : t ∈ Rd

}
by the process{

X(t)

(Γ(0))
1
2
: t ∈ Rd

}
.

Example 1.1 (Trigonometric polynomials). An important example of stationary Gaussian
processes is the following.

Suppose µ is a purely atomic probability symmetric measure on the real line, that is, there
exists a sequence {xn}n=1,2,.. of positive real numbers such that

µ({xn}) = µ({−xn}) =
1

2
cn for n = 1, 2, ... ; µ({0}) = c0 ;

∞∑

n=0

cn = 1.

Then a centered Gaussian process having µ as spectral measure is

(1.8) X(t) = c
1
2
0 ξ0 +

∞∑

n=1

c
1
2
n [ξn cos (txn) + ξ−n sin (txn)] , t ∈ R,
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where the {ξn}n∈Z is a sequence of independent identically distributed random variables, each of

them having a standard normal distribution. In fact, the series in (1.8) converges in L2(Ω,F , P )
and

E (X(t)) = 0 and E (X(s)X(t)) = c0 +

∞∑

n=1

cn cos [(t− s)xn] = µ̂(t− s)

We will use the notation

(1.9) λk :=

∫

R

xk µ(dx), k = 0, 1, 2, ...

whenever the integral exists. λk is the “k-th spectral moment” of the process.

An extension of the preceding class of examples is the following.
Let (T, T , ρ) be a measure space,H = L2

R
(T, T , ρ) the Hilbert space of real-valued square integrable

functions on it and {ϕn(t)}n=1,2,... an orthonormal sequence in H. We assume that each function

ϕn : T → R is bounded and denote Mn = sup
t∈T

|ϕn(t)|.
In addition, let {cn}n=1,2,.. be a sequence of positive numbers such that

∞∑

n=1

cn <∞,
∞∑

n=1

cnM
2
n <∞

and {ξn}n=1,2,... a sequence of independent identically distributed random variables, each of them
with standard normal distribution in R.

Then, the stochastic process

(1.10) X(t) =
∞∑

n=1

c
1
2
n ξn ϕn(t)

is Gaussian, centered with covariance

r(s, t) = E (X(s)X(t)} =
∞∑

n=1

cn ϕn(s) ϕn(t).

Formulas (1.8) and (1.10) are simple cases of spectral representations of Gaussian processes, which
is an important subject, both for theoretical purposes and for applications. A compact presen-
tation of this subject, including the Karhunen-Loève representation and the connection with Re-
producing Kernel Hilbert Spaces, can be found in Fernique’s Lecture Notes (1974).

3. 0-1 law for Gaussian processes.

We will prove a 0-1 law for Gaussian processes in this section, without attempting full gener-
ality. This will be sufficient for our requirements in what follows. For a more general treatment,
see Fernique (1974).

Definition 1.3. Let X = {X(t) : t ∈ T} , Y = {Y (t) : t ∈ S} be real-valued stochastic processes
defined of some probability space (Ω,A, P ). X and Y are said to be independent if for any choice
of the parameter values t1, . . . , tn ∈ T ; s1, . . . , sm ∈ S, n,m ≥ 1, the random vectors

(X(t1), . . . , X(tn)), (Y (s1), . . . , Y (sm))

are independent.

Proposition 1.4. Let the processes X and Y be independent and E (respectively F ) belong
to the σ-algebra generated by the cylinders in RT (respectively RS). Then:

(1.11) P(X(.) ∈ E, Y (.) ∈ F ) = P(X(.) ∈ E)P(Y (.) ∈ F )
Proof. (1.11) holds true for cylinders. Uniqueness in the extension Theorem provides the

result. ¤
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Theorem 1.5. [0 or 1 Law for Gaussian Processes]
Let X = {X(t) : t ∈ T} be a real-valued centered Gaussian process defined on some probability
space (Ω,A,P) and (E, E) a measurable space, where E is a linear subspace of RT and the σ-
algebra E has the property that for any choice of the scalars a, b ∈ R, the function (x, y)Ã ax+ by
defined on E×E is measurable with respect to the product σ-algebra. We assume that the function
X : Ω→ E defined as X(ω) = X(., ω) is measurable (Ω,A)→ (E, E).
Then, if L is a measurable subspace of E, one has

P(X(.) ∈ L) = 0 or 1.

Proof. Let
{
X(1)(t) : t ∈ T

}
,
{
X(2)(t) : t ∈ T

}
be two independent processes each of them

having the same distribution as the given process {X(t) : t ∈ T}.
For each λ, 0 < λ < π

2 consider a new pair of stochastic processes, defined for t ∈ T by:

Z
(1)
λ (t) = X(1)(t) cosλ+X(2)(t) sinλ(1.12)

Z
(2)
λ (t) = −X(1)(t) sinλ+X(2)(t) cosλ

Each of the processes Z
(i)
λ (t)(i = 1, 2) has the same distribution as X .

In fact, E
(
Z
(1)
λ (t)

)
= 0 and since E

(
X(1)(s)X(2)(t)

)
= 0 we have E

(
Z
(1)
λ (s)Z

(1)
λ (t)

)
=

cos2 λE
(
X(1)(s)X(1)(t)

)
+ sin2 λE

(
X(2)(s)X(2)(t)

)
= E(X(s)X(t)).

A similar computation holds for Z
(2)
λ .

Also, the processes Z
(1)
λ , Z

(2)
λ are independent. To prove this, note that for any choice of

t1, . . . , tn; s1, . . . , sm, n,m ≥ 1, the random vectors

(Z
(1)
λ (t1), . . . , Z

(1)
λ (tn)), (Z

(2)
λ (s1), . . . , Z

(2)
λ (sm))

have a joint Gaussian distribution so that it suffices to show that

E
(
Z
(1)
λ (t)Z

(2)
λ (s)

)
= 0

for any choice of s, t ∈ T to conclude that they are independent. This is easily checked.
Now, if we put q = P(X(.) ∈ L), independence implies that for any λ :

q(1− q) = P(Eλ) where Eλ =
{
Z
(1)
λ ∈ L,Z(2)λ /∈ L

}
.

If λ, λ′ ∈
(
0, π2

)
, λ 6= λ′, the events Eλ and Eλ′ are disjoint. In fact, the matrix

(
cosλ sinλ
cosλ′ sinλ′

)

is non-singular and (1.12) implies that if at the same time Z
(1)
λ ∈ L,Z

(1)
λ′ ∈ L then, also

X(1)(.), X(2)(.) ∈ L since X(1)(.), X(2)(.) are linear combinations of Z
(1)
λ , Z

(1)
λ′ . Hence, Z

(2)
λ , Z

(2)
λ′ ∈

L and Eλ, Eλ′ can not occur simultaneously. To finish, the only way in which we can have an
infinite family {Eλ}0<λ<π

2
of pairwise disjoint events with equal probability, is this probability to

be equal to zero. That is, q(1− q) = 0 so that q = 0 or 1. ¤

In case the parameter set T is countable, the above shows directly that any measurable linear
subspace of RT has probability 0 or 1 under a centered Gaussian law. If T is a σ−compact
topological space, E the set of real-valued continuous functions defined on T and E the σ−algebra
generated by the topology of uniform convergence on compact sets, one can conclude, for example,
that the subspace of E of bounded functions has probability 0 or 1 under a centered Gaussian
measure. The Theorem can be applied in a variety of similar situations to standard function
spaces. For example, put a measure on the space (E, E) and take for L an Lp of this measure
space.
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4. Regularity of the paths.

4.1. Conditions for continuity of the paths.

Theorem 1.6 (Kolmogorov). Let Y = {Y (t) : t ∈ [0, 1]} be a real-valued stochastic process
that satisfies the condition

(K) For each pair t, t+ h ∈ [0, 1] ,

P {|Y (t+ h)− Y (t)| ≥ α(h)} ≤ β(h),

where α, β are even real-valued functions defined on [−1, 1] , increasing on [0, 1] that verify
∞∑

n=1

α(2−n) <∞,
∞∑

n=1

2n β(2−n) <∞

Then, there exists a version X = {X(t) : t ∈ T} of the process Y such that the paths t Ã X(t)
are continuous on [0, 1].

Proof. For n = 1, 2, . . . ; k = 0, 1, . . . , 2n − 1, let:

Ek,n =

{∣∣∣∣Y (
k + 1

2n
)− Y (

k

2n
)

∣∣∣∣ ≥ α(2−n)

}
, En =

2n−1⋃

k=0

Ek,n

From the hypothesis: P(En) ≤ 2nβ(2−n), so that
∑∞
n=1 P(En) < ∞. The Borel-Cantelli Lemma

implies that P(lim supn→∞En) = 0, where

lim sup
n→∞

En = {ω : ω belongs to infinitely many En’s}

In other words, if ω /∈ lim supn→∞En one can find n0(ω) such that if n ≥ n0(ω) one has

|Y (
k + 1

2n
)− Y (

k

2n
)| < α(2−n) for all k = 0, 1, . . . , 2n − 1.

Denote by Y (n) the function whose graph is the polygonal with vertices ( k2n , Y ( k2n )), k =

0, 1, . . . , 2n, that is, if k
2n ≤ t ≤ k+1

2n one has

Y (n)(t) = (k + 1− 2nt)Y (
k

2n
) + (2nt− k)Y (

k + 1

2n
).

The function tÃ Y (n)(t) is continuous. Now, if ω /∈ lim supn→∞En one easily checks that there
exists some integer n0(ω) such that:

∥∥∥Y (n+1) − Y (n)
∥∥∥
∞
≤ α(2−(n+1)) for n+ 1 ≥ n0(ω)

(here ‖.‖∞ denotes the sup norm on [0, 1]). Since
∑∞
n=1 α(2

−(n+1)) < ∞ by the hypothesis, the

sequence of functions
{
Y (n)

}
converges uniformly on [0, 1] to a continuous limit function that we

denote X(t), t ∈ [0, 1].
We put X(t) ≡ 0 when ω ∈ lim supn→∞En.

To finish the proof, it suffices to show that for each t ∈ [0, 1], P(X(t) = Y (t)) = 1.

• If t is a dyadic point, say t = k
2n , then given the definition of the sequence of functions

Y (n), it is clear that Y (m)(t) = Y (t) for m ≥ n. Hence for ω /∈ lim supn→∞En, one has
X(t) = limm→∞ Y (m)(t) = Y (t).
The result follows from P((lim supn→∞En)

C) = 1 (AC is the complement of the set A).
• If t is not a dyadic point, for each n, n = 1, 2, ... let kn be an integer such that

∣∣t− kn
2n

∣∣ ≤
2−n, kn2n ∈ [0, 1]. Put

Fn =

{∣∣∣∣Y (t)−X(
kn
2n

)

∣∣∣∣ ≥ α(2−n)

}
.

We have the inequalities:

P (Fn) ≤ P
(∣∣Y (t)−X

(kn
2n
)∣∣ ≥ α

(∣∣t− kn
2n
∣∣)
)
≤ β

(∣∣t− kn
2n
∣∣
)
≤ β(2−n)

and a new application of the Borel-Cantelli Lemma gives P(lim supn→∞ Fn) = 0.
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So, if ω /∈ [lim supn→∞En]∪[lim supn→∞ Fn] we have at the same time X( kn2n )(ω)→
X(t)(ω) as n→∞ - because tÃ X(t) is continuous - andX( kn2n )(ω)→ Y (t)(ω) - because

|Y (t)−X(kn2n )| < α(2−n) for n ≥ n1(ω) for some integer n1(ω).

This proves that X(t)(ω) = Y (t)(ω) for almost every ω ¤

Corollary 1.7. Assume that the process Y = {Y (t) : t ∈ [0, 1]} satisfies one of the following
conditions for t, t+ h ∈ [0, 1]:

a)

(1.13) E (|Y (t+ h)− Y (t)|p) ≤ K |h|
|log |h||1+r

where p, r,K are positive constants, p < r.
b) Y is Gaussian, m(t) := E(Y (t)) is continuous and

(1.14) Var(Y (t+ h)− Y (t)) ≤ C

| log |h||a
for all t, sufficiently small h, C some positive constant and a > 3.

Then, the conclusion of Theorem 1.6 holds.

Proof. a) Put:

α(h) =
1

|log |h||b
, 1 < b <

r

p

β(h) =
|h|

|log |h||1+r−bp

and check condition (K) using a Markov inequality.

b) Since the expectation is continuous it can be subtracted from Y (t), so that we may assume
that Y is centered. To apply Theorem 1.6, take

α(h) =
1

|log |h||b
with 1 < b < (a− 1)/2 and β(h) = exp

[
− 1

4C
|log |h||a−2b

]

Then,

P (|Y (t+ h)− Y (t)| ≥ α(h)) = P
(
|ξ| ≥ α(h)√

Var(Y (t+ h)− Y (t))

)

where ξ stands for standard normal variable. We use the following usual bound for Gaussian tails,
valid for u > 0:

P(|ξ| ≥ u) = 2P(ξ ≥ u) =

√
2

π

∫ +∞

u

e−
1
2x
2

dx ≤
√

2

π

1

u
e−

1
2u
2

.

With the above choice of α(.) and β(.), if |h| is small enough one has
α(h)√

Var(Y (t+h)−Y (t))
> 1 and

P (|Yt+h − Y (t)| ≥ α(h)) ≤ (const)β(h).

where (const) denotes a generic constant which may vary from line to line. On the other hand,∑∞
1 α(2−n) <∞ and

∑∞
1 2nβ(2−n) <∞ are easily verified. ¤

Some examples.

• Gaussian Stationary Processes: Let {Y (t) : t ∈ R} be a real-valued Gaussian centered
stationary process with covariance Γ(τ) = E(Y (t)Y (t + τ)). Then Condition (1.14) is
equivalent to :

Γ(0)− Γ(τ) ≤ C

|log |τ ||a
for sufficiently small |τ |, with the same meaning for C and a.
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• Wiener Process: Take T = R+. The function r(s, t) = s ∧ t is positive semi-definite. In
fact, if 0 ≤ s1 < ... < sn and x1, . . . , xn ∈ R, one has:

(1.15)
n∑

j,k=1

(sj ∧ sk)xjxk =
n∑

k=1

(sk − sk−1)(xk + · · ·+ xn)
2 ≥ 0,

where we have put s0 = 0.
Then, according to Kolmogorov’s extension Theorem, there exists a centered Gauss-

ian process {Y (t) : t ∈ R+} such that E(Y (s)Y (t)) = s ∧ t for s, t ≥ 0. One easily
checks that this process satisfies the hypothesis in the Corollary 1.7 b), since the random
variable Y (t+h)−Y (t), h ≥ 0 has the normal distribution N(0, h) because of the simple
computation

E
(
[Y (t+ h)− Y (t)]

2
)
= t+ h− 2t+ t = h.

It follows from Corollary 1.7 (b) that this process has a continuous version on every
interval of the form [n, n+ 1]. The reader will verify that one can also find a version with
continuous paths defined on all R+. This version will be called “the Wiener process”
and will be denoted {W (t) : t ∈ R+}.

• Ito integrals : Let {W (t) : t ≥ 0} be a Wiener process on a probability space (Ω,A,P).
We define the “filtration” {Ft : t ≥ 0} as Ft = σ̃ {W (s) : s ≤ t} where the notation
means the σ-algebra generated by the set of random variables {W (s) : s ≤ t} (that is,
the smallest σ-algebra with respect to which these random variables are all measurable)
completed with respect to the probability measure P.

Let {at : t ≥ 0} be a stochastic process adapted to the filtration {Ft : t ≥ 0} .This
means that at is Ft-measurable for each t ≥ 0. For simplicity we will assume that
{at : t ≥ 0} is uniformly locally bounded in the sense that for each T > 0 there exists a
constant CT such that |at(ω)| ≤ CT for every ω and all t ∈ [0, T ].
For each t > 0 one can define the stochastic Ito integral

Y (t) =

∫ t

0

as dW (s)

as the limit in L2 = L2(Ω,A,P) of the Riemann sums

SQ =

m−1∑

j=0

ãtj (W (tj+1)−W (tj))

when NQ = sup {(tj+1 − tj) : 0 ≤ j ≤ m− 1} tends to 0. Here Q denotes the partition
0 = t0 < t1 < ... < tm = t of the interval [0, t] and {ãt : t ≥ 0} an adapted stochastic
process, bounded by the same constant as {at : t ≥ 0} and such that

m−1∑

j=0

ãtj1I{tj≤s<tj+1}

tends to {at : 0 ≤ s ≤ t} in the space L2([0, t] × Ω, λ × P) as NQ → 0. λ is Lebesgue
measure on the line.

Of course the statements above should be proved to be able to define Y (t) in this way
(see for example Mc Kean, 1969). Our aim here is to prove that the process {Y (t) : t ≥ 0}
thus defined has a version with continuous paths. With no loss of generality, we assume
that t varies on the interval [0, 1] and apply Corollary 1.7 (a) with p = 4.

We will prove that:

E
(
(Y (t+ h)− Y (t))

4
)
≤ (const)h2

For this, it is sufficient to see that if Q is a partition of the interval [t, t+ h], h > 0,

(1.16) E
(
S4Q
)
≤ (const)h2
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where the (const) does not depend on t, h,Q and then apply Fatou’s Lemma when
NQ → 0.

Let us compute the left-hand side of (1.16). Put ∆j =W (tj+1)−W (tj). We have:

(1.17) E
(
S4Q
)
=

m−1∑

j1,j2,j3,j4=0

E
(
ãtj1 ãtj2 ãtj3 ãtj4∆j1∆j2∆j3∆j4

)

If one of the indices - say j4 - satisfies j4 > j1, j2, j3 then the corresponding term
becomes:

E

(
4∏

h=1

(
ãtjh∆jh

))
= E

(
E

(
4∏

h=1

(
ãtjh∆jh

) ∣∣Ftj4

))

= E

(
3∏

h=1

(
ãtjh∆jh

)
ãtj4E

(
∆j4

∣∣Ftj4
)
)

= 0

since

E
(
∆j

∣∣Ftj
)
= E(∆j) = 0 and

3∏

h=1

(
ãtjh∆jh

)
ãtj4 is Ftj4 −measurable.

In a similar way, if j4 < j1 = j2 = j3 (and similarly if any one of the indices is strictly
smaller than the others and these are all equal), the corresponding term vanishes since
in this case

E

(
4∏

h=1

(
ãtjh∆jh

))
= E

(
E
((
ãtj1∆j1

)3
ãtj4∆j4

∣∣Ftj1
))

= E
(
ã3tj1 ãtj4∆j4E

(
∆3j1

∣∣Ftj1
))

= 0

because

E
(
∆3j
∣∣Ftj

)
= E

(
∆3j
)
= 0.

The terms with j1 = j2 = j3 = j4 give the sum:

m−1∑

j=0

E
((
ãtj∆j

)4) ≤ C41

m−1∑

j=0

3 (tj+1 − tj)2 ≤ 3C41 h
2

Finally we have the sum of the terms corresponding to 4-tuples of indices j1, j2, j3, j4
such that for some permutation (i1, i2, i3, i4) of (1, 2, 3, 4) one has ji1 , ji2 < ji3 = ji4 .
This is:

6

m−1∑

j3=1

∑

0≤j1,j2<j3
E
(
ãtj1 ãtj2 ã

2
tj3

∆j1∆j2∆
2
j3

)
.

Conditioning on Ftj3 in each term yields for this sum:

6

m−1∑

j3=1

∑

0≤j1,j2<j3
(tj3+1 − tj3)E

(
ãtj1 ãtj2 ã

2
tj3

∆j1∆j2

)

= 6E



m−1∑

j3=1

(tj3+1 − tj3) ã2tj3



j3−1∑

j=0

ãtj∆j



2



≤ 6C21

m−1∑

j3=1

(tj3+1 − tj3)E






j3−1∑

j=0

ãtj∆j



2



= 6C21

m−1∑

j3=1

(tj3+1 − tj3)
j3−1∑

j=0

E
(
ã2tj

)
(tj+1 − tj) ≤ 3C41 h

2.
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Using (1.17) one obtains (1.16) and hence, the existence of a version of the Itô integral
possessing continuous paths.

Separability. Next, we consider separability of stochastic processes. The separability con-
dition is shaped to avoid the measurability problems that we have already mentioned and to use
without further reference, versions of stochastic processes having good path properties. We begin
with the definition.

Definition 1.8. We say that a real-valued stochastic process {X(t) : t ∈ T} , T a topological
space, is “separable” if there exists a fixed countable subset D of T such that with probability one:

sup
t∈V ∩D

X(t) = sup
t∈V

X(t) and inf
t∈V ∩D

X(t) = inf
t∈V

X(t) for all open sets V

A consequence of the previous Theorem is the following:

Proposition 1.9. Let {Y (t) : t ∈ I}, I an interval in the line, be a separable random process
process that satisfies the hypotheses of Theorem 1.6. Then, almost surely, its paths are continuous.

Proof. Denote by D the countable set in the definition of separability. With no loss of
generality, we may assume that D is dense in I. The theorem states that there exists a version
{X(t) : t ∈ I} that has continuous paths, so that

P(X(t) = Y (t) for all t ∈ D) = 1

Let
E = {X(t) = Y (t) for all t ∈ D}

and

F =
⋂

J⊂I,J=(r1,r2),r1,r2∈Q

{
sup

t∈J∩D
Y (t) = sup

t∈J
Y (t) and inf

t∈J∩D
Y (t) = inf

t∈J
Y (t)

}

Since P(E ∩ F ) = 1, it is sufficient to prove that if ω ∈ E ∩ F , then X(s)(ω) = Y (s)(ω) for all
s ∈ I.

So, let ω ∈ E ∩ F and s ∈ I. For any ε > 0, choose r1, r2 ∈ Q such that

s− ε < r1 < s < r2 < s+ ε

Then, putting J = (r1, r2)

Y (s)(ω) ≤ sup
t∈J

Y (t)(ω) = sup
t∈J∩D

Y (t)(ω) = sup
t∈J∩D

X(t)(ω) ≤ sup
t∈J

X(t)(ω)

Letting ε→ 0 it follows that

Y (s)(ω) ≤ lim sup
t→s

X(t)(ω) = X(s)(ω)

since tÃ X(t)(ω) is continuous:
In a similar way one proves that Y (s)(ω) ≥ X(s)(ω). ¤

The separability condition is usually met when the paths have some minimal regularity. See
exercise 1.7 at the end of this chapter. For example, if {X(t) : t ∈ R} is a real-valued process
having almost surely càd-làg paths (that is, paths that are right-continuous with left limits), then
it is separable. All processes considered in the sequel will be separable.

Some additional remarks and references.

A reference for Kolmogorov’s Extension Theorem and the regularity of paths, at the level
of generality we have considered here, is the book by Cramér & Leadbetter (1967), where the
reader can find proofs that we have skipped as well as related results, examples and details. For
d-parameter Gaussian processes, a subject that we will consider in more detail in Chapter 6, in the
stationary case, necessary and sufficient conditions to have continuous paths are due to Fernique
(see his St. Flour 1974 lecture notes) and to Talagrand (1987) in the general non-stationary case.
In the Gaussian stationary case Belayev (1961) has shown that either with probability 1 the paths
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are continuous or with probability 1 the supremum (resp. the infimum) on every interval is +∞
(resp. −∞).

General references on Gaussian processes are also Adler’s (1990) and Lifshits’(1995) books.

4.2. Sample path differentiability and Hölder conditions.
In this section we will state some results, without detailed proofs. These follow the same lines

of the previous section.

Theorem 1.10. Let Y = {Y (t) : t ∈ [0, 1]} be a real-valued stochastic process that satisfies the
hypotheses of Theorem 1.6 and additionally, for any triplet t− h, t, t+ h ∈ [0, 1] one has:

P (|Y (t+ h) + Y (t− h)− 2 Y (t)| ≥ α1(h)) ≤ β1(h)

where α1, β1 are two even functions, increasing for h > 0 and such that

∞∑

n=1

2n α1(2
−n) <∞,

∞∑

n=1

2n β1(2
−n) <∞.

Then, there exists a version X = {X(t) : t ∈ T} of the process Y such that almost surely the paths
of X are of class C1.

Sketch of the proof. Consider the sequence
{
Y (n)(t) : t ∈ [0, 1]

}
n=1,2,...

of polygonal processes

introduced in the proof of Theorem 1.6. We know that a.s. this sequence converges uniformly to
X = {X(t) : t ∈ [0, 1]}, a continuous version of Y.

Define:

Ỹ (n)(t) := Y (n)′(t−) for 0 < t ≤ 1 (left derivative)

Ỹ (n)(0) := Y (n)′(0+) (right derivative)

One can show that the hypotheses imply

1) almost surely, as n→∞ Ỹ (n)(.) converges uniformly on [0, 1] to a function X̃(.).

2) almost surely, as n→∞ sup
t∈[0,1]

∣∣∣Ỹ (n)(t+)− Ỹ (n)(t)
∣∣∣→ 0.

To complete the proof check that almost surely the function t Ã X̃(t) is continuous and
coincides with the derivative of X(t) at every t ∈ [0, 1] . ¤

Example 1.2 (Stationary Gaussian Processes). Let Y = {Y (t) : t ∈ R} be a centered station-
ary Gaussian process with covariance of the form

Γ(τ) = E (Y (t)Y (t+ τ)) = Γ(0)− 1

2
λ2τ

2 +O

(
τ2

|log |τ ||a
)

with λ2 > 0, a > 3. Then there exists a version of Y with paths of class C1.
For the proof apply the previous Theorem.

A related result is the following. The proof is also left to the reader.

Proposition 1.11 (Hölder Conditions). Assume that

(1.18) E (|Y (t+ h)− Y (t)|p) ≤ K |h|1+r for t, t+ h ∈ [0, 1] .

where K, p, r are positive constants, r ≤ p.
Then, there exists a version of the process Y = {Y (t) : t ∈ [0, 1]} with paths that satisfy a

Hölder condition with exponent α for any α such that 0 < α < r
p .

Note that, for example, this proposition can be applied to the Wiener process (Brownian
motion) with r = (p− 2)/2 showing that it satisfies a Hölder condition for every α < 1/2.
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4.3. Higher derivatives. Let X = {X(t) : t ∈ R} be a stochastic process and assume that
for each t ∈ R one has X(t) ∈ L2(Ω,A,P).

Definition 1.12. X is differentiable in quadratic mean (q.m.) if for all t ∈ R

X(t+ h)−X(t)

h

converges in quadratic mean as h→ 0 to some limit that will be denoted X ′(t).

The stability of Gaussian random variables under passage to the limit, implies that the deriv-
ative in q.m. of a Gaussian process remains Gaussian.

Proposition 1.13. Let X = {X(t) : t ∈ R} be a stochastic process with mean m(t) and
covariance r(s, t) and suppose that m is C1 and that r is C2. Then, X is differentiable in quadratic
mean.

Proof. We use the following result which is easy to prove: the sequence Z1, . . . , Zn of
real random variables converges in q.m. if and only if there exists some constant C such that
E(Zm.Zn)→ C as the pair (m,n) tends to infinity.

Since m(t) is differentiable it can be substracted from X(t) without changing its differentia-
bility. So we can assume that the process is centered. Then for all real h and k

E

(
X(t+ h)−X(t)

h
.
X(t+ k)−X(t)

k

)
=

1

hk

[
r(t+ h, t+ k)− r(t, t+ k)− r(t, t+ h) + r(t, t)

]

→ r11(t, t) as (k, h)→ (0, 0),

where r11(s, t) :=
∂2r
∂s∂t (s, t). This shows differentiability in q.m. ¤

We assume, using the remark in the proof above, that X is centered and satisfies the conditions
of the proposition. It is easy to prove that

E(X(s)X ′(t)) = r01(s, t) :=
∂r

∂t
(s, t).

and similarly, that the covariance of X ′ = {X ′(t) : t ∈ R} is r11(s, t). Let now X be a Gaussian
process and X ′ its derivative in quadratic mean. If this one satisfies, for example, the criterion in
Corollary 1.7 b), then it admits a continuous version Y ′ = {Y ′(t) : Y ′(t); t ∈ R}. Set

Y (t) := X(0) +

∫ t

0

Y ′(s)ds

Clearly Y has C1 paths and E(X(s), Y (s)) = r(s, 0) +
∫ s
0
r01(s, t)dt = r(s, s) In the same way,

E(Y (s)2) = r(s, s), so that E([X(s)− Y (s)]2) = 0. As a consequence, X admits a version with C1
paths.
Using this construction inductively, one can prove the following:

• Let X be a Gaussian process with mean Ck and covariance C2k and such that its k-th
derivative in quadratic mean satisfies the weak condition of Corollary 1.7 b). Then, X
admits a version with paths of class Ck.

• If X is a Gaussian process with mean of class C∞ and covariance of class C∞, then X
admits a version with paths of class C∞.

In the converse direction, regularity of the paths implies regularity of the expectation and of the
covariance function. For example, if X has continuous sample paths the mean and the variance are
continuous. In fact, if tn, n = 1, 2, . . . converges to t, then X(tn) converges almost surely to X(t),
hence, also in distribution. Using the form of the Fourier transform of the Gaussian distribution,
one easily proves that this implies convergence of the mean and the variance. Since for Gaussian
variables, all the moments are polynomial functions of the mean and the variance, they are also
continuous.

If the process has differentiable sample paths, in a similar way one shows the convergence

m(t+ h)−m(t)

h
→ E(X ′(t))
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as h→ 0, showing that the mean is differentiable.
For the covariance, restricting ourselves to stationary Gaussian processes defined on the real line,
without loss of generality we may assume that the process is centered. Put Γ(t) = r(s, s + t).
The convergence in distribution of (X(h) − X(0))/h to X ′(0) plus the Gaussianity, imply that
Var
(
(X(h)−X(0))/h

)
has a finite limit as h→ 0. On the other hand,

Var
(X(h)−X(0)

h

)
= 2

∫ +∞

−∞

1− cos(hx)

h2
µ(dx),

where µ is the spectral measure.
Letting h→ 0 and applying Fatou’s Lemma, it follows that

λ2 =

∫ +∞

−∞
x2µ(dx) ≤ lim inf

h→0
Var
(X(h)−X(0)

h

)
<∞.

Using the result in Exercice 1.4, Γ is of class C2.
This argument can be used in a similar form to show that if the process has paths of class Ck,
then the covariance is of class C2k. As a conclusion, roughly speaking, for Gaussian stationary
processes, the order of differentiability of the sample paths is half of the order of differentiability
of the covariance.

4.4. More general tools.
In this section we consider the case when the parameter of the process lies in Rd or, more

generally, in some general metric space. We begin with an extension of Theorem 1.6.

Theorem 1.14. Let Y = {Y (t) : t ∈ [0, 1]d} be a real-valued random field that satisfies the
condition

(Kd) : For each pair t, t+ h ∈ [0, 1]d,

P{|Y (t+ h)− Y (t)| ≥ α(h̄)} ≤ β(h̄)

where h = (h1, ..., hd), h̄ = sup1≤i≤d |hi| and α, β are even real-valued functions defined on [−1, 1],
increasing on [0, 1] which verify

∞∑

n=1

α(2−n) <∞,
∞∑

n=1

2dn β(2−n) <∞

Then, there exists a version X = {X(t) : t ∈ [0, 1]d} of the process Y such that the paths tÃ X(t)
are continuous on [0, 1]d.

Proof. The main change with respect to the proof of Theorem 1.6 is that we replace the
polygonal approximation, adapted to one-variable functions by another interpolating procedure.
Denote by Dn the set of dyadic points of order n in [0, 1]d, that is

Dn = {t = (t1, . . . , td) : ti =
ki
2n
, ki integers, 0 ≤ ki ≤ 2n, i = 1, . . . , d}.

Let f : [0, 1]d → R be a function. For each n = 1, 2, ... one can construct a function f (n) : [0, 1]d →
R with the following properties:

• f (n)is continuous,
• f (n)(t) = f(t) for all t ∈ Dn,
• ‖f (n+1) − f (n)‖∞ = maxt∈Dn+1\Dn |f(t)− f (n)(t)|

where ‖.‖∞ denotes sup-norm on [0, 1]d. A way to define f (n) is the following: let us consider a
cube Ct,n of the n-th order partition of [0, 1]d, that is:

Ct,n = t+ [0,
1

2n
]d,

where t ∈ Dn and the obvious notation for the sum. For each vertex τ put

f (n)(τ) = f(τ).
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Now, for each permutation π of {1, 2, . . . , d} let Sπ be the simplex

Sπ = {t+ s : s = (sπ(1), . . . , sπ(d)), 0 ≤ sπ(1) ≤ · · · ≤ sπ(d) ≤
1

2n
}.

It is clear that Ct,n is the union of the Sπ’s over all permutations. Extend now -in a unique

way - f (n) to Sπ as an affine function. It is then easy to verify the above mentioned properties
and that

‖f (n+1) − f (n)‖∞ ≤ d sup
s,t∈Dn+1,|t−s|=2−(n+1)

|f(s)− f(t)|.

The rest of the proof is essentially similar to that of Theorem 1.6. ¤

From this we deduce easily

Corollary 1.15. If the process Y = {Y (t) : t ∈ [0, 1]d} verifies one of these two conditions
a)

(1.19) E(|Y (t+ h)− Y (t)|p) ≤ Kd|h|d
| log |h||1+r

where p, r,K are positive constants, p < r,
b) If Y is Gaussian, m(t) = E(Y (t)) is continuous and

(1.20) Var(Y (t+ h)− Y (t)) ≤ C

| log |h||a
for all t and sufficiently small h and a > 3,
then the process has a version with continuous paths.

Note that the case of processes with values in Rd′ needs not to be considered separately, since
continuity can be addressed coordinate by coordinate. For Hölder regularity we have

Proposition 1.16. Let Y = {Y (t) : t ∈ [0, 1]d} be a real-valued stochastic process with
continuous paths such that for some q > 1, α > 0,

E
(
|Y (s)− Y (t)|q

)
≤ (const)‖s− t‖d+α

Then almost surely Y has Hölder paths with exponent α/(2q).

Until now, we have deliberately chosen elementary methods which apply to general random
processes, not necessarily Gaussian. In the Gaussian case, even when the parameter varies in a set
that does not have a restricted geometric structure, the question of continuity can be addressed
using specific methods. As we have remarked several times already, we only need to consider
centered processes.

Let {X(t) : t ∈ T} be a centered Gaussian process taking values in R. We assume that T is
some metric space with distance denoted by τ . On T we define the canonical distance d

d(s, t) :=
√
E(X(t)−X(s))2.

In fact d is a pseudo distance because two distinct points can be at d distance zero. A first point is
that when the covariance r(s, t) function is τ -continuous, which is the only relevant case (otherwise
there is no hope of having continuous paths), d-continuity and τ -continuity are equivalent. The
reader is referred to Adler (1990) for complements and proofs.

Definition 1.17. Let (T, d) be a metric space. For ε > 0 denote by Nε = N(T, d, ε) the
minimum number of closed balls of radius ε with which we can cover T (the value of Nε can be
+∞).

We have the following theorem

Theorem 1.18 (Dudley (1973)). A sufficient condition for {X(t) : t ∈ T} to have continuous
sample paths is ∫ +∞

0

(
log(N(ε))

) 1
2 <∞
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log(N(ε)) is called the “entropy” of the set T .

A very important fact is that this condition is necessary in some relevant cases:

Theorem 1.19 (Fernique (1974)). Let {X(t) : t ∈ T}, T compact a subset of Rd be a sta-
tionary Gaussian process. Then the three following statements are equivalent

• almost surely X(.) is bounded.
• almost surely X(.) is continuous.

•
∫ +∞

0

(
log(N(ε))

) 1
2 <∞.

This condition can be compared with Kolmogorov’s Theorem. The reader can check that
Theorem 1.19 permits to weaken the condition of Corollary 1.7 b) to a > 1. On the other
hand, one can construct counterexamples - that is, processes not having continuous paths, such
that (1.14) holds true with a = 1. This shows that the condition of Corollary 1.7 b) is nearly
optimal and sufficient for most applications. When the Gaussian process is no more stationary,
M. Talagrand has given necessary and sufficient condition for sample path continuity in terms of
the existence of majorizing measures (see Talagrand, 1987).

The problem of differentiability can be addressed in the same manner as for d = 1. A sufficient
condition for a Gaussian process to have a version with Ck sample paths, is its mean to be Ck,
its covariance C2k and its k−th derivative in quadratic mean to satisfy some of the criteria of
continuity above.

4.5. Tangencies. Local extrema.
In this section we give two classical results that will be used several times in this book. The

first one gives a simple sufficient condition for a one-parameter random process not to have, al-
most surely, critical points at a certain specified level. The second result states that under mild
conditions, a Gaussian process defined on a quite general parameter set, with probability one does
not have local extrema at a given level.

We will use systematically the following notation: If ξ is a random variable with values in Rd

and its distribution has a density with respect to Lebesgue measure, this density will be denoted
as

pξ(x), x ∈ R
d.

Proposition 1.20 (Bulinskaya (1961)). Let {X(t) : t ∈ I} be a stochastic process with paths
of class C1 defined on the interval I of the real line. Assume that for each t ∈ I, the random
variable X(t) has a density pX(t)(x) which is bounded as t varies in a compact subset of I and
x in a neighborhood of u ∈ R.

Then

P(TXu 6= ∅) = 0

where TXu = {t : t ∈ I, X(t) = u, X ′(t) = 0} is the set of critical points with value u of the random
path X(.).

Proof. It suffices to prove that P(TXu ∩ J 6= ∅) = 0 for any compact subinterval J of I.
Let ` be the length of J and t0 < t1 < ... < tm a uniform partition of J , i.e. tj+1 − tj =

`
m

for j = 0, 1, . . . ,m− 1.
Denote by ωX′(δ, J) the modulus of continuity X ′ on the interval J and Eδ,ε the event:

Eδ,ε = {ωX′(δ, J) ≥ ε}
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Let ε > 0 be given; choose δ > 0 so that P(Eδ,ε) < ε and m so that `
m < δ. We have:

P(TXu ∩ J 6= ∅) ≤ P(Eδ,ε) +

m−1∑

j=0

P(
{
TXu ∩ [tj , tj+1] 6= ∅

}
∩ ECδ,ε)

< ε+

m−1∑

j=0

P(|X(tj)− u| ≤ ε
`

m
) = ε+

m−1∑

j=0

∫

|x−u|≤ε `
m

pX(tj)(x) dx

If C is an upper bound for pX(t)(x), t ∈ J, |x− u| ≤ ε `, we obtain

P(TXu ∩ J 6= ∅) ≤ ε+ Cε`

Since ε > 0 is arbitrary, the result follows. ¤

The second result is an extension of Ylvisaker’s Theorem, which has the following statement:

Theorem 1.21 (Ylvisaker (1968)). Let {Z(t) : t ∈ T} be a real-valued Gaussian process
indexed on a compact separable topological space T , having continuous paths and Var(Z(t)) > 0
for all t ∈ T .
Then, for fixed u ∈ R, one has P(EZu 6= ∅) = 0, where EZu is the set of local extrema of Z(.) having
value equal to u.

The extension is the following:

Theorem 1.22. Let {Z(t) : t ∈ T} be a real-valued Gaussian process on some parameter set
T and denote by MZ = supt∈T Z(t) its supremum (which takes values in R ∪ {+∞}).
We assume that there exists a non-random countable set D, D ⊂ T , such that a.s. MZ =
supt∈D Z(t).
Assume further that there exist σ20 > 0, m− > −∞ such that

m(t) = E(Z(t)) ≥ m−

σ2(t) = Var(Z(t)) ≥ σ20 for every t ∈ T.
Then the distribution of the random variable MZ is the sum of an atom at +∞ and a - possibly
defective - probability measure on R which has a locally bounded density.

Proof. Step 1. Suppose first that {X(t) : t ∈ T} satisfies the hypotheses of the theorem,
and moreover:

Var(X(t)) = 1 ; E(X(t)) ≥ 0,

for every t ∈ T .

We prove that the supremum MX has a density pMX which satisfies the inequality:

(1.21) pMX (u) ≤ ψ(u) :=
exp(−u2/2)∫ ∞

u

exp(−v2/2)dv
for every u ∈ R.

Let D = {tk}k=1,2,.... Almost surely, MX = sup{X(t1) . . . X(tn) . . .}. We put:

Mn := sup
1≤k≤n

X(tk).

Since the joint distribution ofX(tk), k = 1, . . . , n is Gaussian, for any choice of k, ` = 1, . . . , n; k 6=
`, the probability P{X(tk) = X(t`)} is equal to 0 or to 1. Hence, possibly excluding some of these
random variables, we may assume that these probabilities are all equal to 0 without changing the
value of Mn on a set of probability 1. Then, the distribution of the random variable Mn has a
density gn(.) that can be written as:

gn(x) =

n∑

k=1

P(X(tj) < x, j = 1, . . . , n; j 6= k
∣∣X(tk) = x)

e−
1
2 (x−m(tk))

2

√
2π

= ϕ(x)Gn(x)
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where ϕ denotes the standard normal density and

(1.22) Gn(x) =
n∑

k=1

P (Yj < x−m(tj), j = 1, . . . , n; j 6= k
∣∣Yk = x−m(tk))e

x.m(tk)− 12m
2(tk)

with

Yj = X(tj)−m(tj) (j = 1, . . . , n).

Let us prove that xÃ Gn(x) is an increasing function.
Sincem(t) ≥ 0 it is sufficient the conditional probability in each term of (1.22) to be increasing

as a function of x. Write the Gaussian regression

Yj = Yj − cjkYk + cjkYk with cjk = E(YjYk)

where the random variables Yj−cjkYk and Yk are independent. Then, the conditional probability
becomes

P(Yj − cjkYk < x−m(tj)− cjk(x−m(tk)), j = 1, . . . , n; j 6= k).

This probability increases with x because (1− cjk) ≥ 0 due to the Cauchy-Schwarz inequality.
Now, if a, b ∈ R, a < b, since Mn ↑MX :

P{a < MX ≤ b} = lim
n→∞

P(a < Mn ≤ b)

Using the monotonicity of Gn,

Gn(b)

∫ +∞

b

ϕ(x)dx ≤
∫ +∞

b

Gn(x)ϕ(x)dx =

∫ +∞

b

gn(x) dx ≤ 1.

So that

P{a < Mn ≤ b} =
∫ b

a

gn(x) dx ≤ Gn(b)

∫ b

a

ϕ(x) dx

≤
∫ b

a

ϕ(x) dx

(∫ +∞

b

ϕ(x) dx

)−1
.

This proves (1.21).

Step 2. Let now Z satisfy the hypotheses of the theorem, without assuming the added ones
in Step 1. For given a, b ∈ R, a < b, choose A ∈ R+ so that |a| < A and consider the process:

X(t) =
Z(t)− a
σ(t)

+
|m−|+A

σ0
.

Clearly for every t ∈ T :

E
(
X(t)

)
=
m(t)− a
σ(t)

+
|m−|+A

σ0
≥ −|m−|+ |a|

σ0
+
|m−|+A

σ0
≥ 0,

and

Var
(
X(t)

)
= 1,

so that (1.21) holds for the process X.
On the other hand:

{a < MZ ≤ b} ⊂ {µ1 < MX ≤ µ2}.
where

µ1 =
|m−|+A

σ0
, µ2 =

|m−|+A

σ0
+
b− a
σ0

It follows that

P
{
a < MZ ≤ b

}
≤
∫ µ2

µ1

ψ(u)du =

∫ b

a

1

σ0
ψ
(v − a+ |m−|+A

σ0

)
dv.

which proves the statement. ¤
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Theorem 1.21 follows directly from Theorem 1.22, since under the hypotheses of Theorem
1.21, we can write:

{
EXu 6= φ

}
⊂
⋃

U∈F
({MU = u} ∪ {mU = u}) .

where MU (resp. mu) is the maximum (resp. the minimum) of the process on the set U and F
denotes a countable family of open sets being a basis for the topology of T .

Remark 1.1. We will come back later to the subject of the regularity properties of the proba-
bility distribution of the supremum of a Gaussian process in the chapters dedicated to this subject.

Exercises

Exercise 1.1. Let T = N be the set of natural numbers. Prove that the following sets belong
to σ(C).

• c0 (the set of real-valued sequences {an} such that an → 0)

• `2 (the set of real-valued sequences {an} such that
∑
n |an|

2
<∞)

• the set of real-valued sequences {an} such that lim
n→∞

an ≤ 1

Suggestion for the first: Note that

c0 =

∞⋂

k=1

∞⋃

m=1

⋂

n≥m

{
|an| <

1

k

}

Exercise 1.2. Take T = R, T = BR. Then if for each ω ∈ Ω the function

(1.23) tÃ X(t, ω)

”the path corresponding to ω” is a continuous function, then the process is bimeasurable.
In fact, check that

X(t, ω) = lim
n→+∞

X(n)(t, ω)

where for n = 1, 2, . . . , X(n) is defined by

X(n)(t, ω) =

k=+∞∑

k=−∞
X k
2n

(ω) 1I{ k
2n≤ t < k+1

2n }

which is obviously measurable as a function of the pair (t, ω). So, the limit function X has the
required property.

If one replaces continuity of the path (1.23) by some other regularity properties such as right
continuity, bi-measurability follows in a similar way.

Exercise 1.3. Let U be a random variable defined on some probability space (Ω,A,P), having
uniform distribution on the interval [0, 1].
Consider the two stochastic processes:

Y (t) = 1It=U

X(t) ≡ 0

The process Y (t) is sometimes called “the random parasite”.

(1) Prove that for all t ∈ [0, 1], a.s. X(t) = Y (t).
(2) Deduce that the processes X(t) and Y (t) have the same probability distribution P on

R[0,1] equipped with its Borel σ-algebra.
(3) Notice that for each ω in the probability space, supt∈[0,1] Y (t) = 1 and supt∈[0,1]X(t) = 0,

so that the suprema of both processes are completely different. Is there a contradiction
with the previous point?
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Exercise 1.4. Let µ be a Borel probability measure on the real line and Γ its Fourier trans-
form, that is:

Γ(τ) =

∫

R

exp(iτx) µ(dx)

a) Prove that if

λk =

∫

R

|x|k µ(dx) <∞

for some positive integer k, then the covariance Γ(.) is of class Ck and

Γ(k)(τ) =

∫

R

(ix)k exp(iτx) µ(dx).

b) Prove that if k is even k = 2p the reciprocal is true: If Γ is of class C2p, then λ2p is finite and

Γ(t) = 1− λ2
t2

2!
+ λ4

t4

4!
+ · · ·+ (−1)2pλ2p

t2p

(2p)!
+ o(t2p)

Hint for b): use induction on p, suppose that λk is infinite, then for every A > 0, one can find
some M > 0 such that ∫ M

M

xkµ(dx) ≥ A.

Show that it implies that

(−1)k k!
tk

[
Γ(t)−

(
1− λ2

t2

2!
+ · · ·+ (−1)k−2λk−2

tk−2

(k − 2)!

)]

has a limit, when t tends to zero, greater than A which contradicts differentiability.

c) When k is odd the result is false, see Feller (1966, Chap. XVII example (c)).

Exercise 1.5. Let {ξn}n=1,2,... be a sequence of random vectors defined on some probability

space taking values in Rd, and assume that ξn → ξ in probability, for some random vector ξ.
Prove that if each ξn is Gaussian, then ξ is also Gaussian.

Exercise 1.6. Prove the following statements on the process defined by (1.10)
a) For each t ∈ T the series (1.10) converges almost surely.

b) Almost surely, the function tÃ X(t) is in H and
∥∥X(.)

∥∥2
H

=
∑∞
n=1 cnξ

2
n

c) {ϕn}n=1,2,... are eigenfunctions - with eigenvalues {cn}n=1,2,... respectively - of the linear
operator A : H → H defined by

(Af)(s) =

∫

T

r(s, t) f(t) ρ(dt).

Exercise 1.7. Let {X(t) : t ∈ T} be a stochastic process defined on some separable topolog-
ical space T .
a) Prove that if X(t) has continuous paths, then it is separable. b) Let T = R. Prove that if the
paths of X(t) are càd-làg, then X(t) is separable.

Exercise 1.8. Let
{
X(t) : t ∈ Rd

}
be a separable stochastic process defined on some (com-

plete) probability space (Ω,A,P).
a) Prove that the subset of Ω {X(.) is continuous } is in A.
b) Prove that the conclusion in a) remains valid if one replaces ”continuous” by “upper continu-
ous”, or “lower continuous, or ”continuous on the right” (a real-valued function f defined on Rd

is said to be continuous on the right if for each t, f(t) is equal to the limit of f(s) when each
coordinate of s tends to the corresponding coordinate of t on its right).
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Exercise 1.9. Show that in the case of the Wiener process, condition (1.18 holds for every
p ≥ 2, with r = p

2 − 1. Hence, the proposition implies that almost surely, the paths of the Wiener

process satisfy a Hölder condition with exponent α, for every α < 1
2 .

Exercise 1.10. (Wiener integral) Let {W1(t) : t ≥ 0}, {W2(t) : t ≥ 0} be two independent
Wiener processes defined on some probability space (Ω,A,P), and denote {W (t) : t ∈ R} the
process defined as:

W (t) =W1(t) if t ≥ 0, and W (t) =W2(−t) if t ≤ 0.

L2(R, λ) denotes the standard L2−space of real-valued measurable functions on the real line
with respect to Lebesgue measure and L2(Ω,A,P) the L2 of the probability space. C1K(R) denotes
the subspace of L2(R, λ) of C1−functions with compact support.

Define the function I : C1K(R)→ L2(Ω,A,P) as:

(1.24) I(f) = −
∫

R

f ′(t)W (t)dt

for each non-random f ∈ C1K(R). (1.24) is well defined for each ω ∈ Ω since the integrand is
a continuous function with compact support.

(a) Prove that I is an isometry, in the sense that

∫

R

f2(t)dt = E
(
I2(f)

)
.

(b) Show that for each f , I(f) is a centered Gaussian random variable. Moreover, for any
choice of f1, ..., fp ∈ C1K(R), the joint distribution of (I(f1), ...., I(fp)) is centered Gaussian. Com-
pute its covariance matrix.

(c) Prove that I admits a unique isometric extension Ĩ to L2(R, λ) such that:

(1) Ĩ(f) is a centered Gaussian random variable with variance equal to
∫

R
f2(t)dt.

Similarly for joint distributions.
(2)

∫
R
f(t)g(t)dt = E

(
Ĩ(f)Ĩ(g)

)
.

[Comment: Ĩ(f) is called the “Wiener integral of f”].

Exercise 1.11. (Fractional Brownian motion)

Let H be a real number, 0 < H < 1.

We use the notation and definitions of the previous exercise.
(a) For t ≥ 0 define the function Kt : R → R:

Kt(u) =
[
(t− u)H−1/2 − (−u)H−1/2

]
1Iu<0 + (t− u)H−1/21I0<u<t.

Prove that Kt ∈ L2(R, λ).

(b) For t ≥ 0, define the Wiener integral Ĩ(Kt) and for s, t ≥ 0, prove the formula:

E
(
Ĩ(Ks)Ĩ(Kt)

)
=

CH
2

[
s2H + t2H − |t− s|2H

]

where CH is a positive constant depending only on H. Compute CH .

(c) Prove that the stochastic process {C−1/2H Ĩ(Kt) : t ≥ 0} has a version with continuous
paths.

This normalized version with continuous paths is usually called the ”fractional Brownian mo-
tion with Hurst exponent H”, and is denoted {WH(t) : t ≥ 0}.
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(d) Show that if H = 1/2, then {WH(t) : t ≥ 0} is the standard Wiener process.

(e) Prove that for any δ > 0, almost surely the paths of the fractional Brownian motion with
Hurst exponent H satisfy a Hölder condition with exponent H − δ.

Exercise 1.12. Local time
Let {W (t) : t ≥ 0} be a Wiener process defined in some probability space (Ω,A,P). For

u ∈ R, I an interval I ⊂ [0,+∞] and δ > 0, define:

µδ(u, I) =
1

2δ

∫

I

1I|W (t)−u|<δdt =
1

2δ
λ({t ∈ I : |W (t)− u| < δ}).

(a) Prove that for fixed u and I, µδ(u, I) converges in L
2(Ω,A,P) as δ → 0.

Denote the limit by µ0(u, I)

(Hint: Use Cauchy’s criterion).

(b) Denote Z(t) = µ0(u, [0, t]). Prove that the random process Z(t) : t ≥ 0 has a version with
continuous paths. We will call this version the “local time of the Wiener process at the level u”,
and denote by LW (u, t).

(c) For fixed u, LW (u, t) is a continuous increasing function of t ≥ 0. Prove that almost
surely, it induces a measure on R+ which is singular with respect to Lebesgue measure, that is,
its support is contained in a set of Lebesgue measure zero.

(d) Study the Hölder continuity properties of LW (u, t).

For future reference, with a slight abuse of notation, we will write, for any interval I =
[t1, t2], 0 ≤ t1 ≤ t2:

LW (u, I) = LW (u, t2)− LW (u, t1).





CHAPTER 2

Basic Inequalities for Gaussian Processes

This chapter is on inequalities for the probability distribution of the supremum of Gaussian
processes. Among the numerous results giving upper and lower bounds, we have chosen the ones
we consider to be more useful for the subjects considered in this book: comparison inequalities,
isoperimetric inequalities and their applications to obtain bounds for the tails of the distribution
of the supremum and its moments.

The results in this chapter are very general, in the sense that beyond Gaussianity and almost
sure boundedness of the paths, we do not require the random function to satisfy other hypotheses.
They are essential basic tools and, at the same time, provide bounds that may turn out to be rough
when applied to special families of random functions. One of our purposes in the next chapters is
to refine these inequalities under additional hypotheses, as explained in the Introduction.

A good part of the theory was already well-established more than 30 years ago. However, some
results have been significantly improved more recently. Two relevant examples of this evolution
are the Li-Shao comparison inequality and the C. Borell proof of the Ehrhard conjecture, which
we consider in Sections 1 and 2 respectively.

1. Slepian type inequalities.

Lemma 2.1 (Li and Shao (2002)). Let X := (X1, . . . , Xn)
T , and Y = (Y1, . . . , Yn)

T be two
centered Gaussian random vectors in Rn, n ≥ 2. Denote

ΣX = ((rXjk))j,k=1,...,n with rXjk = E(XjXk).

and use similar notation for Y .
We will assume that rXjj = rYjj for all j = 1, . . . , n, i.e. that the variances are respectively

equal, and with no loss of generality for our purposes, that their common value is equal to 1.
Then, for any choice of the real numbers a1, . . . , an one has:

(2.1) P{X1 ≤ a1, . . . , Xn ≤ an} − P{Y1 ≤ a1, . . . , Yn ≤ an}

≤ 1

2π

∑

1≤i<j≤n

(
arcsin(rXij )− arcsin(rYij)

)+
exp

(
−

a2i + a2j
2(1 + ρij)

)
,

where ρij = max(|rXij |, |rYij |).

This lemma, which is known under the generic name of “Normal Comparison Lemma”, has a
quite long history. As far as we know, its first version is due to Plackett (1954) who proved that
if rXjk ≤ ryjk for all 1 ≤ j < k ≤ n, then

(2.2) P{X1 ≤ a1, . . . , Xn ≤ an} ≤ P{Y1 ≤ a1, . . . , Yn ≤ an}.
We will call this original version the Plackett-Slepian Comparison Lemma. Further versions

have been given by Slepian (1961), Berman (1964, 1971) and Leadbetter, Lindgren and Rootzén
(1983). The present statement, due to Li and Shao (2002), contains and refines the previous ones.

Proof. We introduce some additional notation. For t ∈ [0, 1], let

Σt = (1− t)ΣX + tΣY

39
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It is obvious that Σt is positive semi-definite. Let Z = (Z1, . . . , Zn)
T be a centered Gaussian

random vector in Rn with covariance Σt, that is, E(Z ZT ) = Σt and

F (t) = P(Z1 ≤ a1, . . . , Zn ≤ an)

Our aim is to give an upper bound for F (0)−F (1), and for this purpose, we will consider the
derivative F ′(t).
Let us first notice that it is sufficient to prove the result when Σt is non-singular for all t ∈ [0, 1] .
In fact, if this has been proved, in the general case we proceed as follows.

Take n i.i.d. random variables ξ1, . . . , ξn, each one of them having a standard normal distrib-
ution. ξ = (ξ1, . . . , ξn)

T is also assumed to be independent of X and Y .
For any ε > 0, the variance of the centered Gaussian vector

(
(1− t)X1 + t Y1 + εξ1, ....., (1− t)Xn + t Yn + εξn

)

is Σt+ ε In, which is non-singular for any t ∈ [0, 1]. Hence, we may apply the inequality (2.1)
to the pair of random vectors X1 + εξ1, . . . , Xn + εξn and Y1 + εξ1, . . . , Yn + εξn

Then, we pass to the limit as ε→ 0. This should be done carefully and is left to the reader.
So, assume that Σt is non-singular for all t ∈ [0, 1]. For Σ = ((rjk))j,k=1,...,n positive definite

and non-singular we denote by ϕΣ(x), x = (x1, . . . , xn)
T ∈ Rn the density of the centered normal

distribution in Rn with covariance Σ.
We have the identity

(2.3)
∂ϕΣ
∂rjk

=
∂2ϕΣ
∂xj∂xk

(j, k = 1, . . . , n, j < k).

To prove (2.3) we use the inversion formula for the Fourier transform and the form of the Fourier
transform of the Normal distribution in Rn:

ϕΣ(x) =
1

(2π)n

∫

Rn

exp

[
−i 〈x, z〉 − 1

2
〈z,Σz〉

]
dz.

In this equality we may differentiate under the integral sign either with respect to rjk or with
respect to xj . This can be justified using dominated convergence, since the non-singularity of Σt
implies the existence of a positive constant c such that 〈z,Σz〉 ≥ c ‖z‖2 for all z ∈ Rn. (2.3)
follows.

Using this, we can compute the derivative F ′(t) :

F ′(t) =
d

dt

∫

xh≤ ah,h=1,...,n
ϕΣt(x) dx

=

∫

xh≤ ah,h=1,...,n


 ∑

1≤j<k≤n

∂ϕΣt
∂rtjk

(x)
drtjk
dt


 dx

=

∫

xh≤ ah,h=1,...,n


 ∑

1≤j<k≤n

∂2ϕΣt(x)

∂xj∂xk
(rYjk − rXjk)


 dx

=
∑

1≤j<k≤n
(rYjk − rXjk)

∫

xh≤ ah,h=1,...,n
h6=j,k

n∏

h=1
h6=j,k

dxh

∫ aj

−∞

∫ ak

−∞

∂2ϕΣt(x)

∂xj∂xk
dxjdxk.

using (2.3). rtjk stands for (1−t)rXjk+trYjk, the element (j, k) of Σt and dx stands for dx1, . . . , dxn.

In each term of this equality we integrate twice (first in xk and second in xj) obtaining

F ′(t) =
∑

1≤j<k≤n
(rYjk − rXjk)

∫

xh≤ ah,h=1,...,n
h6=j,k

ϕΣt(x̃j,k)

n∏

h=1
h6=j,k

dxh.
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where x̃j,k = (x̃1, ...., x̃n), x̃h = xh for h 6= j, k, x̃h = ah for h = j, k. Now majorizing the integral
above by the same integral but with integration over all R for xh, h 6= j, k we get

− F ′(t) ≤
∑

1≤j<k≤n
(rXjk − rYjk)+ϕ(aj , ak; rtj,k),

where ϕ(u, v; ρ) is the joint density at the point (u, v) of two jointly Gaussian random variables
with zero expectation, variance 1 and covariance ρ. Now standard algebra shows that

ϕ(aj , ak; r
t
j,k) ≤

1

2π

1√
1− (rtjk)

2
exp

(
−

a2j + a2k
2(1 + ρjk)

)

As a consequence we get

F (0)− F (1) ≤ 1

2π

∑

1≤j<k≤n
(rXjk − rYjk)+ exp

(
−

a2j + a2k
2(1 + ρjk)

)∫ 1

0

1√
1− (rtjk)

2
dt

Now, on account of the form of rtjk, changing variables in the integral we have, whenever rYjk ≤ rXjk

(rXjk − rYjk)
∫ 1

0

1√
1− (rtjk)

2
dt =

∫ rXjk

rYjk

1√
1− w2

dw = arcsin(rXjk)− arcsin(rYjk).

¤

Corollary 2.2. Let {X(t) : t ∈ T}, {Y (t) : t ∈ T} be separable centered Gaussian processes
with almost surely bounded paths, defined on a topological space T .

Let us assume that

E(X(t)2) = E(Y (t)2) for all t ∈ T

E
(
(Y (t)− Y (s))2

)
≤ E

(
(X(t)−X(s))2

)
for all s, t ∈ T

Then, for each x ∈ R:

P{sup
t∈T

X(t) ≤ x} ≤ P{sup
t∈T

Y (t) ≤ x}

We will say that supt∈T X(t) is stochastically greater or equal to supt∈T Y (t).

Proof. Because of the separability, it is enough to prove the result for finite T . This follows
immediately from the Plackett-Slepian version of the Normal comparison Lemma. ¤

Example 2.1. Let T be a positive number. Consider the three centered Gaussian stationary
processes X(t), Y (t) and Z(t), t ∈ [0, T ], with respective covariances

ΓX(t) := exp(−t2/2) , ΓY (t) := exp(−|t|) , ΓZ(t) := (1− |t|)+.
See figure 2.1. X(t) is called the “stationary process with Gaussian covariance” , Y (t) is the
Ornstein-Uhlenbeck process, and Z(t) is the ”Slepian process”. Then it is easy to check that

ΓZ(t) ≤ ΓY (t) ≤ ΓX(t) for |t| ≤ 2.

So let T ≤ 2, then

sup
t∈T

X(t)
s
≤ sup

t∈T
Y (t)

s
≤ sup

t∈T
Z(t)

where
s
≤ is the stochastic order.

We finish this section stating without proof two related results having important applications.
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Figure 2.1. Representation of the three covariances

Theorem 2.3 (Li and Shao, 2002). Use the notations of Lemma 2.1, assume n ≥ 3, and that

rXij ≥ rYij ≥ 0 for all 1 ≤ i, j ≤ n

Then for a ≤ 0 one has:

P{Y1 ≤ a, . . . , Yn ≤ a} ≤ P{X1 ≤ a, . . . ,Xn ≤ a}

≤ P{Y1 ≤ a, . . . , Yn ≤ a} exp
[ ∑

1≤i<j≤n
log
(π − 2 arcsin(rYij)

π − 2 arcsin(rXij )

)
exp

(
− a2

(1 + rXij )

)]

Theorem 2.4 (Sudakov, Fernique). Let {X(t) : t ∈ T}, {Y (t) : t ∈ T} be separable centered
Gaussian processes with almost surely bounded paths, defined on a topological space T . Let us
assume that

E
(
(X(t)−X(s))2

)
≤ E

(
(Y (t)− Y (s))2

)
for all t and s

Then

E(sup
t∈T

X(t)) ≤ E(sup
t∈T

Y (t))

A proof of this theorem can be found in Adler(1990). We will see later on that under the
conditions of this theorem both expectations are finite (which is not evident at all!).

Notice that under the - more restrictive - conditions of the Corollary 2.2, the conclusion of the
last Theorem follows immediately from it, since for any integrable real-valued random variable η
one can express the expectation as:

E(η) =

∫ +∞

0

P(η > x) dx−
∫ 0

−∞
P(η < −x) dx

Apply this to supt∈T X(t) and to supt∈T Y (t).

2. Ehrhard’s inequality.

Theorem 2.5. Let γn be the standard Gaussian probability measure on Rn.
Then, for any pair A,B of Borel subsets of Rn and any λ, 0 < λ < 1,

(2.4) Φ−1 (γn (λA+ (1− λ)B)) ≥ λΦ−1 (γn (A)) + (1− λ)Φ−1 (γn (B))

holds true.
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This theorem was proved by Ehrhard (1983) for convex A and B and by Latala (1996) when
at least one of the two sets is convex . The proof in its general form is due to C. Borell (2003)
and is the following.

Proof. It suffices to prove (2.4) for compact A and B.
Let 0 < ε < 1 and 0 < δ < ε. We put α := 1−ε+δ so that δ < α < 1, and Aε := A+Bn(0; ε)

where Bn(0; ε) is the closed ball in Rn centered at the origin and having radius ε.
Let f1 : Rn → R be a C∞-function such that f1|A ≡ α, f1|AC ≡ δ. We have δ ≤ f1(x) ≤ α for

all x ∈ Rn.
In a similar way, define f2 by changing, in the definition of f1, the set A by the set B, and f3,

by changing in the definition of f1 the set A by the set λAε + (1− λ)Bε and the minimum value
δ by

κ = max
(
Φ
[
λΦ−1 (α) + (1− λ)Φ−1 (δ)

]
,Φ
[
λΦ−1 (δ) + (1− λ)Φ−1 (α)

])
.

Notice that κ→ 0 as δ → 0.
We will prove the inequality

(2.5) Φ−1
(∫

Rn

f3 dγn

)
≥ λΦ−1

(∫

Rn

f1 dγn

)
+ (1− λ)Φ−1

(∫

Rn

f2 dγn

)
.

(2.4) follows from (2.5) by letting δ → 0 and ε→ 0, in this order.
Let us define, for j = 1, 2, 3 and (t, x) ∈ [0, 1]×Rn :

uj(t, x) =

∫

Rn

fj(x+
√
tz) γn(dz)

Instead of (2.5) we will prove in fact the more general inequality

(2.6) Φ−1 (u3(t, λx+ (1− λ)y) ≥ λΦ−1 (u1(t, x)) + (1− λ)Φ−1 (u2(t, y)) .
Putting t = 1, x = y = 0 in (2.6) we obtain (2.5).
So, our aim is to prove that

(2.7) C(t, x, y) ≥ 0 for all t ∈ [0, 1] , x, y ∈ R
n,

where

(2.8) C(t, x, y) = U3 (t, λx+ (1− λ)y)− λU1(t, x) + (1− λ)U2(t, y)
with the notation Uj = Φ−1 ◦ uj (j = 1, 2, 3).

An instant reflection shows that the definitions of the functions fj , uj imply that the functions
Uj , as functions of the space variable x, are C∞ and the partial derivatives of all orders are bounded
for t ≥ 0, x ∈ Rn.

Let us check that (2.7) holds true when t = 0 in which case it becomes

(2.9) f3(λx+ (1− λ)y ≥ Φ
[
λΦ−1 (f1(x)) + (1− λ)Φ−1 (f2(y))

]
.

If x /∈ Aε, the right-hand side of (2.9) is bounded above by
Φ
[
λΦ−1 (δ) + (1− λ)Φ−1 (α)

]
≤ κ and κ is a lower bound of f3. Similarly if y /∈ Bε. So, it

remains to prove (2.9) when x ∈ Aε and also y ∈ Bε in which case the left-hand side of (2.9) is
equal to α and this is an upper-bound for the right-hand side of (2.9).

To show that (2.7) also holds true for all t ∈ [0, 1] , Borell’s proof uses a method that reminds
the maximum principle for parabolic equations. We denote ∇ and ∆ respectively the gradient
and the Laplace operators with respect to the space variables.

Firstly, uj (j = 1, 2, 3) verifies the heat equation

∂uj
∂t

=
1

2
∆uj on [0, 1]× R

n,

and this implies, by a simple computation, that

(2.10)
∂Uj
∂t

=
1

2
∆Uj −

1

2
Uj ‖∇Uj‖2 on [0, 1]× R

n.
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Using the identities (2.10) for j = 1, 2, 3, we can compute the value of the differential operator

L =
1

2

n∑

j=1

[
∂2

∂x2j
+ 2

∂2

∂xj∂yj
+

∂2

∂y2j

]

on the function C(t, ., .). We obtain:

(2.11) LC(t, x, y) = ∂C

∂t
(t, x, y) +

1

2
‖(∇U3) (t, λx+ (1− λ)y)‖2 C(t, x, y) + b(t, x, y)

where

(2.12) b(t, x, y) = U1 〈∇xC,∇U1 +∇U3〉+ U2 〈∇yC,∇U2 +∇U3〉 .
In (2.12) U1 and ∇U1 are computed at (t, x), U2 and ∇U2 are computed at (t, y), U3 and ∇U3
at (t, λx+ (1− λ)y) and ∇x, ∇y denote the gradient with respect to x and y. The computation
of derivatives to check (2.11) is left to the reader.

Let us suppose that (2.7) does not hold and show that this leads to a contradiction. We prove
first that

(2.13) lim inf
‖x‖+‖y‖→+∞

inf
0≤t≤1

C(t, x, y) ≥ 0.

Since A and B are bounded, one can find a > 0 such that if ‖w‖ ≥ a, then f1(w) = f2(w) = δ,
f3(w) = κ. Note that

u1(t, x) = E
(
f1

(
x+

√
tξ
))

where ξ is standard normal in Rn. Hence,

u1(t, x) = E
(
f1

(
x+

√
tξ
)
1I{‖x+√tξ‖≥a}

)
+ E

(
f1

(
x+

√
tξ
)
1I{‖x+√tξ‖<a}

)

= δ +R,

with |R| ≤ P
(∥∥x+

√
tξ
∥∥ < a

)
. Choose now x so that ‖x‖ ≥ 2a, and we get for 0 ≤ t ≤ 1 :

|R| ≤ P

(√
t ‖ξ‖ > ‖x‖

2

)
≤ P

(
‖ξ‖ > ‖x‖

2

)

= σn−1(S
n−1)

∫ +∞

‖x‖
2

ρn−1 exp

(
−ρ

2

2

)
dρ ≤ C1 exp

(
−C2 ‖x‖2

)

where C1, C2 are positive constants. This shows that as ‖x‖ → +∞, u1(t, x) converges to δ,
uniformly on t ∈ [0, 1] . A similar result holds for u2 and u3, in the latter case replacing δ by κ.
Going back to the definitions of C(t, x, y) and κ, (2.13) follows.

On the other hand, (2.13) implies that if C(t, x, y) takes a negative value somewhere in
[0, 1] × Rn × Rn, then it has a minimum and since we also know that C(0, x, y) ≥ 0 for any
choice of x, y, choosing ε > 0 small enough we can assure that the function C(t, x, y)+ εt will also
have a negative minimum at some point (t, x, y) with 0 < t ≤ 1. Clearly, this implies that

∇xC(t, x, y) = 0, ∇yC(t, x, y) = 0,
∂C

∂t
(t, x, y) ≤ −ε.

Denote byM the (2n)×(2n) matrix of second partial derivatives of the function C(t, ., .) computed
at the point (x, y), that is, if we rename the vector
(x1, . . . , xn, y1, . . . , yn) as (z1, . . . , z2n), we have:

M =

((
∂2C

∂zh∂zk
|(t,x,y)=(t,x,y)

))

h,k=1,...,2n

.

Since there is a minimum of C(t, ., .) at the point (x, y), M has to be semi-definite positive. One
also has

LC(t, x, y) = 1

2

n∑

j=1

〈M θj , θj〉

where θj denotes the vector (x1, . . . , xn, y1, . . . , yn) such that xk = yk = δjk (k = 1, . . . , n). So,
LC(t, x, y) ≥ 0.
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However, putting (t, x, y) = (t, x, y) in the right-hand side of (2.11), we see that it becomes
strictly negative. This ends the proof. ¤

3. Gaussian isoperimetric inequality.

One possible version of the classical isoperimetric inequality for Lebesgue measure in Rn states
that if A is a Borel subset of Rn and the ball B(0; r) has the same Lebesgue measure as A, then,
for any t > 0, λn(At) ≥ λn(B(0; r + t)) holds true. The notation for At is the one introduced at
the begining of the proof of Theorem 2.5.

In the mid-seventies, C. Borell (1975) and V.N. Sudakov and B.S. Tsirelson (1974) proved
independently a similar property for Gaussian measures, which is the statement of the next the-
orem. The use of isoperimetric methods for Gaussian distributions seems to have started with
the paper by Landau and Shepp (1970) in which they studied the tails of the distribution of the
supremum of Gaussian processes. The results were improved by Marcus & Shepp (1972) in a
paper in which they gave what seems to be the first published proof of (2.33). An independent
and purely probabilistic proof of (2.33) is in Fernique’s Lecture Notes, along with other connected
results.

All this was well established around 1975, and will be sufficient for our uses in the next chap-
ters. For the many interesting directions of the relationship between isoperimetry and Gaussian
and related measures, the important references are the monographs by M. Ledoux (1996, 2001).
A synthesis of known results and open problems on Gaussian and related inequalities and the
relations with isoperimetry is in Latala’s conference at ICM 2002.

Theorem 2.6. Let A be a Borel subset of Rn and H a half-space in Rn, such that γn(A) =
γn(H) = Φ(a) some a ∈ R.

Then,

(2.14) γn(At) ≥ γn(Ht) = Φ(a+ t) for every t > 0.

Proof. Let 0 < λ < 1. Applying Theorem 2.5:

Φ−1 (γn (At)) = Φ−1
(
γn

(
A+Bn(0; t)

))
(2.15)

= Φ−1
[
γn

(
λ.

1

λ
A+ (1− λ). 1

1− λBn(0; t)
)]

≥ λΦ−1
(
γn

(
1

λ
A

))
+ (1− λ)Φ−1

(
γn

(
1

1− λBn(0; t)
))

.

Let λ ↑ 1 in (2.15). The first term in the right-hand-side tends to Φ−1 (γn (A)) = a. To compute

the limit of the second term, put r = 1
1−λ → +∞ as λ ↑ 1 and γn

(
rBn(0; t)

)
= Φ(y), so that

y → +∞ as r → +∞. Using the standard formulas for the Gaussian distribution,

1− Φ(y) ≈ 1√
2π

1

y
e−

1
2y
2

1− γn
(
rBn(0; t)

)
≈ 1

2
n
2−1Γ

(
n
2

) (rt)n−2e− 12 r2t2

since both left-hand members are equal, we conclude that y
r → t. Summing up,

Φ−1 (γn (At)) ≥ a+ t.

¤

4. Inequalities for the tails of the distribution of the supremum.

Let X = {X(t) : t ∈ T} be a real-valued centered Gaussian process, MT (ω) = supt∈T X(t)(ω)
(MT (ω) may have the value +∞). We will assume in this section that there exists a countable
subset D of the parameter set T such that almost surely MT = supt∈DX(t). In particular, this
condition holds true if X is a separable process. We denote σ2(t) = E(X2(t)).
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This section contains two theorems with general bounds for the probability distribution of
MT .

The first one is the Borell, Sudakov, Tsirelson inequality that gives an exponential bound for
P (|MT − µ(MT )| > x) where µ(ξ) denotes a median of the distribution of the real-valued random
variable ξ. The proof is a consequence of the isoperimetric inequality (2.14).

The second one is similar, but instead of the median appears in the statement the expecta-
tion E(MT ). We have included a proof due to Ibragimov, Sudakov and Tsirelson (1976), which is
independent of the foregoing arguments. This proof is interesting by itself, since it is based upon
Ito’s formula so that it establishes a link between the theory of Gaussian processes and Stochastic
Analysis.

In what follows, f is the function f(x) = sup
1≤j≤N

xj , where x = (x1, . . . , xN )T and

(2.16) fε(x) =

∫

RN

N∏

j=1

gε(x
j − yj) f(y) dy

is a regularization of f by convolution. Here, g : R → R+ is a function of class C∞ with support

in the interval [−1, 1] ,
∫ +1
−1 g(r) dr = 1 and gε(r) =

1
εg
(
r
ε

)
, 0 < ε < 1.

We start with the following lemma:

Lemma 2.7.

(1)
∑N
j=1

∣∣ ∂fε
∂xj

(x)
∣∣ = 1 ∀x ∈ RN .

(2) Let A = (aij)i,j=1,...,N be a real N ×N matrix and set B = AAT = (bij)i,j=1,...,N .
The function hA(x) = f(Ax), x ∈ RN satisfies the Lipshitz condition

|hA(x)− hA(y)| ≤ b̄ ‖x− y‖ ∀ x, y ∈ R
N ,

where b̄2 = sup{bii : i = 1, ..., N}.

Proof. To prove (1), let us compute the partial derivatives of fε:

∂fε
∂xj

(x) =

∫

RN−1

N∏

k=1,k 6=j

[
gε(x

k − yk) dyk
] ∫

R

g′ε(x
j − yj) f(y) dyj

=

∫

RN−1

N∏

k=1,k 6=j

[
gε(x

k − yk) dyk
] ∫

R

gε(x
j − yj) 1I

yj > sup
k 6=j

yk
dyj

=

∫

Aj

N∏

j=1

gε(x
j − yj) dy

with Aj =
{
yj > supk 6=j y

k
}
. The second equality above comes from integration by parts in the

inner integral.
Now it becomes plain that

(2.17)

N∑

j=1

∣∣∣∣
∂fε
∂xj

(x)

∣∣∣∣ = 1

since the sets Aj (j = 1, . . . , N) are a partition of RN , modulo Lebesgue measure.

To prove (2), notice that it suffices to show the result for the function hε instead of h, where
hε(x) = fε(Ax) and then pass to the limit as ε ↓ 0. This will be achieved if we prove:

‖∇hε(x)‖ ≤ b̄ ∀ x ∈ R
N .
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In fact:

(2.18) ‖∇hε(x)‖2 =
N∑

i=1

N∑

k,k′=1

∂fε
∂xk

aik
∂fε
∂xk′

aik′ =
N∑

k,k′=1

∂fε
∂xk

bkk′
∂fε
∂xk′

≤ b̄2



N∑

j=1

∣∣∣∣
∂fε
∂xj

∣∣∣∣



2

= b̄2.

¤

Let us now state and prove the first theorem.

Theorem 2.8. Assume that P(MT <∞) = 1.
Then:

σ2T = sup
t∈T

σ2(t) < +∞

and for every u > 0

(2.19) P(|MT − µ(MT )| > u) ≤ e
− 12 u2

σ2
T .

Remark. We will prove the stronger inequality:

P(|MT − µ(MT )| > u) ≤ 2[1− Φ(u/σT )].

Proof. Let us prove that σ2T <∞. In fact, if σ2T =∞ and {tn} is a sequence in T such that
σ2(tn)→∞, it follows that for u > 0:

P(MT > u) ≥ P(X(tn) > u) =
1√

2πσ(tn)

∫ +∞

u

e
− 12

y2

σ2(tn) dy =
1√
2π

∫ +∞

u
σ(tn)

e−
1
2y
2

dy → 1

2
.

So, P(MT > u) ≥ 1
2 for every u > 0. This implies P(MT = +∞) ≥ 1

2 which contradicts the
hypothesis that P(MT = +∞) = 0.

One can also assume that σ2T > 0 since this only excludes the trivial case that a.s. Xt = 0 for
every t ∈ T.

On the other hand, due to the hypothesis that a.s. MT is the supremum over a countable
set of parameter values, a simple approximation argument shows that it is enough to prove (2.19)
when the parameter T is finite, say it consists of N points. So, our aim is to prove the inequality:

(2.20) P(|f(X)− µ (f(X))| > u) ≤ 2[1− Φ(u/σ)].

where X = (X1, . . . , XN )T is a centered Gaussian vector in RN , Var(X) = E(XXT ) = V =
((Vij))i,j=1,...,N and σ2 = sup1≤j≤N Vjj .

Let V
1
2 be a square root of the variance matrix V, that is, V

1
2 (V

1
2 )T = V . Then, the random

vectors X and V
1
2 η, where η has a standard normal distribution in RN , have the same distribution,

and our problem is to prove that

(2.21) P(|h(η)− µ (h(η))| > u) ≤ 2[1− Φ(u/σ)]

where

h(x) = f(V
1
2x).

We denote µ̄ the median of the random variable h(η). Notice that for any x, y ∈ RN , using
Lemma 2.7, part (2) with h instead of hA:

Lh = sup
{ |h(x)− h(y)|

‖x− y‖ : x, y ∈ R
N , x 6= y

}
≤ σ.

Since u > 0, it follows that

(2.22) P(h(η)− µ̄ > uσ) ≤ P(h(η)− µ̄ > uLh).

Define A := {x ∈ RN , h(x) ≤ µ̄}. Then:
Au ⊂ {y ∈ R

N : h(y) ≤ µ̄+ uLh}
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In fact, according to the definition of Au, if w ∈ Au, one can write w = x + z, where h(x) ≤
µ̄, ‖z‖ ≤ u. So,

h(w) ≤ h(x) + uLh.

It follows, using (2.22) that

(2.23) P(h(η)− µ̄ > uσ) ≤ P(η ∈ ACu ).

We use now the isoperimetric inequality (2.14). Since µ̄ is the median of the distribution of
h(η), one has P (η ∈ A) ≥ 1/2, so that

P(η ∈ Au) ≥ Φ(u).

So, (2.23) implies that

(2.24) P (h(η)− µ̄ > u σ) ≤ 1− Φ(u) ≤ 1

2
e−

1
2u
2

,

where checking last inequality is an elementary computation.

A similar argument applies to P(h(η)− µ̄ < −u σ). This proves (2.21) and finishes the proof
of the theorem. ¤

Let us now turn to the second general inequality.

Theorem 2.9. Assume that the process X satisfies the same hypotheses as in Theorem 2.8.
Then:
1) E (|MT |) <∞.
2) For every u > 0 the inequality

(2.25) P(|MT − E (MT )| > u) ≤ 2 exp
(
− 1

2

u2

σ2T

)
.

Proof. We prove first the inequality for finite parameter set T, say having N points. The
first part of the proof is exactly the same as in the previous proof, and we use the same notations
as above.

Let {W (t) : t ≥ 0} be a Wiener process in RN , that is

W (t) = (W 1(t), . . . ,WN (t))T , t ≥ 0

where W 1, . . . ,WN are real-valued independent Wiener processes. We want to prove that

(2.26) P(|h(W (1))− E(h(W (1)))| > u) ≤ 2 exp
(
− 1

2

u2

σ2
)

for any u > 0. It suffices to prove (2.26) for the smooth function hε. Then, passing to the limit as
ε ↓ 0 gives the result. In what follows, for shortness, we have put h instead of hε.

Consider the function H : RN × (0, 1)→ R defined by means of:

H(x, t) = E(h(x+W (1− t))) =
∫

Rd
h(x+ y) p1−t(y) dy = (h ∗ p1−t)(x)

where

pt(y) =
1

(2πt)
N
2

exp
(
− ‖y‖

2

2t

)
, t > 0

is the density of the random variable W (t) in RN .
One can easily check that:

∂pt
∂t

=
1

2

N∑

j=1

∂2pt

(∂xj)
2

∂H

∂t
= −1

2

N∑

j=1

∂2H

(∂xj)
2(2.27)
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and that the function H has the boundary values:

H(x, t)→ h(y) as t ↑ 1 and x→ y

H(x, t)→ E(h(y +W (1))) as t ↓ 0 and x→ y.

Let us apply Itô’s formula, 0 < s < t < 1 :

H(W (t), t)−H(W (s), s) =

∫ t

s

N∑

j=1

[
∂H

∂xj
(W (u), u)dW j(u) +

1

2

∂2H

(∂xj)
2 (W (u), u)du

]

+

∫ t

s

∂H

∂t
(W (u), u)du

=

∫ t

s

N∑

j=1

∂H

∂xj
(W (u), u)dW j(u),

using (2.27). Take now limits as t ↑ 1 and s ↓ 0, obtaining
(2.28) h(W (1))− E(h(W (1))) = Z(1),

where {Z(t) : t ≥ 0} is the martingale

Z(t) =

∫ t

0

N∑

j=1

∂H

∂xj
(W (u), u)dW j(u).

Let us prove that the quadratic variation of Z verifies:

(2.29) [Z]1 ≤ σ2

From the proof of Lemma 2.7, we know that

sup
y∈RN

‖∇h(y)‖2 ≤ σ2.

So,

N∑

j=1

(
∂H

∂xj
(x, u)

)2
=

N∑

j=1

[
E

(
∂h

∂xj
(x+W (1− u))

)]2

≤
N∑

j=1

E

[(
∂h

∂xj
(x+W (1− u))

)2]
≤ σ2

and we obtain the bound (2.29) since:

[Z]1 =

∫ 1

0

N∑

j=1

(
∂H

∂xj
(W (u), u)

)2
du ≤ σ2.

Now, for each θ ∈ R we consider the exponential martingale (see Mc Kean, 1969):

Y (t) = eθ Z(t)−
1
2 θ
2[Z]t , 0 ≤ t ≤ 1,

which satisfies

E (Y (t)) = 1 for every t, 0 ≤ t ≤ 1.

This, together with (2.29) imply that for every θ ∈ R, E
(
eθ Z(1)−

1
2 θ
2σ2
)
≤ 1, so that:

(2.30) E
(
eθ Z(1)

)
≤ e

1
2 θ
2σ2 .

Write the left-hand side of (2.26) for u > 0 as

P(|Z(1)| > u) = P(Z(1) > u) + P(Z(1) < −u).
For the first term use (2.30) with θ = u

σ2 . Then:

P(Z(1) > u) = P(eθZ(1) > eθ) ≤ e−θuE
(
eθZ(1)

)
≤ exp

(
− θu+

1

2
θ2σ2

)
= exp

(
− 1

2
u2σ2

)
.
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A similar argument produces the same bound for the second term. This proves (2.26).

To finish, we must show that the result holds for infinite T . Due to the hypothesis, it suffices
to consider the case when T is countable. Put T = {tn}n=1,2,.., TN = {t1, . . . , tN} , N ≥ 1.
Clearly

MTN ↑MT , σ2TN ↑ σ2T as N ↑ +∞
and

0 ≤MTN −X(t1) ↑MT −X(t1) as N ↑ +∞.
Beppo Levi’s Theorem implies that

E (MTN ) ↑ E (MT ) as N ↑ +∞.
Since we already know that (2.25) holds true for TN instead of T , it will be sufficient to prove
that E (MT ) <∞ to obtain (2.25), by letting N ↑ +∞.

Let us suppose that this were not true, that is, that E (MT ) = +∞. Using the fact that a.s.
the paths are bounded, choose x0 large enough to have

P(MT < x0) >
3

4
and exp

(
− x20

2σ2T

)
<

1

4
.

Now, if E (MT ) = +∞ using Beppo Levi’s Theorem, we can choose N large enough so that

E (MTN ) > 2x0.

Then, if ω ∈ {MT < x0} one has MTN (ω) ≤ MT (ω) < E (MTN ) − x0 which implies that
|MTN (ω)− E (MTN )| > x0. Hence,

3

4
< P(MT < x0) ≤ P(|MTN − E (MTN )| > x0) ≤ 2 exp

(
− x20

2σ2TN

)
≤ 2 exp

(
− x20

2σ2T

)
<

1

2
.

which is a contradiction. This implies that E(MT ) <∞ and we are done. ¤

4.1. Some derived tail inequalities.
1.-The same arguments show that Theorems 2.8 and 2.9 have unilateral versions, namely for

x greater than the mean E(MT ) or the median µ(MT ) of the process.

(2.31) P(M > u) ≤ exp
(
− (u− E(MT ))

2

2

)

and

(2.32) P(M > u) ≤ 1

2
exp

(
− (u− µ(MT ))

2

2

)
.

2.- A weaker form of the above inequalities is the following: under the same hypotheses of
Theorem 2.8 or 2.9, for each ε > 0 there exists a positive constant Cε such that for all u > 0 :

(2.33) P(|MT | > u) ≤ Cε exp
(
− 1

2

u2

σ2T + ε

)
.

(2.33) is a consequence of (2.25) on account of u−E{MT }
u → 1 as u→ +∞.

Grosso modo, this says that the tail of the distribution of the random variableMT is bounded
(except for a multiplicative constant) by the value of the centered normal density having variance
larger than, and arbitrarily close to, σ2T .

The problem with this kind of inequality is that, in general, the constant. Cε can grow (and
tend to infinity) as ε decreases to zero. Even for fixed ε, the usual situation is that, in general,
one can only have rough bounds for Cε and this implies serious limitations for the use of these
inequalities in Statistics and in other fields. We will return to this problem in some of the next
chapters, with the aim of giving more accurate results on the value of the tails of the distribution of
the supremum, at least for certain classes of Gaussian processes satisfying regularity assumptions.
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3.- (2.31) and (2.25) show that one can do better than (2.33) since for example (2.25) has the
form

P(|MT | > u) ≤ C. exp
(
− u2

2σ2T
+ C1 u

)
.

The difficulty for using this inequality is that the positive constants C and C1 depend on E(MT ),
which is finite but unknown. The problem of giving bounds on E(MT ) will be addressed in the
next section.

4.- Under the same hypotheses, if σ2 > σ2T one has:

(2.34) E
(
exp

(M2
T

2σ2
))

<∞.

This is a direct consequence of (2.33)
and implies that all moments of MT are finite, since for any positive integer k :

E
(
M2k
T

)
≤ (2σ2)k k!E

(
exp

M2
T

2σ2
)
.

A straightforward consequence (that we have already proved by direct means in the previous
chapter) is that if X = {X(t) : t ∈ T} is a Gaussian process defined on a compact separable
topological space such that almost surely the paths tÃ X(t) are continuous then, the mean m(t)
and the covariance function r(s, t) := Cov(X(s), X(t)) are continuous functions. In fact, it suffices
to notice that each continuous path is bounded, so that the theorem can be applied, and one can
use Lebesgue dominated convergence to prove continuity.

5.- To illustrate the fact that these inequalities are not usually significant from numerical
point of view, let us consider the simplest case, given by the Wiener process (Brownian motion).
Let {W (t) : t ∈ [0, 1]} be the Brownian motion on the unit interval and M its maximum. It is
well known, McKean(1969), that the reflection principle implies that the distribution of M is that
of the absolute value of a standard normal variable. It implies that

E(M) =

√
2

π
= 0.7989....

and that the median µ(M) satisfies µ(M) = 0.675.... If we apply Borell’s type inequality to the
Wiener process (Brownian motion) (with the advantage that the mean and the median are known,
which is of course exceptional), we get:

u true values of P(MW > u) Borell’s b. mean Borell’s b. median
2 0.045 0.4855 0.2077
3 0.0027 0.0885 0.0347
4 6.33 10−5 5.93 10−3 1.98 10−3

5 5.73 10−7 1.46 10−4 4.32 10−5

In this table we have taken unilateral versions of Borell’s type inequality namely, (2.31) and
(2.32). The inequality with the median is sharper but even in this very favorable case both
inequalities are imprecise.

5. Dudley’s inequality.

We now turn to obtaining a bound for E(MT ). A classical result in this direction is the next
theorem. The proof below is taken from Talagrand (1996).

Let {X(t) : t ∈ T} be a stochastic process not necessarily Gaussian. As in Section 4.4 of

Chapter 1 we define the canonical distance by d(s, t) :=
√

E
(
(X(t)−X(s))2

)
identifying as usual

points s, t when d(s, t) = 0. We define the covering number Nε := N(T, d, ε) as in Definition 1.17
, using this metric.
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Theorem 2.10 (Dudley). With the preceding notations, assume that

E(X(t)) = 0 for every t ∈ T

(2.35) P(|X(t)−X(s)| > u) ≤ 2 e
− 12 u2

d2(s,t) for all s, t ∈ T , u > 0

Then,

(2.36) E(sup
t∈T

X(t)) ≤ K

∫ +∞

0

(log Nε)
1
2 dε

where K is a universal constant.

Let us make some remarks on the statement before giving the proof.

• It is clear from the definition that 0 < ε < ε′ implies Nε ≥ Nε′ . Hence if Nε′ = +∞ for
some ε′ > 0 then Nε = +∞ for all ε < ε′ and the integral in the right-hand side of (2.36)
is +∞. In particular, this is the case when diam(T ) (the diameter of T ) is ∞.
On the other hand, if diam(T ) <∞ and ε > diam(T ), then Nε = 1, hence the integral
in the right-hand side of (2.36) is in fact an integral over a finite interval.

• Condition (2.35) is easily verified for Gaussian processes.
In fact, in this case, if u > 0 :

P(|X(t)−X(s)| > u) =

√
2

π

∫ +∞

u

d(s, t)

exp
(y2
2

)
dy ≤

√
2

π

d(s, t)

u
exp

( u2

2d2(s, t)

)
.

If d(s,t)u ≤
√
2π (2.35) follows.

If d(s,t)u >
√
2π, then 2 exp

(
u2

2d2(s,t)

)
> 2 exp

(
− 1
4π

)
> 1 and (2.35) also holds true.

• Under the general conditions of the theorem, it is necessary to precise the meaning of
E (supt∈T X(t)) to avoid measurability problems. This will be, by definition equal to

sup
F⊂T,F finite

E

(
sup
t∈F

X(t)

)

It is easy to see that if the conditions of the previous section hold true, this coincides
with the ordinary expectation of supt∈T X(t). This will be the situation in the processes
we will deal with in the remaining of the book.

So, it will be sufficient to prove (2.36) when one replaces in the left-hand side supt∈T X(t) by
supt∈F X(t) F a finite subset of T .

Proof. According to the previous remark, it suffices to consider the case diam(T ) < ∞,
since otherwise the right-hand side of (2.36) is infinite. Let F be a finite subset of T . Choose any
t0 ∈ F and fix it for the remaining of the proof. Since the process is centered we have

(2.37) E

(
sup
t∈F

X(t)

)
= E

(
sup
t∈F

(X(t)−X(t0))

)
=

∫ +∞

0

P(sup
t∈F

(X(t)−X(t0)) > x) dx

given that supt∈F (X(t)−X(t0)) ≥ 0. Let j0 be the (unique) integer such that

2−j0 < diam(T ) ≤ 2−j0+1

We define the following sequence {Ej}j=j0,j0+1,.... of subsets of T :

The first member of the sequence is {Ej0} = {t0}
For each integer j ≥ j0+1, take a set of N2−j closed balls of radius 2−j such that the union covers
T (which exists, according to the definition of Nε) and let Ej be the set of the centers of these
balls. This implies that for each t ∈ T and each j ≥ j0 + 1, one can define πj(t) ∈ Ej such that

d(t, πj(t)) ≤ 2−j .

Put also πj0(t) = t0 for every t ∈ T. Clearly:
d(πj(t), πj−1(t)) ≤ d(πj(t), t) + d(πj−1(t), t) ≤ 3. 2−j , j ≥ j0 + 2.



5. DUDLEY’S INEQUALITY. 53

and

d(πj0+1(t), πj0(t)) ≤ diam(T ) ≤ 2−j0+1

so that we have

(2.38) d(πj(t), πj−1(t)) ≤ 4. 2−j , j ≥ j0 + 1.

Let us prove that for each t ∈ T one has

(2.39) a.s. X(t)−X(t0) =

∞∑

j=j0+1

(X(πj(t))−X(πj−1(t))) .

In fact, using the hypothesis and (2.38), for αj > 0 :

P (|X(πj(t))−X(πj−1(t))| ≥ αj) ≤ 2 exp
(
−

α2j
2d2(πj(t), πj−1(t))

)
≤ 2 exp

(
−

α2j
32× 2−2j

)
.

Taking αj = 2−j/2 and applying the Borel-Cantellli Lemma, it follows that almost surely the
series in (2.39) converges. On the other hand,

E
[
(X(πj(t))−X(t))

2
]
= d2(πj(t), t)→ 0 as j →∞.

This proves (2.39).
It follows from (2.39) that if {aj}j=j0,j0+1,... is a sequence of positive numbers, and u > 0 :

P
(
sup
t∈F

(X(t)−X(t0)) > u

∞∑

j=j0+1

aj

)

≤ P (∃t ∈ F and ∃j > j0 such that X(πj(t))−X(πj−1(t)) > uaj ) .

Use now that there are at most N2−jN2−(j−1) points in the product set Ej ×Ej−1 which implies
that

(2.40) P
(
sup
t∈F

(X(t)−X(t0)) > u
∞∑

j=j0+1

aj

)
≤

∞∑

j=j0+1

N2−jN2−(j−1) 2 exp
(
−

u2a2j
32× 2−2j

)
.

Choosing

aj = 4. 2−j+
1
2

[
log
(
2j−j0N2−jN2−(j−1)

)] 1
2

the expression in the right-hand side of (2.40) becomes, for u ≥ 1 :

2

∞∑

j=j0+1

N2−jN2−(j−1)
(
2j−j0N2−jN2−(j−1)

)−u2 ≤ 2

∞∑

j=j0+1

2−(j−j0)u
2

≤ 2 2−u
2
∞∑

k=0

2−k = 4 .2−u
2

.

If we denote

S =

∞∑

j=j0+1

aj

then if v/S ≥ 1 we get:

P
(
sup
t∈F

(X(t)−X(t0)) > v
)
≤ 4 e−

v2

S2

which implies

E

[
sup
t∈F

(X(t)−X(t0))

]
≤ S +

∫ +∞

S

P

(
sup
t∈F

(X(t)−X(t0)) > v

)
dv(2.41)

≤ S + 4

∫ +∞

S

e−
v2

S2 dv ≤ 2.S
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by a simple computation. On the other hand:

S =

∞∑

j=j0+1

aj ≤
∞∑

j=j0+1

4.2−j+
1
2 [(j − j0) log 2 + 2(log N2−j )]

1
2

≤
∞∑

j=j0+1

4.2−j+
1
2

[
(j − j0)

1
2 (log 2)

1
2 + 2

1
2 (log N2−j )

1
2

]
= T1 + T2.

For T1 we have

T1 ≤ 4.2
1
2 (log 2)

1
2

∞∑

j=j0+1

2−j(j − j0) = 16.
√

2 (log 2) 2−(j0+1)

≤ 16
√
2

∞∑

j=j0+1

2−(j+1)(log N2−j )
1
2 .

because N2−j ≥ 2 for j ≥ j0+1 given that the definition of j0 implies that one needs at least two
balls of radius 2−(j0+1) to cover T .
As for T2 T2 ≤ 16

∑∞
j=j0+1

2−(j+1)(log N2−j )
1
2 .

Putting the two pieces together we obtain

S ≤ 16(1 +
√
2)

∞∑

j=j0+1

2−(j+1)(log N2−j )
1
2 ≤ 16(1 +

√
2)

∫ 2−(j0+1)

0

(logNε)
1
2 dε

where the last inequality is a standard lower bound for the integral of the monotone decreasing
function εÃ (logNε)

1
2 by Riemann’s sums. This finishes the proof. ¤

Exercises

Exercise 2.1. Give a direct geometric proof of the Plackett-Slepian Lemma without using
Fourier transform methods.

Hint:
1) Prove the Lemma for n = 2 by means of a comparison of measures in the plane.
2) For general n, it suffices to prove that P(X1 ≤ a1, . . . , Xn ≤ an) increases - in the broad

sense - if one of the covariances rjk (j 6= k) increases, say r12. For that purpose, write X = Aξ,
A a non-random supertriangular matrix and ξ standard normal in Rn.

Then, reduce the problem to dimension 2 by means of conditioning on the values of ξ3, . . . , ξn.

Exercise 2.2. Prove that a direct consequence of the Normal comparison lemma is that if
X1, . . . , Xn are standard normal variables with Cov(Xi, Xj) = rij , then for any reals numbers
u1, . . . , un

P|
( n⋂

j=1

{Xj ≤ uj}
)
−

n∏

j=1

P{Xj ≤ uj}| ≤
1

4

∑

1≤j<k≤n
|rij | exp

(
−

u2j + u2k
2(1 + |rij |)

)
,

Exercise 2.3. Give an example showing that in the Plackett-Slepian version of the Normal
comparison lemma one can not withdraw the equality of variances condition.



CHAPTER 3

Crossings and Rice formulas for 1-dimensional parameter

processes

1. Rice Formulas

Let f : I → R be a real-valued function defined on an interval I of the real line.
We will denote:

Cu(f, I) := {t ∈ I : f(t) = u}
Nu(f, I) := #Cu(f ; I).

Cu(f, I) is the set of roots of the equation f(t) = u in the interval I and Nu(f, I) the number
of these roots, that may be finite or infinite. We will usually replace Cu(f, I) by Cu (respectively
Nu(f, I) by Nu) in case there is no doubt about the function f and the interval I.

In a similar way, if f is differentiable we define:

Uu(f, I) := # {t ∈ I : f(t) = u, f ′(t) > 0}

Du(f, I) := # {t ∈ I : f(t) = u, f ′(t) < 0} .
Nu (resp. Uu, Du) will be called the “number of crossings” (resp. “up-crossings”, “down-
crossings”) of the level u by the function f on the interval I.

Our interest will be focused onNu(X, I), Uu(X, I), Du(X, I) whenX(.) is a path of a stochastic
process. Even though these random variables are important in a large variety of problems, their
probability distributions are unknown except for a small number of trivial cases. The Rice formulas
that we are going to study in this chapter provide certain expressions, having the form of integral
formulas, for the moments of Nu(X, I), Uu(X, I), Du(X, I) and also some other related random
variables.

Rice formulas for one-parameter stochastic processes have been used for a long time in var-
ious contexts, such as telecommunications and signal processing (Rice, 1944-1945), ocean waves
(Longuett-Higgins, 1957, 1962a,b) and random mechanics (Krée & Soize, 1983).

Rigorous results and a systematic treatment of the subject in the case of Gaussian processes
came in the 1960’s with the works - among others - of Belayev (1966), Ito (1964), Cramér
(1965,1966). A landmark in the subject was the book by Cramér and Leadbetter (1967). The
simple proof we have included below for general - not necessarily stationary - Gaussian processes
with C1−paths is given here for the first time. Formulas for wider classes of processes can be
found for example in Marcus (1977), Adler (1981) and Wschebor (1985). The proof of Theorem
3.4 which contains Rice Formula for general processes, not necessarily Gaussian, is an adaptation
from the last reference.

We will say that the real-valued function f defined on the interval I = [t1, t2] satisfies hypoth-
esis H1.u if:

• f is a function of class C1;
• f(t1) 6= u, f(t2) 6= u;
• {t : t ∈ I, f(t) = u, f ′(t) = 0} = ∅

Lemma 3.1 (Kac’s counting formula). If f satisfies H1.u, then

(3.1) Nu(f, I) = lim
δ→0

1

2δ

∫

I

1I{|f(t)−u|<δ} |f ′(t)| dt

55
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Proof. The hypothesis H1.u implies that Nu(f, I) is finite, say Nu(f, I) = n. If n = 0, the
result is obvious, since the integrand in the right-hand side of (3.1) is identically zero if δ is small
enough. If n ≥ 1, put

Cu(f, I) = {s1, . . . , sn} .
Since f ′(sj) 6= 0 for every j = 1, . . . , n, if δ > 0 is small enough the inverse image of the interval
(u− δ, u+ δ) by the function f is the union of exactly n pairwise disjoint intervals J1, . . . , Jn
which contain respectively the points s1, . . . , sn. The restriction of f to each one of the intervals
Jk (k = 1, ...n) is a diffeomorphism and one easily checks changing variables that

∫

Jk

|f ′(t)| dt = 2 δ

for each k. So, if δ > 0 is small enough:

1

2δ

∫

I

1I{|f(t)−u|<δ} |f ′(t)| dt =
1

2δ

n∑

k=1

∫

Jk

|f ′(t)| dt = n

and we are done. ¤

Remarks on the lemma. The lemma holds true for polygonal f , even though these are not
C1. More precisely, let

t1 = τ0 < τ1 < .... < τm = t2

be a partition of the interval [t1, t2] and f a function having the polygonal graph with vertices
(τi, f(τi)), i = 0, 1, ...m. Then, if f(τi) 6= u for i = 0, 1, ...m, formula (3.1) holds true.

The proof is immediate, since formula (3.1)is satisfied for each partition interval and, under
these hypotheses, is additive as a function of I.

Moreover, notice that if f is such a polygonal function, then the expression

1

2δ

∫

I

1I{|f(t)−u|<δ} |f ′(t)| dt

in the right-hand side of (3.1) is bounded by m. This is again simple, since the integral on each
partition interval is bounded by 1 if it contains a crossing point and by 1/2 if it does not.

Some basic ideas. An informal presentation of Rice formula for the expectation E
(
Nu(X, I)

)

where X is a stochastic process, can be the following: replace the function f in (3.1) by the random
path X(.), and take expectations in both sides. Then:

E
(
Nu(X, I)

)
= lim
δ→0

E
( 1
2δ

∫

I

1I{|X(t)−u|<δ} |X ′(t)|dt)

=

∫

I

dt lim
δ→0

∫ u+δ

u−δ
E
(
|X ′(t)|

∣∣X(t) = x
)
pX(t)(x)dx =

∫

I

E
(
|X ′(t)|

∣∣X(t) = u
)
pX(t)(u)dt.

We will pay attention in this chapter to the justification of these equalities, in what concerns
the passages to the limit. It is easy to prove weak forms of Rice formula such as equality for almost
every level u (see Exercise 3.8), or to give upper-bounds for E

(
Nu(X, I)

)
(see Exercise 3.9).

However, a formula for almost every u is not satisfactory for a number of uses. For example,
if one is willing to compute the moments of the number of critical points or the number of local
maxima of a random function, one has to count the number of points in which the derivative is
equal to zero, and a formula of this kind, valid for almost every u is uninteresting, one needs it
for u = 0. So, it is worth to spend some energy to prove an exact formula for each level u. In all
cases, some hypotheses on the processes will be necessary (see a simple counter-example in which
the formula fails to hold true in Exercise 3.3).

When the process {X(t) : t ∈ R} is Gaussian centered stationary with variance 1, Rice formula
for the expectation takes the simple form:

(3.2) E
(
Nu(X, I)

)
=

√
λ2
π

e−u
2/2|I|;
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|I| denotes the length of the interval I. This formula is due to S.O. Rice, who stated it for the first
time in a series of pioneering papers pointing to electrical engineering applications (1944, 1945).

1.1. Gaussian case. We start with a statement and proof for Gaussian processes.

Theorem 3.2 (Gaussian Rice formula). Let X = {X(t) : t ∈ I} , I an interval in the real
line, be a Gaussian process having C1-paths. Let k be a positive integer. We assume that for
every k pairwise distinct points t1, . . . , tk in I the joint distribution of X(t1), . . . , X(tk) does not
degenerate.
Then
(3.3)

E
(
N [k]u

)
=

∫

Ik
E
(
|X ′(t1) . . . X ′(tk)|

∣∣X(t1) = u · · ·X(tk) = u
)
pX(t1),...,X(tk)(u, . . . , u)dt1 . . . dtk,

where

Nu := Nu(X, I)

m[k] := m(m− 1)...(m− k + 1) if m, k are positive integers, m ≥ k

:= 0 otherwise

Proof. Step 1

Let k = 1. With no loss of generality, we assume that I = [0, 1]. Define X (n)(t) as the dyadic
polygonal approximation of X(t). As in the proof of Theorem 1.6, X (n)(t)−X(t) tends uniformly
to zero and is bounded by the random variable 2 sup

t∈I
|X(t)|, which has finite moments of all orders,

because of the results of Chapter 2. Using dominated convergence, it follows that Var(X (n)(t))
converges uniformly for t ∈ I to Var(X(t)). So, for n large enough, Var(X (n)(t)) ≥ b for some
b > 0 and all t ∈ [0, 1]. (The reader might show this using the more elementary arguments in the
section on the normal distribution of Chapter 1).

For such an n, a.s. the process X(n)(t) does not take the value u at the partition points j.2−n

(j = 0, 1, ..., 2n), since the random variable X(t) has a density for each t ∈ I. So using the remarks
after Lemma 3.1, we obtain

(3.4) Nu(X
(n), I) = lim

δ→0

1

2δ

∫

I

1I{|X(n)(t)−u|<δ}
∣∣∣X(n)′(t)

∣∣∣ dt a.s.

and the expression next to the limit in the right-hand side of (3.4) is bounded by 2n.
Applying dominate convergence as δ → 0 , for fixed n: p

(3.5) E
(
Nu(X

(n), I)
)
= lim
δ→0

1

2δ

∫

I

E
(
1I{|X(n)(t)−u|<δ} |X(n)′(t)|

)
dt

= lim
δ→0

∫

I

dt
1

2δ

∫ u+δ

u−δ
E
(
|X(n)′(t)|

∣∣X(n)(t) = x
)
pX(n)(t)(x)dx,

where the conditional expectation is the one defined by means of Gaussian regression.
Since the process has continuous sample paths, its expectation m(t) and covariance r(s, t)

are continuous (see Chapter 1, Section 4.3). On the other hand, the regression formulas show
that E(|X(n)′(t)|

∣∣X(n)(t) = x) pX(n)(t)(x) is a continuous function of the pair (t, x) and thus, it is
bounded for t ∈ I and x in a neighborhood of u. This implies that we may pass the limit sign
inside the integral in the right-hand side of (3.5), so that:

(3.6) E
(
Nu(X

(n), I)
)
=

∫

I

E
(
|X(n)′(t)|

∣∣X(n)(t) = u
)
pX(n)(t)(u)dt.

To finish the proof, let us take limits in both sides as n → +∞ in (3.6). By Ylvisaker’s
Theorem (Theorem 1.21), with probability one there exists no local extrema at the level u. An
instant reflection shows this implies that a.s.,

Nu(X
(n), I) ↑ Nu(X; I)
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so that the left-hand side of (3.6) tends to E
(
Nu(X, I)

)
, using monotone convergence. On the

other hand, as already mentioned, as n → +∞ the expectation and variance matrix of the pair
(X(n)(t), X(n)′(t)) converge uniformly to those of (X(t), X ′(t)) and this implies the convergence
of the right-hand side of (3.6) to the corresponding expression for X(t). this finishes the proof for
k = 1.

Step 2. For k > 1, let us denote by

Cku := Cu × ....× Cu, with Cu = Cu(X, I)

the cartesian product of Cu k times by itself and

µ(J) = #(Cku ∩ J)
the number of points of Cku belonging to J for each Borel subset J of Ik.
Let Dk(I) the diagonal set of the cube Ik defined as
(3.7)

Dk(I) = {(t1, . . . , tk) : tj ∈ I for j = 1, . . . , k and there exist j, j ′, j 6= j′ such that tj = tj′}
It is easy to check that

N [k]u = µ(Ik \Dk(I))

So, it suffices to prove that

(3.8) E(µ(J)) =

∫

J

At1,...,tk(u, . . . , u) dt1 . . . dtk

where
(3.9)
At1,...,tk(u1, . . . , uk) := E

(
|X ′(t1) . . . X ′(tk)|/X(t1) = u1, . . . , X(tk) = uk

)
pX(t1),...,X(tk)(u1, . . . , uk)

for every compact rectangle J = J1 × ... × Jk contained in Ik \Dk(I) (which amounts to saying
that the closed intervals J1, . . . , Jk are pairwise disjoint). In fact, if this is proved, then the two
Borel measures

J Ã E(µ(J))

J Ã

∫

J

At1,...,tk(u, . . . , u) dt1...dtk

coincide on these rectangles, hence on all Borel subsets of Ik \Dk(I). So,

E
(
N [k]u

)
=

∫

Ik\Dk(I)

At1,...,tk(u, . . . , u) dt1 . . . dtk.

This proves (3.3) since Dk(I) has Lebesgue measure zero.
To end up, let us turn to the proof of (3.8). We use the same arguments as in Step 1: first,

we prove the equality for the polygonal approximation using Kac’s formula and second, a similar
domination argument allows to pass to the limit as one refines the partition. ¤

Remark. A byproduct of Rice formula for k = 1 in the Gaussian case is that, under the
conditions of the theorem, E(Nu) is finite. This follows from the fact that the right-hand side of
(3.3) is finite when k = 1 since it is the integral of a bounded function on a bounded interval.

For k > 1 both sides in (3.3) can be infinite.

1.2. Non-Gaussian case. For general processes, Lemma 3.1 will still be useful to get an
upper bound for E (Nu(X, I)) via Fatou’s Lemma. The next result will be helpful in the opposite
direction.

Lemma 3.3. Let f be a function that satisfies H1.u and let 0 < ε < δ < t2−t1
2 .

Let ψ be a real-valued function of one real variable, of class C1, with support contained in [−1, 1] ,
ψ(s) ≥ 0,

∫
R
ψ(s) ds = 1. We define ψε(s) =

1
εψ(

s
ε ) and, for each locally integrable function g,

gε(t) = (ψε ∗ g)(t) =
∫

R

ψε(t− s) g(s) ds
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the convolution of g with the approximation of unity ψε.
Then

(3.10) Nu(f ; I) ≥
∫

I−δ

|g′ε(t)| dt

where

g(t) = 1I(u,+∞)(f(t)) and I−δ = [t1 + δ, t2 − δ] .
Proof. By a duality argument, it suffices to show that

(3.11) Nu(f ; I) ≥
∫

I−δ

v(t) g′ε(t) dt

for every C1 function v with support in I−δ and such that ‖v‖∞ ≤ 1.
Let {hm}m=1,2,... be a sequence of C1functions that approximate the step function 1Ix>u. More

precisely, hm is monotone increasing in the broad sense, and hm(x) = 0 for x ≤ u, hm(x) = 1 for
x ≥ u+ 1

m .
Applying dominated convergence we obtain:

∫

I−δ

v(t) g′ε(t) dt =

∫

I−δ

v(t) dt

∫

R

ψ′ε(t− s)1I(u,+∞)(f(s)) ds

= lim
m→∞

∫

I−δ

v(t) dt

∫

R

ψ′ε(t− s)hm(f(s)) ds

Integrate by parts, use Fubini’s Theorem and observe that if t ∈ I−δ and t − s is in the support
of ψε, then s must be in I :

∫

I−δ

v(t) g′ε(t) dt = lim
m→∞

∫

I−δ

v(t) dt

∫

R

ψε(t− s)h′m(f(s)) f ′(s) ds

= lim
m→∞

∫

R

h′m(f(s)) f ′(s) ds

∫

I−δ

v(t)ψε(t− s) dt

≤ lim
m→∞

∫

I

h′m(f(s)) |f ′(s)| ds.

The hypothesis H1.u plus an argument similar to the one in Lemma 3.1 show that for m large
enough ∫

I

h′m(f(s)) |f ′(s)| ds = Nu(f ; I)

This shows (3.11). ¤

Next, we are going to impose a certain number of hypotheses on the stochastic process X =
{X(t) : t ∈ I} for which we will state and prove the Rice formulas. They are the following:

A1) The paths of X are of class C1.

A2k) Let k be a positive integer. For any choice of the k-tuples (t1, . . . , tk), (t
′
1, . . . , t

′
k) ∈

Ik \Dk(I), where Dk(I) is the diagonal set defined in (3.7), the random vector
(X(t1), . . . , X(tk), X

′(t′1), . . . , X
′(t′k)) has a density - in R2k - denoted by

(3.12) pX(t1),...,X(tk),X′(t′1),...,X′(t′k)(x1, . . . , xk, x
′
1, . . . , x

′
k)

We also define:

Ik(x1, . . . , xk) :=

∫

Ik
At1,...,tk(x1, . . . , xk) dt1...dtk

where At1,...,tk(x1, . . . , xk) has already been defined in the proof of Rice formula in the Gaussian
case.
Notice that in the general case, due to the conditional expectation, this function is only defined
for almost every point (x1, ..., xk). We are assuming that it has a continuous version and it is this
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version that appears in what follows.

These integrals may have the value +∞, but are always well defined.
We will assume that the density (3.12) is a continuous function of (x1, . . . , xk) at the point
(u, . . . , u) (the other variables remaining constant) and of (t1, . . . , tk) in Ik \ Dk(I) (the other
variables remaining constant).

We also assume that pX(t)(x) is continuous for t ∈ I and x in a neighborhood of u.

A3k) The function (t1, . . . , tk, x1, . . . , xk)Ã At1,...,tk(x1, . . . , xk) is assumed to be continuous
for (t1, . . . , tk) in I

k \Dk(I) and x1, . . . , xk in a neighborhood of (u, . . . , u).

A4k)
∫

R3
|x′1|

k−1 |x′2 − x′3| pX(t1),...,X(tk),X′(t′1),X′(t′2),X′(t1)(x1, . . . , xk, x
′
1, x

′
2, x

′
3) dx

′
1dx

′
2dx

′
3

tends to zero as t′2 − t1 → 0 uniformly for (t1, . . . , tk) in a compact subset of Ik \ Dk(I) and
x1, . . . , xk in a neighborhood of (u, . . . , u).

Theorem 3.4 (Rice Formula). If X satisfies A1), A2k), A3k), and A4k), then:
(3.13)

E
(
N [k]u

)
=

∫

Ik
E
(
|X ′(t1) . . . X ′(tk)|

∣∣X(t1) = u · · ·X(tk) = u
)
pX(t1),...,X(tk)(u, . . . , u)dt1 . . . dtk,

Proof. Using the same arguments as in the proof of Theorem 3.2, it is sufficient to prove
that

(3.14) E
(
µ(J)

)
=

∫

J

At1,...,tk(u, . . . , u) dt1...dtk

for every compact rectangle J = J1× ...×Jk contained in Ik \Dk(I) (for k = 1, we put Dk(I) = ∅).
First we use Lemma 3.1. It is easy to check that almost surely the paths of the process satisfy

hypothesis H1,u.

µ(J) =

k∏

i=1

Nu(X, Ji) = lim
δ→0

1

(2δ)
k

k∏

i=1

[∫

Ji

1I{|X(ti)−u|<δ} |X ′(ti)| dti
]

By Fatou’s Lemma, the definition of At1,...,tk(x1, . . . , xk) and hypothesis A3k), we obtain:

E
(
µ(J)

)
≤ lim inf

δ→0

1

(2δ)
k

∫

J

dt1...dtk

∫ u+δ

u−δ
...

∫ u+δ

u−δ
At1,...,tk(x1, . . . , xk) dx1...dxk(3.15)

=

∫

J

At1,...,tk(u, . . . , u) dt1...dtk.

The converse inequality is somewhat more complicated. We apply Lemma 3.3 to each one of the
intervals J1, . . . , Jk. We have:

E
(
µ(J)

)
= E

( k∏

i=1

Nu(X, Ji)
)
≥ E

( k∏

i=1

[ ∫

(Ji)−δ

|g′ε(ti)| dti
])

where g(t) = 1(u,+∞)(X(t)).
Define the sequence of functions {hm}m=1,2,... as in the proof of Lemma 3.3. Using dominated

convergence, Fubini’s Theorem and integration by parts provide

(3.16) E
(
µ(J)

)
≥ lim
m→∞

∫

J−δ

dt1...dtkE
( k∏

i=1

∣∣∣∣
∫

R

ψε(ti − si)h′m(X(si))X
′(si) dsi

∣∣∣∣
)

with J−δ = (J1)−δ × ....× (Jk)−δ.
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To obtain a lower bound for the mathematical expectation in the right-hand side of the last
inequality, we use

(3.17)
k∏

i=1

ai ≥
k∏

i=1

bi −
k∑

i=1

b1...bi−1ciai+1, . . . , ak

which holds true whenever ai, bi, ci ≥ 0 and ai ≥ bi − ci for i = 1, . . . , k. One can check (3.17)
by induction,this is left to the reader.

We apply (3.17) with:

ai =

∣∣∣∣
∫

R

ψε(ti − si)h′m(X(si))X
′(si) dsi

∣∣∣∣

bi =

∫

R

ψε(ti − si)h′m(X(si)) |X ′(ti)| dsi

ci =

∫

R

ψε(ti − si)h′m(X(si)) |X ′(si)−X ′(ti)| dsi

For the remaining part, choose ε > 0 small enough so that it is sufficient to consider the
k-tuple (s1, .., sk) in the integral in (3.16) varying in a compact subset of Ik \ Dk(I) outside of
which the integrand is equal to zero. This can be done, given that the distance between J and
the diagonal Dk(I) is strictly positive and the support of ψε is contained in [−ε, ε].

Consider the expectation of the first term of (3.17):

E(
k∏

i=1

bi) =

∫

Rk

[ k∏

i=1

ψε(ti − si)dsi
] ∫

Rk×Rk

k∏

i=1

[
h′m(xi) |x′i|

]

.pX(s1),...,X(sk),X′(t1),...,X′(tk)(x1, . . . , xk, x
′
1, . . . , x

′
k) dx1...dxk dx

′
1...dx

′
k.

Let m → ∞ and ε ↓ 0 (in this order). Using hypotheses A2k) and A3k) and Fatou’s Lemma, we
get:

(3.18) lim inf
ε↓0

lim inf
m→∞

E
( k∏

i=1

bi
)
≥ At1,...,tk(u, . . . , u).

We now consider the expectation of each term of the sum in the right-hand side of (3.17).

E
(
b1...bi−1ciai+1, . . . , ak

)

≤ E
(∫

Rk

[ k∏

h=1

ψε(th − sh)h′m(X(sh)) dsh
][ i−1∏

h=1

|X ′(th)|
][ k∏

h=i+1

|X ′(sh)|
]
|X ′(si)−X ′(ti)|

)

=

∫

Rk

k∏

h=1

[ψε(th − sh) dsh]
∫

Rk×Rk+1

[ k∏

h=1

h′m(xh) dxh
][ k∏

h=1,h6=i
|x′h|

]
|x′i − y′i| .

.pX(s1),...,X(sk),X′(t1),...,X′(ti−1),X′(si),X′(ti),X′(si+1),...,X′(sk)(x1, . . . , xk, x
′
1, . . . , x

′
i−1, x

′
i, y

′
i, x

′
i+1, . . . , x

′
k)

dx′1 · · · dx′kdy′i.
We use the trivial bound

k∏

`=1,`6=i
|x′`| ≤

k∑

`=1,`6=i
|x′`|

k−1

and integrate in the variables x′h (h = 1, . . . , k;h 6= i, `). We obtain:

(3.19) E(b1...bi−1ciai+1, . . . , ak)

≤
k∑

`=1,`6=i

∫

Rk

k∏

h=1

[ψε(th − sh) dsh]
∫

Rk

[ k∏

h=1

h′m(xh) dxh
] ∫

R3

|x′`|
k−1 |x′i − y′i|

.pX(s1),...,X(sk),X′(τ`),X′(si),X′(ti)(x1, . . . , xk, x
′
`, x

′
i, y

′
i) dx

′
`dx

′
idy

′
i
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where we have put {
τ` = t` when ` = 1, .., i− 1
τ` = s` when ` = i+ 1, . . . , k

Now, if we choose m large enough, since the integrand in the right-hand side of (3.19) is zero when
|xh − u| ≥ 1

m for some h = 1, ..., k, we can apply hypothesis A4k) and the inner integral in (3.19)
is uniformly small if |si − ti| is small.

This shows that the second member in (3.19) tends to zero as ε ↓ 0 and on account of (3.16),
(3.17) and (3.18) we obtain:

E
(
µ(J)

)
≥
∫

J−δ

At1,...,tk(u, . . . , u) dt1...dtk.

The converse inequality to (3.15) follows by making δ ↓ 0. ¤

2. Variants and Examples.

(1) Another Form of Rice formulas.

Under the hypotheses of Theorem 3.4 one can write Rice formula for the k-factorial
moment of crossings also in the form:

E
(
Nu(Nu − 1)...(Nu − k + 1)

)
=

∫

Ik
dt1...dtk

∫

Rk

[ k∏

i=1

|x′i|
]
.

.pX(t1),...,X(tk),X′(t1),...,X′(tk)(u, . . . , u, x
′
1, . . . , x

′
k) dx

′
1...dx

′
k

(2) Factorial moments and ordinary moments.

A simple remark is that the ordinary moments of the random variable Nu, i.e. E(N
k
u )

are linear combinations of the factorial moments E
(
N
[j]
u

)
, j = 1, . . . , k with fixed integer

coefficients depending only on k and j, and conversely. Hence, one can express E
(
Nk
u

)

as linear combinations of multiple integrals of the form that appear in Rice formulas.

(3) First moments.
In the case k = 1 we have the formula

(3.20) E
(
Nu
)
=

∫

I

dt

∫

R

|x′| pX(t),X′(t)(u, x′) dx′

Essentially the same proof that we have given above for the Rice formula in the general
non-Gaussian case, works when k = 1 under slightly weaker hypotheses (and easier to
check, especially A4k)). The reader may check that (3.20) holds true if:

i) (t, x)Ã pX(t)(x) is continuous for t ∈ I, x in a neighborhood of u.
ii) (t, x, x′)Ã pX(t),X′(t)(x, x

′) is continuous for t ∈ I and x in a neighborhood of u
and x′ ∈ R.

iii) E
(
ωX′(I, δ)

)
→ 0 as δ → 0, where ωX′(I, δ) denotes the modulus of continuity

of X ′(.).

(4) Gaussian stationary processes.
This is an important case, in which we have mentioned the simple classical for-

mula (3.2). Suppose the process X is centered Gaussian stationary with C1 paths
and covariance Γ(t) = E(X(s)X(s + t)) normalized by Γ(0) = 1. It is clear that
Γ′(0) = E(X(t)X ′(t)) = 0, since Γ has a maximum at the point t = 0. Given that
the joint distribution of X(t), X ′(t) is Gaussian, this implies that for each t, X(t), X ′(t)
are independent random variables. Hence:

pX(t),X′(t)(u, x
′) = pX(t)(u).pX′(t)(x

′) =
1√
2π
e−

1
2u
2 1√

2πλ2
e−

1
2
x′2

λ2

(notice that λ2 = −Γ′′(0) = E
(
[X ′(t)]2

)
). Substituting into (3.20) we get (3.2).

Formula (3.2) remains valid if we only require the Gaussian centered stationary process
to have continuous paths (see Exercise 3.2).
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(5) General Gaussian processes.

Verifying hypotheses A1), A2k), A3k) and Ak4) for non-Gaussian processes can be
a non-trivial task. For Gaussian processes, this approach is tractable, as shown by the
next proposition, that we include to see how the verification of the general hypotheses
can be performed in this case. Of course, this has a limited interest, since the direct
approach for Gaussian processes, as we have seen, is simpler and permits to deduce Rice
formulas under weaker conditions.

Proposition 3.5. If X is a real-valued centered Gaussian process defined on a com-
pact interval I of the real line, has C1 paths and the densities in A1), A2k), A3k) and
Ak4) do not degenerate for a given k , then A1), A2k), A3k) and Ak4) are verified.

Proof. Let us recall that the functions (s, t)Ã E
(
X(s)X(t)

)
, (s, t)Ã E

(
X(s)X ′(t)

)
,

(s, t)Ã E
(
X ′(s)X ′(t)

)
are continuous, so that the densities, since they do not degener-

ate, are also continuous. We have
(3.21)

At1,...,tk(x1, . . . , xk) = E

{
k∏

i=1

|X ′(ti)| /X(t1) = x1,...X(tk) = xk

}
pX(t1),...,X(tk)(x1, . . . , xk)

and the expression in hypothesis Ak4) is

(3.22) E
{
|X ′(t′1)|

k−1 |X ′(t′2)−X ′(t1)| /X(t1) = x1,...X(tk) = xk

}
pX(t1),...,X(tk)(x1, . . . , xk)

If (t1, . . . , tk) varies in a compact subset of Ik \Dk(I) and (x1, . . . , xk) in a neighborhood
of u, the density pX(t1),...,X(tk)(x1, . . . , xk) is continuous and bounded.

We want to get rid of the conditional expectation in both expressions (3.21) and
(3.22). For this purpose we use linear regression (see Chapter 1) and write

X ′(t) = X ′(t)−
k∑

h=1

ch(t)X(th) +

k∑

h=1

ch(t)X(th)

and choose ch(t) (h = 1, . . . , k) in such a way that

Y (t) = X ′(t)−
k∑

h=1

ch(t)X(th)

be orthogonal to the components of the random vector (X(t1), . . . , X(tk)).
Denote by Γ(s, t) the covariance of the given process X , Σ = ((Γ(th, t`))h,`=1,...,k

and γ(t) = (Γ1(t, t1), . . . ,Γ1(t, tk))
T
, where we have used Γ1 for the partial derivative of

Γ with respect to the first variable.
The orthogonality condition is

γ(t) = Σ. c(t) with c(t) = (c1(t), . . . , ck(t))
T

so that

c(t) = Σ−1γ(t)

The non-degeneracy hypothesis implies that the function

(t, t1, . . . , tk)Ã c(t) is continuous for (t, t1, . . . , tk) ∈ I × Ik \Dk(I).

The conditional expectations in (3.21) and (3.22) become respectively the unconditional
expectations:

E

(
k∏

i=1

∣∣∣∣∣Y (ti) +

k∑

h=1

ch(ti)xh

∣∣∣∣∣

)

E



∣∣∣∣∣Y (t′1) +

k∑

h=1

ch(t
′
1)xh

∣∣∣∣∣

k−1 ∣∣∣∣∣Y (t′2) +
k∑

h=1

ch(t
′
2)xh − Y (t1)−

k∑

h=1

ch(t1)xh

∣∣∣∣∣
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To verify hypotheses A3k) and A4k) and finish the proof, one can now pass to the limit
under the expectation, using dominated convergence on account of the integrability of
the moments of the supremum of Gaussian process. This is left to the reader. ¤

(6) Stationary Gaussian Processes, non-degeneracy condition.

Let us consider a Gaussian process define on an interval of the real line, and t1, . . . , tn
n distinct parameter values. It is in general non trivial to check wether the random
variables X(t1), . . . , X(tn) have a non-degenerate joint distribution. Similar difficulties
appear if one is willing to prove non-degeneracy of the joint distribution of the process
and its derivative.

However, in the stationary case, one can give the following sufficient condition for
non-degeneracy to hold: the support of the spectral measure µX of the process has some
accumulation point. In particular, this happens if µX is not purely atomic, that is, if
there does not exist a countable subset A of the reals, such that µX(AC) = 0. (See
Exercises 3.4 and 3.5 )

(7) Finiteness of Moments of Crossings.

It may happen that Rice formula (3.13) holds true but both sides are infinite. In a
certain number of applications one wants to know whether E

(
Nk
u

)
is finite, but is not

so much interested in its value. On the other hand, the standard situation is that to
compute the right-hand side of (3.13) or even to obtain good upper bounds for it, can
be a very complicated or actually untractable problem.

From a numerical point of view, the general question of efficient procedures to com-
pute approximately the moments of the number of crossings remains widely open. We
will come back to this subject in the next two chapters, adding some more or less recent
results. This will be done in the context of relating crossings to the distribution of the
maximum of a stochastic process, even though it has an independent interest.

Finiteness of moments of crossings of Gaussian processes has been considered by
Belayev (1966) Miroshin (1977), Cuzick (1975). For stationary Gaussian processes, the
sufficient condition for finiteness of the variance of N0(X, I) in Exercise 3.6 below is in
Cramér and Leadbetter’s book, where an explicit formula for the variance is also given.
Geman (1972) proved that this condition is also necessary for finiteness at the level u = 0.
In a recent paper, Kratz and León (2006) proved that the same condition is necessary
and sufficient for any level u and also for the number of crossings with some differentiable
curves.

For non-Gaussian processes, sufficient conditions have been given in Besson and
Wschebor (1983). The next theorem gives sufficient conditions, that are reasonably easy
to check in specific cases, to be able to assure the finiteness of E

(
Nk
u

)
. It is taken from

Nualart and Wschebor (1991).

Theorem 3.6. Let m be a positive real number. Consider a real-valued stochastic
process X = {X(t) : t ∈ I} defined on an interval I of the real line, with paths of class
Cp+1, p > 2m.

We assume also that for each t ∈ I the random variable X(t) has a density and that
for some η > 0

C = sup
{
pX(t)(x) : t ∈ I, x ∈ [u− η, u+ η]

}
<∞

Then

(3.23) E
(
Nm
u

)
≤ Cp,m

[
1 + C + E

(
‖X(p+1)‖∞

)]

where Cp,m is a constant depending only on p,m and the length of the interval I.
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Proof. With no loss of generality we assume that I = [0, 1] .
Using a standard bound for the expectation of non-negative random variables:

E (Nm
u ) ≤

∞∑

k=0

P(Nm
u ≥ k) ≤ Cp,m + Cp,m

∑

k>pm

P(Nm
u ≥ (p+ 1)mk)

= Cp,m + Cp,m
∑

k>pm

P(Nu ≥ (p+ 1)k
1
m ).

Our aim is to give an upper bound for this sum.
We have the inclusion of events (use Rolle’s Theorem, |J | denotes here the length of

the interval J):
{
Nu(X, I) ≥ (p+ 1)k

1
m

}
(3.24)

⊂
{
∃ an interval J ⊂ I, |J | = k−

1
m , Nu(X, J) ≥ (p+ 1)

}

⊂
{
∃ an interval J ⊂ I, |J | = k−

1
m , and points τ1, . . . , τp ∈ J

such that X(j)(τj) = 0 for j = 1, . . . , p

}

Let {εk}k=1,2,.. be a sequence of positive real numbers (that we will choose afterwards)
and denote for k = 1, 2, ... :

Ak =
{
Nu(X, I) ≥ (p+ 1)k

1
m

}
∩
{
ωX(p)(I, k

− 1
m ) < εk

}

(as usual, ωf (I, δ) denotes the continuity modulus).
Let us consider the random open set in I

Vk =
{
t : |X ′(t)| < εk k

− p−1
m

}
.

We show that

Ak ⊂ {Nu(X,Vk) ≥ (p+ 1)} .
To prove this it suffices to prove that if Ak occurs, then the random interval J that
appears in (3.24) is contained in Vk since in that case, the number of roots of the
equation X(t) = u that belong to Vk will be greater or equal than Nu(X, J) ≥ (p+ 1).

Suppose that Ak occurs and t ∈ J. Then,
∣∣∣X(p)(t)

∣∣∣ =
∣∣∣X(p)(t)−X(p)(τp)

∣∣∣ < εk

given that X(p)(τp) = 0, the definition of Ak and |J | = k−
1
m .

Similarly, using the Mean Value Theorem,
∣∣∣X(p−1)(t)

∣∣∣ =
∣∣∣X(p−1)(t)−X(p−1)(τp−1)

∣∣∣ < εk k
− 1
m .

In the same way we can increase step by step the order of the derivative, and obtain

|X ′(t)| < εk k
− p−1

m

which shows that t ∈ Vk .
It follows that

(3.25) P(Nu ≥ (p+ 1)k
1
m ) ≤ P(ωX(p)(I, k

− 1
m ) ≥ εk) + P(Ak).

The first term in (3.25) is bounded by

P
(
‖X(p+1)‖∞ ≥ k

1
m εk

)
≤ k−

1
m ε−1k E

(
‖X(p+1)‖∞

)
.

As for the second term in (3.25),

P(Ak) ≤ P(Nu(X,Vk) ≥ (p+ 1)) ≤ 1

p+ 1
E (Nu(X,Vk)) .
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One can check as an exercise that Lemma 3.1 holds true, mutatis mutandis, whenever
the set in which the function is defined on an open set in the real line - as is the case of
Vk - instead of an interval. Hence, a.s.

Nu(X,Vk) = lim
δ→0

1

2δ

∫

Vk

1I{|X(t)−u|<δ} |X ′(t)| dt

and applying Fatou’s Lemma and the definition of the set Vk:

E (Nu(X,Vk)) ≤ lim inf
δ→0

1

2δ
E

{∫

Vk

1I{|X(t)−u|<δ} |X ′(t)| dt
}

≤ lim inf
δ→0

1

2δ
E

{∫

I

1I{|X(t)−u|<δ} εk k
− p−1

m dt

}

≤ εk k
− p−1

m lim inf
δ→0

1

2δ

∫

I

dt

∫ u+δ

u−δ
pX(t)(x) dx ≤ C εk k

− p−1
m .

Replacing in (3.25) and then substituting in the upper bound for E(Nm
u ) we obtain:

E(Nm
u ) ≤ Cp,m + Cp,m

[
C

∞∑

k=1

εk k
− p−1

m + E
(
‖X(p+1)‖∞

) ∞∑

k=1

k−
1
m ε−1k

]
.

Choosing

εk = kβ−
1
m with 1 < β <

p

m
− 1

which is possible since p
m > 2, the two series converge and we have the statement of the

theorem, with some new constant Cp,m. ¤

Corollary 3.7. If X is Gaussian with C∞-paths and Var(X(t)) ≥ a > 0 for
t ∈ I, x ∈ R, then

E
(
Nm
u

)
<∞

for every u ∈ R and every m = 1, 2, ...

Proof. Using the results in Chapter 2, we know that E
( ∥∥X(p+1)

∥∥
∞
)
< ∞ for

every p = 1, 2, ...and pX(t)(x) ≤ 1√
2πa

for t ∈ I, x ∈ R. ¤

(8) Variations on Rice formulas.

In applications one frequently needs a certain number of variants of formula (3.13).
We give here some examples.

a) If instead of all crossings we consider only up-crossings or down-crossings, under
the same hypotheses as in Theorem 3.4 we obtain the following formulas:

(3.26) E
(
U [k]u

)
= E

(
Uu(Uu − 1)...(Uu − k + 1)

)

=

∫

Ik
E
( k∏

i=1

X ′+(ti)/X(t1) = u, . . . ,X(tk) = u
)
pX(t1),...,X(tk)(u, . . . , u) dt1...dtk

(3.27) E
(
D[k]u

)
= E

(
Du(Du − 1)...(Du − k + 1)

)

=

∫

Ik
E
( k∏

i=1

X ′−(ti)/X(t1) = u, . . . ,X(tk) = u
)
pX(t1),...,X(tk)(u, . . . , u) dt1...dtk

Proofs are exactly the same.

b) If instead of counting crossings we count “marked crossings” that is, points t such
that X(t) = u and in which some other event is happening, we obtain various Rice-type
formulas.
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For example, let {Y (t) : t ∈ I} be a second stochastic process, a, b extended real
numbers (they may take the values −∞ or +∞), a < b and define

Nu(X,Y ; I, a, b) = # {t : t ∈ I, X(t) = u, a < Y (t) ≤ b}
Then

(3.28) E
(
Nu(X,Y ; I, a, b)

)
=

∫

I

dt

∫ b

a

dy

∫

R

|x′| pX(t),X′(t),Y (t)(u, x′, y) dx′

Formulas similar to (3.13) can be written for the factorial moments ofNu(X,Y ; I, a, b).
We leave to the reader establishing hypotheses and giving proofs. These follow the same
lines as in Theorem 3.4.

A typical application is the computation of the moments of

M(X, I, a, b) = # {t : t ∈ I, X(.) has a local maximum at t, a < X(t) ≤ b}
where a < b. Under general conditions (the statement of which is left to the reader),
almost surely,

M(X, I, a, b) = # {t : t ∈ I, X ′(t) = 0, X ′′(t) < 0, a < X(t) ≤ b} .
It means that a.s. M(X, I, a, b) is the number of down-crossings of the level 0 by the
stochastic process {X ′(t) : t ∈ I} in which the process X(t) itself takes values between a
and b. So, we may apply (3.28) with X ′ instead of X, X instead of Y and down-crossings
instead of crossings, to get:

E
(
M(X, I, a, b)

)
=

∫

I

dt

∫ b

a

dx

∫ 0

−∞
|x′′| pX(t),X′(t),X′′(t)(x, 0, x′′) dx′′.

Again, similar formulas hold true for higher factorial moments, under appropriate hy-
potheses on the process.

c) If ξ is a bounded random variable (one can relax this condition) and if the sto-
chastic process {X(t) : t ∈ I} satisfies the hypotheses of Theorem 3.4, then one has the
more general equality:

(3.29) E
(
ξ N [k]u

)

=

∫

Ik
E
(
ξ

k∏

i=1

|X ′(ti)|
∣∣X(t1) = ... = X(tk) = u

)
.pX(t1),...,X(tk)(u, . . . , u) dt1...dtk

The proof is left to the reader.

Exercises

Exercise 3.1. [Kac counting formula] Prove the following inequality, related to Lemma 3.1.
Assume that

• f : I → R, I = [t1, t2] is an absolutely continuous function,
• f(t1) 6= u, f(t2) 6= u,

Then:

Nu(f ; I) ≤ lim inf
δ→0

1

2δ

∫

I

1I{|f(t)−u|<δ} |f ′(t)| dt

Exercise 3.2. Prove that formula (3.2) is always true in the following sense: Let {X(t) : t ∈ I}
be a centered Gaussian stationary process with continuous paths, defined on a compact interval I
of the real line, normalized by r(0) = 1. Then, if λ2 is finite (3.2) holds true and if λ2 is infinite,
then E {Nu} = +∞.

(This means that the remaining hypotheses are not necessary in this case).

Exercise 3.3. (A simple example in which Rice formula does not hold) Let X(t) = ξ.t,
t ∈ [−1, 1], where ξ is a standard normal random variable. Show that E(NX

u ) can be computed
by means of Rice formula if u 6= 0, but that the formula fails to hold for u = 0.
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Exercise 3.4. a) Prove that if the process {X(t) : t ∈ R} is Gaussian stationary, has C1
paths and the support of the spectral measure has an accumulation point, then the set of random
variables X(t1), . . . , X(tn) has a joint non-degenerate distribution for any choice of the distinct
parameter values t1, . . . , tn.

b) Deduce that under the hypotheses in a), Rice formulas can be applied on any compact
interval I and for any k = 1, 2, ....

Hint for a): With no loss of generality, one can assume that the process is centered. Denote
Y = (X(t1), . . . , X(tn))

T . The variance of the Gaussian vector Y is:

Λ = E(Y Y T )

The aim is to prove that the quadratic form F (z) = zTΛz, z ∈ Rn is positive definite. To prove
it, show that F (z) can be written in terms of the spectral measure µ of the process X by means
of the formula:

F (z) =

∫

R

∣∣∣∣∣

n∑

k=1

eitkxzk

∣∣∣∣∣

2

µ(dx).

Conclude that F (z) > 0 whenever z 6= 0, using that the function xÃ
∑n
k=1 e

itk xzk is analytic.

Exercise 3.5. Assume that the process X(t) : t ∈ R verifies the hypotheses of part a) of the
previous exercise, and moreover, that its paths are Ck-functions, k an integer, k ≥ 1.
Then, for any choice of distinct parameter values t1, ...., tn, the joint distribution of the random
variables

X(t1), ...., X(tn), X
′(t1), ..., X

′(tn), ...., X
(k)(t1), ..., X

(k)(tn)

does not degenerate. (Hint: use the same method as in the previous exercise)

Exercise 3.6. Let {X(t) : t ∈ R} be a centered Gaussian stationary process. Assume the
Geman Condition :

G1 Γ(t) = E(X(s)X(s+ t)) 6= ±1 for t > 0

G2 Γ(τ) = 1− λ2τ
2

2 + θ(τ) with
∫
θ′(τ)

τ2
dτ converges at τ = 0+.

Prove that this condition is sufficient to have

E
{
[N0(X, I)]

2
}
<∞

for any bounded interval I.

Exercise 3.7. a) Let f : J → R be a C1−function, J an interval in the reals, and δ a positive
number. Prove that:

1

2δ

∫

J

1I{|f(t)−u|}|f ′(t)|dt ≤ N0(X
′, J) + 1.

b) Let {X(t) : t ∈ I}, I a compact interval in the reals, be a stochastic process with C1-paths.
Let k be an integer, k ≥ 1, and u ∈ R.
Assume that the function At1,...,tk(x1, . . . , xk) is a continuous function of its 2k arguments, when
(t1, ..., tk) ∈ Ik \Dk(I) and x1, ..., xk are in some neighborhood of u.
Prove that if

E
([
N0(X

′, I)
]k)

< ∞
then, Rice formula (3.3) for the factorial moments of N0(X, I) holds true.

Exercise 3.8. (a) (So-called “Banach formula”). Let f be a continuous function R → R

The total variation TV(f,I) of f over an interval I is defined as

TV (f, I) = sup

m−1∑

k=0

|f(tk+1)− f(tk|
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where I = [a, b], a = t0 < t1 < ... < tm = b is a partition of I and the sup is taken over all possible
partitions of I.

Prove that

(3.30)

∫ +∞

−∞
Nu(f, I) du = TV (f, I).

Both sides can be finite or infinite.

(Hint : for each partition t0 < t1 < ... < tm of the interval I, put Lk(u) = 1 ifNu(f, [tk, tk+1]) ≥
1 and Lk(u) = 0 otherwise, k = 0, 1, . . . ,m− 1. Show that

∫ +∞

−∞

m−1∑

k=0

Lk(u)du =
m−1∑

k=0

(Mk −mk)

where Mk (resp. mk) is the maximum (resp minimum) of the function f on tk, tk+1 Use this
equality to prove (3.30) ).

(b) Assume furthermore that f is also absolutely continuous. Prove that for any bounded
Borel-measurable function g : R → R, one has:

(3.31)

∫ +∞

−∞
Nu(f, I) g(u) du =

∫

I

|f ′(t)|g(f(t)) dt.

(c) Prove that if f is absolutely continuous, for every bounded Borel-measurable function
h(t, u)

(3.32)

∫

R

∑

t∈I:f(t)=u
h(t, u)du =

∫

I

|f ′(t)|h((t, f(t))dt.

(d) Let {X(t) : t ∈ I} be a real-valued stochastic process with absolutely continuous paths,
I a compact interval in the real line. Assume that for each t ∈ I, the distribution of the random
variable X(t) has a density pX(t)(.). Prove that

(3.33) E(Nu(X, I)) =

∫

I

E
(
|X ′(t)|

∣∣X(t) = u
)
pX(t)(u) dt

for almost every u ∈ R.
(Hint : Let g : R → R be continuous with compact support. Apply (3.31), replacing f by X(.)

and take expectations in both sides).

Exercise 3.9. [Upper-bound part of Rice formula] Using Fatou’s lemma show that if
{Xt : t ∈ I} is a process with C1 paths and such that:

(a) for every t ∈ I, Xt admits a density pXt
,

(b) the conditional expectation

E
(
|X ′t|

∣∣Xt

)

is well defined,
(c) the function

∫ T

0

E
(
X ′t|Xt = x

)
pXt

(x)dt

is continuous as a function of x at the point x = u. Then

E
(
Nu(X; I) ≤

∫

I

E
(
|X ′t|

∣∣xt = u
)
pXt

(u)dt.
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Exercise 3.10. (Rice formulas for χ2-processes) Let {X(t) : t ∈ I} be a centered Gaussian
process with C1 paths and values in Rd. Assume that for each t ∈ I, Var(X(t) = Id, then the
process Y (t) := ‖X(t)‖2 is called a χ2 process. Adapt the proof of Theorem 3.2 to this process.

Exercise 3.11. Let ψ : R → R be a C1−function taking non-negative values, with support

contained in the interval [−1, 1], such that
∫ +∞
−∞ ψ(t)dt = 1. For ε > 0 we put:

ψε(t) :=
1

ε
ψ
( t
ε

)
.

If f : R → R is any locally integrable function, we define the regularized function f ε:

fε(t) :=

∫

R

f(t− s)ψε(s)ds.

Let {W (t) : t ∈ R} be a Wiener process defined on some probability space (Ω,A,P) (see
Exercise 1.10 for the definition on the hole line).

(a) Prove that for each t ∈ R, the distribution of the random variable [W ε]′(t) is centered

normal with variance
‖ψ‖22
ε , where ‖ψ‖2 is the norm of the function ψ in L2(Ω,A,P).

(b) Prove that for each u ∈ R, and I = [t1, t2], 0 < t1 < t2:

(3.34) lim
ε→0

√
πε

2

1

‖ψ‖2
Nu(W

ε, I) = LW (u, I),

where convergence in (3.34) takes place in L2(Ω,A,P).

Hint : use the definition of the local time LW (u, I) of the Wiener process given in Exercise
1.12 and use Rice Formula to estimate:

E
([√πε

2

1

‖ψ‖2
Nu(W

ε, I)− 1

2δ

∫

I

1I|W (t)−u|<δdt
]2)

.

(c) Prove that convergence in (3.34) holds true in Lp(Ω,A,P), for any p > 0.

Exercise 3.12. Let {X(t) : t ∈ R} be a one-parameter centered Gaussian stationary process
with covariance function Γ, Γ(0) = 1 and finite fourth spectral moment λ4 (see Chapter 1 for the
notation).

We denote Mu1,u2(I) the number of local maxima of the process in the interval I, with values
lying in the interval [u1, u2].

a) Use Rice formula to express the expectation

E
(
Mu1,u2(I)

)
= |I|

∫ u2

u1

f(x)dx

where f is a certain function and |I| denotes the length of the interval I.

b) The function

g(x) =
f(x)

∫ +∞
−∞ f(x)dx

is called the “density of the values of the local maxima per unit length”.
Give a heuristic interpretation of the function g and verify that, under the above hypotheses, one
has:

g(x) =
1√
2π

[
a exp

(
− x2

2a2
)
+
√

1− a2 x exp(−x
2

2
)

∫ x
√
1−a2

a

−∞
exp(−u

2

2
)du
]
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where

a =

√
λ4 − λ22
λ4

.

c) Conclude from b) that if a→ 0, then

g(x)→ x exp(−x
2

2
) if x > 0, and g(x)→ 0 if x < 0.

(This is the Rayleigh density of the values of the maxima for ”narrow spectrum” Gaussian
processes).

Remark. Exercise 3.11 is the beginning of the far-reaching subject of the approximation of
local time by means of functionals defined on some smoothing of the paths, which has applica-
tions in statistical inference of continuous parameter random processes. In this exercise, only the
Wiener process and so-called first order approximations are considered, with the aim of applying
Rice formulas in the computations required in the proof. For related work on this subject, the
interested reader can see, for example, Azäıs (1989), Wschebor (1992), Berzin and León (2005),
Azäıs and Wschebor (1996,1997), Jacod (1998,2000), Perera and Wschebor (1998,2002) and ref-
erences therein. A review paper on this subject is Wschebor (2006).





CHAPTER 4

Some Statistical Applications

This chapter contains two independent subjects.
In the first part, we use Rice formulas to obtain bounds for the tails of the distribution of

the maximum of one-parameter Gaussian processes having regular paths. We also include some
results on the asymptotic behavior of the tails of the supremum on a fixed interval, when the level
tends to infinity.

The second part is a quite detailed account of two examples of statistical applications of
the distribution of the maximum, one to genetics and the other one to the study of mixtures of
distributions.

These two examples share the common trait that statistical inference is performed in the
presence of nuisance parameters, which are not identifiable under the null hypothesis .

In standard classical situations in hypothesis testing, the critical region consists of the event
that some function of the empirical observations (the “test statistic”) falls into some subset of
its value space. The computation of the probabilities which are relevant for the test, for large
samples, follows from some weak limit theorem allowing to obtain the asymptotic law of the test
statistic, as the sample size goes to infinity. Typically, this will be a normal distribution or some
function of the normal distribution. In certain more complicated situations, as it happens when
nuisance parameters are present and are not identifiable under the null hypothesis, it turns out
that a reasonable choice consists in using as test statistic the supremum of a process indexed by
the possible values of the nuisance parameter. Then, when passing to the limit as the sample
size grows, instead of limiting distributions of finite-dimensional valued random variables, we have
to deal with a limit process - typically Gaussian - and the relevant random variable to compute
probabilities becomes its supremum.

The literature on this subject has been growing during the last years, including applications
to Biology, Econometrics and in general, stochastic models which include nuisance parameters, of
which hidden Markov chains have become a quite popular example. The interested reader can see,
for example, Andrews and Ploberger, (1994), Hansen (1996), Dacunha-Castelle and Gassiat (1997,
1999), Gassiat (2002), Azäıs, Gassiat and Mercadier (2006,2008) and references therein. The first
example in this chapter is extracted from Azäıs and Cierco-Ayrolles (2002) and the second from
Delmas (2001, 2003 a).

The theory includes two parts: first, limit theorems allowing to find the asymptotic behavior
of certain stochastic processes and second, computing (or obtaining bounds) for the distribution of
the supremum of the limiting process or its absolute value. For this second part, a common practice
consists in simulating the paths and approximate the tails of the distribution of its supremum using
Monte Carlo. This is not what we will be doing here. Our aim is a better understanding of the
behavior of this distribution and for that purpose, we will use the results of the first part of this
chapter. Since these concern only one-parameter Gaussian processes, the models in the examples
of this chapter have one-dimensional nuisance parameter and the asymptotic law of the relevant
processes is Gaussian.

1. Elementary bounds for P{M > u}
In this chapter, if it is not stated otherwise, X = {X(t) : t ∈ R} is a real-valued centered

Gaussian process with continuously differentiable sample paths and covariance function r(s, t).
Let us recall that for T > 0, we denote MT = supt∈[0,T ]X(t).

73
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We begin with some bounds for the tails of the distribution of MT which are a first approxi-
mation to the relationship between Rice formulas and the distribution of the maximum, a subject
that we will frequently come across in this book. These bounds are based on variants of the
following simple inequality:

We use throughout the notations: νk := E(U
[k]
u ), ν̃k := E(U

[k]
u 1IX(0)<u) for k = 1, 2, ..., where

Uu := UXu ([0, T ]) is the number of up-crossings on the interval [0, T ]. Then

(4.1) P{MT > u} ≤ P{X(0) > u}+ P{Uu > 0} ≤ P{X(0) > u}+ ν1,

We precise the bounds under certain hypotheses for the process, in the next proposition.

Proposition 4.1. (a) Assume that Var(X(t)) ≡ 1. Then:

(4.2) P{MT > u} ≤ e−u
2/2

2π

∫ T

0

√
r11(t, t)dt+ 1− Φ(u)

(b) Assume in addition that the covariance function is of class C4, that r(s, t) 6= 1 for s, t ∈
[0, T ], s 6= t, and r11(s, s) > 0 for all s ∈ [0, T ]. Then, if u > 0:

P{MT > u} =
e−u

2/2

2π

∫ T

0

√
r11(t, t)dt+ 1− Φ(u) +O

(
φ(u(1 + δ))

)

for some positive real number δ.

Remarks.

1.- The bound (4.2) is sometimes called the Davies bound (Davies, 1977).

2.- Part (b) of Proposition 4.1 was originally proved by Piterbag in 1981 (see also his 1996
book) for centered stationary Gaussian processes.
In this case, under the hypotheses:

• λ8 <∞,
• the joint distribution of X(s), X ′(s), X ′′(s), X(t), X ′(t), X ′′(t) does not degenerate for

distinct s, t ∈ [0, T ],
• Γ′(t) < 0 for 0 < t ≤ T ,

Azäıs, Bardet and Wschebor (2001) have been able to describe more precisely the complementary
term in the asymptotic expansion given in part (b). The result is that, as u→ +∞:

P(MT > u) = 1 − Φ(u) +

√
λ2
2π
Tφ(u) − 3

√
3(λ4 − λ22)

9
2

2πλ
9
2
2 (λ2λ6 − λ24)

T

u5
φ

(√
λ4

λ4 − λ22
u

)
[1 + o(1)] .

This asymptotic behavior is already in Piterbarg’s paper of 1981, but only for sufficiently small
T . It appears to be the only result known at present giving a precise description of the second
order term for the asymptotics of P (MT > u) as u → +∞. We are not going to prove it here,
since it requires quite long and complicated computations. We refer the interested reader to the
two above mentioned papers.

Proof of proposition 4.1 : (a) It is clear that:

{MT > u} = {X(0) ≥ u} ∪ {X(0) < u,Uu > 0} a.s.

where the convention is that if A and B are two events in a probability space, “A = B a.s.” means
that P{A∆B} = 0).

Using Markov’s inequality, it follows that

P{MT > u} ≤ 1− Φ(u) + E(Uu).

Now we apply the Rice formula (Theorem 3.2) to compute E(Uu):

E(Uu) =

∫ T

0

E(X ′+(t)
∣∣X(t) = u)pX(t)(u)dt = φ(u)

∫ T

0

E(X ′+(t))dt =
φ(u)√
2π

∫ T

0

√
r11(t, t) dt
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since X(t) and X ′(t) are independent. This proves (a).

For (b), we have the lower bound:

(4.3) P{MT > u} = 1− Φ(u) + P{Uu > 0} − P{Uu > 0;X(0) > u}
≥ 1− Φ(u) + ν1 −

ν2
2
− P{Uu > 0, X(0) > u}.

The result will be obtained as soon as we prove that the last two terms in the right-hand side are
O
(
φ(u(1 + δ))

)
, δ > 0.

We have:

(4.4) P{X(0) > u,Uu > 0} ≤ P{X(0) > u,X(T ) > u}+ P{X(0) > u,X(T ) < u,Uu > 0}
≤ P{X(0) > u,X(T ) > u}+ P{Du > 1}.

Remark that since r(0, T ) 6= ±1 ,

P{X(0) > u;X(T ) > u} ≤ P{X(0) +X(T ) > 2u}

=

∫ +∞

2u

1

2
√
π

1√
1 + r(0, T )

exp

[
− 1

4(1 + r(0, T ))
x2
]
dx = O

(
φ(u(1 + δ))

)

Let us look at the second term in the right-hand side of inequality (4.4).
It is clear that:

1IDu>1 ≤
1

2
Du(Du − 1)

which implies

P{Du > 1} ≤ 1

2
E (Du(Du − 1) =

1

2
E (Uu(Uu − 1) =

1

2
ν2,

where the penultimate equality follows reverting the time in the interval [0, T ], that is, changing
t into T − t.

So, our aim is to show that ν2 = O
(
φ(u(1 + δ))

)
. We have,

(4.5) ν2 =

∫ ∫ T

0

A+s,t(u, u)dsdt.

where

A+s,t(u, u) := E
(
X ′+(s)X ′+(t)

∣∣X(s) = X(t) = u
)
pX(s),X(t)(u, u)

pX(s),X(t)(u, u) =
1

2π

(
1− r2(s, t)

)−1/2
exp

[ −u2
1 + r(s, t)

]
.

Conditionally on C := {X(s) = X(t) = u}, the random variables X ′(s), X ′(t) have a joint Gauss-
ian distribution with expectations and variances given by the following formulas, which can be
obtained using regression formulas:

E(X ′(s)
∣∣C) = r10(s, t)

1 + r(s, t)
u,

E(X ′(t)
∣∣C) = r10(t, s)

1 + r(s, t)
u,

Var(X ′(s)
∣∣C) = r11(s, s)−

r210(s, t)

1− r2(s, t) ,

Var(X ′(t)
∣∣C) = r11(t, t)−

r210(t, s)

1− r2(s, t) .
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Our hypotheses imply that

E
(
X ′+(s)X ′+(t)

∣∣C
)
≤ 1

2
E
(
(X ′(s))2 + (X ′(t))2

∣∣C
)

≤ 1

2

(
r11(s, s) + r11(t, t)

)
+
u2

2

r210(s, t) + r210(t, s)

[1 + r(s, t)]2
.

So, for fixed γ > 0, one has:

(4.6)

∫ ∫

s,t∈[0,T ]:|s−t|≥γ
A+s,t(u, u)dsdt ≤ (L1u

2 + L2)

∫ ∫

s,t∈[0,T ]:|s−t|≥γ
exp

[
− L3

u2

2

]
ds dt

where L1, L2, L3 are positive constants, L3 > 1, since 1 + r(s, t) < 2 for all s, t ∈ [0, T ], s 6= t.
This shows that ∫ ∫

s,t∈[0,T ]:|s−t|≥γ
A+s,t(u, u)dsdt = O

(
φ(u(1 + δ))

)

Let us now look at the double integral near the diagonal {s, t ∈ [0, T ] : s = t}. We take into
account that Var(X(t)) is constant, and r10(t, t) = 0. A Taylor expansion in the expressions for
the conditional expectations as s, t approach the same value t∗ permits to show that:

(4.7) E(X ′(s)
∣∣C) =

[
r11(t

∗, t∗) +A(t− s)
] (t− s)u

2

(4.8) E(X ′(t)
∣∣C) =

[
r11(t

∗, t∗) +B(t− s)
] (s− t)u

2

where A,B are bounded functions of the pair s, t.
A similar expansion for the conditional variances shows that:

Var(X ′(s)
∣∣C), Var(X ′(t)

∣∣C) ≤ L(s− t)2,
for some positive constant L. So,

(4.9)

∫ ∫

s,t∈[0,T ]:|s−t|<γ
A+s,t(u, u)dsdt

=

∫ ∫

s,t∈[0,T ]:|s−t|<γ
E
(
X ′+(s)X ′+(t)

∣∣C
)
pX(s),X(t)(u, u) dsdt

≤
∫ ∫

s,t∈[0,T ]:|s−t|<γ

[
E((X ′+(s))2

∣∣C)E((X ′+(t))2
∣∣C)
] 1
2 1

2π
√

1− r2(s, t)
exp

[
− u2

1 + r(s, t)

]
dsdt.

To bound the conditional expectations in the integrand we use the following inequalities that the
reader can easily check. Let Z be a real-valued random variable with normal distribution having
parameters µ, σ2. Then:

(4.10) E
(
(Z+)2

)
≤ σ2 + µ2 if µ > 0,

(4.11) E
(
(Z+)2

)
≤
(
σ2 + µ2

) [
1− Φ

(
−µ
σ

) ]
+ µσφ

(µ
σ

)
if µ < 0.

Using the expressions for the conditional expectations, one can see that if |t − s| is sufficiently
small, there exists a positive constant D such that

∣∣E
(
X ′+(s)

∣∣C
)∣∣

√
Var
(
X ′+(s)

∣∣C
) ≥ D u.

A similar inequality holds for t instead of s.

Now, from the expansions of the conditional expectations, it follows that if |s − t| is small
enough, s 6= t, E(X ′(s)

∣∣C) and E(X ′(t)
∣∣C) have opposite signs, so that we can apply to each one

of them one of the inequalities (4.10), (4.11). It follows that:

E((X ′+(s))2
∣∣C)E((X ′+(t))2

∣∣C) ≤ K1 |s− t|4
[
1− Φ(−K2u) + exp(−1

2
K3u

2
]
.
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A Taylor expansion around a point in the diagonal shows that if |s− t| is small enough:

1− r(s, t) ≥ K4(s− t)2

for some positive constant K4. It follows that if γ is small enough, one has
∫∫

s,t∈[0,T ]:|s−t|<γ
A+s,t(u, u)dsdt ≤ K5 exp(−K6u2) exp(−u

2

2
)

∫∫ T

0

|s− t| dsdt,

where K5,K6 are new positive constants. It is clear that the right-hand side is O
(
φ(u(1 + δ))

)
,

δ > 0. ¤

One can obtain the same kind of asymptotic expansion given in Proposition 4.1 in an easier
way when the process is also stationary. This is the next proposition; the hypotheses are less
demanding and the result for the error term is weaker.

Proposition 4.2 (Stationary processes). Let {X(t) : t ∈ [0, T ]} be a centered stationary
Gaussian process. We assume

G1 Γ(t) = E(X(s)X(s+ t)) 6= ±1 for 0 < t ≤ T
G2 the Geman condition : the integral

∫
θ′(τ)

τ2
dτ converges at τ = 0+,

where θ(τ) is defined by means of: Γ(τ) = 1− λ2τ
2

2 + θ(τ).

Then, as u→ +∞

(4.12) P{MT > u} =
√
λ2
2π
Tφ(u)

[
1 + o(1)

]
.

Remark. Conditions G1 and G2, as already mentioned, are necessary and sufficient for finite-
ness of the second moment of the crossings (Kratz and León, 2006).

Proof. : As in the preceding proof, we have

(4.13) ν2 := E
(
U [2]u

)
=

∫ T

0

2(T − τ)E
(
X ′+(0)X ′+(τ)

∣∣X(0) = X(τ) = u
)

1

2π

1√
1− Γ2(τ)

exp
[
− u2

1 + Γ(τ)

]
dτ

and

E
(
X ′+(0)

∣∣X(0) = X(τ) = u
)
=
−Γ′(τ)u
1 + Γ(τ)

= −E
(
X ′+(τ)

∣∣X(0) = X(τ) = u
)
.

A standard regression shows that

σ2(τ) := Var
(
X ′(0)

∣∣X(0) = X(τ) = u
)
= Var

(
X ′τ/X(0) = X(τ) = u

)
=
λ2(1− Γ2(τ)− Γ′2(τ)

1− Γ2(τ)
.

Using inequality a+b+ ≤ (a+ b)2/4 , we get

(4.14) ν2 ≤ T

∫ T

0

σ2(τ)√
1− Γ2(τ)

1

2π
exp

[
− u2

1 + Γ(τ)

]
dτ.

Since θ(τ), θ′(τ), θ′′(τ) ≥ 0, an elementary expansion shows that

σ2(τ)
(
1− Γ2(τ)

)
= λ2

(
1− Γ2(τ)

)
− Γ′2(τ) ≤ 2λ2τθ

′(τ),

1− Γ2(τ) ≈ λ2τ
2.

So that

ν2 ≤ T (const)

∫ T

0

θ′(τ)

τ2
exp

[
− u2

1 + Γ(τ)

]
dτ = o

(
φ(u)

)
,

on account of hypotheses G1 and G2.
¤
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2. More detailed computation of the first two moments

We return to the lower bound for P{MT > u} for stationary centered Gaussian processes.
In what follows, we also assume that the distribution of the triplet (X(s), X(t), X ′(s)) does not
degenerate for s 6= t. .

We will use in the remaining of this chapter the following inequality, which is a slight modifi-
cation of (4.3). The proof is immediate and left to the reader.

(4.15) P(X(0) > u) + ν̃1 −
ν2
2
≤ P(MT > u) ≤ P(X(0) > u) + ν̃1.

Our goal is to give as simple as possible formulas for the quantities involved in (4.15).
Let us introduce or recall some notation that will be used in the rest of this section. We set:

• ν1 := ν1 − ν̃1. For large values of u, ν1 and ν̃1 are worth being distinguished, since they
tend to zero at different exponential rates as u→ +∞.

• µ(t) = E
(
X ′(0)

∣∣X(0) = X(t) = u
)
= − Γ′(t)

1+Γ(t)u,

• σ2(t) = Var
(
X ′(0)

∣∣X(0) = X(t) = u
)
= λ2 − Γ′2(t)

1−Γ2(t) ,

• ρ(t) = Cor
(
X ′(0), X ′(t)

∣∣X(0) = X(t) = u
)
=
−Γ′′(t)

(
1− Γ2(t)

)
− Γ(t)Γ′2(t)

λ2 (1− Γ2(t))− Γ′2(t)
,

• k(t) =
√

1 + ρ(t)

1− ρ(t) ,

• b(t) = µ(t)

σ(t)
.

In what follows, the variable t will be omitted whenever there is no confusion, so that we will be
writing Γ,Γ′, µ, σ, ρ, k, b instead of Γ(t),Γ′(t), µ(t), σ(t), ρ(t), k(t), b(t).

Lemma 4.3. Let (X,Y ) be a random vector in R2 having centered normal distribution with

variance matrix

(
1 ρ
ρ 1

)
, |ρ| 6= 1. Then ∀ a ∈ R+ :

P(X > a, Y > −a) = 1

π
arctan

(√
1 + ρ

1− ρ

)
− 2

∫ a

0

φ(x)
[
Φ
(√1 + ρ

1− ρ x
)
− 1

2

]
dx

= 2

∫ +∞

a

[
Φ
(√1 + ρ

1− ρ x
)
− 1

2

]
φ(x) dx

Proof. We first give an integral expression for P(X > a, Y > a).

Put ρ = cos θ, θ ∈ (0, π), and use the orthogonal decomposition Y = ρX +
√

1− ρ2Z.

Then {Y > a} =
{
Z >

a− ρX√
1− ρ2

}
. Thus:

P{X > a, Y > a} =
∫ +∞

a

φ(x)
[
1− Φ

( a− ρx√
1− ρ2

)]
dx =

∫∫

D
φ(x)φ(z)dxdz,

where D is the domain located between the two half straight lines starting from the point(
a, a
√
1−ρ
1+ρ

)
and with angles θ − π

2 and π
2 .

Using the symmetry with respect to the straight line with angle θ
2 passing through the origin,

we get:

(4.16) P{X > a, Y > a} = 2

∫ +∞

a

φ(x)
[
1− Φ

(√1− ρ
1 + ρ

x
)]
dx.

Now,

P{X > a, Y > −a} = 1− Φ(a)− P{X > a, (−Y ) > a}.
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Applying (4.16) to the pair or random variables (X,−Y ) yields

P(X > a, Y > −a) = 1− Φ(a)− 2

∫ +∞

a

φ(x)
[
1− Φ

(√
1 + ρ

1− ρx
)]

dx

= 2

∫ +∞

a

[
Φ

(√
1 + ρ

1− ρx
)
− 1

2

]
φ(x)dx.

Now, using polar coordinates, it is easy to establish that
∫ +∞

0

[
Φ(kx)− 1

2

]
φ(x)dx =

1

2π
arctan(k)

which proves the lemma. ¤

Proposition 4.4. Let {X(t) : t ∈ R} be a centered stationary Gaussian process satisfying the
conditions above in this section.

Then,

(i) ν1 = φ(u)

∫ T

0

(√
λ2
2π

[
1− Φ

(√
1− Γ

1 + Γ

√
λ2
σ

u

)]
+ φ

(√
1− Γ

1 + Γ
u

)
[
1− Φ(b)

] Γ′√
1− Γ2

)
dt

(ii) ν2 =

∫ T

0

2(T − t) 1√
1− Γ2(t)

φ2

(
u√

1 + Γ(t)

)
[T1(t) + T2(t) + T3(t)] dt

with:

T1(t) = σ2(t)
√

1− ρ2(t)φ (b(t))φ (k(t)b(t)) ,

T2(t) = 2(σ2(t)ρ(t)− µ2(t))
∫ +∞

b(t)

[
Φ(k(t)x)− 1

2

]
φ(x)dx,

T3(t) = 2µ(t)σ(t)
[
Φ(k(t)b(t))− 1

2

]
φ(b(t)).

(iii) A second expression for T2(t) is:

(4.17) T2(t) = (σ2(t)ρ(t)− µ2(t))
[
1

π
arctan (k(t))− 2

∫ b(t)

0

[
Φ(k(t)x)− 1

2

]
φ(x)dx

]
.

Remarks.

(1) The formula in Lemma 4.3 is analogous to (2.10.4) in Cramér and Leadbetter, (1967),
p. 27, that is:

P{X > a, Y > −a} = Φ(a)[1− Φ(a)] +

∫ ρ

0

1

2π
√
1− z2

exp

(
− a2

1− z

)
dz.

The formula here is easier to prove and more adapted to numerical applications because,
as t → 0, ρ(t) → −1, while the integrand in Cramér and Leadbetter’s formula tends to
infinity.

(2) These formulas allow to compute ν2 at the cost of a double integral with finite limits.
This implies a significant reduction of complexity with respect to the original form. The
form (4.17) is more adapted to effective computation, because it involves an integral on
a bounded interval.

Proof. of (i).

Conditionally on {X(0) = x,X(t) = u}, X ′(t) is Gaussian with:

• mean m(t) = Γ′(t)(x−Γ(t)u)
1−Γ2(t) ,

• variance σ2(t), see the proof of Proposition 4.2.
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If Z is a Gaussian random variable with mean m and variance σ2, then

E
(
Z+
)
= σφ

(m
σ

)
+mΦ

(m
σ

)
.

These two remarks yield ν1(u, T ) = I1 + I2, with:

• I1 =
∫ T

0

dt

∫ +∞

u

σφ

(
Γ′(x− ru)
(1− Γ2)σ

)
pX(0),X(t)(x, u)dx

• I2 =
∫ T

0

dt

∫ +∞

u

Γ′(x− ru)
(1− Γ2)

Φ

(
Γ′(x− ru)
(1− r2)σ

)
pX(0),X(t)(x, u)dx.

I1 can be written as: I1 = φ(u)

∫ T

0

σ2√
2πλ2

[
1− Φ

(√
λ2
σ

√
1− Γ

1 + Γ
u

)
]
dt.

Integrating by parts in I2 leads to

I2 = φ(u)

∫ T

0

Γ′√
1− Γ2

φ

(√
1− Γ

1 + Γ
u

)
[1− Φ(b)] +

Γ′2√
2πλ2(1− Γ2)

[
1− Φ

(√
λ2
σ

√
1− Γ

1 + Γ
u

)]
dt.

Since σ2 + Γ′2/(1− Γ2) = λ2 , we obtain:

ν1 =

√
λ2
2π
φ(u)

∫ T

0

[
1− Φ

(√
λ2
σ

√
1− Γ

1 + Γ
u

)]
dt+ φ(u)

∫ T

0

Γ′√
1− Γ2

φ

(√
1− Γ

1 + Γ
u

)
[1− Φ(b)]dt.

Proof of (ii).
We set:

• v(x, y) = (x−b)2−2ρ(x−b)(y+b)+(y+b)2
2(1−ρ2)

• for (i, j) ∈ {(0, 0); (1, 0); (0, 1); (1, 1); (2, 0); (0, 2)}

Jij =

∫ +∞

0

∫ +∞

0

xiyj

2π
√

1− ρ2
exp (−v(x, y)) dydx.

We have

(4.18) J10 − ρJ01 − (1 + ρ)bJ00 =
(
1− ρ2

) ∫ +∞

0

(∫ +∞

0

∂

∂x
v(x, y)

exp (−v(x, y))
2π
√

1− ρ2
dx

)
dy

=
(
1− ρ2

)
[1− Φ(kb)] φ(b).

Replacing x by y and b by −b in (4.18) yields

(4.19) J01 − ρJ10 + (1 + ρ)bJ00 =
(
1− ρ2

)
Φ(kb)φ(b).

In the same way, multiplying the integrand by y, we get

(4.20) J11 − ρJ02 − (1 + ρ)bJ01 =
(
1− ρ2

)3/2
[φ (kb)− kb[1− Φ(kb)]φ(b).

Now, multiplying the integrand by x leads to

(4.21) J11 − ρJ20 + (1 + ρ)bJ10 =
(
1− ρ2

)3/2
[φ (kb) + kbΦ(kb)]φ(b).

So,

J20 − ρJ11 − (1 + ρ)bJ10 = (1− ρ2)
∫ +∞

0

∫ +∞

0

x
∂

∂x
v(x, y)

exp (−v(x, y))
2π
√

1− ρ2
dxdy.

Then, integrating by parts

(4.22) J20 − ρJ11 − (1 + ρ)bJ10 = (1− ρ2)J00.
Multiplying equation (4.22) by ρ and adding (4.21) gives:

J11 = −bJ10 + ρJ00 +
√

1− ρ2 [φ (kb) + kbΦ(kb)]φ(b).

Multiplying equation (4.19) by ρ and adding equation (4.18) yields:

J10 = bJ00 + [1− Φ(kb) + ρΦ(kb)]φ(b).
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Using the previous lemma, J00 = 2
∫ +∞
b

[Φ(kx)− 1
2 ]φ(x)dx.

Gathering the various pieces:

J11 = J11(b, ρ) =
√

1− ρ2φ2
(

b√
1− ρ

)
φ(b)+2

(
ρ− b2

) ∫ +∞

b

[
Φ(kx)−1

2

]
φ(x)dx+2b[Φ(kb)−1

2
φ(b).

The final result is obtained taking into account that

E
(
(X ′0)

+
(X ′t)

+ |X0 = Xt = u
)
= σ2(t)J11 (b(t), ρ(t)) .

Proof of (iii)

Expression (4.17) follows from the second expression of J00. ¤

The numerical computation of ν2 has some difficulties, related to the behavior of the integrand

near the diagonal. Since ν2 =
∫∫ T
0
A+s,t(u, u)dsdt, one can use the next proposition to describe the

function A+s,t(u, u) when |t− s| is small. For the proof, that we are not going to give here, one can
use Maple to compute its Taylor expansion as a function of t− s in a neighborhood of 0.

Proposition 4.5 (Azäıs Cierco-Ayrolles and Croquette (1999)). Let the Gaussian stationary
process {X(t) : t ∈ R} satisfy the above hypotheses in this section. Assume moreover that λ8 is
finite.

(a) As t→ 0:

A+0,t(u, u) =
1

1296

(λ2λ6 − λ4)3/2

(λ4 − λ22)
1/2

π2λ22
exp

(
−1

2

λ4
λ4 − λ22

u2
)
t4 +O(t5).

(b) There exists T0 > 0 such that, for every T, 0 < T < T0

ν1 =
27

4
√
π

(
λ4 − λ22

)11/2

λ52 (λ2λ6 − λ24)
3/2

φ

(√
λ4

λ4 − λ22
u

)
u−6

(
1 +O

(
1

u

))

ν2 =
3
√
3T

π

(
λ4 − λ22

)9/2

λ
9/2
2 (λ2λ6 − λ24)

φ

(√
λ4

λ4 − λ22
u

)
u−5

(
1 +O

(
1

u

))

as u→ +∞.

We will consider the same question on the behavior of the integrand A+s,t(u, u) near the
diagonal for non-stationary Gaussian processes in Chapter 5.

3. Maximum of the absolute value

We denote M∗
T = supt∈[0,T ] |X(t)|. The following inequality for P{M ∗

T > u} is elementary,
the proof being left to the reader:

(4.23) P(|X(0)| > u) + E
(
Uu1I|X(0)|<u

)
+ E

(
D−u1I|X(0)|<u

)
− 1

2
E
(
(Uu +D−u)

[2]
)

≤ P(M∗
T > u) ≤ P(|X(0)| > u) + E

(
Uu1I|X(0)|<u

)
+ E

(
D−u1I|X(0)|<u

)

Delmas (2001) has given tables with formulas to compute the terms appearing in (4.15) and (4.23),
as well as extensions to non-stationary processes. We refer to it for a comprehensive list of useful
formulas. Here, we only describe the result for the distribution of M ∗

T in the case of centered sta-
tionary Gaussian processes, normalized by Γ(0) = 1. The terms are included in the following table.

For u > 0

P(|X(0)| > u) = 2[1− Φ(u)] ; Uu
D
= D−u,

and for b > 0, we use the already defined notations:

σ2J11(b, ρ) := T1(b, ρ, σ
2) + T2(b, ρ, σ

2) + T3(b, ρ, σ
2) with:
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T1(b, ρ, σ
2) := σ2

√
1− ρ2φ(b)φ(kb)

T2(b, ρ, σ
2) := (σ2ρ− σ2b2)

[ 1
π
arctan(k)− 2

∫ b

0

φ(x)Ψ(kx)dx
]

T3(b, ρ, σ
2) := 2bσ2

[
Φ(kb)− 1

2

]
φ(b).

Then:

Centered stationary case

E[UXu [0, T ]1I{X(0)>u}] F (Γ,Γ′) :=

φ(u)

∫ T

0

√
λ2√
2π

(
1− Φ

[u
σ

√
λ2

√
1− Γ

1 + Γ

])
+

Γ′√
1− Γ2

φ
(
u

√
1− Γ

1 + Γ

)(
1− Φ

[
− uΓ′

σ(1 + Γ)

])
dt

E[UXu [0, T ]1I{X(0)≤u}]
T
√
λ2

2π
exp(−u

2

2
)− F (Γ,Γ′)

E[UXu [0, T ]1I{|X(0)|≤u}]
T
√
λ2

2π
exp(−u

2

2
)− F (Γ,Γ′)− F (−Γ,−Γ′)

E[UXu [0, T ][2]] 2

∫ T

0

(T − t)σ2J11
(
− Γ′u

σ(1 + Γ)
, ρ
)φ2( u√

1+Γ
)

√
1− Γ2

dt

E[UXu [0, T ]DX
−u[0, T ]] 2

∫ T

0

(T − t)σ2J11
(
− Γ′u

σ(1− Γ)
,−ρ

)φ2( u√
1−Γ )√

1− Γ2
dt

4. Application to quantitative gene detection

We study a back-cross population: A× (A×B), where A and B are purely homozygous lines
and we address the problem of detecting a gene influencing some quantitative trait (i.e. which
is able to be measured) on a given chromosome. The trait is observed on n individuals and we
denote by Yk, k = 1, ..., n the observations, which we will assume to be independent.

The mechanism of genetics, or more precisely of meiosis, implies that among the two chromo-
somes of each individual, one is purely inherited from A while the other (the “recombined” one)
consists of parts originated from A and parts originated from B, due to crossing-overs. Using the
Haldane (1919) distance and modelling, each chromosome will be represented by a segment [0, L].
The distance on [0, L] is called the genetic distance (which is measured in Morgans).

Now, let us describe the mathematical model that we will be using. We assume that the
“recombined” chromosome starts at the left-end point t = 0 with probability 1/2 with some part
originated from A or B and then switches from one value to another at every location of a crossing-
over. We model the crossing-over points by a standard Poisson process, independent of the fact
that the chromosome starts with A or B.

The influence of the putative gene (often called QTL for Quantitative Trait Locus by geneti-
cists) on the quantitative trait is represented by a classical linear model:

(4.24) Yk = µ+Gk(t0) a/2 + εk (k = 1, ..., n),

where

• µ is the general mean.
• t0 is the location of the gene on the chromosome ,
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• Gk(t) is the genotypic composition of the individual k at location t on the chromosome,
t ∈ [0, L]. In a back-cross crossing scheme it can only take two values (AB or AA) that
are denoted +1 and -1.

• εk, k = 1, ..., n are independent errors that are assumed to be independent, identically
distributed with zero mean and finite fourth moment. We denote by σ2 their common
variance.

Formula (4.24) implies that the gene effect is a. Our problem is to test the null hypothesis of
absence of gene influence, that is, a = 0.

The main statistical difficulties come from the following facts:

• The putative location t0 of the gene is unknown;
• The functions Gk(t) can not be fully observed. However, some “genetic markers” are

available, allowing to know the genetic composition at some fixed locations t1, ..., tM on
[0, L].

Since the number of genetic markers available on a given species becomes larger and larger
and since considering the limit model where the number of markers tends to infinity permits to
construct a test which is free from the markers positions, we will assume that the number Mn of
markers as well as their locations depend on the number of observations n. More precisely, we use
now a local asymptotic framework in which:

• The number n of observed individuals tends to infinity;
• The number of genetic markersMn tends to infinity with n, their locations being denoted

by ti,n; i = 1, ...,Mn;

• The size a of the gene effect is small, satisfying the contiguity condition a = δn−1/2,
where δ is some constant;

• The observation is

{
(
Y nk , Gk(t1,n), ..., Gk(tMn,n)

)
, k = 1, ..., n}.

Notice that since we have set a = δn−1/2, the distribution of the observation depends on n so that
the observations are denoted by Y nk instead of Yk.

If the true position t0 of the gene were known and would coincide with a marker location, a
natural test would be to make a ”comparison of means”, computing the statistics :

(4.25) Sn(t0) :=

∑n
k=1 Y

n
k 1I[Gk(t0)=1]∑n

k=1 1I[Gk(t0)=1]
−
∑n
k=1 Y

n
k 1I[Gk(t0)=−1]∑n

k=1 1I[Gk(t0)=−1]
,

In case of Gaussian observations, the test based on this statistics is equivalent to the likelihood
ratio test.

Since t0 is unknown, the calculation of the quantity given by formula (4.25) should be per-
formed at each location t ∈ [0, L]. To do this, we compute Sn at the points t1,n, ..., tMn,n, make
a linear interpolation between two consecutive marker positions, and extend by a constant to the
left of the first marker position and similarly to the right of the last one, so that the function thus
obtained is continuous. We denote by {Sn(t) : t ∈ [0, L]} the random process obtained in this
form, which has continuous polygonal paths.

Our aim is to find a normalization of the process Sn in order to get weak convergence. Before
that, let us make a short parenthesis to give an overview on this subject, which includes some
general and useful results.

4.1. Quick reminder on weak convergence of stochastic processes. Let us consider
real-valued processes defined on [0, 1] (extensions to the whole line do not present essential diffi-
culties). We need the following function spaces:

• C = C([0, 1]) the space of continuous functions [0, 1] → R, equipped with the topology
of uniform convergence generated by the distance:

du(f, g) = ‖f − g‖∞ := sup
t∈[0,1]

|f(t)− g(t)|
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• D = D([0, 1]) the set of càd-làg functions (functions which are right-continuous and have
left-hand limits at each point), equipped with the Skorohod topology generated by the
distance

ds(f, g) := inf
h
{sup{‖h− Id‖∞, ‖f − g ◦ h‖∞}},

where the infimum is taken over all strictly increasing continuous mappings h : [0, 1] →
[0, 1], h(0) = 0, h(1) = 1, Id is the identity mapping, i.e. Id(x) = x for all x ∈ [0, 1] and
“◦” denotes composition.

C is a Polish space (this means, a complete separable metric space). D is not complete, but
with a natural change of the metric, which does not modify the topology, it becomes complete
(see Billingsley, 1999 for details). A possible modification consists in replacing ds by d0s defined
by:

d0s(f, g) := inf
h
{sup{‖h‖o, ‖f − g ◦ h‖∞}},

where the inf is over the same class of functions as above, and

‖h‖o = sup
s<t

∣∣∣ log h(t)− h(s)
t− s

∣∣∣.

We will usually denote, without further reference, with the same letters C and D the analogous
spaces of functions defined on some interval [t1, t2] other than [0, 1].

Next, we give two definitions that are basic in what follows: weak convergence and tightness.

Definition 4.6. Let E be a Polish space and E the σ−algebra of subsets of E generated by the
open sets. The sequence of probability measures {Pn}n=1,2,... on (E, E) is said to converge weakly
to the measure P defined on the same measurable space (this is denoted by Pn ⇒ P as n→ +∞)
if for every continuous and bounded function f : E → R,∫

E

f dPn →
∫

E

f dP as n→ +∞.

Definition 4.7. Let E be a Polish space. A collection of probability measures F on (E, E)
is said to be tight if for any ε > 0 there exists Kε, a compact subset of E, such that for all
P ∈ F : P(KC

ε ) ≤ ε.

Let (Ω,A,P) be a probability space, E a separable metric space and Y : Ω → E a random

variable, that is Y −1(F ) ∈ A for any choice of F ∈ E . The image measure PY on (E, E), defined
as

PY (F ) = P
[
Y −1(F )

]

for every F ∈ E is called the probability distribution of the random variable Y .
A sequence of random variables {Yn}n=1,2,.. with values in E is said to converge weakly to

the random variable Y , if
PYn ⇒ PY as n→ +∞.

that is, if the sequence of distributions converges weakly to the distribution of Y . In that case,
we will write Yn ⇒ Y .

The next three theorems contain the results that we will be using in the statistical applications
of this chapter. For proofs, examples and a general understanding of the subject, the reader is
referred to Billingsley’s classical book (1999).

Theorem 4.8 (Prohorov). Let E is a Polish space. From every tight sequence of probability
measures on (E, E) one can extract a weakly convergent subsequence. If a sequence of probability
measures on (E, E) is tight then, it is weakly convergent if and only if all weakly convergent
subsequences have the same limit.

Theorem 4.9. Let {Xn}n=1,2,... be a sequence of random variables with values in the spaces
C or D. Xn(t) denotes the value of Xn at t ∈ [0, 1].
Then, Xn ⇒ X as n→ +∞, if and only if,

• {Xn}n=1,2,... is tight (in the corresponding space C or D) and
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• for any choice of k = 1, 2, ..., and distinct t1, ..., tk ∈ [0, 1], the random vector
(
Xn(t1), ..., Xn(tk)

)

converges weakly to
(
X(t1), ..., X(tk)

)
in Rk, as n→ +∞.

In case convergence takes place, if g : C → R (respectively g : D → R) is a continuous
function with respect to the topology of C (resp. D), then the sequence of real-valued random
variables {g(Xn)}n=1,2,... converges in distribution to the random variable g(X).

Moreover, if Xn ⇒ X in D, and X has continuous paths, then weak convergence holds true
in C (see Exercise 4.3).

The above statement contains the standard procedure, in a large set of statistical problems,
to prove the existence of weak limits of stochastic processes and compute the limit distributions
whenever they exist. One has to check tightness and finite-dimensional weak convergence. If pos-
sible, one also wants to identify the limit measure (the distribution of X) and if the “observable”
quantity in which one is interested in is g(Xn), this also allows to find its limit distribution.

The next theorem gives a sufficient condition based upon upper-bounds for moments of incre-
ments, to verify tightness and prove weak convergence.

Theorem 4.10. Let {Xn(t) : t ∈ [0, 1]}, n = 1, 2, ... be a sequence of random processes and
{X(t) : t ∈ [0, 1] a process with sample paths in C (resp. D) satisfying

(1) for any choice of k = 1, 2, ..., and distinct t1, ..., tk ∈ [0, 1], the sequence of random vectors(
Xn(t1), ..., Xn(tk)

)
converges weakly to

(
X(t1), ..., X(tk)

)
in Rk, as n→ +∞.

(2) -if the sample paths are in C: there exist three positive constants, α, β, γ such that for
all s, t ∈ [0, 1] :

E|Xn(s)−Xn(t)|α ≤ β|s− t|1+γ

-if the sample paths are in D : there exist three positive constants, α, β, γ such that for
all t1, t, t2 ∈ [0, 1], t1 ≤ t ≤ t2 :

(4.26) E
(
|Xn(t1)−Xn(t)|α|Xn(t2)−Xn(t)|α

)
≤ β|t2 − t1|1+γ .

Then, Xn ⇒ X as n→ +∞ in C (resp. in D).

The property (2) in addition to the tightness of the family of probability distributions Xn(0)
is a sufficient condition for the tightness of the sequence {Xn}n=1,2,....

We will use also the Skorohod embedding (see for example Dudley 1989 p. 324) that states
that if Xn and X are random variables taking values in a separable metric space (E, d) and
if Xn converges weakly to X, then we can construct a representation of these variables, say
{Yn}n=1,2,..., Y defined on some new probability space with values in E, so that Xn and Yn have
the same distribution for every n = 1, 2, ... (as well as Y and X) and:

d(Yn, Y )→ 0 almost surely as n→ +∞.

4.2. Weak convergence of the detection process. We go back to the genetic model.

Theorem 4.11. a) Var
(
Sn(t)

)
≈ 4σ2

n

b)Since Var(Y nk ) ≈ σ2 we can estimate the parameter σ2 by the empirical variance: σ̂2n. We
define the normalized process

(4.27) Xn(t) :=

√
n

2σ̂n
Sn(t).

Assume that

max
i=0,...,Mn

(
ti+1,n − ti,n

)
→ 0 as n→ +∞

where we have used the convention: t0,n = 0; tMn+1,n = L.
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Then, the normalized process Xn(t) converges weakly in the space of continuous functions on
[0, L] to a Gaussian process X = {X(t) : t ∈ [0, L]} with:

E
(
X(t)

)
=

δ

2σ
exp(−2|t0 − t|)

(4.28) Cov (X(t), X(t+ h)) = exp(−2|h|).

X is an Ornstein-Uhlenbeck process with a change of scale and a deterministic drift (see
Exercise 4.6 at the end of this chapter).

The proof of Theorem 4.11 is based on the following lemma.

Lemma 4.12. Let {ηk}k=1,2,... be centered random variables with common variance σ2 and
finite fourth order moment µ4. Suppose that the collection of random variables and processes
η1, G1(.), ..., ηn, Gn(.), ... are independent. Here Gk(t), t ∈ [0, L] is the genotypic composition of
the k−th individual, which follows the switching Poisson model that has been described above.
Then, as n→ +∞:

(a) the processes

Zn(t) := n−1/2
n∑

k=1

ηkGk(t)

converge weakly in the space D to a stationary Gaussian process with zero mean and covariance
hÃ σ2 exp(−2|h|) .

(b) The processes

Z̃n(t) := n−1
n∑

k=1

Gk(t0)Gk(t)

converge uniformly (for t ∈ [0, L]) in probability to the function exp(−2|t0 − t|).

Proof. (a) Independence implies that

E
(
ηkGk(t)

)
= 0.

If Z is a random variable having the Poisson distribution with parameter λ, one easily checks that:

P(Z even )− P(Z odd) = exp(−2λ).

This implies that

E
(
Gk(t)Gk(t

′)
)
= exp(−2|t− t′|), E

(
η2kGk(t)Gk(t

′)
)
= σ2 exp(−2|t− t′|).

To prove part (a) of the lemma, we apply Theorem 4.10. The convergence of the finite-
dimensional distributions follows from a standard application of the multivariate central limit
theorem and is left to the reader.

We now prove the moment condition (4.26) . Let t1 < t < t2 be in [0, L]:

(4.29) E
[(
Zn(t)− Zn(t1)

)2(
Zn(t)− Zn(t2)

)2]
=

1

n2

∑

1≤k1,k2,k3,k4≤n

E
(
ηk1 ...ηk4

(
Gk1(t)−Gk1(t1)

)(
Gk2(t)−Gk2(t1)

)(
Gk3(t)−Gk3(t2)

)(
Gk4(t)−Gk4(t2)

))
.
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The independence implies that, as soon as one index ki is different from the other three, the
expectation in the corresponding term of the sum vanishes. Hence,

(4.30) E
[(
Zn(t)− Zn(t1)

)2(
Zn(t)− Zn(t2)

)2]

=
1

n2

∑

1≤k1 6=k2≤n
E
(
η2k1η

2
k2

(
Gk1(t)−Gk1(t1)

)2(
Gk2(t)−Gk2(t2)

)2)

+
1

n2

∑

1≤k1 6=k2≤n
E
(
η2k1η

2
k2

(
Gk1(t)−Gk1(t1)

)(
Gk1(t)−Gk1(t2)

)(
Gk2(t)−Gk2(t1)

)(
Gk2(t)−Gk2(t2)

))

+
1

n2

∑

1≤k≤n
E
(
η4k
(
Gk(t)−Gk(t1)

)2(
Gk(t)−Gk(t2)

)2

≤ (const)σ4|t− t1||t− t2|+ (const)µ4|t− t1||t− t2| ≤ (const)(t2 − t1)2.
where we have used that:

• almost surely,
(
Gk(t) − Gk(t1)

)(
Gk(t) − Gk(t2)

)
vanishes, except if the number of oc-

currences in intervals [t1, t] and [t, t2] are both odd. In that case it takes the value -4. In
conclusion its expectation is non-positive

•
(
Gk(t)−Gk(t2)

)2
depends only on the parity of the number of occurrences of the Poisson

process on [t, t2], and is independent of
(
Gk(t)−Gk(t1)

)
.

•
E
(
Gk(t)−Gk(t′)

)2
= 2
(
1− exp(−2|t− t′|)

)
≤ (const)|t− t′|.

The inequality (4.30) implies (4.26). This proves (a).

As for assertion (b), we write

(4.31) Z̃n(t) := n−1
n∑

k=1

Gk(t0)Gk(t)

= n−1
n∑

k=1

(
Gk(t0)Gk(t)− exp

(
− 2|t− t0|

))
+ exp

(
− 2|t− t0|

)

= n−1
n∑

k=1

Tk(t) + exp
(
− 2|t− t0|

)
= Z̃n,1(t) + exp

(
− 2|t− t0|

)
.

(b) follows from the result in Exercise 4.4, if we can prove that Z̃n,1 tends weakly to zero in the

space D as n→ +∞. Because of the strong law of large numbers, for each t, Z̃n,1(t) tends to zero

almost surely. This obviously implies that a.s. the k−tuple
(
Z̃n,1(t1), ..., Z̃n,1(tk)

)
converges to

(0, ..., 0) as n→ +∞.
So, to apply Theorem 4.10 it suffices to check (4.26).
This can be done much in the same way we did with formula (4.30) except that: (i) the normalizing
constant is now n−4, (ii) Gk(t) is replaced by Tk(t) (iii) the variables ηk are absent. To conclude
we have to check that:

• E
(
Tk(t) − Tk(t

′)
)2 ≤ E

(
Gk(t0)

(
Gk(t) − Gk(t

′)
))2

= E
(
Gk(t) − Gk(t

′)
)2 ≤ (const)|t − t′|

• E
((
Tk(t)− Tk(t1)

)(
Tk(t)− Tk(t2)

))
= Cov

(
Gk(t0)

(
Gk(t)−Gk(t1)

)
, Gk(t0)

(
Gk(t)−Gk(t2)

)

= E
((
Gk(t)−Gk(t1)

)(
Gk(t)−Gk(t2)

))
−
(
e−2|t0−t| − e−2|t0−t1|

)(
e−2|t0−t| − e−2|t0−t2|

)

≤ −
(
e−2|t0−t| − e−2|t0−t1|

)(
e−2|t0−t| − e−2|t0−t2|

)
≤ (const)(t1 − t2)2

• If Z and T are two random variables :

E
[(
Z − E(Z)

)2(
T − E(T )

)2] ≤ 4E(Z2T 2) + 12E(Z2)E(T 2).
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Applying this with Z − E(Z) = Tk(t)− Tk(t1); T − E(T ) = Tk(t)− Tk(t2) we get

E
[(
Tk(t)− Tk(t1)

)2(
Tk(t)− Tk(t2)

)2] ≤ 16 E
(
Gk(t)−Gk(t1)

)2
E
(
Gk(t)−Gk(t2)

)2

≤ (const)(t1 − t2)2.

Summing up:

E
[(
Z̃n,1(t1)− Z̃n,1(t)

)2(
Z̃n,1(t2)− Z̃n,1(t)

)2] ≤ (const)(t1 − t2)2n−2

¤

Proof of Theorem 4.11:

Step 1: Convergence in case of full genetic information. In a first step, we assume that the
genetic information Gk(t) is available at every location of the chromosome, so that no interpolation
is needed.

We define several auxiliary random processes:

Xn,1(t) :=

√
n

2σ
Sn(t).

It is clear that if the process {Xn,1(t) : t ∈ [0, L]} converges weakly, the same holds true for
the process {Xn(t) : t ∈ [0, L]}, with the same limit.

Xn,2(t) :=
1

σ̂n
√
n

n∑

k=1

(
Y nk − Ȳn

)
Gk(t).

which can actually be computed (Ȳn is the mean of the sample), and

Xn,3(t) :=
1

σ
√
n

n∑

k=1

(Y nk − µ)Gk(t).

which cannot be actually computed.
The convergence in probability of σ̂2n implies that if Xn,3(t) converges weakly then it is also

the case for the process

Xn,4(t) :=
1

σ̂n
√
n

n∑

k=1

(Y nk − µ)Gk(t).

We have:

Xn,4(t)−Xn,2(t) =
Ȳn − µ
σ̂n
√
n

n∑

k=1

Gk(t).

Since under the conditions of Lemma 4.12 the law of the process {∑n
k=1Gk(t) : t ∈ [0, L]}

is the same as the one of {∑n
k=1 ηkGk(t) : t ∈ [0, L]}, we can apply part (a) of this lemma and

Exercise 4.4 to deduce that the process {n−1/2∑n
k=1Gk(t) : t ∈ [0, L]} is stochastically uniformly

bounded. Apply now the law of large numbers to the sequence of means {Ȳn}n=1,2,... to deduce
that:

sup
t∈[0,L]

∣∣Xn,4(t)−Xn,2(t)
∣∣

tends to zero in probability.

Let us see that also

(4.32) sup
t∈[0,L]

∣∣ Xn,3(t)−Xn,1(t)
∣∣ ⇒ 0.
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In fact, some algebra permits to check that:

Xn,3(t)−Xn,1(t) =
1

σ
√
n

n∑

k=1

(Y nk − µ)Gk(t)−
√
n

2σ

n∑

k=1

Y nk

(1IGk(t)=1
νn(t)

− 1IGk(t)=−1
n− νn(t)

)

=

√
n

2σ

n∑

k=1

(Y nk − µ)
[ 2
n
Gk(t)−

(1IGk(t)=1
νn(t)

− 1IGk(t)=−1
n− νn(t)

)]

=
fn(t)− 1/2

σ
√
nfn(t)[1− fn(t)]

n∑

k=1

[
Gk(t0)

δ√
n
+ εk

][1
2
+ (1/2− fn(t))Gk(t)

]

where we have put

νn(t) = \{k : 1 ≤ k ≤ n,Gk(t) = 1}
and

fn(t) =
1

n
νn(t) =

1

2n

n∑

k=1

Gk(t) +
1

2
.

(4.32) follows using Lemma 4.12.

So weak convergence of Xn,3 implies the convergence of the other processes. The above proves
also that the variance of Xn(t) is equivalent to that of Xn,3(t) which tends to 1, thus proving as-
sertion a) in the statement of the theorem.

The model implies that at every location t and for every individual k, P{Gk(t) = 1} = 1/2,
and

E
(
εkGk(t)

)
= 0; Var

(
εkGk(t)

)
= σ2.

To finish this part, let us turn to the process {Xn,3(t) : t ∈ [0, L]}. Set

Xn,3(t) :=
1

σ
√
n

n∑

k=1

Y nk Gk(t) =
δ

2nσ

n∑

k=1

Gk(t0)Gk(t) +
1

σ
√
n

n∑

k=1

εkGk(t) = Xn,5(t) +Xn,6(t).

By Lemma 4.12, Xn,5(t) converges uniformly to the function δ
2σ exp(−2|t−t0|) and Xn,6 converges

weakly to the Ornstein-Uhlenbeck with a scale change, having covariance (4.28).

Step 2: Convergence in case of partial genetic information. Using the Skorohod embedding
technique the weak convergence of the process Xn,3(t) towards the limit process X(t) can be
represented by an almost sure convergence in some probability space. Since X(t) has continuous
sample paths, the convergence is also true in the uniform topology:

‖Xn,3(.)−X(.)‖∞ → 0 a.s.

Now let Dn be the operator on D that consists of (a) discretization at the locations di,n, i =
1, ...,Mn followed by (b) linear interpolation between two marker positions and extending by a
constant before the first and after the last marker. This operator is a contraction for the uniform
norm. We can deduce that:

(4.33) ‖Dn[Xn,3(.)]−X(.)‖∞ ≤ ‖Dn[Xn,3(.)]−Dn[X(.)]‖∞ + ‖Dn[X(.)]−X(.)‖∞
≤ ‖Xn,3(.)−X(.)‖∞ + ‖Dn[X(.)]−X(.)‖∞ → 0

as n→ +∞ and we are done. ¤

4.3. Smoothing the detection test process. In the remaining of the study of this exam-
ple, we will combine the previous theoretical results with a series of practical recipes to be able to
answer the relevant questions.

The original problem is to test the null hypothesis δ = 0 against δ 6= 0. The classical approach
would be to use the test statistic Tn = sup

t∈[0,L]
|Xn(t)| which corresponds to a likelihood ratio test

in the case of Gaussian observations. This is inconvenient because of two reasons:
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(1) The limit process has irregular sample paths (non-differentiable), and the distribution
of its supremum is known only when δ = 0 (Delong, 1981) and for certain lengths of
the observation interval. In the other cases, for δ = 0 we can use asymptotic bounds
for the maximum of “α- regular processes” that are due to Pickands (see, for example,
Leadbetter Lindgren and Rootzen, 1983). But to compute the power of the test, that is
for δ 6= 0 the only available method is Monte-Carlo.

(2) It does not take into account that the presence of a gene at t0 modifies the expectation
of the limit process in a neighborhood of t0.

Given these two reasons, we will smooth the paths of the detection process {Xn(t) : t ∈ [0, L]}
by means of convolution with a regular kernel, that we will take to be a centered Gaussian kernel
having variance ε2, which we denote φε. Let {Xε

n(t) : t ∈ [0, L]} be the smoothed process, defined
as Xε

n(t) = (Xn ∗ φε)(t).

We consider the test statistic T εn = sup
t∈[0,L]

|Xε
n(t)|. The reader can check that the limit of

(Xε
n(t))t∈[0,L] is the smoothed version of the previous limit process (or consult Billingsley’s book,

1999), and compute the mean mε(.) and the covariance rε(.) of the new process:

(4.34)

mε(t) =
δ

2σ
{exp[2(−t0 + ε2 + t)]Φ(

t0 − 2ε2 − t
ε

) + exp[2(t0 + ε2 − t)]
[
1− Φ(

t0 + 2ε2 − t
ε

)
]
}

rε(t) = exp(2(2ε2 − t))Φ( t− 4ε2

(2ε2)
1
2

) + exp(2(2ε2 + t))
[
1− Φ(

t+ 4ε2

(2ε2)
1
2

)
]
.

To compute approximately the power of the test based on this process we use the basic inequalities
(4.23). Of course, the use of crossings is feasible for the regularized process but it is not for the
original one, that has non-differentiable paths. For the determination of the threshold, it turns
out (on the basis of numerical simulation), that the lower-bound in it - which uses second order
factorial moment of crossings - is more accurate than the upper one. So we determine thresholds
using the lower-bound.

4.4. Simulation study. On the basis of a Monte-Carlo experiment one can evaluate the
quality of the proposed method under a variety of conditions. Especially,

• the relationship between the value of the smoothing parameter and the validity of the
asymptotic approximation for a reasonable number of markers and individuals in the
sample,

• the sharpness of the bounds given by the inequality (4.23) for various values of the
smoothing parameter.

Table 4.1 displays empirical levels for smoothed and unsmoothed procedures with thresholds
computed under the asymptotic distribution.

• For the unsmoothed process (ε = 0), the threshold is calculated using Table II of Delong
(1981). For this reason, the chromosome length, 0.98 M (Morgan) has been chosen to
correspond to an entry of DeLong’s table, and to be close to lengths encountered for
several vegetable species.

• For the smoothed process, we used the lower bound in inequality (4.23).

Simulations have been performed for two values of the smoothing parameter and three mark-
ers densities: a marker every each icM with i = 1, 2, 7. The number of individuals is equal to 500;
the crossing-overs are simulated according to a standard Poisson process; the simulation has 104

realizations; 5% confidence interval for the empirical levels associated to the theoretical ones are
indicated.
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Figure 4.1. A realization of the detection process and its smoothing with
ε2 = 10−3. There are 100 markers on a chromosome of size 1 Morgan and 500
individuals are observed.

Nominal level of the test
10% 5% 1%

5% confidence interval
for the emp. level 9.41-10.59 4.57-5.43 0.80-1.19
threshold ε = 0 2.74 3.01 3.55

threshold ε2 = 10−2 2.019 2.276 2.785
threshold ε2 = 10−3 2.321 2.593 3.128

marker density 1 cM 2 cM 7 cM 1 cM 2 cM 7 cM 1 cM 2 cM 7 cM
emp. level ε = 0 7.37 6.67 4.99 3.91 3.42 2.4 0.77 0.67 0.43

emp. level ε2 = 10−2 12.17 12.17 11.82 6.75 6.69 6.53 1.76 1.72 1.77
emp. level ε2 = 10−3 10.84 10.66 9.71 5.63 5.55 5.02 1.34 1.32 1.04

Table 4.1. Threshold and empirical level (in %) of test using the unsmoothed
detection test process (ε = 0) (Xn(d))t∈[0,L] and the smoothed detection process

(Xε
n(t))d∈[0,L]. The chromosome length is equal to 0.98 M, and the number of

individuals is equal to 500. The second line of the table gives a confidence interval
for the empirical proportion related to the nominal level over 104 simulations.

Table 4.1 presents the power associated to the detection test in the case of a gene of size δ = 6
located at the position t0 = 0.4. The length of the chromosome is 1 M, calculations are made
under the asymptotic distribution, using a test with nominal level equal to 5%.

• For the unsmoothed detection test process, the threshold is calculated via DeLong’s table
and the power using Monte-Carlo with 104 simulations.

• For the smoothed process, the threshold is calculated as above using the lower bound in
(4.23). The power of the test is calculated in three ways: 1) using the upper bound in
(4.23), 2) using the lower bound in (4.23), 3) by a Monte-Carlo method.

Summing up, let us add some final comments on this study of the genetic model (4.24).

• Table 4.1 clearly indicates that the unsmoothed procedure is very conservative.
• The empirical level given by the smoothed procedure is close to the nominal value. For
ε2 = 10−3, it is nearly inside the confidence interval.

• Table 4.2 shows clearly that smoothing at size ε2 = 10−2 instead of 10−3 does not imply
a sizable loss of the power computed with the asymptotic distribution.

• It is also clear from Table 4.2 that at the size ε2 = 10−2, 10−3, the lower bound being
almost exact.

• The use of the asymptotic test after smoothing with the window size ε2 = 10−3 and
thresholds and powers computed by means of the lower bound in (4.23), has a number
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ε2 = 10−2 ε2 = 10−3 unsmoothed process
5% threshold 2.281 2.599 3.02
P(|Y (0)| > u) 15.70 9.81 -

E
(
(Uu +D−u) 1I|Y (0)|≤u

)
55.57 72.30 -

ν2
2 1.43 13.06 -

E(Uu(Uu−1))
2 1.43 13.06 -

E(D−u(D−u−1))
2 7.84 10−6 3.40 10−4 -

E (UuD−u) 2.54 10−5 4.10 10−3 -
lower bound 69.84 69.05 -
upper bound 71.27 82.11 -

empirical power 71.37± 0.88 72.53± 0.87 68.99± 0.91

Table 4.2. Power in % associated to the detection test in the case of a gene of
size δ = 6, located at a distance t0 = 0.4 from the origin of a chromosome of
length 1 M. The value of σ is equal to 1. In the smoothed procedure, the 5%
level, the upper and lower bounds are calculated using the S+ program previously
mentioned. For the unsmoothed process, the 5% level is given by DeLong’s table.
The empirical powers are calculated over 104 simulations and the corresponding
95 % confidence intervals are given.

chromosome length in Morgans
0.75 1 1.5 2 2.5 3

1% level 3.059 3.133 3.239 3.315 3.375 3.423
5 % level 2.516 2.599 2.721 2.809 2.878 2.934
10% level 2.239 2.328 2.458 2.553 2.626 2.687

Table 4.3. Thresholds calculated using the lower bound in (4.23) for different
values of level α and various chromosome lengths. The smoothing parameter is
equal to 10−3.

of advantages. The thresholds corresponding to levels α equal to 1%, 5 % and 10%
and for certain chromosome lengths are given in Table 4.3. For other cases and power
calculations, the S+ program developed by Cierco-Ayrolles, Croquette and Delmas (2003)
can be used (see also Chapter 9).

5. Mixtures of Gaussian distributions

A classical problem in statistical inference is the one of deciding, on the basis of a sample,
whether a population should be considered homogeneous or a mixture of various different ones.
We are going to address this question, but only when very simple possible models for the descrip-
tion of the population are present. This already leads to mathematical problems having a certain
complexity and to the use of techniques that are directly related to our main subjects.

Our framework is restricted to Gaussian mixtures and we will consider the following hypothesis
testing situations:

(1) The simple mixture model

(4.35)

{
H0 : Y ∼ N(0, 1)
H1 : Y ∼ pN(0, 1) + (1− p)N(µ, 1) p ∈ [0, 1], µ ∈M ⊂ R

We mean the following: assume that we are measuring a certain magnitude Y on each
individual of a population. Under the null hypothesis H0, Y has a Normal (0,1) distri-
bution for each individual. Under the alternative hypothesis H1 each individual can be
considered to have been chosen at random with probability p in a population in which
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the magnitude Y is Normal (0,1) and with probability 1− p in a population in which Y
is Normal (µ, 1). The purpose of the game is to make a decision about which one is the
underlying true situation, on the basis of the observation of a sample.
The foregoing explanation applies to the other two cases that we describe next, mutatis
mutandis.

(2) The test of one population against two, variance known.

(4.36)

{
H0 : Y ∼ N(µ0, 1) µ0 ∈M
H1 : Y ∼ pN(µ1, 1) + (1− p)N(µ2, 1) p ∈ [0, 1], µ1, µ2 ∈M ⊂ R

(3) The test of one population against two, variance unknown.

(4.37)

{
H0 : Y ∼ N(µ, σ2) µ ∈M ⊂ R, σ2 ∈ Σ ⊂ R+

H1 : Y ∼ pN(µ1, σ
2) + (1− p)N(µ2, σ

2) p ∈ [0, 1], µ1, µ2 ∈M ⊂ R, σ2 ∈ Σ ⊂ R+.

These problems appear in many different kinds of applications and of course, the statistical
methods apply quite independently of the field generating the problem. However, to persist in
biological questions considered in the previous section, let us choose again genetics to show a
possible meaning of the third case above.

Let us consider a quantitative trait on a given population, for example, the yield per unit sur-
face in a plant breeding experiment. A reasonable model consists in assuming that such a complex
trait is influenced by a large number of genes having each one of them, small effects. Assuming
independence or almost-independence between the effects of the different genes, a heuristic applica-
tion of the Central Limit Theorem leads to a Gaussian distribution for the trait. That corresponds
to the null hypothesis in formula (4.37).

Suppose now that a mutation appears in the population, introducing a new allele that has,
alone, a non negligible effect on the trait. Let G be the new allelic form and g the old one and
suppose that one form is dominant, for example G (this means that Gg is equivalent to GG).
Then the distribution of the trait in the considered population can be modelled by the general
hypothesis in formula (4.37) with (1− p) being the frequency of individuals gg.

So, rejection of H0 is associated to the detection of the existence of a new gene, and the
purpose of the hypothesis testing is to take this decision on the basis of the observation of the
value of the trait in a sample of the population. Of course, if H0 is rejected, understanding the
location of the gene will require, for example, some genetic markers information and the techniques
of Section 4.

To perform a test of the type we have described above in (4.35), (4.36) or (4.37), there exist
two main classical techniques:

(1) a test based on moments: in a first approximation, expectation , variance , order-three
moment.

(2) a test based on likelihood ratio.

The asymptotic distribution of the likelihood ratio test was first established by Gosh and Sen
(1985) under a strong separation hypothesis : for example |µ1 − µ2| > ε > 0 for model (4.36).
Without this hypothesis but still assuming that the set of the means M is compact and that the
variance σ2 is bounded away from zero, the asymptotic distribution has been studied by Dacunha-
Castelle and Gassiat (1997, 1999) (see also Gassiat (2002) and Azäıs Gassiat and Mercadier (2007)
for a simpler proof). See also Azäıs Gassiat and Mercadier (2006) for further developments and a
discussion of the behavior when M is not compact or is large in some sense.

On the other hand, moment based tests do not demand compactness assumptions and have
invariance properties. Since the distribution of the Likelihood Ratio Test (LRT from now on) is
related to that of the maximum of a rather regular Gaussian process, we will use a method based
upon Rice formulas to address the following problems:

(1) Is the power of the LRT test much influenced by the size of the interval(s) in which the
parameters are supposed to be?

(2) Is it true, as generally believed but without proof, that the LRT test is more powerful
that the moment tests? Notice that Azäıs Gassiat and Mercadier (2006) have proven
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that theoretically, the power of the LRT is smaller than the one of moment tests when
the parameter set is very large.

Our aim here is to show how Rice formulas on crossings can be used to perform the compu-
tations required by the results below on the hypothesis testing problems on mixtures. We are not
including proofs of the asymptotic statements, since they would lead us far away from the main
subjects of this book. The interested reader can find them in the references above.

5.1. Simple mixture.

Theorem 4.13 (Asymptotic distribution of the LRT). Suppose that M is a bounded interval
that contains zero and define the local asymptotic alternative:

µ = µ0 ∈M, (1− p) = δ√
n
,

for fixed µ0 and δ, under this alternative the LRT of H0 against H1 has the distribution of the
random variable

(4.38)
1

2
sup
t∈M

{Z2(t)},

where Z(.) is a Gaussian process with mean

m(t) =
δ(etµ0 − 1)√
et2 − 1

and covariance function

r(s, t) =
est − 1√

es2 − 1
√
et2 − 1

.

A direct application of the regularity results of Chapter 1 shows that the process Z(.) has
C∞ paths on (0,+∞) and on (−∞, 0), but has a discontinuity at t = 0 where it has right and left
limits. Since

m(0−) = −m(0+) = −δµ0, r(0−, 0+) = −1
it follows that a.s. Z(0−) = −Z(0+).

We assume, for simplicity, thatM = [−T, T ] and setM ∗
T := supt∈[−T,T ] |Z(t)|. Then, we have

the following inequalities, which are analogous to (4.23).
Let

ξ := Uu[0, T ] +D−u[0, T ] +Du[−T, 0] + U−u[0, T ].

Then:

(4.39) P(|Z(0)| > u) + E(ξ1I|Z(0)|<u)−
1

2
E(ξ[2]) ≤ P(M∗

T > u) ≤ P(|Z(0)| > u) + E(ξ1I|Z(0)|<u).

and we can use the results in Section 2 to compute upper and lower bounds for P(M ∗
T > u). The

deduced critical values for the test are shown in Table 4.4.

This table shows that the Rice method is very precise. It also shows that the critical values
depend heavily on the size of the interval M .

As for the power, we give some examples in Table 4.5 . More examples can be found in Delmas
(2001) (2003 a).

In Table 4.5 we can see that the power is affected by the size of M. For example for µ0 = 1
δ = 1 the power varies from 16% to 23%.

Let us now compare the LRT test with two tests based on moments:



5. MIXTURES OF GAUSSIAN DISTRIBUTIONS 95

Nominal level of the test
Size 1% 5% 10%

T=0.5 3.6368 2.1743 1.5710
T=1 3.9015 2.3984 1.7707-1.7713
T=2 4.3432-4.3438 2.7908-2.7942 2.1300-2.1378
T=3 4.6784-4.6798 3.1002-3.1075 2.4209-2.4350
T=5 5.1357-5.1384 3.5353-3.5478 2.8390-2.8635
T=10 5.7903-5.7940 4.1736-4.1921 3.4641-3.5013
T=15 6.1837-6.1879 4.5621-4.5828 3.8480-3.8908
T=20 6.4657-6.4703 4.8414-4.8636 4.1253-4.1712
T=30 6.8658-6.8705 5.2392-5.2627 4.5212-4.5698
T=50 7.3725-7.3774 5.7443-5.7688 5.0245-5.0758

Table 4.4. Critical values or thresholds for the LRT test for simple Gaussian
mixture: upper-bound and lower-bound when they differ significantly.

Size Location δ = 1 δ = 3
T = 0.5 µ0 = 0.25 5.79 11.84

µ0 = 0.5 8.31 34.89
T = 1 µ0 = 0.25 5.79 11.48

µ0 = 0.5 8.40 34.59
µ0 = 1 23.73-23.74 96.62-96.63

T = 2 µ0 = 0.25 5.64-5.69 10.18-10.24
µ0 = 1 22.93-23.09 95.99-96.19
µ0 = 2 100 100

T = 3 µ0 = 0.25 5.49-5.57 9.17-9.28
µ0 = 1 20.21-20.50 94.76-95.17
µ0 = 1.5 74.04-75.02 100
µ0 = 3 100 100

T = 5 µ0 = 0.25 5.31-5.44 8.02-8.20
µ0 = 1 16.76-17.18 92.66-93.53
µ0 = 1.5 68.34-69.99 99.99-100
µ0 = 2.5 100 100

Table 4.5. Power in % of the LRT at the level 5% as a function of the size of
M and of δ and µ0. Again, when they differ significantly the upper-bound and
lower-bound are given.

(1) The “X̄n” test, which is based on the fact the mean is zero under H0 and that under the
local alternative

(4.40)
√
nX̄n

D→ N(δµ0, 1), as n tends to +∞.
(2) The “S2n” test, which is based on the fact the variance is one under H0 and that under

the local alternative

(4.41)

√
n

2
(S2n − 1)

D→ N(
δµ20√
2
, 1), as n tends to +∞.

Since the S2n test has one-side rejection region while the X̄n has two-side rejection region, it is
not straightforward to see which one of these two tests is more powerful. Moreover, the answer
depends on the level. A general fact is that for large µ0 the S

2
n test is more powerful. Comparisons

of the three tests are presented in Figure 4.2.

The main point, which can be seen on Figure 4.2, is that the likelihood ratio test is not
uniformly more powerful.
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Figure 4.2. Variation of the power of the three tests as a function of µ0 . The
power is displayed in black (dashed-dotted) for of the X̄n test, in red (dotted)
for the S2n test and in green for the LRT. For the last one, the upper bound is
in dashed line and the lower-bound in solid line (they almost coincide) and from
top to bottom we have the power for T = 2, 5 and 10. In the picture on the left,
the level is 0.01 and δ2 = 1; in the one on the right, the level is 0.01 and δ2 = 3

Figure 4.2, left, is rather typical in the sense that the situations for which the LRT is not
optimal (for example T = 10, µ0 = 1) correspond to very small power. They are actually
uninteresting.

Figure 4.2, right, corresponds to a deliberate choice of a situation where the LRT behaves
badly. For example, for µ0 = 0.6 and T = 10 the lack of power of the LRT as compared to the
X̄n test is important.

5.2. One population against two, σ2 known.

Theorem 4.14 (Asymptotic distribution of the LRT). Suppose that M is a bounded interval
that now will be chosen of the form M = [0, T ]. We define the local asymptotic alternative in
model by means of (4.36) :

(1− p) = δ2√
n
, µ1 − µ0 =

α√
n
, µ2 = µ2,0 6= µ0 ∈ (0, T )

for fixed µ0, µ2,0 and δ.
Then, under this alternative, the LRT of H0 against H1 has the limit distribution given by

(4.38) where now Z(.) is a Gaussian process with mean

m(t) =
δ2(e(µ0−µ2,0)(µ0−t) − 1− (µ0 − µ2,0)(µ0 − t))√

e(µ0−t)2 − 1− (µ0 − t)2
.

and covariance function

r(s, t) =
e(s−µ0)(t−µ0) − 1− (s− µ0)(t− µ0)√

e(s−µ0)2 − 1− (s− µ0)2
√
e(t−µ0)2 − 1− (t− µ0)2

.

One should notice that these functions are of class C∞ and so are the sample paths of the
process. As a consequence the Rice method applies directly. But a new problem arises since
the null hypothesis is composite (it consists of more than one distribution) and the distribution
of the LRT statistic under H0 is not free from the parameter µ0, which is unknown in practical
applications. Table 4.6 illustrates the variation of the threshold as a function of µ0 and T .

We can clearly see in Table 4.6 that the value taken by µ0 does not matter very much. So the
LRT can be used in practical situations. As in the preceding subsection, Figure 4.3 compares the
power of the LRT test with the S2n test based on the fact that the variance is one under H0. Of
course, the X̄n test cannot be performed since the expectation is not yet fixed under H0.
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Level of the test
size position 1% 5% 10%
T=1 µ0=0.5 3.1524 1.6925 1.0991

µ0=0.25 3.1561 1.6956 1.1018
µ0=0+ 3.1676 1.7049 1.1097

T=2 µ0=1 3.4921-3.4924 1.9779-1.9782 1.3487-1.3490
µ0=0.5 3.5137-3.5139 1.9967-1.9970 1.3658-1.3661
µ0=0 3.5712 2.0475-2.0477 1.4120-1.4121

T=4 µ0=2 4.0424-4.0439 2.4733-2.4772 1.8048-1.8106
µ0=1 4.0904-4.0915 2.5189-2.5220 1.8486-1.8532
µ0=0+ 4.1876-4.1884 2.6108-2.6141 1.9362-1.9420

T=6 µ0=3 4.4663-4.4688 2.8738-2.8826 2.1869-2.2018
µ0=1.5 4.4863-4.4882 2.8934-2.9009 2.2059-2.2194
µ0=0+ 4.5756-4.5776 2.9797-2.9879 2.2897-2.3048

T=10 µ0=5 5.0092-5.0126 3.3994-3.4137 2.6975-2.7252
µ0=2.5 5.0100-5.0132 3.4001-3.4142 2.6981-2.7254
µ0=0+ 5.0746-5.0778 3.4636-3.4779 2.7608-2.7886

Table 4.6. Variation of the threshold of the test as a function of the level, the
size T of the interval and the position µ0. Upper-bound and lower-bound are
given when they differ significantly.
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Figure 4.3. Variation of the power of the LRT and the S2n test as a function of
µ2,0−µ0 at the level 1%. The power is displayed in red (dotted) for S2n test and in
green for the LRT. For this last test the upper- bound , is in dashed line and the
lower-bound in solid line. From top to bottom we have the power for T = 4, 10
and 15. Left for δ2 = 1, right for δ2 = 3. Some lines are superposed because the
upper-bound and the lower-bound are numerically equal. The difference between
upper- and lower-bound is due to both the inequality (4.23) and to the variation
of the nuisance parameter µ0 inside M.

We observe roughly the same phenomenon as in the case of the simple mixture problem.

5.3. One population against two, σ2 unknown.

Theorem 4.15 (asymptotic distribution of the LRT). Suppose that M is bounded interval
and that Σ = [S1, S2], 0 < S1 < S2 < +∞ and define the local asymptotic alternative in model
(4.37) :

1− p = δ2√
n
, µ1 − µ0 =

α√
n
, σ2 − σ20 =

β√
n
, µ2 = µ2,0 6= µ0

for fixed µ0, µ2,0, α, β and δ.
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Level of the test
1% 5% 10%

ν=[-2;2] 4.1533 2.6209 1.9755
ν=[-5;5] 5.0390 3.4514 2.7688
ν=[-8;8] 5.5168 3.9183 3.2296
ν=[-1;3] 4.2076 2.6687 2.0180

ν=[-2.5;7.5] 5.0413 3.4532 2.7707
ν=[-4;12] 5.5168 3.9183 3.2296
ν=[0;4] 4.3092 2.7594 2.1002
ν=[0;10] 5.1242 3.5330 2.8477
ν=[0;16] 5.5708 3.9714 3.2814

Table 4.7. Upper-bound for the threshold of the LRT test as a function of the
level and of the set of parameter after the change of variable (4.42)

Then under this alternative the LRT of H0 against H1 has the limit distribution given by
(4.38) where now Z(.) is a Gaussian process with mean

m(t) =

δ2[exp
( (t− µ0)(µ2,0 − µ0)

σ20

)
− 1− (t− µ0)(µ2,0 − µ0)

σ20
− (t− µ0)2(µ2,0 − µ0)2

2σ40
]

√
exp

( (t− µ0)2
σ20

)
− 1− (t− µ0)2

σ20
− (t− µ0)4

2σ40

.

and covariance function

r(s, t) =

exp
( (s− µ0)(t− µ0)

σ20

)
− 1− (s− µ0)(t− µ0)

σ20
− (s− µ0)2(t− µ0)2

2σ40√
exp

( (s− µ0)2
σ20

)
− 1− (s− µ0)2

σ20
− (s− µ0)4

2σ40

√
exp

( (t− µ0)2
σ20

)
− 1− (t− µ0)2

σ20
− (t− µ0)4

2σ40

.

The process Z(.) of Theorem 4.15 is in fact a random function of ν := t−µ0
σ0

(4.42) Z(t) = T
( t− µ0

σ0

)

and the process T (.) satisfies a.s. T (0−) = −T (0+) as we found in the simple mixture model.
The method based on crossings can be applied in much the same manner. Table 4.7 displays the
variation of the threshold as a function of the level and of the size of the parameter set ν = t−µ0

σ0
.

The intervals of variation for the parameter ν that are displayed in Table 4.7 correspond, for
example, to t ∈M = [5, 15] and several values of σ0 and µ0. The table is divided into three “great
rows” corresponding to µ0 = 10, 7, 5. Each “great row” is divided into three rows corresponding
to σ0 = 5/2, 1, 5/8.

The threshold depends now heavily on the form of the null hypothesis. If we know that
(µ0, σ0) are close to some prior value, we can take the threshold corresponding to this prior value.
In the others cases, a classical choice is to take the highest value of the threshold. This in general
leads to an important loss of power. Another possibility would be to perform a “plug-in”, that is,
to take for µ0 and σ20 the values computed from an empirical estimation. The behavior of such a
procedure does not seem to have been studied yet.

In this paragraph the LRT is compared with a moment test based on the difference between
the rough estimator of variance S2n and a robust estimator (Caussinus and Ruiz, 1995). Figure
4.4 displays the powers of the two tests.

Summing up, for the last two models, the distribution of the LRT is not free under H0, since
it depends on the position of the true mean µ0 with respect of the interval in which the means are
supposed to be. When σ2 is known, this dependence is not heavy, so that LRT can be performed in
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Figure 4.4. Variation of the power of the LRT and moment test at the level
10% as a function of ν = t−µ0

σ0
. The power is displayed in red (dashed-dotted) for

the moment test and in green for the LRT. For this last test the upper- bound, in
dotted line, corresponds to the best choice of the nuisance parameter µ0/σ0 and
the lower-bound, in solid line, corresponds to the worst choice.

practice without introducing a prior value or an estimation for µ0. The situation is more complex
when σ is unknown. In any case, LRT appears to be non-uniformly optimal but in most of the
relevant situations, more powerful than moment tests. It remains the best choice in practice.

Exercises

Exercise 4.1. (Exact formula for the distribution of MT for the sine-cosine process) : the
simplest periodic Gaussian process.
Let the stochastic process X = {X(t) : t ∈ R} be defined as:

X(t) := ξ1 cos(ωt) + ξ2 sin(ωt),

where ξ1 and ξ2 are two independent standard normal random variables and ω is a real number,
ω 6= 0.

(a) Show that we can write the process X as:

X(t) = Z cos
(
ω(t+ θ)

)

where Z and θ are independent random variables, having respectively the distributions:
- square root of a χ22 for Z
- uniform on [0, 2π] for θ.

(b) Show that the covariance of X is r(s, t) = Γ(t−s) = cos(ω(t−s)), and its spectral measure
is 12 (δω + δ−ω) where δx denotes the unit atom at the point x.

Prove that for u > 0

For T ≤ π

ω
: P{MT > u} = 1− Φ(u) +

Tω

2π
e−

u2

2(4.43)

For T ≥ 2π

ω
: P{MT > u} = e−

u2

2 = P{|Z| > u}(4.44)

For
π

ω
≤ T <

2π

ω
: P{MT > u} = 1− Φ(u) +

Tω

2π
e−

u2

2(4.45)

−
∫ T/ω

π

1

2π
exp

[
− u2

(
1− cos(t)

)

sin2(t)

]
dt.(4.46)
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Exercise 4.2. Let {X(t) : t ∈ R} be a centered stationary Gaussian process having covariance
function Γ(t− s) = E(X(s)X(t)), normalized by Γ(0) = 1.
Assume that Γ satisfies the hypothesis A2 in Proposition 4.2 and denote, as usual, λ2 = −Γ′′(0)
the second spectral moment. Let τ = inf{t > 0 : Γ(t) = 1}.
Exclude the trivial case in which λ2 = 0. Let MT = maxt∈[0,T ]X(t).
(a) Prove that τ > 0.
(b) Show that

P
(
X(t) = X(t+ τ) for all t ∈ R

)
= 1.

(that is, almost surely the paths are periodic functions having period τ).
(c) Prove that if T < τ , then the conclusion of Proposition 4.2 holds true.
(d) Let T ≥ τ . Prove that as u→ +∞,

P(MT > u) = τ

√
λ2
2π
φ(u) +O

(
φ(u(1 + δ))

)

for some δ > 0.
Hint: Prove and use the following equalities:

• MT =Mτ .
• P(Mτ > u) = P(X(t) > u for all t ∈ [0, τ ]) + P(Uu(X, [0, τ ]) ≥ 1).

Exercise 4.3. Suppose that fn is a sequence of functions in D that converges to f for the
Skorohod topology. Prove that if f is continuous then in fact the convergence holds true for the
uniform distance.

Exercise 4.4. Let {Zn}n=1,2,... be a sequence of random variables with values in the space
D. Assume that Zn ⇒ 0 as n→ +∞ (which means that the distribution of Zn tends to the unit
measure at the identically zero function).
Then, for each ε > 0:

P
(

sup
t∈[0,1]

|Zn(t)| ≥ ε
)
→ 0

as n→ +∞, that is, supt∈[0,1] |Zn(t)| tends to zero in probability.

Exercise 4.5. Prove relations (4.40) and(4.41). Hint: use the Central Limit Theorem under
Lindeberg’s condition.

Exercise 4.6. Consider the function Γ : R → R+ defined as:

Γ(t) = exp(−|t|).
(a) Show that Γ is the covariance of a stationary centered Gaussian process {X(t) : t ∈ R} (which
is called the ”Ornstein-Uhlenbeck” process).
(b) Compute the spectral density of the process.
(c) Study the Hölder properties of the paths.
(d) Show that the process is Markovian, that is, if t1 < t2 < ... < tk, k a positive integer k ≥ 2,
then,

P
(
X(tk) ∈ B

∣∣X(t1) = x1, ..., X(tk−1) = xk−1
)
= P

(
X(tk) ∈ B

∣∣X(tk−1) = xk−1
)

for any Borel set B and any choice of x1, ..., xk−1. (The conditional probability is to be interpreted
in the sense of Gaussian regression).
(e) Let {W (t) : t ≥ 0} be a Wiener process. Show that

X(t) = exp(−t) W (exp(2t)), t ∈ R

is an Ornstein-Uhlenbeck process.

Exercise 4.7. Prove the statements about the properties of the process {Z(t) : t ∈ R \ {0}}
in Subsection 5.1.



CHAPTER 5

The Rice Series

Let X = {X(t) : t ∈ [0, T ]} be a one-parameter stochastic process with real values and let
us denote by MT := supt∈T X(t) its supremum. In this chapter we will continue to study the
distribution of the random variable MT , that is, the function FMT

(u) := P(MT ≤ u), u ∈ R and
we will express this distribution by means of a series (the “Rice series”) whose terms contain the
factorial moments of the number of up-crossings. The underlying ideas have been known for a
long time (Rice (1944-1945), Slepian (1962), Miroshin (1974)). The results in this chapter are
taken from Azäıs & Wschebor (2002). We have included some numerical computations that have
been performed with the help of A. Croquette and C. Delmas.

The main result in this chapter is to prove the convergence of the Rice series in a general
framework instead of considering only some particular processes. This provides a method that
can be applied to a large class of stochastic processes.

A typical situation is given by Theorem 5.6, that states that if a stationary Gaussian process
has a covariance with a Taylor expansion at zero that is absolutely convergent at t = 2T , then
FMT

(u) can be computed by means of the Rice series. On the other hand, even though Theorems
5.1 and 5.7 below do not refer specifically to Gaussian processes, in practice, for the time being
we are able to apply them to the numerical computation of FMT

(u) only in Gaussian cases.
The section “Numerical aspects of Rice series” includes a comparison between the complexities

of the computation of FMT
(u) using the Rice series versus Monte-Carlo method, in the relevant

case of a general class of stationary Gaussian processes. It shows that the use of Rice series is a
priori better. More important is the fact that the Rice series is self-controlling for the numerical
errors. This implies that the a posteriori number of computations can be much smaller than the
one required by simulation. In fact, in relevant cases for standard bounds for the error, the actual
computation is performed with a few terms of the Rice series.

As examples we give tables for FMT
(u) for a number of Gaussian processes. When the length

of the interval T increases, one needs an increasing number of terms in the Rice’s series not to
surpass a given bound for the error. For small values of T and large values of the level u one can
use the so-called ”Davies bound” (4.2) or more accurately, the first term in the Rice series which
is in fact the upper-bound in Inequality (4.15).

As T increases, for moderate values of u the “Davies bound” is far from the true value and
one requires the computation of several terms (see Figures 5.1 to 5.4). Numerical results are shown
in the case of four Gaussian stationary processes for which no closed formula is known. The same
examples will be considered in Chapter 9 which is devoted to the “Record Method”.

One of the key points is the numerical computation of the factorial moments of up-crossings
by means of Rice integral formulas. The main difficulty is the precise description of the behavior
of the integrands appearing in these formulas near the diagonal, which is again a subject that is
interesting on its own (see Belayev (1966), Cuzick (1975)). Even though this is an old subject,
it remains widely open. We have included a section “Computation of Moments” in which we
give some partial answers that are helpful to improve the numerical methods and have also some
theoretical interest.

The extension to processes with non-smooth trajectories can be done by smoothing the paths
by means of a deterministic device, applying the previous methods to the regularized process and
estimating the error as a function of the smoothing band-width. The last section of the present
chapter contains these type of results, that have been included even though they do not seem to
have at present practical uses for the actual computation of the distribution of the maximum.
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1. The Rice Series

We recall the following notations:

• Uu = Uu(X, [0, T ]) is the number of up-crossings of the level u by the function X(.) on
the interval [0, T ].

• ν̃m := E(U
[m]
u 1I{X(0)≤u}) (m = 1, 2, ...).

• νm := E(U
[m]
u ) (m = 1, 2, ...).

ν̃m is the factorial moment of the number of up-crossings, when starting below u at t = 0.
The Rice formula to compute ν̃m, whenever it holds true is the following:

ν̃m =

∫

[0,T ]m
dt1 . . . dtm

∫ u

−∞
E
(
X ′+(t1) . . . X

′+(tm)
∣∣X(0) = x,X(t1) = · · · = X(tm) = u

)
.

.pX(0),X(t1),...,X(tm)(x, u, . . . , u)dx

This section contains two main results. The first is Theorem 5.1 that requires the process
to have C∞ paths and contains a general condition enabling to compute FMT

(u) as the sum of a
series. The second is Theorem 5.6, which illustrates the same situation for Gaussian stationary
processes. As for Theorem 5.7, it contains upper and lower bounds on FMT

(u) for processes with
Ck paths, verifying some additional conditions.

Theorem 5.1. Assume that a.s. the paths of the stochastic process X are of class C∞ and
that the density pXT/2

(.) is bounded by some constant D.

(i) If there exists a sequence of positive numbers {ck}k=1,2,... such that:

(5.1) γk := P
(
‖X(2k−1)‖∞ ≥ ck.T

−(2k−1)
)
+

Dck
22k−1 (2k − 1)!

= o
(
2−k

)
(k →∞)

then :

(5.2) 1− FMT
(u) = P (X(0) > u) +

∞∑

m=1

(−1)m+1 ν̃m
m!

(ii) In formula (5.2) the error when one replaces the infinite sum by its m0-th partial sum is
bounded by γ∗m0+1 where:

γ∗m := sup
k≥m

(
2k+1γk

)
.

We will call the series in the right-hand side of (5.2) the ”Rice Series”. For the proof we
will assume, with no loss of generality that T = 1. We start with the following Lemma on the
remainder for polynomial interpolation (Davis 1975, Th. 3.1.1). It is a standard tool in numerical
analysis.

Lemma 5.2. a) Let f : I → R, I = [0, 1], be a function of class Ck, k a positive integer,
t1, . . . , tk, k points in I and let P (t) be the - unique - interpolation polynomial of degree k−1 such
that f(ti) = P (ti) for i = 1, . . . , k, taking into account possible multiplicities. Then, for t ∈ I :

f(t)− P (t) = 1

k!
(t− t1)....(t− tk)f (k)(ξ)

where

min(t1, . . . , tk, t) ≤ ξ ≤ max(t1, . . . , tk, t).

b) If f is of class Ck and has k zeros in I (taking into account possible multiplicities), then:

|f(1/2)| ≤ 1

k!2k
‖f (k)‖∞.

Proof. Fix t ∈ I, t 6= t1, . . . , tk and define

F (v) = f(v)− P (v)− (v − t1)....(v − tk)
(t− t1)....(t− tk)

[f(t)− P (t)]
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Clearly F has at least the k + 1 zeros t1, . . . , tk, t, so that by Rolle’s Theorem, there exists ξ,
min(t1, . . . , tk, t) ≤ ξ ≤ max(t1, . . . , tk, t) such that F (k)(ξ) = 0. This gives a). b) is a simple
consequence of a), since in this case the interpolating polynomial vanishes. ¤

The next combinatorial lemma plays the central role in what follows. A proof is given in
Lindgren (1972), similar to the one we include here.

Lemma 5.3. Let ξ be a non-negative integer-valued random variable having finite moments of
all orders. Let k,m,M(k ≥ 0,m ≥ 1,M ≥ 1) be integers and denote:

pk := P(ξ = k) ; µm := E(ξ[m]) ; SM :=

M∑

m=1

(−1)m+1µm
m!

Then
(i) For each M :

(5.3) S2M ≤
2M∑

k=1

pk ≤
∞∑

k=1

pk ≤ S2M+1

(ii) The sequence {SM}M=1,2,... has a finite limit if and only if µm/m! → 0 as m → ∞, and in
that case:

(5.4) P (ξ ≥ 1) =
∞∑

k=1

pk =
∞∑

m=1

(−1)m+1 µm
m!

.

Proof. (ii) is an immediate consequence of (i). As for (i) denote by
(
k
m

)
the binomial numbers

and write

(5.5) SM =

M∑

m=1

(−1)m+1
∞∑

k=m

(
k

m

)
pk =

∞∑

k=1

pkBk,M

with

(5.6) Bk,M :=
k∧M∑

m=1

(−1)m+1
(
k

m

)

It is clear that Bk,M = 1 if k ≤M.
If k > M , we have two cases:
1.- k ≥ 2M.

Note that
(
k
m

)
increases with m if 1 ≤ m ≤ k

2 . It follows that Bk,M ≥ k if M is odd and

Bk,M ≤ −k
2 if M is even, since Bk,M ≤

(
k
1

)
−
(
k
2

)
≤ −k/2, given that k ≥ 2M ≥ 4.

2.- M < k < 2M .

Check that in this case:

Bk,M = 1 + (−1)k+1
k−M−1∑

h=0

(−1)h+1
(
k

h

)
= 1 + (−1)k+1(Bk,k−M−1 − 1).

with the convention Bk,0 = 0.
Since k > 2(k −M − 1), if 0 < k −M − 1 < k, we can apply the first case and it turns out

that
k −M − 1 odd ⇒ Bk,k−M−1 ≥ k

k −M − 1 even ⇒ Bk,k−M−1 ≤ −k/2.
Finally if k =M + 1, Bk,M = 2 when M is odd and Bk,M = 0 if M is even.

Summing up the two cases, if k > M , we have Bk,M > 1 if M is odd and Bk,M ≤ 0 if M is
even.

So that from

SM =

M∑

k=1

pk +

∞∑

k=M+1

pkBk,M
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one gets (i). This proves the lemma. ¤

Remark. A by-product of Lemma 5.3 that will be used in the sequel is the following: if in
(5.4) one substitutes the infinite sum by the M−partial sum, the absolute value µM+1/(M + 1)!
of the first neglected term is an upper-bound for the error in the computation of P(ξ ≥ 1).

Lemma 5.4. With the same notations as in Lemma 5.3 we have the equality:

E(ξ[m]) = m

∞∑

k=m

(k − 1)[m−1]P(ξ ≥ k) (m = 1, 2, ...).

Proof. Check the identity

j[m] = m

j−1∑

k=m−1
(k)[m−1]

for each pair of integers j,m. So,

E(ξ[m]) =

∞∑

j=m

j[m]P(ξ = j) =

∞∑

j=m

P(ξ = j)m

j∑

k=m

(k − 1)[m−1] =

= m
∞∑

k=m

(k − 1)[m−1]P(ξ ≥ k).

¤

Lemma 5.5. Suppose that a.s. the paths of the process X are of class C∞ and that the density
pX1/2(.) is bounded by the constant D. Then for any sequence {ck}k=1,2,.. of positive numbers, one
has

(5.7) E((Uu)
[m]) ≤ m

∞∑

k=m

(k − 1)[m−1]
[
P
(
‖X(2k−1)‖∞ ≥ ck

)
+

Dck
22k−1 (2k − 1)!

]
,

Proof. Because of Lemma 5.4 it is enough to prove that P(Uu ≥ k) is bounded by the
expression in brackets in the right-hand side of (5.7). We have

P(Uu ≥ k) ≤ P(‖X(2k−1)‖∞ ≥ ck) + P(Uu ≥ k, ‖X(2k−1)‖∞ < ck).

Because of Rolle’s theorem:

{Uu ≥ k} ⊂ {Nu(X; I) ≥ 2k − 1}.
Applying Lemma 5.2 to the function X(.) − u and replacing in its statement k by 2k − 1, we
obtain:

{Uu ≥ k, ‖X(2k−1)‖∞ < ck} ⊂ {|X1/2 − u| ≤
ck

22k−1 (2k − 1)!
}.

The remainder is plain. ¤

Proof of Theorem 5.1. Using Lemma 5.5 and the hypothesis we obtain:

νm
m!

≤ 1

m!

∞∑

k=m

k[m]γ∗m2−(k+1) =
γ∗m
m!

2−(m+1)
[(

1

1− x

)(m)
|x=1/2

]
= γ∗m

Since ν̃m ≤ νm we can apply Lemma 5.3 to the random variable ξ = Uu1{X0≤u} and the result
follows from γ∗m → 0. ¤

One can replace condition “ pX(T/2)(x) ≤ D for all x” by “pX(T/2)(x) ≤ D for x in some
neighbourhood of u”. In this case, the statement of Theorem 5.1 holds if one adds in (ii) that the
error is bounded by γ∗m0+1 for m0 large enough. The proof is similar.

Also, one can substitute the one-dimensional density pX(T/2))(.) by pX(t)(.) for some other
t ∈ [0, T ], introducing into the bounds the corresponding modifications.

The application of Theorem 5.1 requires an adequate choice of the sequence {ck, k = 1, 2, ...}
which depends on the available description of the process X. The whole procedure will have some
practical interest for the computation of P(M > u) only if we get appropriate bounds for the
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quantities γ∗m and the factorial moments ν̃m can be actually computed by means of Rice formulas
(or by some other procedure). The next Theorem shows how this can be done in the case of a
general class of Gaussian stationary processes.

Theorem 5.6. Let X = {X(t) : t ∈ R} be Gaussian, centered and stationary, with covariance
Γ normalized by Γ(0) = 1. Assume that Γ has a Taylor expansion at the origin which is absolutely
convergent at t = 2T. Then, the conclusion of Theorem 5.1 holds true, so that the Rice series
converges and FMT

(u) can be computed by means of (5.2).

Proof. Again we assume, with no loss of generality, that T = 1. Notice that the hypothesis
implies that the spectral moments λk exist and are finite for every k = 0, 1, 2, ... We will obtain
the result assuming:

H1 : λ2k ≤ C1(k!)
2.

It is easy to verify that if Γ has a Taylor expansion at zero which is absolutely convergent at
t = 2, then H1 holds true. (In fact, both conditions are only slightly different, since H1 implies
that the Taylor expansion of Γ at zero is absolutely convergent in {|t| < 2}). Let us check that
the hypotheses of Theorem 5.1 are satisfied. First, pX(1/2)(x) ≤ D = (2π)−1/2. Second, let us
show a sequence {ck} that satisfies (5.1). We have

P(‖X(2k−1)‖∞ ≥ ck) ≤ P(|X(2k−1)(0)| ≥ ck) + 2P(Uck(X
(2k−1), I) ≥ 1)(5.8)

≤ P(|Z| ≥ ckλ
−1/2
4k−2) + 2E(Uck(X

(2k−1), I)),

where Z is standard normal. One easily checks that {X (2k−1)(t); t ∈ R} is a Gaussian stationary
centered process with covariance function −Γ(4k−2)(.). So, we can use Rice formula for the ex-
pectation of the number of up-crossings of a stationary centered Gaussian process to compute the
second term in the right-hand side of (5.8).

Using the inequality 1− Φ(x) ≤ (1/x)φ(x) valid for x > 0, one gets:

(5.9) P(‖X(2k−1)‖∞ ≥ ck) ≤
[√

2

π

λ
1/2
4k−2
ck

+ (1/π)

(
λ4k
λ4k−2

)1/2]
exp

(
− c2k
2λ4k−2

)

Choose

ck := (B1kλ4k−2)
1/2 if

λ4k
λ4k−2

≤ B1k

ck := (λ4k)
1/2 if

λ4k
λ4k−2

> B1k.

Using hypothesis H1), if B1 > 1 :

P(‖X(2k−1)‖∞ ≥ ck) ≤
[√

2

π
+

1

π
(B1k)

1/2

]
e−

B1k
2 .

Finally, choosing B1 := 4 log(2):

γk ≤
√

2

π
(1 + 2(C

1/2
1 + 1)k)2−2k (k = 1, 2, ...),

so that (5.1) is satisfied. As a by product, notice that

(5.10) γ∗m ≤
√

8

π
(1 + 2(C

1/2
1 + 1)m)2−m (m = 1, 2, ...).

¤

Remark 5.1. For Gaussian processes if one is willing to use Rice formulas to compute the
factorial moments ν̃m, it is enough to verify that the distribution of

X(0), X(t1), . . . , X(tm)
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is non-degenerate for any choice of non-zero distinct t1, . . . , tm ∈ I. For stationary Gaussian
processes a simple sufficient condition on the spectral measure to have non-degeneracy was given
in Chapter 3 (see Exercises 3.4 and 3.5).

If instead of requiring the paths of the process X to be of class C∞, one relaxes this condition
up to a certain order of differentiability, one can still get upper and lower bounds for P(M > u),
as stated in the next Theorem.

Theorem 5.7. Let X = {X(t) : t ∈ I} be a real -valued stochastic process. Suppose that
pX(t)(x) is bounded for t ∈ I, x ∈ R and that the paths of X are of class Cp+1. Then

if 2K + 1 < p/2 : P(M > u) ≤ P(X(0) > u) +

2K+1∑

m=1

(−1)m+1 ν̃m
m!

and

if 2K < p/2 : P(M > u) ≥ P(X(0) > u) +

2K∑

m=1

(−1)m+1 ν̃m
m!

.

Notice that all the moments in the above formulas are finite.

The proof is a straightforward application of Lemma 5.3 and Theorem 3.6.
When the level u is high, a first approximation is given by Proposition 4.1 which shows that only
the first term in the Rice series takes part in the equivalent of 1− FMT

(u) as u→ +∞.

2. Computation of Moments.

An efficient numerical computation of the factorial moments of crossings is associated to a
fine description of the behavior as the k-tuple (t1, . . . , tk) approaches the diagonal Dk(I), of the
integrands

A+t1,...,tk(u, . . . , u) = E
(
X
′+(t1)...X

′+(tk)
∣∣X(t1) = ... = X(tk) = u

)
pX(t1),...,X(tk)(u, ..., u),

(5.11) Ã+t1,...,tk(u, . . . , u) =

∫ u

−∞

E
(
X
′+(t1)...X

′+(tk)
∣∣X(0) = x,X(t1) = ... = X(tk) = u

)
pX(0),X(t1),...,X(tk)(x, u, ..., u)dx.

We recall that A+t1,...,tk(u, . . . , u) and Ã+t1,...,tk(u, . . . , u) appear respectively in Rice formulas for

the kth−factorial moment of up-crossings and the kth−factorial moment of up-crossings with the
additional condition that X(0) ≤ u .

If the process is Gaussian, stationary and satisfies a certain number of regularity conditions,
we have seen in Proposition 4.5 that:

(5.12) A+s,t(u, u) ≈
1

1296

(
λ2λ6 − λ24

)3/2

(λ4 − λ22)
1/2

π2 λ22
exp

(
−1

2

λ4
λ4 − λ22

u2
)

(t− s)4,

as t− s→ 0.

(5.12) can be extended to non-stationary Gaussian processes obtaining an equivalence of the
form:

(5.13) A+s,t(u, u) ≈ J(t̃)(t− s)4 as s, t→ t̃

where J(t̃) is a continuous non-zero function of t̃ depending on u, which can be expressed in terms
of the mean and covariance functions of the process and its derivatives. We give a proof of an
equivalence of the form (5.13) in the next proposition.

One can profit of this equivalence to improve the numerical methods to compute ν̃2 (the second
factorial moment of the number of up-crossings with the restriction X(0) ≤ u). Equivalence
formulas such as (5.12) or (5.13) can be used to avoid numerical degeneracies near the diagonal
D2(I). Notice that even in case the process X is stationary at the departure, under conditioning
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on X(0), the process that must be taken into account in the computation of the factorial moments
of up-crossings for the Rice series (5.2) will be non-stationary, so that equivalence (5.13) is the
appropriate tool for our main purpose here.

Proposition 5.8. Suppose that X is a Gaussian process with C5 paths and that for each t ∈ I
the joint distribution of X(t), X ′(t), X(2)(t), X(3)(t) does not degenerate. Then (5.13) holds true.

Proof. We give the general scheme of the proof and leave to the reader the detailed compu-

tations. Denote by ξ =

(
ξ1
ξ2

)
a two-dimensional random vector having as probability distribution

the conditional distribution of
(
X′(s)
X′(t)

)
given X(s) = X(t) = u.

One has:

(5.14) A+s,t(u, u) = E
(
ξ+1 ξ

+
2

)
pX(s),X(t)(u, u)

Put τ = t− s and check the following Taylor expansions around the point s:

(5.15) E (ξ1) = m1τ +m2τ
2 + L1τ

3

(5.16) E (ξ2) = −m1τ +m′2τ
2 + L2τ

3

(5.17) Var (ξ) =

(
aτ2 + bτ3 + cτ4 + ρ11τ

5 − aτ2 − b+b′

2 τ3 + dτ4 + ρ12τ
5

−aτ2 − b+b′

2 τ3 + dτ4 + ρ12τ5 aτ2 + b′τ3 + c′τ4 + ρ22τ5

)

where m1, m2, m
′
2, a, b, c, d, a’, b’, c’ are continuous functions of s and L1, L2, ρ11, ρ12, ρ22 are

bounded functions of s and t. (5.15),(5.16) and (5.17) follow directly from the regression formulas

of the pair
(
X′(s)
X′(t)

)
on the condition X(s) = X(t) = u.

Notice that (as in Belayev, 1966 or Azäıs and Wschebor, 2002)

Var(ξ1) =
det[Var(X(s), X(t), X ′(s))T ]

det[Var(X(s), X(t))T ]
=

det[Var(X(s), X ′(s), X(t)−X(s)− (t− s)X ′(s))T ]
det[Var(X(s), X(t)−X(s))T ]

A direct computation gives:

(5.18) det[Var(X(s), X(t))T ] ≈ τ2 det[Var(X(s), X ′(s))T ]

Var(ξ1) ≈
1

4

det[Var(X(s), X ′(s), X(2)(s))T ]

det[Var(X(s), X ′(s))T ]
τ2

where ≈ denotes equivalence as τ → 0. So,

a =
1

4

det[Var(X(s), X ′(s), X(2)(s))T ]

det[Var(X(s), X ′(s))T ]

which is a continuous non-vanishing function for s ∈ I. Notice that the coefficient of τ 3 in the

Taylor expansion of Cov(ξ1, ξ2) is equal to − b+b′

2 . This follows either by direct computation or
taking into account that det[Var(ξ)] is a symmetric function of the pair s, t. Put

∆(s, t) = det[Var(ξ)]

The behavior of ∆(s, t) as s, t→ t̃ can be obtained from

∆(s, t) =
det
[
Var(X(s), X(t), X ′(s), X ′(t))T

]

det[Var(X(s), X(t))T ]

applying the more general Proposition 5.9 below, which provides an equivalent for the numerator
(or use Lemma 4.3, p.76 in Piterbarg (1996) which is sufficient in the present case). We get:

(5.19) ∆(s, t) ≈ ∆(t̃)τ6

where

∆(t̃) =
1

144

det
[
Var(X(t̃), X ′(t̃), X(2)(t̃), X(3)(t̃))T

]

det[Var(X(t̃), X ′(t̃))T ]
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The non degeneracy hypothesis implies that ∆(t̃) is continuous and non zero. One has:

(5.20) E
(
ξ+1 ξ

+
2

)
=

1

2π [∆(s, t)]
1/2

∫ +∞

0

∫ +∞

0

xy exp

[
− 1

2∆(s, t)
F (x, y)

]
dxdy

where

F (x, y) = Var(ξ2)(x− E(ξ1))
2 +Var(ξ1)(y − E(ξ2))

2 − 2Cov(ξ1, ξ2)(x− E(ξ1))(y − E(ξ2))

Substituting the expansions (5.15), (5.16), (5.17) in the integrand of (5.20) and making the change

of variables x = τ 2v, y = τ2w, we get, as s, t→ t̃:

(5.21) E
(
ξ+1 ξ

+
2

)
≈ τ5

2π
[
∆(t̃)

]1/2
∫ +∞

0

∫ +∞

0

vw exp

[
− 1

2∆(t̃)
F (v, w)

]
dvdw

∆(t̃) can also be expressed in terms of the functions a, b, c, d, a′, b′, c′:

∆(t̃) = ac′ + ca′ + 2ad−
(
b− b′
2

)2

and

F (v, w) = a (v −m2 + w −m′2)
2
+m21(c+ c′ + 2d)−m1(b− b′)(v + w −m2 −m′2)

The functions a, b, c, d, b’, c’,m1,m2 which appear in these formulas are all evaluated at the point
t̃. Replacing (5.21) and (5.18) into (5.14) one gets (5.13). ¤

For k ≥ 3, the general behavior of the functions Ãt1,...,tk(u, ..., u) and A
+
t1,...,tk

(u, . . . , u) when
(t1, . . . , tk) approaches the diagonal is not known. Proposition 5.10 below, even though it contains
some restrictions (it requires E(X(t)) = 0 and u = 0) can be applied to improve the efficiency
in the computation of the kth-factorial moments by means of a Monte-Carlo method, via the
use of important sampling. More precisely, this proposition can be used when computing the
integral of A+t1,...,tk(u, ..., u) over I

k in the following way: instead of choosing at random the point

(t1, t2, . . . , tk) in the cube Ik with a uniform distribution, we should do it with a probability law

having a density proportional to the function
∏
1≤i<j≤k (tj − ti)

4
. For the proof of Proposition

5.10 we will use the following auxiliary one, which has its own interest.

Proposition 5.9. Let X = {X(t) : t ∈ I} be a Gaussian process defined on the compact
interval I of the real line, k an integer k ≥ 2, and t1, . . . , tk ∈ I. When the paths of the process X
are of class Cl, we denote:

Dl(t) = det

[
Var

(
X(t), X ′(t), ...., X(l)(t)

)T ]
.

(i) If the paths of the process X are of class Ck−1 and t1, t2, ...., tk → t∗, then

(5.22) det
[
Var(X(t1), X(t2), . . . , X(tk))

T
]
≈ 1

[2!.....(k − 1)!]2
[
∏

1≤i<j≤k
(tj − ti)2]. Dk−1(t

∗).

(ii) If the paths of X are of class C2k−1 and t1, t2, ...., tk → t∗, then
(5.23)

∆ = det
[
Var(X(t1), X

′(t1), . . . , X(tk), X
′(tk))

T
]
≈ 1

[2!.3!....(2k − 1)!]2

∏

1≤i<j≤k
(tj − ti)8D2k−1(t∗)

Proof. We prove (ii). The proof of (i) can be done along the same lines as the one of (ii).
It is in fact simpler and left to the reader.

With no loss of generality, we may assume that t1, t2, . . . , tk are pairwise different. Suppose
f : I → R is a function of class C2m−1, m ≥ 2, , m ≥ 1,. We use the following notations for
interpolating polynomials:Pm(t; f) is the polynomial of degree 2m− 1 such that

Pm(tj ; f) = f(tj) and P ′m(t; f) = f ′(tj) for j = 1, . . . ,m.

Qm(t; f) is the polynomial of degree 2m− 2 such that

Qm(tj ; f) = f(tj) for j = 1, . . . ,m ; Q′m(t; f) = f ′(tj) for j = 1, . . . ,m− 1.
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From Lemma 5.2 we know that

(5.24) f(t)− Pm(t; f) =
1

(2m)!
(t− t1)2....(t− tm)2f (2m)(ξ)

(5.25) f(t)−Qm(t; f) =
1

(2m− 1)!
(t− t1)2....(t− tm−1)2(t− tm)f (2m−1)(η)

where

ξ = ξ(t1, t2, ...., tm, t), η = η(t1, t2, ...., tm, t)

and

min(t1, t2, ...., tm, t) ≤ ξ, η ≤ max(t1, t2, ...., tm, t).

The function

g(t) = f (2m−1)(η(t1, t2, ...., tm, t)) =
(2m− 1)! [f(t)−Qm(t; f)]

(t− t1)2....(t− tm−1)2(t− tm)

is differentiable at the point t = tm and differentiating in (5.25):

(5.26) f ′(tm)−Q′m(tm; f) =
1

(2m− 1)!
(tm − t1)2....(tm − tm−1)2f (2m−1)(η(t1, t2, ...., tm, tm))

Put

ξm = ξ(t1, t2, ...., tm, tm), ηm = η(t1, t2, ...., tm, tm).

Since Pm(t; f) is a linear functional of

(f(t1), . . . , f(tm), f ′(t1), . . . , f
′(tm))

and Qm(t; f) is a linear functional of

(f(t1), . . . , f(tm), f ′(t1), . . . , f
′(tm−1))

with coefficients depending (in both cases) only on t1, t2, . . . , tm, t, it follows that:

∆ = det
[
Var
(
X(t1), X

′(t1), X(t2)− P1(t2;X), X ′(t2)−Q′2(t2, X),

..., X(tk)− Pk−1(tk;X), X ′(tk)−Q′k(tk;X)
)T ]

=

= det
[
Var
(
X(t1), X

′(t1),
1

2!
(t2 − t1)2X(2)(ξ1),

1

3!
(t2 − t1)2X(3)(η2),

. . . ,
1

(2k − 2)!
(tk−t1)2...(tk−tk−1)2X(2k−2)(ξk−1),

1

(2k − 1)!
(tk−t1)2...(tk−tk−1)2X(2k−1)(ηk−1)

)T ]

=
∆̃

[2!...(2k − 1)!]2

∏

1≤i<j≤k
(tj − ti)8

with

∆̃ = det
[
Var
(
X(t1), X

′(t1), X
(2)(ξ1), X

(3)(η2), . . . , X
(2k−2)(ξk−1), X

(2k−1)(ηk−1)
)T ]→

→ det
[
Var
(
X(t∗), X ′(t∗), . . . , X(2k−1)(t∗)

)T ]
= D2k−1(t

∗)

as t1, t2, ...., tk → t∗. This proves (5.23). ¤

Proposition 5.10. Suppose that X is a centered Gaussian process with C2k−1 paths and
that for each pairwise distinct values of the parameter t1, t2, . . . , tk ∈ I the joint distribution of
(X(th), X

′(th), ...., X(2k−1)(th), h = 1, 2, . . . , k) is non-degenerate. Then, as t1, t2, . . . , tk → t∗:

A+t1,...,tk(0, . . . , 0) ≈ Jk(t
∗)

∏

1≤i<j≤k
(tj − ti)4

where Jk(t) is a continuous non-zero function of t.
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Proof. For k distinct values t1, t2, . . . , tk, let Z = (Z1, . . . , Zk)
T be a random vector having

the conditional distribution of (X ′(t1), ...., X ′(tk))T given X(t1) = X(t2) = ... = X(tk) = 0. The
(Gaussian) distribution of Z is centered and we denote its covariance matrix by Σ. Also put:

Σ−1 =
1

det(Σ)

(
σij
)
i,j=1,...,k

σij being the cofactor of the position (i, j) in the matrix Σ. Then, one can write:

(5.27) A+t1,...,tk(0, . . . , 0) = E
{
Z+1 ...Z

+
k

}
. pX(t1),...,X(tk)(0, . . . , 0)

and

(5.28) A+t1,...,tk(0, . . . , 0) =
1

(2π)
k
2 (det(Σ))

1
2

∫

(R+)k
x1...xk exp

[
−F (x1, . . . , xk)

2.det(Σ)

]
dx1...dxk

where

F (x1, . . . , xk) =

k∑

i,j=1

σijxixj .

Letting t1, t2, . . . , tk → t∗ and using (5.23) and (5.22) we get:

det(Σ) =
det[Var(X(t1), X

′(t1), . . . , X(tk), X
′(tk))T ]

det[Var(X(t1), . . . , X(tk))T ]

≈ 1

[k!.....(2k − 1)!]
2


 ∏

1≤i<j≤k
(tj − ti)6


 .D2k−1(t

∗)

Dk−1(t∗)
.

We consider now the behaviour of the σij(i, j = 1, . . . , k). Let us first look at σ11. Using the same
method as above, now applied to the cofactor of the position (1, 1) in Σ, one has:

σ11 =
det
[
Var(X(t1), X(t2), . . . , X(tk), X

′(t2), . . . , X ′(tk))T
]

det[Var(X(t1), . . . , X(tk))T ]

≈
[2!...(2k − 2)!]−2

[∏
2≤i<j≤k(tj − ti)8

] [∏
2≤h≤k(t1 − th)4

]
D2k−2(t∗)

[2!.....(k − 1)!]
−2
[∏

1≤i<j≤k(tj − ti)2
]
Dk−1(t∗)

= [k!...(2k − 2)!]
−2


 ∏

2≤i<j≤k
(tj − ti)6




 ∏

2≤h≤k
(t1 − th)2


 D2k−2(t

∗)

Dk−1(t∗)

A similar computation holds for σii, i = 2, . . . , k.
Consider now σ12. One has:

σ12 = −det
[
E
{
(X(t1), X(t2), . . . , X(tk), X

′(t2), . . . , X ′(tk))T .(X(t1), X(t2), . . . , X(tk), X
′(t1), X ′(t3)..., X ′(tk))

}]

det[Var(X(t1), . . . , X(tk))T ]

=
det
[
E
{
(X(t2), X

′(t2), . . . , X(tk), X
′(tk), X(t1))

T .(X(t1), X
′(t1), X(t3), X

′(t3), . . . , X(tk), X
′(tk), X(t2))

}]

det[Var(X(t1), . . . , X(tk))T ]

≈ 1

[k!...(2k − 2)!]
2


 ∏

3≤i<j≤k
(tj − ti)6




 ∏

3≤h≤k
(t1 − th)4(t2 − th)4


 (t2 − t1)2.

D2k−2(t∗)

Dk−1(t∗)

A similar computation applies to all the cofactors σij , i 6= j.
Perform in the integral in (5.28) the change of variables

xj =




i=k∏

i=1,i6=j
(ti − tj)2


 . yj j = 1, . . . , k
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and the integral becomes:

 ∏

1≤i<j≤k
(tj − ti)8



∫

(R+)k
y1...yk exp

[
− 1

2.det(Σ)
G(y1, . . . , yk)

]
dy1...dyk

where

G(y1, . . . , yk) =

k∑

i,j=1

σij




h=k∏

h=1,h6=i
(th − ti)2






h=k∏

h=1,h6=j
(th − tj)2


 yi yj .

so that, as t1, t2, . . . , tk → t∗

G(y1, . . . , yk)

det(Σ)
≈ [(2k − 1)!]

2 D2k−2(t
∗)

D2k−1(t∗)

(
i=k∑

i=1

yi

)2
.

Now, passage to the limit under the integral sign in (5.28), which is easily justified by application
of the Lebesgue Theorem, leads to

E
{
Z+1 ...Z

+
k

}
≈ 1

(2π)
k
2

k!...(2k − 1)!


 ∏

1≤i<j≤k
|tj − ti|5



(
Dk−1(t∗)

D2k−1(t∗)

) 1
2

Ik(α
∗)

where Ik(α), α > 0 is

Ik(α) =

∫

(R+)k
y1...yk exp


−α

2

(
i=k∑

i=1

yi

)2
 dy1...dyk =

1

αk
Ik(1)

and

α∗ = [(2k − 1)!]
2 D2k−2(t

∗)

D2k−1(t∗)

Replacing into (5.27) one gets the result with

Jk(t) =
2!...(2k − 2)!

[2π(2k − 1)!]
2k−1

Ik(1)

[D2k−1(t)]
1
2

[
D2k−1(t)

D2k−2(t)

]k

This finishes the proof. ¤

3. Numerical aspects of Rice Series.

Let us compare the numerical computation based upon Theorem 5.1 with the Monte-Carlo
method based on the simulation of the paths. We do this for stationary Gaussian processes that
satisfy the hypotheses of Theorem 5.6 and also the non-degeneracy condition that ensures that
one is able to compute the factorial moments of crossings by means of Rice formulas.

Suppose that we want to compute P(M > u) with an error bounded by δ, where δ > 0 is a
given positive number.

To proceed by simulation, we discretize the paths by means of a uniform partition
{tj := j/n, j = 0, 1, . . . , n}. Denote

M (n) := sup
0≤j≤n

X(tj).

Using Taylor’s formula at the time where the maximum M of X(.) occurs, one gets :

0 ≤M −M (n) ≤ ‖X ′′‖∞/(2n2).
It follows that

0 ≤ P(M > u)− P(M (n) > u) = P(M > u,M (n) ≤ u) ≤ P(u < M ≤ u+ ‖X ′′‖∞/(2n2)).
Let us admit that the distribution of M has a locally bounded density (see Ylvisaker’s Theorem
1.22). The above suggests that a number of n = (const) δ−1/2 points is required if one wants the
error P(M > u)− P(M (n) > u) to be bounded by δ.

On the other hand, to estimate P(M (n) > u) by Monte-Carlo with a mean square error
smaller than δ, we require the simulation of N = (const) δ−2 Gaussian n-tuples (Xt1 , . . . , Xtn)
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from the distribution determined by the given stationary process. Performing each simulation
demands (const)n log(n) elementary operations (see for example Dietrich and Newsam, 1997
for this computational point). Summing up, the total mean number of elementary operations
required to get a mean square error bounded by δ in the estimation of P(M > u) has the form
(const) δ−5/2 log(1/δ).

Suppose now that we apply Theorem 5.1 to a Gaussian stationary centered process verifying
the hypotheses of Theorem 5.6 and the non-degeneracy condition. The bound for γ∗m in Equation
(5.10) implies that computing a partial sum with (const) log(1/δ) terms assures that the tail in the
Rice series is bounded by δ. If one computes each ν̃m by means of a Monte-Carlo method for the
multiple integrals appearing in the Rice formulas, then the number of elementary operations for
the whole procedure will have the form (const) δ−2 log(1/δ). Hence, this is better than simulation
as δ tends to zero.

As usual, for given δ > 0, the value of the generic constants decides the comparison between
both methods, and these are very difficult to estimate for a general class of processes.

More important is the fact that the enveloping property of the Rice series implies that the
actual number of terms required by the application of Theorem 5.1 can be much smaller than
the one resulting from the a priori bound for γ∗m. More precisely, suppose that we have obtained
each numerical approximation ν̃∗m of ν̃m with a precision η

|ν̃∗m − ν̃m| ≤ η,

and that we stop when

(5.29)
ν̃∗m0+1

(m0 + 1)!
≤ η.

Then, it follows that
∣∣∣∣∣

∞∑

m=1

(−1)m+1 ν̃m
m!
−

m0∑

m=1

(−1)m+1 ν̃
∗
m

m!

∣∣∣∣∣ ≤ (e+ 1)η.

Putting η = δ/(e + 1), we get the desired bound. In other words one can profit of the succes-
sive numerical approximations of ν̃m to determine a new m0 which turns out to be - in certain
interesting examples - much smaller than the one deduced from the a priori bound on γ∗m.

Next, we give the results of the evaluation of P(MT > u) using up to three terms in the Rice
series in a certain number of typical cases. We compare these results with the classical evaluation
given by Proposition 4.1 For fixed T and high level u this bound is sharp. But when both T and
u are fixed, the situation becomes essentially different and using more than one term of the Rice
series supplies a remarkable improvement in the computation.

We consider several stationary centered Gaussian processes listed in the following table, where
the covariances and the corresponding spectral densities are indicated.

process covariance spectral density

X1 Γ1(t) = exp(−t2/2) f1(x) = (2π)−1/2 exp(−x2/2)
X2 Γ2(t) = (cosh(t))−1 f2(x) =

(
2 cosh((πx)/2)

)−1

X3 Γ3(t) =
(
31/2t

)−1
sin(31/2t) f3(x) = 12−1/21I{−

√
3<x<

√
3}

X4 Γ4(t) = e−|
√
5t|(

√
5
3 |t|3 + 2t2 +

√
5|t|+ 1) f4(x) =

104√
5π

(5 + x2)−4

In all cases, λ0 = λ2 = 1 to be able to compare the various results. Notice that Γ1 and Γ3 have
analytic extensions to the whole plane, so that Theorem 5.6 applies to the processes X1 and X3.
On the other hand, even though all spectral moments of the process X2 are finite, Theorem 5.6
applies only for a length less than π/4 since the meromorphic extension of Γ2(.) has poles at the
points iπ/2+kπi, k an integer. With respect to Γ4(.) notice that it is obtained as the convolution
Γ5 ∗ Γ5 ∗ Γ5 ∗ Γ5 where Γ5(t) := e−|t| is the covariance of the Ornstein-Uhlenbeck process, plus a
change of scale to get λ0 = λ2 = 1. The process X4 has λ6 < ∞ and λ8 = ∞ and its paths are
C3. For the processes X2 and X4 we apply Theorem 5.7 to compute F (T, u).
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Length of the time interval T
u 1 4 6 8 10

-2 0.99 1.00 1.00 1.00 1.00
0.99 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
0.99 1.00 1.00 1.00 1.00

-1 0.93 1.00 1.00 0.99-1.00 0.98-1.00
0.93 0.99 1.00 0.99-1.00 0.98-1.00
0.93 1.00 1.00 1.00 0.99
0.93 1.00 1.00 0.99-1.00 0.98-1.00

0 0.65 0.90 0.95 0.95-0.99 0.90-1.00
0.65 0.89 0.94-0.95 0.93-0.99 0.87-1.00
0.656 0.919 0.97 0.98-0.99 0.92-1.00
0.65 0.89 0.94-0.95 0.94-0.99 0.88-1.00

1 0.25 0.49 0.61 0.69-0.70 0.74-0.77
0.25 0.48 0.58 0.66-0.68 0.70-0.76
0.26 0.51 0.62 0.71 0.76-0.78
0.25 0.48 0.59 0.67-0.69 0.72-0.77

2 0.04 0.11 0.15 0.18 0.22
0.04 0.11 0.14 0.18 0.21
0.04 0.11 0.15 0.19 0.22
0.04 0.11 0.14 0.18 0.22

3 0.00 0.01 0.01 0.02 0.02
0.00 0.01 0.01 0.02 0.02
0.00 0.01 0.01 0.02 0.02
0.00 0.01 0.01 0.02 0.02

Table 5.1. Values of P(M > u) for the different processes. Each cell contains,
from top to bottom, the values corresponding to stationary centered Gaussian
processes with covariances Γ1,Γ2,Γ3 and Γ4 respectively. The calculation uses
three terms of the Rice series for the upper-bound and two terms for the lower-
bound. Both are rounded up to two decimals and when they differ, both are
displayed.

Table 5.1 contains the results for T = 1, 4, 6, 8, 10 and the values u = −2,−1, 0, 1, 2, 3 using
three terms of the Rices series. A single value is given when a precision of 10−2 is met; otherwise
the lower-bound and the upper-bound given by two or three terms of the Rices series respectively,
are displayed. The calculation uses a deterministic evaluation of the first two moments ν̃1 and
ν̃2 using program written by Cierco-Ayrolles, Croquette and Delmas (2003) and a Monte-Carlo
evaluation of ν̃3. In fact, for simpler and faster calculation, ν3 has been evaluated instead of ν̃3
providing a slightly weaker bound.

In addition Figures 5.1 to 5.4 show the behavior of 4 bounds: from the highest to the lowest

• The Davies’ bound (D) defined by Proposition 4.1
• One, three, or two terms of the Rice series (R1, R3, R2 in the sequel) that is

P(X(0) > u) +
K∑

m=1

(−1)m+1 ν̃m
m!

with K = 1, 3 or 2.

Notice that the bound D differs from R1 due to the difference between ν̃1 and ν1. These
bounds are evaluated for T = 4, 6, 8, 10, 15 and also for T = 20 and T = 40 when they fall in the
range [0, 1]. Between these values, ordinary spline interpolation has been performed.
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Figure 5.1. For the process with covariance Γ1 and the level u = 1, representa-
tion of the three upper-bounds D, R1, R3 and the lower-bound R2 (from top to
bottom) as a function of the length T of the interval
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Figure 5.2. For the process with covariance Γ2 and the level u = 0, representa-
tion of the three upper-bounds D, R1, R3 and the lower-bound R2 (from top to
bottom) as a function of the length T of the interval

We illustrate the complete detailed calculation in three cases. They correspond to zero and
positive levels u. For u negative, it is easy to check that the Davies bound is often greater than
1, thus non informative.

• For u = 0, T = 6, Γ = Γ1, we have P(X(0) > u) = 0.5, ν̃1 = 0.955, ν̃1 = 0.602,
ν̃2/2 = .150, ν̃3/6 = 0.004, so that:

D = 1.455 , R1 = 1.103 , R3 = 0.957 , R2 = 0.953

R2 and R3 give a rather good evaluation of the probability. The Davies bound gives no
information.



3. NUMERICAL ASPECTS OF RICE SERIES. 115

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Length of the interval 

  V
al

u
es

  o
f 

th
e 

b
o

u
n

d
s

  Γ
3
  u =2

Figure 5.3. For the process with covariance Γ3 and the level u = 2, representa-
tion of the three upper-bounds D, R1, R3 and the lower-bound R2 (from top to
bottom) as a function of the length T of the interval
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Figure 5.4. For the process with covariance Γ4 and the level u = 1.5, represen-
tation of the three upper-bounds D, R1, R3 and the lower-bound R2 (from top
to bottom) as a function of the length T of the interval

• For u = 1.5, T = 15, Γ = Γ2, we have P(X0 > u) = 0.067, ν1 = 0.517, ν̃1 = 0.488,
ν̃2/2 = 0.08, ν3/6 = 0.013, so that:

D = 0.584 , R1 = 0.555 , R3 = 0.488 , R2 = 0.475

In this case the Davies bound is not sharp and a very clear improvement is provided by
R2 and R3.

• For u = 2, T = 10, Γ = Γ3, we have P(X0 > u) = 0.023, ν̃1 = 0.215, ν1 = 0.211,
ν̃2/2 = 0.014, ν3/6 = 3.10−4, so that:

D = 0.238 , R1 = 0.234 , R3 = 0.220. , R2 = 0.220

In this case the Davies bound is rather sharp.
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As a conclusion, these numerical results show that it is worth using several terms of the
Rice series. In particular the first three terms are relatively easy to compute and provide a good
evaluation of the distribution of M under a rather broad set of conditions.

4. Processes with Continuous Paths

This subsection is devoted to a modification of Theorem 5.1 to include processes which do
not have sufficiently differentiable paths. This is done using a regularization of the paths by
convolution with a deterministic approximation of unity. For simplicity, we will limit ourselves to
the case of Gaussian kernels. Other kernels can be employed in a similar way.

Suppose X = {X(t) : t ∈ [0, 1]}, is a stochastic process with continuous paths. Let ε be a
positive real number, we define

(5.30) Xε(t) := (φε ∗X(.))(t) =

∫ +∞

−∞
φε(t− s)X(s)ds,

where

φε(t) := (2π)−1/2(ε)−1e−t
2/2ε2 , t ∈ R,

and in (5.30) we have extended X(.) by X(0) (respectively X(1)) for t ≤ 0 (respectively t ≥ 1).
Denote by M ε, ν̃εm, ... the analogous to M, ν̃m, ... for the process X ε = {Xε(t), t ∈ [0, 1]} instead
of X .

Theorem 5.11. With the above notations, suppose that the following conditions are satisfied:
a) pXε(1/2)(x) is bounded by a constant D1 for ε small enough.
b) E(‖X‖∞) <∞.
c) The distribution of M has no atoms.

Then:
(i)

(5.31) P(M > u) = P(X(0) > u) + lim
ε→0

∞∑

m=1

(−1)m+1 ν̃
ε
m

m!

(ii) In formula (5.31) the error, when one replaces the limit by a given ε (0 < ε < ε0 := e−2) and
the infinite sum by the m0 partial sum is bounded by:

(5.32) [32D1E(‖X‖∞)]
1/2

Ψ∗,εm0+1 + P(|X(0)− u| < η) + P(u < M ≤ u+ η)+

+ P(ωX(δ(ε)) ≥ η/2) + P(‖X‖∞ >

√
2πη

8ε
)

for each η > 0, Where

δ(ε) := ε(2 log(1/ε))1/2

Ψ∗,εm := sup
k≥m

(
[(2k − 1)!]1/2ε2k−1

)−1/2
.

Note: If one wishes the bound for the error in Formula (5.32) to be smaller than some positive
number, proceed according to the following steps:

1) choose η > 0 so that the second and third terms are small;
2) with that value of η, choose ε > 0 , so that the fourth and fifth terms are small;
3) choose m0 large enough to make the first term small.

Proof. Consider the events

E1 := {|X(0)− u| < η}, E2 := {u < M ≤ u+ η},

E3 := {ωX(δ(ε)) ≥ η/2}, E4 := {‖X‖∞ >

√
2πη

4ε
}

E := E1 ∪ E2 ∪ E3 ∪ E4.
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Observe that if ω /∈ E and ε < ε0, then
(5.33)

|Xε(t)−X(t)| ≤
∫ +∞

−∞
φε(t− s)|X(s)−X(t)|ds ≤ ωX(δ(ε)) + 2‖X‖∞

∫

|t−s|>δ(ε)
φε(t− s)ds < η

Using this relation one gets:

P(M > u,X(0) ≤ u) ≤ P(M > u+ η,X(0) ≤ u− η,Ec) + P(E) ≤
≤ P(Mε > u,Xε(0) < u) + P(E) ≤ P(U εu ≥ 1, Xε(0) < u) + P(E).

Also

P(Uεu ≥ 1, Xε(0) ≤ u,Ec) ≤ P(Uεu ≥ 1, Xε(0) ≤ u,X(0) ≤ u− η,Ec) ≤
≤ P(M > u,X(0) ≤ u− η) ≤ P(M > u,X(0) ≤ u).

Summing up:

P(X(0) > u) + P(U εu ≥ 1, Xε(0) ≤ u)− P(E) ≤ P(M > u) ≤
≤ P(X(0) > u) + P(U εu ≥ 1, Xε(0) ≤ u) + P(E).

To compute P(U εu ≥ 1, Xε(0) ≤ u) we apply the same method as in the proof of Theorem 5.1.
For that purpose, we need to show that the process Xε satisfies the conditions for an appropriate
choice of the sequence {ck; k = 1, 2, ...}. Denoting by Hk(s), the k-th modified Hermite polynomial
(see Section 1 of Chapter 8) ), we have:

|Xε(k)(t)| ≤ ε−(k+1)‖X‖∞
∫ +∞

−∞
|φ(k)((t− s)/ε)|ds = ε−k‖X‖∞

∫ +∞

−∞
|φ(k)(u)|du

= ε−k‖X‖∞k!
∫ +∞

−∞
|Hk(s)|φ(s)ds ≤ ε−k‖X‖∞k!

(∫ +∞

−∞
(Hk(s))

2φ(s)ds

)1/2

= ε−k‖X‖∞(k!)1/2.

So,

γεk = P(‖Xε(2k−1)‖∞ ≥ ck) +
D1ck

22k−1(2k − 1)!
≤ ((2k − 1)!)1/2

ε2k−1ck
E(‖X‖∞) +

D1ck
22k−1(2k − 1)!

Choosing

ck :=

[
((2k − 1)!)3/2E(‖X‖∞)

(ε/2)2k−1D1

]1/2
.

we obtain

γεk ≤ 2−k
[

8D1E(‖X‖∞)

ε2k−1((2k − 1)!)1/2

]1/2
.

Hence,

γε∗m = sup
k≥m

(2k+1γεk) ≤ [32D1E(‖X‖∞)]
1/2

Ψ∗,εm .

The rest follows as in the proof of Theorem 5.1. ¤

Remarks and examples
1) Conditions a), b) and c) in Theorem 5.11 are usually not trivial to check and the a priori

estimation of the error can be a hard problem. Moreover, when this can be actually done, the
validity of Rice formulas and the feasibility of the method still remains a problem if one is willing
to use Theorem 5.11 as a tool for numerical computation. For a given error, smaller ε implies
larger m0 and the usefulness of Theorem 5.11 for numerical applications is still doubtful. The
bound in (5.32) shows that a priori we require at least m0 ≈ (1/2)ε−2 terms in the sum as ε→ 0.

2) Let X be a Gaussian process with continuous paths and

m(t) := E(X(t)) ; σ2(t) := Var(X(t)) > 0
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be the (continuous) mean and variance of X(t). Condition a) in Theorem 5.11 follows easily
together with bounds on D1 and P(E1).

Condition b) is well-known from the classical inequalities for Gaussian processes that we have
considered in Chapter 2. These inequalities also imply a priori bounds for P(E4).

Condition c) follows from Ylvisaker’s Theorem 1.22).
A priori bounds on P(E2) follow from bounds on the density of the distribution of the random

variable M , a subject that we will consider again for certain classes of Gaussian processes in
Chapter 7 .

P(E3) can be bounded using the classical methods to study the modulus of continuity of a
stochastic process, as in Chapter 1.

3) Theorem 5.11 can be applied to one-dimensional diffusions satisfying certain assumptions.
The reader who is not familiar with stochastic differential equations, is referred - for example - to
Ikeda and Watanabe’s book (1981).

Let {X(t) : t ≥ 0} be the strong solution of the stochastic differential equation

dX(t) = σ(t,X(t))dW (t) + b(t,X(t))dt ; X(0) = x0,

where {W (t) : t ≥ 0} stands for the standard Wiener process , σ, b : R+ × R → R are continuous,
∂σ
∂x ,

∂b
∂x are continuous and bounded and x0 ∈ R. We also assume that

σ(t, x) ≥ σ0 > 0 , t ∈ R
+, x ∈ R.

The methods employed in Azäıs (1989) or Nualart and Wschebor (1991) (stochastic calculus and
Malliavin calculus respectively) permit to prove that pXε(t) exists and is a bounded function for
t ∈ [δ, 1] for each δ > 0, 0 < ε < ε0(δ). Condition b) is standard and well known. Condition c),
can be proved as in Nualart and Vives (1988) using stochastic calculus of variations.

Hence, Theorem 5.11 can be used to obtain formula (5.31) for P(Mδ > u),Mδ := maxδ≤t≤1X(t)
and bounds having the form (5.32) for the error. Adding an elementary bound on the local os-
cillation P(max0≤t≤δ |X(t) − x0| ≤ η), one is able to get P(M > u) with a controlled error. An
obstacle to have an actual numerical computation for P(M > u) is the lack of a good description
of the joint densities of Xε(t), Xε′(t) at the k-tuple (t1, . . . , tk) to be used in Rice formulas. This
problem does not seem to have a satisfactory solution until now.



CHAPTER 6

Rice formulas for random fields

In this chapter we start to study random fields, that is, random functions defined on multi-
dimensional parameter sets. More precisely, the random fields that we will consider throughout
are defined on some probability space (Ω,A,P) and have the form X = {X(t) : t ∈ S}, where
S is a subset of Euclidean space Rd and the function X(.) takes values in some Euclidean space

Rd
′

, d′ ≤ d. We will require the paths t Ã X(t) to be smooth functions and in some situations,
we will also ask the domain S to have some geometric structure.

Our main interest lies in the random level sets Cu(X,S) = {t ∈ S : X(t) = u} for each u ∈ Rd
′

.

We first consider the case in which d = d′, in which generally speaking, for each u ∈ Rd′

the set Cu(X,S) will be a locally finite random set, and the main question is about the number
of points belonging to it and lying in a subset T of S. We will denote this random number by
Nu = Nu(X,T ), as in the one-dimensional case. The first half of this chapter is devoted to prove
Rice formulas for the moments of Nu.

When d′ < d, the random level set Cu(X,S) will have of course a more complicated geometry
and counting the number of points is no more interesting. Generally speaking, one expects the
typical level set to be a (d−d′)−dimensional differentiable manifold. We will prove Rice formulas
for the moments of the geometric measure of the level set.

These and related formulas have been used by Longuett-Higgins in the 50’s and 60’s (see for
example Longuett-Higgins, 1957). A systematic treatment seems to have started with the book
of R.A. Adler (1981), followed by the papers of Adler and Aronowich (1985), Adler et al. (1993)
Adler and Samorodnisky (1997) and Adler (2000,2004). A proof or Rice formula for the expec-
tation of the geometric measure of level sets of real-valued random fields is in Wschebor (1982),
and was followed by various extensions and higher moments (see Wschebor, 1983, 1985). See also
Cabaña (1985) where proofs for Rice formulas are given. First moments for functionals describing
the geometry of Cu(X,S) can be found in a recent paper by Bürgisser (2006).

The case d′ > d is uninteresting, since in a natural situation, for fixed u, Cu(X,S) will be
almost surely empty.

1. Random fields from Rd to Rd.

Our next task is to prove Rice Formulas for Gaussian random fields, that is, for the moments
of the number of roots Nu, which is self-contained and uses only elementary arguments. It is
published here for the first time and follows the proof in Azäıs and Wschebor (2006). We will also
consider formulas for the moments of the total weight (as in Theorem 6.4 below) when random
weights are put in each root.

1.1. The Area formula.

Proposition 6.1 (Area formula). Let f be a C1 function defined on an open subset U of Rd

taking values in Rd. Assume that the set of critical values of f has zero Lebesgue measure.
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Let g: Rd → R be continuous and bounded. Then

(6.1)

∫

Rd

g(u)Nu(f,B)du =

∫

B

|det(f ′(t))|g(f(t))dt.

for any Borel subset B of U , whenever the integral in the right-hand side is well defined.

Remarks on the statement.
1.- The hypothesis that the set of critical values of f has zero Lebesgue measure (that will be a.s.
satified in our case) is unnecessary, since it is implied by the fact that f is a C1−function. (This
is a special case of Sard’s Lemma).

2.- The result of proposition 6.1 is true under the weaker hypothesis that the function f verifies
a Lipschitz condition (see Federer, Th. 3.2.5, 1969).

3.- Using standard extension arguments the continuous function g can be replaced by the
indicator function of a Borel set T . Formula (6.1) can then be rewritten as

(6.2)

∫

Rd

∑

t∈f−1(u)
h(t, u)du =

∫

Rd

|det(f ′(t))|h((t, f(t))dt,

where h is the function (t, u) Ã 1It∈T g(u). Again by a standard approximation argument (6.2)
holds true for every bounded Borel-measurable function h such that the right-hand side of (6.2)
is well-defined.

Proof of Proposition 6.1

First notice that, due to standard extension arguments, it suffices to prove (6.1) for non-
negative g and for T a compact parallelotope contained in U . Second, since T is a compact
parallelotope, since f is C1, the set f(∂T ) of boundary values of f has Lebesgue measure zero.

Next we define an auxiliary function δ(u) for u ∈ Rd in the following way:

• If u is neither a critical value nor a boundary value and n := Nu(f, T ) is non zero, we denote
by x(1), . . . , x(n) the roots of f(x) = u belonging to T . Using the local inversion theorem, we know
that there exists some δ > 0 and n neighborhoods U1, ..., Un of of x(1), . . . , x(n) such that:

(1) f is a C1 diffeomorphism Ui → B(u; δ), the ball centered at u with radius δ.
(2) U1, ..., Un are pairwise disjoint and included in T .
(3) if t /∈ ⋃ni=1 Ui, then f(t) /∈ B(u; δ).

The compactness implies that n is finite.
In this case, we define

δ(u) := sup{δ > 0 : (1), (2), (3) hold true for all δ′ ≤ δ}.
• If u is a critical value or a boundary value we set δ(u) := 0.
• If Nu(f, T ) = 0, we put

δ(u) := sup{δ > 0 : f(T ) ∩B(u; δ) = ∅}.
It is clear that in this case δ(u) > 0.

The function δ(u) is Lipschitz. In fact, let u be a value of f which is not a critical value nor
a boundary value, if u′ belongs to B(u; δ(u)), then B(u′; δ(u) − ‖u′ − u‖) ⊂ B(u; δ(u)) and as a
consequence δ(u′) ≥ δ(u)− ‖u′ − u‖. Exchanging the roles of u and u′, we get

|δ(u′)− δ(u)| ≤ ‖u− u′‖.
The Lipschitz condition is easily checked in the other two cases.

Let F be a real-valued monotone continuous function defined on R+ such that

(6.3) F ≡
{

0 on [0, 1/2],
1 on [1 +∞)



1. RANDOM FIELDS FROM R
d TO R

d. 121

Let δ(u) > 0 and 0 < δ < δ(u). Using the change of variable formula we have

∫

T

|det(f ′(t))|1I‖f(t)−u‖<δdt =
n∑

i=1

∫

Ui

|det(f ′(t))|dt = V (δ)n,

where V (δ) is the volume of the ball with radius δ in Rd. Thus, we have an exact counter for
Nu(f, T ) when it is non-zero, which obviously holds true also when Nu(f, T ) = 0 for δ < δ(u).

Let g : Rd → R continuous, bounded and non-negative and δ0 > 0. For every δ′ < δ0/2 we
have:
∫

Rd

g(u)Nu(f, T )F
(
δ(u)

δ0

)
du =

∫

Rd

g(u) F
(
δ(u)

δ0

)
du

1

V (δ′)

∫

T

|det(f ′(t))|1I‖f(t)−u‖<δ′dt

Applying Fubini’s Theorem we see that the expression above is equal to:

Aδ0,δ′ :=

∫

T

|det(f ′(t))| dt 1

V (δ′)

∫

B(f(t);δ′)

F
(
δ(u)

δ0

)
g(u)du.

Aδ0,δ′ in fact does not depend on δ′ so it is equal to its limit as δ′ → 0 which is, because of the

continuity of the function uÃ F
(
δ(u)
δ0

)
g(u), equal to

∫

T

|det(f ′(t))|F
(
δ(f(t))

δ0

)
g(f(t))dt.

Let δ0 tend to zero and use monotone convergence. For the left-hand side, we take into account
that the set of critical values and the set of boundary values have measure zero. For the right-
hand side, we use the definition of F , that the boundary of T has Lebesgue measure zero and the
integrand is zero if t is a critical point of f . ¤

1.2. Rice formulas for Gaussian random fields.
1.2.1. Main results.

Theorem 6.2 (Rice formula for the expectation). Let Z : U → Rd be a random field, U an
open subset of Rd and u ∈ Rd a fixed point. Assume that:

(i) Z is Gaussian,
(ii) almost surely the function tÃ Z(t) is of class C1,
(iii) for each t ∈ U , Z(t) has a non degenerate distribution (i.e. Var

(
Z(t)

)
Â 0),

(iv) P{∃t ∈ U,Z(t) = u,det
(
Z ′(t)

)
= 0} = 0.

Then, for every Borel set B contained in U , one has

(6.4) E (Nu(Z,B)) =

∫

B

E
(
|det(Z ′(t))|

∣∣Z(t) = u
)
pZ(t)(u)dt.

If B is compact, both sides in (6.4) are finite.

Theorem 6.3 (Rice formula for the k−th moment). Let k, k ≥ 2 be an integer. Assume the
same hypotheses as in Theorem 6.2 except for (iii) that is replaced by

(iii’) for t1, ..., tk ∈ U distinct values of the parameter, the distribution of
(
Z(t1), ..., Z(tk)

)

does not degenerate in (Rd)k.
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Then for every Borel set B contained in U , one has

(6.5) E
[(
Nu(Z,B)

)(
Nu(Z,B)− 1

)
...
(
Nu(Z,B)− k + 1

)]

=

∫

Bk
E
( k∏

j=1

|det
(
Z ′(tj)

)
|
∣∣Z(t1) = ... = Z(tk) = u

)

pZ(t1),...,Z(tk)(u, ..., u)dt1...dtk,

where both sides may be infinite.

Remark: With the same proof as that of Theorem 6.3 and under the same conditions we
have for distinct u1, . . . , uk

E
[(
Nu1(Z,B)

)(
Nu2(Z,B)

)
. . .
(
Nuk(Z,B)

)]

=

∫

Bk
E
( k∏

j=1

|det
(
Z ′(tj)

)
|
∣∣Z(t1) = u1, . . . , Z(tk) = uk

)

pZ(t1),...,Z(tk)(u1, ..., uk)dt1...dtk.

Theorem 6.4 (Expected number of weighted roots.). Let Z be a random field that veri-
fies the hypotheses of Theorem 6.2. Assume that for each t ∈ U one has another random field
Y t :W → Rn, where W is some topological space, verifying the following conditions:

a) Y t(w) is a measurable function of (ω, t, w) and almost surely, (t, w)Ã Y t(w) is contin-
uous.

b) For each t ∈ U the random process (s, w)Ã
(
Z(s), Y t(w)

)
defined on U×W is Gaussian.

Moreover, assume that g : U×C(W,Rn)→ R is a bounded function, which is continuous when one
puts on C(W,Rn) the topology of uniform convergence on compact sets. Then, for each compact
subset I of U , one has

(6.6) E
( ∑

t∈I,Z(t)=u
g(t, Y t)

)
=

∫

I

E
(
|det(Z ′(t)|g(t, Y t)

∣∣Z(t) = u
)
.pZ(t)(u)dt.

Proof of Theorem 6.2

Let F : R+ → [0, 1] be the function defined in (6.3), For m,n positive. integers and x ≥ 0,
define :

(6.7) Fm(x) := F(mx) ; Gn(x) := 1−F(x/n).

A standard extension argument says that it is enough to prove the theorem when B is a compact
rectangle included in U . So assume B satisfies this condition. Let us introduce some more
notations:
• ∆(t) := |det(Z ′(t))| (t ∈ U)
• For n,m positive integers and u ∈ Rd :

Cmu (B) :=
∑

s∈B:Z(s)=u
Fm(∆(s)).(6.8)

Qn,mu (B) := Cmu (B)Gn(C
m
u (B)).(6.9)

In (6.8) when the summation index set is empty, we put Cmu (B) = 0. Let g : Rd → R be continuous
with compact support . We apply the area formula (6.2) for the function

h(t, u) = Fm(∆(t))Gn(C
m
u (B))g(u)1It∈B

to get ∫

Rd

g(u)Qn,mu (B)du =

∫

B

∆(t) Fm(∆(t)) Gn(C
m
Z(t)(B)) g(Z(t))dt.
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Taking expectations in both sides provides
∫

Rd

g(u) E(Qn,mu (B))du =

∫

Rd

g(u)du

∫

B

E
[
∆(t) Fm(∆(t))Gn(C

m
u (B))

∣∣Z(t) = u
]
pZ(t)(u)dt.

Since this equality holds for any g continuous with bounded support, it follows that

(6.10) E(Qn,mu (B)) =

∫

B

E
[
∆(t)Fm(∆(t)Gn(C

m
u (B))

∣∣Z(t) = u
]
pZ(t)(u)dt,

for almost every u ∈ Rd.

Notice that the hypotheses imply that if J is a subset of U , λd(J) = 0, then
P{Nu(Z, J) = 0} = 1 for each u ∈ Rd. In particular, almost surely, there are no roots of Z(t) = u
in the boundary of the rectangle B.

Let us prove that the left-hand side of (6.10) is a continuous function of u. Fix u ∈ Rd.
Outside the compact set

{t ∈ B : ∆(t) ≥ 1/2m},
the contribution to the sum (6.8) defining Cmv (B) is zero, for any v ∈ Rd. Using the local inversion
theorem, the number of points t ∈ B such that Z(t) = u; ∆(t) ≥ 1/2m, say k, is finite. Almost
surely, all these points are interior to B.

If k is non-zero, Z(t) is locally invertible in k neighborhoods V1, . . . , Vk ⊂ B around these k
points. For v in some (random) neighborhood of u, there is exactly one root of Z(s) = v in each
V1, ..., Vk and the contribution to Cmv (B) of these points can be made arbitrarily close to the one
corresponding to v = u. Outside the union of V1, ..., Vk, Z(t) − u is bounded away from zero in
B, so that the contribution to Cmv (B) vanishes if v is sufficiently close to u.

Therefore the function v Ã Qn,mv is a.s. continuous at v = u. On the other hand, it is obvious
from its definition that Qn,mv (B) ≤ n and an application of the Lebesgue dominated convergence
theorem implies the continuity of E(Qn,mu (B)) as a function of u.

Let us now write the Gaussian regression formulas for fixed t ∈ B :

Z(s) = at(s)Z(t) + Zt(s)

Z ′(s) = (at)′(s)Z(t) + (Zt)′(s),(6.11)

where ”′” denotes the derivative with respect to s and the pair
(
Zt(s), (Zt)′(s)

)
is independent

from Z(t) for all s ∈ U .

Then, we write the conditional expectation on the right-hand side of (6.10) as the uncondi-
tional expectation :

(6.12) E
[
∆t
u(t)Fm(∆t

u(t))Gn(C̃
m
u (B))

]
,

where we use the notations

∆t
u(s) := |det(Ztu)′(s)|

Ztu(s) := at(s)u+ Zt(s)

C̃mu (B) :=
∑

s∈B,Ztu(s)=u
Fm
(
∆t
u(s)

)
.

Now, observe that (6.10) implies that for almost every u ∈ Rd one has the inequality

(6.13) E(Qn,mu (B)) ≤
∫

B

E
[
∆(t)

∣∣Z(t) = u
]
pZ(t)(u)dt,

which is in fact true for all u ∈ Rd since both sides are continuous functions of u.



124 6. RICE FORMULAS FOR RANDOM FIELDS

The remainder of the proof consists in proving an inequality in the opposite sense. Let us fix
n,m, u and t. Let K be the compact set

K := {s ∈ B : ∆t
u(s) ≥ 1/4m}

If v varies in a sufficient small (random) neighborhood of u, the points outside K do not contribute

to the sum defining C̃mv (B).
Let k be the almost surely finite number of roots of Z tu(s) = u lying in the set K. Assume

that k does not vanish and denote these roots by s1, . . . , sk. Consider the equation

(6.14) Ztv(s)− v = 0.

in a neighborhood of each one of the pairs s = si , v = u. Applying the Implicit Function
Theorem, one can find k pairwise disjoint open sets sets V1, ...Vk such that if v is sufficiently
close to u, equation (6.14) has exactly one root si = si(v) in Vi , 1 = 1, . . . , k. These roots vary
continuously with v and si(u) = si. On the other hand on the compact set K\(V1 ∪ ... ∪ Vk) the
quantity ‖Ztu(s)−u‖ is bounded away from zero so ‖Ztv(s)−v‖ does not vanishes if v is sufficiently
close to u. As a conclusion, we have that

lim sup
v→u

C̃mv (B) ≤ C̃mu (B)

where the inequality arises from the fact that some of the points si(v) may not belong to B and

hence, don’t contribute to the sum defining C̃mv (B). Now since (6.10) holds for a.e. u, one can
find a sequence {uN , N = 1, 2, . . .} converging to u such that (6.10) holds true for u = uN and
all N = 1, 2, .... Using the continuity - already proved - of the function uÃ E(Qn,mu (B)), Fatou’s
Lemma and the fact that Gn is non-increasing, we have :

E
(
Qn,mu (B)

)
= lim
N→+∞

E
(
Qn,muN (B)

)

= lim
N→+∞

∫

B

E
[
∆t
uN (t)Fm(∆t

uN (t)Gn
(
C̃muN (B)

)]
pZ(t)(uN )dt

≥
∫

B

E
[
∆t
u(t)Fm(∆t

u(t)Gn
(
C̃mu (B)

)]
pZ(t)(u)dt.

Since C̃mu (B) is a.s. finite, we can now pass to the limit as n → +∞, m → +∞ (in that order)
and applying Beppo-Levi’s Theorem, conclude the proof. ¤

Proof of Theorem 6.3: For each δ > 0, define the domain

Dk,δ(B) = {(t1, ..., tk) ∈ Bk, ‖ti − tj‖ ≥ δ if i 6= j, i, j = 1, ..., k}

and the process Z̃

(t1, ..., tk) ∈ Dk,δ(B)Ã Z̃(t1, ..., tk) =
(
Z(t1), ..., Z(tk)

)
.

It is clear that Z̃ satisfies the hypotheses of Theorem 6.2 for every value (u, ..., u) ∈ (Rd)k. So,

(6.15) E
[
N(u,...,u)

(
Z̃,Dk,δ(B)

)]

=

∫

Dk,δ(B)

E
( k∏

j=1

|det
(
Z ′(tj)

)
|
∣∣Z(t1) = ... = Z(tk) = u

)
pZ(t1),...,Z(tk)(u, ..., u)dt1...dtk

To finish, let δ ↓ 0, and take into account that
(
Nu(Z,B)

)(
Nu(Z,B)− 1

)
...
(
Nu(Z,B)− k + 1

)
is

the monotone limit of N(u,...,u)
(
Z̃,
(
Dk,δ(B)

)
, and that the diagonal

Dk(B) =
{
(t1, ..., tk) ∈ Bk, ti = tj for some pair i, j, i 6= j

}
has zero Lebesgue measure in (Rd)k.

¤
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Proof of Theorem 6.4: The proof is essentially the same. It suffices to consider instead
of Cmu (B) the quantity

(6.16) C ′mu (I) :=
∑

s∈I:Z(s)=u
Fm(∆(s)).gs(s, Y

s).

¤

1.2.2. Sufficient conditions for hypothesis (iv) in Theorem 6.2.
These conditions are given by the following proposition:

Proposition 6.5. Let Z : U → Rd , U a compact subset of Rd be a random field with paths
of class C1 and u ∈ Rd. Assume that

• pZ(t)(x) ≤ C for all t ∈ U and x in some neighborhood of u.
• at least one of the two following hypotheses is satisfied:

a) a.s. tÃ Z(t) is of class C2
b)

α(δ) = sup
t∈U,x∈V (u)

P
{
|det(Z ′(t))| < δ

∣∣Z(t) = x
}
→ 0

as δ → 0, where V (u) is some neighborhood of u.

Then (iv) holds true.

Proof. Assume with no loss of generality that I = [0, 1]d and that u = 0.
Put GI =

{
∃t ∈ I, Z(t) = 0,det

(
Z ′(t)

)
= 0
}

Proof under condition a) (Cucker and Wschebor, 2003).

For each integer N consider I as a union of cubes of sides 1/N with sides parallel to the
axis. We denote these cubes C1, ...., CNd . In a similar way, we consider each face at the boundary
of the cube Cr as a union of (d − 1)−dimensional cubes of sides 1/N 2. We denote these cubes
Drs, s = 1, ..., 2dNd−1. In each Drs fix a point τ∗rs, for instance, the center.

We denote Z = (Z1, ..., Zd)
T and t = (t1, ..., td)

T .

For a given η > 0, choose B > 0 large enough so that P{FB} < η, where FB is the event:

FB =
{[

sup
[∣∣∣∂Zi
∂tj

(t)
∣∣∣,
∣∣∣ ∂

2Zi
∂tj∂th

(t)
∣∣∣
]
: i, j, h = 1, ..., d; t ∈ [0, 1]d

]
> B

}
.

Clearly:

GI =

r=Nd⋃

r=1

{∃τr ∈ Cr, v ∈ R
d, such that Z(τr) = 0, ‖v‖ = 1, Z ′(τr)v = 0} =

r=Nd⋃

r=1

Gr

Assume Gr ∩ FCB is non-empty. Denote τ̃rs an intersection point with the boundary of Cr,
of the straight line through τr which is parallel to v. Consider the Taylor expansion of Zi at the
point τr, evaluated at the point τ̃rs:

Zi(τ̃rs) = Zi(τr) +

d∑

j=1

∂Zi
∂tj

(τr)(τ̃rs,j − τr,j)

+
d∑

j,h=1

∂2Zi
∂tj∂th

(τr + θ(τ̃rs − τr))(τ̃rs,j − τr,j)(τ̃rs,h − τr,h),

with 0 < θ < 1. Since the first two terms in this sum are equal to zero, we deduce that
|Zi(τ̃rs)| ≤ KdBN

−2 for all i = 1, ..., d, where Kd is some constant depending only on the di-
mension.
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Since the diameter of each Drs is bounded by a constant depending only on the dimension,
times N−2, it follows that ‖Z(τ∗rs)‖ ≤ KN−2 for some constant K depending only on d and B.

So,

P{GI} ≤ P{FB}+ P{∃r ≤ Nd, s ≤ Nd−1, s.t.‖Z(τ∗rs)‖ ≤ KN−2}

≤ η +
Nd∑

r=1

2dNd−1∑

s=1

P{‖Z(τ∗rs)‖ ≤ KN−2}

≤ η +N2d−1C K1 N
−2d

where K1 is a constant depending on d and B, using the hypotheses on the boundedness of the
density. The remainder is plain. This proves (iv) under condition a)

Proof under condition b) (Azäıs and Wschebor, 2005)
Choose ε > 0, η > 0; there exists a positive number M such that

P(EM ) = P
{
sup
t∈I
‖Z ′(t)‖ > M

}
≤ ε.

Denote by ωdet the modulus of continuity of |det(X ′(.))| and choose N large enough so that

P(FN,η) = P
{
ωdet(

√
d

N
) ≥ η

}
≤ ε.

Consider the partition of I used in part a) into N d small cubes. Let τ∗r be the center of Cr. Then

(6.17) P(GI) ≤ P(EM ) + P(FN,η) +
∑

r

P
(
GCr ∩ EcM ∩ F cN,η

)

When the event in the r-th term occurs, we have:

|Zj(τ∗r )| ≤
M

N

√
d , j = 1, ..., d

and ∣∣det
(
Z ′(τ∗r )

)∣∣ < η.

So, if N is chosen sufficiently large so that V (0) contains the ball centered at 0 with radius M
√
d

N ,
one has:

P(GI) ≤ 2ε+Nd
(2M
N

√
d)dCα(η

)

Since ε and η are arbitrarily small, the result follows. ¤

1.3. Maxima and critical points on a smooth manifold. Let us write Rice formula for
the first moment in two special cases that will appear various times in the remaining of this book.
These correspond to the number of local maxima and the number of critical points of a real-valued
random field.

Assume {X(t) : t ∈W} is a real-valued random field defined on the open subset W of Rd and
such that Z(t) = X ′(t) satisfies the hypothesis of Theorem 6.2. Let S be a Borel subset of W
and u ∈ R. The following quantities are well defined and measurable : Mu,1(X,S), the number of
local maxima and Mu,2(X,S), the number of critical points of X(.) belonging to S in which the
function X(.) takes a value bigger than u.

We also introduce the following notation: for each real symmetric matrix M we put δ1(M) :=
|det(M)|1IM≺0 and δ2(M) := |det(M)|.

Then, we have the following formulas for the expectation (k = 1, 2):

(6.18) E
(
MX
u,k(S)

)
=

∫

S

ds

∫ +∞

u

E
(
δk(X ′′(s))

∣∣X(s) = x,X ′(s) = 0
)
pX(s),X′(s)(x, 0) dx.
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Similar expressions are obtained when extending the statements of Theorems 6.3 and 6.4 to
this case.

Let W be a C2−manifold of dimension d. We suppose that W is orientable, that is, there
exists an atlas

(
(Ui, φi); i ∈ I

)
such that for any pair of intersecting charts (Ui, φi), (Uj , φj), the

Jacobian of the map φi ◦ φ−1j is positive.

We consider a Gaussian random field with real values and C2 paths X = {X(t) : t ∈ W}
defined on the manifold W . In this subsection, our aim is to write Rice Formulas for this kind
of random fields under various geometric settings for W . More precisely we will consider three
cases: first, when W is a manifold without any additional structure on it; second, when W has a
Riemannian metric; third, when it is embedded in Euclidean space. We will use these formulas in
the next chapters but they have an interest in themselves (see Taylor and Adler (2003) for other
details or similar results).

We will denote the derivative along the manifold by DX(t) to distinguish it from the free
derivative in Rd and we will assume that, in every chart, the pair X(t) and DX(t) has a non-
degenerate joint distribution and that hypothesis (iv) of Theorem 6.2 is verified.

1.3.1. Abstract manifold.

Proposition 6.6. For k = 1, 2 the quantity which is expressed in every chart φ with coordi-
nates s1, ..., sd as

(6.19)

∫ +∞

u

dx E
(
δk(Y ′′(s))

∣∣Y (s) = x, Y ′(s) = 0
)
pY (s),Y ′(s)(x, o) ∧di=1 dsi,

where Y (s) is the process X written in the chart : Y = X ◦ φ−1, defines a d-form Ωk on Ẇ and

for every Borel set S ⊂ Ẇ

∫

S

dΩk = E
(
MX
u,k(S)

)
.

Proof. Note that a d-form is a measure on Ẇ whose image in each chart is absolutely
continuous with respect to Lebesgue measure ∧di=1dsi,. To prove that (6.19) defines an d-form, it
is sufficient to prove that its density with respect to ∧di=1dsi, satisfies locally the change-of-variable
formula. Let (U1, φ1), (U2, φ2) two intersecting charts and set

U3 := U1 ∩ U2 ; Y1 := X ◦ φ−11 ; Y2 := X ◦ φ−12 ; H := φ2 ◦ φ−11 .

Denote by s1i and s2i , i = i, ..., d the coordinates in each chart. We have

∂Y1
∂s1i

=
∑

i′

∂Y2
∂s2i′

∂Hi′

∂s1i

∂2Y1
∂s1i ∂s

1
j

=
∑

i′,j′

∂2Y2
∂s2i′∂s

2
j′

∂Hi′

∂s1i

∂Hj′

∂s1j
+
∑

i′

∂Y2
∂s2i′

∂2Hi′

∂s1i ∂s
1
j

.

Thus at every point

Y ′1(s
1) =

(
H ′(s1)

)T
Y ′2(s

2),

pY1(s1),Y ′1 (s1)(x, 0) = pY2(s2),Y ′2 (s2)(x, 0)|det(H
′(s1)|−1

and at a singular point

Y ′′1 (s
1) =

(
H ′(s1)

)T
Y ′′2 (s

2)H ′(s1).

On the other hand, by the change of variable formula

∧di=1ds1i = |det(H ′(s1)|−1 ∧di=1 ds2i .
Replacing in the integrand in (6.19), one checks the desired result.
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To prove the second part again it suffices to prove it locally for an open subset S included in
a unique chart. Let

(
(S, φ) be a chart and let again Y (s) be the process written in this chart. It

suffices to prove that

(6.20) E
(
MX
u,k(S)

)
=

∫

φ(S)

dλ(s)

∫ +∞

u

dx E
(
δk(Y ′′(s))

∣∣Y (s) = x, Y ′(s) = 0
)
pY (s),Y ′(s)(x, 0).

Since MX
u,k(S) is equal to M

Y
u,k {φ(S)}, the result is a direct consequence of Theorem 6.4. ¤

1.3.2. Riemannian manifold. The form in (6.19) is independent of the parameterization but
the terms inside the integrand are not. It is possible to give an expression that consists of three
terms independent of the parameterization in the case when W is a Riemannian manifold. When
such a Riemannian metric is not given, it is always possible to use the metric g induced by the
process itself (see Taylor and Adler, 2002) by setting

g(s)(Y,Z) = E
((
Y (X)

)(
Z(X)

))
,

Y, Z being two tangent vectors belonging to the tangent space T (s) at s ∈W . Y (X), (resp. Z(X))
denotes the action of the tangent vector Y (resp. Z ) on the function X. This metric leads to
very simple expressions for centered variance-1 Gaussian processes.

The main point is that at a singular point of X the second order derivative D2X does not
depend on the parameterization since it defines locally the Taylor expansion of the function X .
Given the Riemannian metric gs the second differential can be represented by an endomorphism
that will be denoted ∇2X(s).

(D2X)(s)[Y,Z] = gs(∇2X(s)Y,Z)

This endomorphism is independent of the parameterization and of course its determinant. So in
a chart

(6.21) det
(
∇2X(s)

)
= det(D2X(s)) det(gs)

−1,

and ∇2X(s) is negative definite if and only if D2X(s) is. Hence

δk
(
∇2X(s)

)
= δk

(
D2X(s)

)
det(gs)

−1 ; (k = 1, 2).

We turn now to the density in (6.19). The gradient at some location s is defined as the unique
vector ∇X(s) ∈ T (s) such that gs(∇X(s), Y ) = DX(s)[Y ]. In a chart the vector of coordinates

of the gradient in the basis ∂xi, i = 1, d is given by
(
gs
)−1

DX(s) where DX(s) is now the

vector of coordinates of the derivative in the basis dxi, i = 1, d. The joint density at (x, 0) of(
X(s),∇X(s)

)
is intrinsic only if expressed in an orthonormal basis of the tangent space. In that

case the vector of coordinates is given by

∇̃X(s) =
(
gs
)1/2∇X(s) =

(
gs
)−1/2

DX

By the change of variable formula :

p
X(s),∇̃X(s)(x, 0) = pX(s),DX(s)(x, 0)

√
det(gs)

Reminding that the Riemannian volume V ol satisfies

dV ol =
√

det(gs) ∧di=1 ds2i
we can rewrite expression (6.19) as

(6.22)

∫ +∞

u

dx E
(
δk(∇2X(s)

∣∣X(s) = x,∇X(s) = 0
)
pX(s),∇X(s)(x, 0) dV ol

where we have omitted the tilde above ∇X(s) for simplicity. This is the Riemannian expression.
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1.3.3. Embedded manifold. In most practical applications, W is naturally embedded in an
Euclidean space say Rm. In this case we look for an expression for (6.22) as a function of the
natural derivative on Rm. The manifold is equipped with the metric induced by the Euclidean
metric in Rm. Considering the form (6.22), clearly the Riemannian volume is just the geometric
measure σ on W .

Following Milnor (1965), we assume that the processX(t) is defined on an open neighbourhood
of W so that the ordinary derivatives X ′(s) and X ′′(s) are well defined for s ∈ W . Denoting the
projector onto the tangent and normal spaces by PT (s) and PN(s), we have.

∇X(s) = PT (s)(X
′(s)).

The next formula is well-known and gives the expression of the second differential form at a
singular point

(6.23) Y,Z ∈ T (s)Ã X ′′(s)[Y,Z]+ < II[Y,Z], X ′(s) >,

where II is the second fundamental form of W embedded in Rm than can be defined in our simple
case by

Y,Z ∈ T (s)Ã PN(s)(DXY ).

The determinant of the bilinear form given by (6.23), expressed in an orthonormal basis, gives
the value of det

(
∇2X(s)

)
. As a conclusion we get the expression of every terms involved in (6.22).

1.3.4. Examples:

Codim. 1: with a given orientation we get

∇2X = X ′′T + II.X ′N

where X ′′T is the tangent projection of the second derivative and X ′N the normal compo-
nent of the gradient.

Sphere: When W is a sphere of radius r > 0 in Rd+1 oriented towards the inside

(6.24) ∇2X = X ′′T + rIdX
′
N

Curve: When the manifold is a curve parameterized by arc length

(6.25) E
(
Mk
u (W )

)
=

∫ +∞

u

dx

∫ L

0

dt

E
(
δk
(
X ′′T (t) + C(t)X ′N (t)

∣∣X(t) = x,X ′T (t) = 0
)
pX(t),X′T (t)(x, 0),

Where C(t) is the curvature at location t andX ′N (t) is the derivative taken is the direction
of the normal to the curve at point t.

1.4. Extensions to certain Non-Gaussian random fields. .
It is easy to adapt the above proofs of Rice formulas to certain classes of Gaussian-related random
fields which do not need to be Gaussian. We exemplify this with the statement of Theorem 6.2,
but the same holds true, mutatis mutandis, with the other theorems.

To be precise, the conclusion of Theorem 6.2 remains valid if we replace the hypotheses
(i),(ii),(iii),(iv) by the following (we keep the same notations as in the statement of the theorem):

(i) Z(t) = H[Y (t)] for t ∈W where:

• {Y (t) : t ∈ W} is a Gaussian random field having values in Rn and C1−paths and such
that for each t ∈W the distribution of Y (t) does not degenerate,

• H : Rn → Rd is a C1−function.
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(ii) for each t ∈ W , Z(t) has a density pZ(t)(x) which is a continuous function of the pair

(t, x) ∈W × Rd.

(iii) P{∃t ∈W,Z(t) = u,det
(
Z ′(t)

)
= 0} = 0.

Notice that these hypotheses imply that one must have n ≥ d. The only change to be in-
troduced in the proof is that instead of performing the regression on Z(t) one should do it on Y (t).

As for the validity of Rice formulas for more general Non-Gaussian random fields, a careful
analysis of the proof of Theorem 6.2, shows that in fact Gaussianity plays a role only in assuring
the continuity (as functions of u) of the conditional expectation and the density which appear in
the integrands in the right-hand sides of (6.4) and (6.10). The continuity of the density is obvious
and that of the conditional expectation is a consequence of the possibility of using regression to
get rid of the conditioning, which is a specifically Gaussian property. Otherwise, the proof is
independent of the nature of the law of the random field {Z(t) : t ∈W}. From the standpoint of
applications, one must consider also that if the random field is non-Gaussian, the actual compu-
tation of the conditional expectation can be hard or impossible to be actually performed, and the
interest of the formula remains limited.

On account of this, next we state as a theorem Rice formula for the expectation of the number
or roots of non-Gaussian random fields. Similar expressions hold true for higher moments and for
weighted roots as well as for random fields parameterized on manifolds. The proof follows strictly
that of Theorem 6.2, except for the points just mentioned.

Theorem 6.7. Let Z : W → Rd be a random field, W an open subset of Rd and u ∈ Rd a
fixed point. Assume that:

(i) Almost surely the function tÃ Z(t) is of class C1.
(ii) For each t ∈ W , Z(t) has a density pZ(t)(.) and the function (t, x) Ã pZ(t)(x) is continuous
for t ∈ U and x is some neighborhood of u.
(iii) Let α : C1(U) → R be a real-valued functional defined on C1(W ), which is continuous in
the sense that if {fn}n=1,2,... is a sequence of functions in C1(W ) such that fn → f, f ′n → f ′ as
n→∞, uniformly on the compact subsets of W , then α(fn)→ α(f).
Our assumption is that for such a functional α there exists a version of the conditional expectation

E(α(Z)
∣∣Z(t) = x)

which is continuous as a function of the pair (t, x), for t ∈W and x in some neighborhood of u.
(iv) P{∃t ∈W,Z(t) = u,det

(
Z ′(t)

)
= 0} = 0

Then, for every Borel set B contained in W , one has

(6.26) E (Nu(Z,B)) =

∫

B

E
(
|det(Z ′(t))|

∣∣Z(t) = u
)
pZ(t)(u)dt.

If B is compact, both sides are finite.

2. Random fields from Rd to Rd
′

, d > d′

We will follow a similar method to the one of the previous section, but a certain number of
new problems arise.

For f a C1−function defined onW and u a regular value of f , we will denote σu(f, T ) the (d−d′)
geometric measure of the intersection of the set T with the level set Cu(f, U) = {t ∈ U : f(t) = u}.
Note that since u is a regular value at each point t ∈ Cu(f, U) the jacobian matrix f ′(t) is
of full rank d′. Thus we can choose a subset γ of {1, . . . , d} of size d′ such that the matrix
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{∂fi∂tj
, i = 1, . . . , d′, j ∈ γ} is invertible. For simplicity, and without loss of generality, we will

assume that γc = {1, . . . , (d− d′)}. Using the implicit function theorem we know that there exist

a neighbourhood Vt of t1, . . . , td−d′ and a function g : Rd−d
′ → Rd

′

(that depend on t ) such that
s1, . . . , sd−d′ , g(s1, . . . , sd−d′) is a local parameterization of the level set Cu(f, U). This defines a
chart and proves that the level set is a C1 manifold of dimension d− d′.

2.1. We start with three statements for Gaussian random fields that are analogous to those
of Theorems 6.2, 6.3 and 6.4.

Theorem 6.8 (Rice formula for the expectation of the geometric measure of the level set).

Let Z : W → Rd
′

be a random field, W an open subset of Rd and u ∈ Rd
′

a fixed point. Assume
that:

(i) Z is Gaussian.
(ii) Almost surely the function tÃ Z(t) is of class C1.
(iii) For each t ∈W , Z(t) has a non degenerate distribution (i.e. Var

(
Z(t)

)
Â 0).

(iv) P{∃t ∈W,Z(t) = u, Z ′(t) does not have full rank} = 0

Then, for every Borel set B contained in W , one has

(6.27) E (σu(Z,B)) =

∫

B

E
([

det
(
Z ′(t)(Z ′(t))T

)]1/2∣∣Z(t) = u
)
pZ(t)(u)dt.

If B is compact, both sides in (6.27) are finite.

Theorem 6.9 (Rice formula for the k−th moment). Let k, k ≥ 2 be an integer. Assume the
same hypotheses as in Theorem 6.8 except for (iii) that is replaced by

(iii’) for distinct values t1, ..., tk ∈W of the parameter, the distribution of
(
Z(t1), ..., Z(tk)

)

does not degenerate in (Rd
′

)k.

Then for every Borel set B contained in W and levels u1, . . . , uk one has

(6.28) E
( k∏

j=1

σuj (Z,B)
)
=

∫

Bk
E
( k∏

j=1

[
det
(
Z ′(tj)(Z

′(tj))
T
)]1/2∣∣Z(t1) = u1, . . . , Z(tk) = uk

)

pZ(t1),...,Z(tk)(u1, ..., uk)dt1...dtk,

where both members may be infinite.

The same kind of result holds true for integrals over the level set, as stated in the next theorem

Theorem 6.10 (Expected integral on the level set). Let Z be a random field that verifies
the hypotheses of Theorem 6.8. Assume that for each t ∈ W one has another random field
Y t : V → Rn, where V is some topological space, verifying the following conditions:

a) Y t(v) is a measurable function of (ω, t, v) and almost surely, (t, v)Ã Y t(v) is continuous.
b) For each t ∈W the random process (s, v)Ã

(
Z(s), Y t(v)

)
defined on W×V is Gaussian.

Moreover, assume that g :W ×C(V,Rn)→ R is a bounded function, which is continuous when one
puts on C(V,Rn) the topology of uniform convergence on compact sets. Then, for each compact
subset I of W , one has
(6.29)

E
(∫

I∩Z−1(u)
g(t, Y t)σu(Z, dt)

)
=

∫

I

E
(
[det(Z ′(t)(Z ′(t))T )]1/2g(t, Y t)

∣∣Z(t) = u
)
.pZ(t)(u)dt.
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2.2. Remark on hypothesis (iv) of Theorems 6.8, 6.9 and 6.10. .
Let us give sufficient conditions to assure that hypothesis (iv) holds true, i.e., that with

probability one the given level u is not a critical value of the random field. They are more restrictive
than the ones for d = d′, and based upon the following proposition, which is a generalization of
Bulinskaya’s Lemma 1.20 (see Exercise 6.4 for a proof ).

Proposition 6.11. Let Y = {Y (t) : t ∈ W} be a random field with values in Rm+k and W
an open subset of Rd. m and k are positive integers. Let u ∈ Rm+k and I a subset of W .
We assume that Y satisfies the following conditions:

• the paths tÃ Y (t) are of class C1,
• for each t ∈W , the random vector Y (t) has a density and there exists a constant C such
that

pY (t)(x) ≤ C

for t ∈ I and x in some neighborhood of u,
• the Hausdorff dimension of I is smaller or equal than m.

Then, almost surely, there is no point t ∈ I such that Y (t) = u

This implies the following:

Proposition 6.12. Let Z = {Z(t) : t ∈W} be a random field, W an open subset of Rd, with

values in Rd
′

. Let u ∈ Rd
′

.
We assume:

• the paths of Z are of class C2,
• for each t ∈W , the pair (Z(t), Z ′(t)) has a joint density pZ(t),Z′(t)(x, x

′) in Rd
′ ×Rd.d

′

,

which is bounded for (t, x′) varying in a compact subset of W × Rd.d
′

and x in some
neighborhood of u.

Then, (iv) holds true.

Proof. . Apply Proposition 6.11 to the random field

Y (t, λ) =
(
Z(t) : (Z ′(t))Tλ

)

defined for (t, λ) ∈ W × Sd′−1 with values in Rd
′ × Rd. ¤

2.3. Scheme of the proofs of Theorems 6.8, 6.9, 6.10. .
We are not going to give full proofs of these theorems, since as we have already mentioned,

they follow the same lines of the analogous ones for d′ = d. We will limit ourselves to point out
the differences between both situations.

First, we need a proposition replacing the Area Formula 6.1 for non-random functions. We
state it for C1 functions, since this will be sufficient for our purposes.

Proposition 6.13 (Co-area formula). Let f be a C1 function defined on an open subset W

of Rd taking values in Rd
′

. Assume that the set of critical values of f has zero Lebesgue measure.
Let g: Rd

′ → R be continuous and bounded.
Then,

(6.30)

∫

Rd
′
g(u)σu(f,B)du =

∫

B

[
det
(
f ′(t)(f ′(t))T

)]1/2
g(f(t))dt.

for any Borel subset B of W , whenever the integral in the right-hand side is well defined.

Remarks on formula (6.30).
1. Clearly, this extends the Area formula, since if d = d′, σu(f, T ) is the number points of the

level set on T , i.e., Nu(f, T ).
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2. For a proof of Proposition 6.13, under more general conditions, we refer the reader to
Federer’s book (1969).

3. The remark 3. after Proposition 6.1 applies here in the same way. This means that if we
replace the function g(u) in (6.30) by any measurable function h(t, u), one obtains the weighted
co-area formula:

(6.31)

∫

Rd
′
du

∫

Rd
h(t, u)σu(f, dt) =

∫

Rd

[
det
(
f ′(t)(f ′(t))T

)]1/2
h((t, f(t))dt,

whenever the right-hand side is well defined.

Second, let us now enumerate the changes required in the proof of Theorem 6.2 to obtain
Theorem 6.8.

• Replace ∆(t) by

∆(t) =
[
det
(
Z ′(t)(Z ′(t))T

)]1/2
.

• Whenever u is not a critical value of Z(.), instead of Cmu (B) and Qn,mu (B) that were
defined in (6.8) and (6.9), we put respectively:

(6.32) cmu (B) =

∫

B

Fm(∆(s))σu(Z, ds)

and

(6.33) qn,mu (B) = cmu (B) Gn(c
m
u (B)).

• Instead of (6.10), we have:

(6.34) E(qn,mu (B)) =

∫

B

E
[
∆(t)Fm(∆(t)Gn(c

m
u (B))

∣∣Z(t) = u
]
pZ(t)(u)dt,

which holds true for almost every u ∈ Rd′ . This follows from the weighted co-area for-
mula (6.31).

To finish one performs two additional steps: 1) proving that both hand-sides in

equality (6.34) are continuous functions of u, so that equality holds true for all u ∈ Rd′ ,
and 2) passing to the limit as n→∞, m→∞, in that order.
On the left-hand side of (6.34) the first step follows from the continuity provided by the
Implicit Function Theorem and the obvious inequality qn,mu (B) ≤ n. The second step by
monotone convergence.
For the remaining of the proof, we proceed as in the one of Theorem 6.2.

Third, let us now consider the formula (6.28) for the higher moments of σu(Z,B) in Theorem
6.9. Define (as in the case d′ = d) the random process

Z̃(t1, ..., tk) =
(
Z(t1), ..., Z(tk)

)
.

with parameter set W k ⊂ (Rd)k and values in (Rd
′

)k.

If u1, . . . , uk are regular values of Z, then (u1, ..., uk) ∈ (Rd
′

)k is a regular value of Z̃ and

σ(u1,...,uk)(Z̃, B1 × ...×Bk) = σu1(B1) . . . σuk(Bk)

for any choice of the Borel subsets B1, ..., Bk of W . Following the same reasoning as in the proof

of Theorem 6.3, one only needs to prove that the measure of the diagonal set

Dk(I) =
{
(t1, ..., tk) ∈ Ik, ti = tj for some pair i, j, i 6= j

}
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that is, σ(u1,...,uk)(Z̃,Dk(I)) vanishes for any rectangle I ⊂W . To see this, notice that Z̃−1(u1, ..., uk)

is a differentiable manifold with dimension k(d−d′) which carries the geometric measure σ(u1,...,uk)(Z̃, .)
and its intersection with Dk(I) is a finite union of sub-manifolds having dimension smaller or equal
to ((k − 1)(d− d′), so its geometric measure is zero.

One should notice that when u1 = · · · = uk there is a difference between the case d = d′ and
the case d > d′, since in the first one, the diagonal charges a positive geometric measure. In fact,
in this case, all the manifolds are 0−dimensional and the argument in the previous paragraph
does not work. That is why when d = d′ one actually gets the integral formula for the factorial
moments of the number of roots. The difference between ordinary and factorial moments of order
k is the expectation of the measure carried by the diagonal Dk(B).

Fourth. The proof of Theorem 6.10 does not require any new ingredients with respect to the
one of 6.4.

Exercises

Exercise 6.1. (a) Assume that Z1, Z2 are Rd-valued random fields defined on compact subsets
I1, I2 of Rd and suppose that (Zi, Ii) (i = 1, 2) satisfy the hypotheses of Theorem 6.2 and that for
every s ∈ I1 and t ∈ I2, the distribution of

(
Z1(s), Z2(t)

)
does not degenerate.

Prove that for each pair u1, u2 ∈ Rd:

(6.35) E
(
NZ1
u1 (I1)N

Z2
u2 (I2)

)

=

∫

I1×I2
E
(
|det(Z ′1(t1))||det(Z ′2(t2))|

∣∣Z1(t1) = u1, Z2(t2) = u2
)
pZ1(t1),Z2(t2)(u1, u2)dt1dt2.

(b) Extend (a) to higher moments.

Exercise 6.2. Let X = {X(t) : t ∈ Rd} be a real-valued centered Gaussian random field. We
denote

r(s, t) = E
(
X(s)X(t)

)
, s, t ∈ R

d

its covariance. We assume that the process is stationary, in the sense that r(s, t) = Γ(s − t) for
all s, t ∈ Rd.

(a) Let the function Γ be continuous. Prove Bochner’s Theorem (see Chapter 1), that is, there
exists a unique Borel measure on Rd, say µ such that for all τ ∈ Rd:

Γ(τ) =

∫

Rd

exp[i〈τ, x〉]µ(dx)

µ is called the spectral measure of the random field X

(b) Denote

Λ2 =

∫

Rd

‖x‖2 µ(dx)

which can be finite or infinite.
Prove that Γ is twice differentiable at the origin if and only if Λ2 is finite, and in this case Γ is a
C2−function and its partial derivatives can be computed by means of the formula:

∂2Γ

∂τj∂τk
(τ) = −

∫

Rd

xjxk exp[i〈τ, x〉] µ(dx)

for j, k = 1, ..., d, with the notation τ = (τ1, ..., τd)
T , x = (x1, ..., xd)

T .

(c) Prove that if the field has C1 sample paths then Λ2 < ∞. Let I is a Borel subset of Rd,
then:

E
(
σu(X, I)

)
= λd(I).φ(u).E

(
‖ξ‖
)
,
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where λd denotes Lebesgue measure in Rd, φ(u) is the standard normal density and ξ is a N [0,Λ2]
Gaussian random variable with values in Rd.

Exercise 6.3. Let X = {X(t) : t ∈ Rd} be a random field defined as:

X(t) = X21 (t) + ....+X2m(t),

where {Xk(t) : t ∈ Rd}k=1,...,m are m independent random fields, each one of them being centered
Gaussian stationary with covariance function Γ (see the previous exercise).

Prove that for each Borel subset I of Rd, one has:

E
(
σu(X, I)

)
= 2

√
u λd(I).χ

2
m(u).E

(
‖ξ‖
)
,

where ξ is as in the previous exercise and χ2m(u) is the χ2 density with m degrees of freedom, that
is, the density of the random variable ‖η‖2, where η is standard normal in Rm.

Exercise 6.4. Prove Propositions 6.11 and 6.12.





CHAPTER 7

Regularity of the Distribution of the Maximum

In this chapter, except in Theorem 7.4, we will only consider Gaussian processes and our
purpose is to give an account of what is known on the regularity of the probability distribution
of the supremum. The main classical result is Tsirelson’s Theorem (1975). We begin with a
statement of this theorem, as it can be found in Lifshits’ book (1995), to which we refer also for
the proof.

Theorem 7.1 (Tsirelson). Let {X(t), t ∈ T} be a real-valued bounded Gaussian process de-
fined on a countable parameter set T .

Then, the distribution FM of the random variable M = supt∈T X(t) has the following proper-
ties:

(1) It is continuous on R, except at most at one point: the left limit of its support, that is

u0 := inf{u : FM (u) > 0}.
(2) It is absolutely continuous on the half-line (u0,+∞).
(3) It is differentiable on (u0,+∞) except for at most a countable set E.
(4) The derivative F ′ is positive and continuous on (u0,+∞)\E. At each point of E, the

derivative F ′ has left and right limits and jumps downwards.
(5) For each u > u0, F

′ has finite variation on [u,+∞)
(6) F ′ is the density of M on (u0,+∞).

Further improvements are in Weber (1985), Lifshits (1995), Diebolt and Posse (1996) and
references therein. One should notice that in this statement of Tsirelson’s Theorem, the parame-
ter set is countable. This says that the same result holds true for separable bounded Gaussian
processes, since in this case, almost surely the distribution of the supremum coincides with the
one of the supremum on some countable non-random set.

Our aim in this chapter is to go beyond these regularity properties of the distribution of M ,
at the cost of imposing a certain number of conditions on the process. In fact, we will require the
parameter set to have a certain geometric structure and the paths of the process to have a certain
regularity. This will permit to exploit the analytic properties of the paths to obtain results about
the distribution function FM .

The theorems we present are much stronger in the case of one-parameter processes, than in the
case of random fields. In the first case we are able to give a considerable extension of Tsirelson’s-
type properties. For example, we prove that if a Gaussian process defined on a compact interval T
of the real line has C∞−paths and its law satisfies a quite general non-degeneracy condition, then
the distribution of its maximum is a function of class C∞. For multiparameter processes (random
fields) much less is known and we will only prove results on the first derivative of FM .

For one-parameter processes the main results are taken from Azäıs and Wschebor (2001).
The proofs here are simpler than the original version due to some technical improvements that
we present in Section 1, where we start with an implicit formula for the density of the maximum
of a Gaussian random field defined on a subset of Rd. This will be our main tool in this chapter,
and we will see later on that it is also useful as a tool to study the asymptotic properties of the
tails of the distribution of the maximum. Its proof is extracted from Azäıs and Wschebor (2007).

137
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1. The implicit formula for the density of the maximum

Assumptions and notations. X = {X(t) : t ∈ S} denotes a real-valued Gaussian field
defined on the parameter set S. We assume that S satisfies the hypotheses:

A1 :
• S is a compact subset of Rd

• S is the disjoint union of Sd, Sd−1..., S0, where Sj is an orientable C3 manifold of di-
mension j without boundary. The Sj ’s will be called faces. Let Sd0 , d0 ≤ d be the non
empty face having largest dimension. σj denotes the j−dimensional geometric measure
on Sj .

• We will assume that each Sj has an atlas such that the second derivatives of the inverse
functions of all charts (viewed as diffeomorphisms from an open set in Rj to Sj) are
bounded by a fixed constant. For t ∈ Sj , we denote Lt the maximum curvature of Sj at
the point t. It follows that Lt is bounded for t ∈ S.

Notice that the decomposition S = Sd ∪ ... ∪ S0 is not unique.

Concerning the random field we make the following assumptions A2-A5

A2 : X is defined on an open set containing S and has C2 paths
A3 : for every t ∈ S the distribution of

(
X(t), X ′(t)

)
does not degenerate; for every s, t ∈ S,

s 6= t, the distribution of
(
X(s), X(t)

)
does not degenerate.

A4 : Almost surely the maximum of X(t) on S is attained at a single point.

For t ∈ Sj , X ′j(t) X ′j,N (t) denote respectively the derivative along Sj and the normal derivative.

Both quantities are viewed as vectors in Rd, and the density of their distribution will be expressed
respectively with respect to an orthonormal basis of the tangent space Tt,j of Sj at the point t,
or its orthogonal complement Nt,j . X ′′j (t) will denote the second derivative of X along Sj , at
the point t ∈ Sj and will be viewed as a matrix expressed in an orthogonal basis of Tt,j . Similar
notations will be used for any function defined on Sj .

A5 : Almost surely, for every j = 1, . . . , d there is no point t in Sj such that X ′j(t) = 0,
det(X ′′j (t)) = 0.

The fundamental property that we will use is the representation of the density of the maxi-
mum given in the next theorem.

Theorem 7.2. Let M = maxt∈S X(t). Under assumptions A1 to A5, the distribution of M
has the density

pM (x) =
∑

t∈S0
E
(
1IAx

∣∣X(t) = x
)
pX(t)(x)

+

d∑

j=1

∫

Sj

E
(
|det(X ′′j (t))|1IAx

∣∣X(t) = x,X ′j(t) = 0
)
pX(t),X′j(t)(x, 0)σj(dt),(7.1)

where Ax = {M ≤ x}.
Remarks: This equality is stated in terms of the density, but it is obvious that one also

obtains an exact (implicit) formula for the distribution of the maximum on integrating once both
sides of (7.1).

One can replace |det(X ′′j (t))| in the conditional expectation by (−1)j det(X ′′j (t)), since under
the conditioning and whenever the event {M ≤ x} holds true, X ′′j (t) is negative semi-definite.

Proof. Let Nj(u), j = 0, . . . , d be the number of global maxima of X(.) on S that belong to
Sj and are larger than u. From the hypotheses it follows that a.s.

∑
j=0,...,dNj(u) is equal to 0

or to 1, so that

(7.2) P{M > u} =
∑

j=0,...,d

P{Nj(u) = 1} =
∑

j=0,...,d

E(Nj(u)).
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The proof will be finished as soon as we show that each term in (7.2) is the integral over
(u,+∞) of the corresponding term in (7.1). This is self-evident for j = 0.

Let us consider the term j = d. We apply the weighted Rice formula (6.6) of Chapter 6, as
follows:

• Z is the random field X ′ defined on Sd.
• For each t ∈ Sd, put W = S and Y t : S → R2 defined as:

Y t(w) :=
(
X(w)−X(t), X(t)

)
.

Notice that the second coordinate in the definition of Y t does not depend on w.
• In the place of the function g, we take for each n = 1, 2, . . . the function gn defined as

follows:

gn(t, f1, f2) = gn(f1, f2) =
(
1−Fn(sup

w∈S
f1(w))

)
.
(
1−Fn(u− f2(w))

)
,

where w is any point inW and for n a positive integer and x ≥ 0, we define as in formula
6.7 :

(7.3) Fn(x) := F(nx) ; with F(x) = 0 if 0 ≤ x ≤ 1/2 , F(x) = 1 if x ≥ 1 ,

and F monotone non-decreasing and continuous.

It is easy to check that all the requirements in Theorem 6.4 are satisfied, so that, for the value 0
instead of u in formula (6.6) we get:

(7.4) E
( ∑

t∈Sd,X′(t)=0
gn(Y

t)
)
=

∫

Sd

E
(
|det(X ′′(t)|gn(Y t)

∣∣X ′(t) = 0).pX′(t)(0)λd(dt).

Notice that the formula holds true for each compact subset of Sd in the place of Sd, hence for Sd
itself by monotone convergence.
Let now n ↑ ∞ in (7.4). Clearly gn(Y

t) ↓ 1IX(s)−X(t)≤0,∀s∈S .1IX(t)≥u. The passage to the limit
does not present any difficulty since 0 ≤ gn(Y

t) ≤ 1 and the sum in the left-hand side is bounded

by the random variable NX′

0 (Sd), which is in L1 because of Rice Formula. We get

E(Nd(u)) =

∫

Sd

E
(
|det(X ′′(t)|1IX(s)−X(t)≤0,∀s∈S1IX(t)≥u

∣∣X ′(t) = 0).pX′(t)(0)λd(dt)

Conditioning on the value of X(t), we obtain the desired formula for j = d.

The proof for 1 ≤ j ≤ d− 1 is essentially the same, but one must take care of the parameteri-
zation of the manifold Sj . One can first establish locally the formula on a chart of Sj , using local
coordinates.

It can be proved as in Proposition 6.6 (the only modification is due to the term 1IAx) that the
quantity written in some chart as

E
(
det(Y ′′(s))1IAx

∣∣Y (s) = x, Y ′(s) = 0
)
pY (s),Y ′j (s)(x, 0)ds,

where the random field Y (s) is X written in some chart of Sj , i.e. Y (s) = X(φ−1(s)), defines a
j-form, that is, a measure on Sj that does not depend on the parameterization and which has a
density with respect to the Lebesgue measure ds in every chart. It can be proved that the integral
of this j-form on Sj gives the expectation of Nj(u).

To get formula (7.1) it suffices to consider locally around a precise point t ∈ Sj the chart φ
given by the projection on the tangent space at t. In this case we obtain that at t

• ds is in fact σj(dt)
• Y ′(s) is isometric to X ′j(t)

where s = φ(t).

This finishes the proof.
¤
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2. One parameter processes

In this section we restrict the scope of our study to Gaussian processes defined on a compact
interval of the line. Without loss of generality, we will assume this interval to be [0, 1]. As
announced this will enable us to obtain deeper results on the regularity of the distribution of M .
The statement of the main theorem is the following:

Let X = {X(t) : t ∈ [0, 1]} be a stochastic process with real values. It is said to satisfy the
hypothesis Hk, k a positive integer, if:

(1) X is Gaussian;
(2) a.s. X has Ck sample paths;
(3) For every integer n ≥ 1 and any set t1, . . . , tn of distinct parameter values, the distribution

of the random vector:

X(t1), . . . , X(tn), X
′(t1), . . . , X

′(tn), . . . , X
(k)(t1), . . . , X

(k)(tn)

is non-degenerate.
We denote m(t) and r(s, t) the mean and covariance functions of X and use the notation

rij :=
∂i+j

∂si∂tj r (i, j = 0, 1, ..) for the derivatives, whenever they exist.

It is in general a non-trivial task to verify condition (3). However, for stationary Gaussian
processes a simple sufficient condition on the spectral measure which implies (3) is given in Exercise
3.5.

Theorem 7.3. Assume that X satisfies H2k. Denote by F (u) = P(M ≤ u) the distribution
function of M = maxt∈[0,1]X(t).

Then, F is of class Ck and its successive derivatives can be computed by repeated application
of Lemma 7.7 below.

Theorem 7.3 for random processes with one parameter appears to be a considerable extension
of Theorem 7.1. For example, it implies that if the process is Gaussian with C∞ paths and satisfies
the non-degeneracy condition for every k=1,2,. . . , then the distribution of the maximum is C∞.
The same methods we will be using in the proof, provide also bounds for the successive derivatives.
The asymptotic behaviour as their argument tends to +∞ will be considered in Chapter 8, when
we will study a certain number of asymptotic methods related to the distribution of the maximum.

Before proceeding to the proof of Theorem 7.3, which turns out to be quite long and presents
a number of technical difficulties, let us make a parenthesis to state two theorems on the density
of the maximum, which are easier to prove and provide simple inequalities for the density of
the maximum. The first one, Theorem 7.4 refers to general, not necessarily Gaussian processes.
The second one, Theorem 7.5 concerns Gaussian processes. As applications, one gets upper and
lower bounds for the density of M under conditions which otherwise have required complicated
calculations and unnecessary restrictions.

Theorem 7.4. Assume that the process X = {X(t) : t ∈ [0, 1]} has C2−paths, that for each
t ∈ [0, 1], the triplet (X(t), X ′(t), X ′′(t)) admits a joint density and X ′(t) has a bounded density
pX′(t)(.). We also assume that the function

I(x, z) :=

∫ 1

0

E
(
X ′′−(t)

∣∣X(t) = x,X ′(t) = z
)
pX(t),X′(t)(x, z)dt

is uniformly continuous in z for (x, z) in some neighborhood of (u, 0). Then the distribution of M
admits a density pM (.) satisfying a.e.

(7.5) pM (u) ≤ P(X ′(0) < 0
∣∣X(0) = u)pX(0)(u) + P(X ′(1) > 0

∣∣X(1) = u)pX(1)(u)

+

∫ 1

0

E
(
X ′′−(t)

∣∣X(t) = x,X ′(t) = 0
)
pX(t),X′(t)(x, 0)dt
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Proof. Let u ∈ R and h > 0. We have

P(M ≤ u)− P(M ≤ u− h) = P(u− h < M ≤ u) ≤
≤ P(u− h < X(0) ≤ u,X ′(0) < 0) + P(u− h < X(1) ≤ u,X ′(1) > 0) + P(M+

u−h,u > 0),

where M+
u−h,u = M+

u−h,u(0, 1), since if u − h < M ≤ u, then either the maximum occurs in the

interior of the interval [0, 1] or at 0 or 1, with the derivative taking the indicated sign. Notice that

P(M+
u−h,u > 0) ≤ E(M+

u−h,u).

Using Proposition 1.20, with probability 1, X ′(.) has no tangencies at the level 0, thus an upper
bound for this expectation follows from Kac’s formula:

M+
u−h,u = lim

δ→0

1

2δ

∫ 1

0

1{X(t)∈[u−h,u]}1I{X′(t)∈[−δ,δ]}1I{X′′(t)<0}|X ′′(t)|dt a.s.

which together with Fatou’s lemma imply:

E(M+
u−h,u) ≤ lim inf

δ−→0

1

2δ

∫ δ

−δ
dz

∫ u

u−h
I(x, z)dx =

∫ u

u−h
I(x, 0)dx.

Combining this bound with the preceding one, we get

P(M ≤ u)− P(M ≤ u− h) ≤
∫ u

u−h
[P(X ′(0) < 0

∣∣X(0) = x)pX(0)(x)

+ P(X ′(1) > 0
∣∣X(1) = x)pX(1)(x) + I(x, 0)]dx,

which gives the result. ¤

In spite of the simplicity of the proof, already in the case of Gaussian processes, this theorem
provides, under quite general conditions, an upper bound for the density which is hard to improve
(see for example Diebolt and Posse (1996)). If we consider Gaussian, centered process with unit
variance, by means of a deterministic time change, one can also assume that the process has “unit
speed” (which means that Var(X ′(t)) ≡ 1). This transforms the interval [0,1] into an interval
having length say L. Then, one can prove (see Exercise 7.2) that (7.5) reduces to:

(7.6) pM (u) ≤ p+(u) := ϕ(u)

[
1 + (2π)−1/2

∫ L

0

C(t)ϕ(u/C(t)) + uΦ(u/C(t))dt

]
,

with C(t) :=
√
r22(t, t)− 1.

As u→ +∞,

(7.7) p+(u) = ϕ(u)
[
1 + Lu(2π)−1/2 + (2π)−1/2u−2

∫ L

0

C3(t)ϕ(u/C(t))dt
]
+O

(
u−4ϕ(u/C+)

)
,

with C+ := supt∈[0,L] C(t).

The following theorem is a direct consequence of Theorem 7.2. The only point which is new
is the continuity of the density which will be proved later on.

Theorem 7.5. Suppose that X is a Gaussian process with C2 paths and such for all s, t, s 6= t ∈
[0, 1], X(s), X(t), X ′(t) and X(t), X ′(t), X ′′(t) admit a joint density. Then M has a continuous
density pM given for every u by

(7.8) pM (u) = P(M ≤ u
∣∣X(0) = u)pX(0)(u) + P(M ≤ u

∣∣X(1) = u)pX(1)(u)

+

∫ 1

0

E
(
X ′′−(t)1IM≤u

∣∣X(t) = u,X ′(t) = 0
)
pX(t),X′(t)(u, 0)dt

Using (7.8) one can obtain sharper upper-bounds than those produced by (7.5). See Exercise
7.1.

We now turn to the proofs of our main results.
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2.1. Proofs. We start with an auxiliary technical lemma.

Lemma 7.6. (a) Let Z = {Z(t) : t ∈ [0, 1] be a centered stochastic process satisfying Hk

(k ≥ 2) and t a point in (0, 1). Define the Gaussian processes Z0(s), Z1(s), Zt(s) by means of the
orthogonal decompositions:

(7.9) Z(s) = a0(s)Z(0) + sZ0(s) s ∈ (0, 1].

(7.10) Z(s) = a1(s)Z(1) + (1− s)Z1(s) s ∈ [0, 1).

(7.11) Z(s) = bt(s)Z(t) + ct (s)Z ′(t) +
(s− t)2

2
Zt(s) s ∈ [0, 1] s 6= t.

Then, the processes Z0, Z1, Zt can be extended continuously at s = 0, s = 1, s = t respectively so
that they satisfy Hk−1, Hk−1, Hk−2 respectively.
Notice that in fact the functions a0, a1, bt and ct are the ordinary regression coefficients.

(b) Let f be any function of class Ck. When there is no ambiguity on the process Z, we
will define f0, f1, f t in the same manner, putting f instead of Z in (7.9), (7.10), (7.11), but
still keeping the regression coefficients corresponding to Z. Then f 0, f1, f t can be extended by
continuity in the same way to functions in Ck−1, Ck−1, Ck−2 respectively.

(b’) As a consequence, if Z is a process satisfying Hk which is not centered, we can define
Z0, Z1, Zt using (7.9), (7.10), (7.11) applied separately to the centered process t→ Z(t)−E(Z(t))
and to the mean E(Z(t)) and summing up the two components. In fact we obtain again (7.9),
(7.10), (7.11)

(c) Let m be a positive integer, suppose Z(t) satisfies H2m+1 and t1, . . . , tm belong to [0, 1].
Denote by Zt1,...,tm(s) the process obtained by repeated application of the operation of part (a) of
this lemma, that is

Zt1,...,tm(s) = (Zt1,...,tm−1)tm(s).

Denote by s1, . . . , sp (p ≤ m) the ordered p-tuple of the elements of t1, . . . , tm that belong to (0, 1)
(i.e. they are neither 0 nor 1). Then, a.s. the application:

(s1, . . . , sp, s)Ã
(
Zt1,...,tm(s), (Zt1,...,tm)′(s)

)

is continuous.

Proof. (a) and (b) follow in a direct way, by computing the regression coefficients a0 (s),
a1 (s) , bt(s), ct (s), substituting into formulas (7.9),(7.10),(7.11) and using the arguments above.
We prove now (c) which is a consequence of the following:

Suppose Z(t1, . . . , tk) is a Gaussian field with Cp sample paths (p ≥ 2) defined on [0, 1]k with
no degeneracy in the same sense that in the definition of hypothesis Hk(3) for one-parameter
processes. Then the Gaussian fields defined by means of:

Z0(t1, . . . , tk) = (tk)
−1 (

Z(t1, . . . , tk−1, tk)− a0(t1, . . . , tk)Z(t1, . . . , tk−1, 0)
)
for tk 6= 0,

Z1(t1, . . . , tk) = (1− tk)−1
(
Z(t1, . . . , tk−1, tk)− a1(t1, . . . , tk)Z(t1, . . . , tk−1, 1)

)
for tk 6= 1,

Z̃(t1, . . . , tk, tk+1) = 2 (tk+1 − tk)−2 (Z(t1, . . . , tk−1, tk+1)− b(t1, . . . , tk, tk+1)Z(t1, . . . , tk)−

− c(t1, . . . , tk, tk+1)
∂Z

∂tk
(t1, . . . , tk)) for tk+1 6= tk

can be extended to [0, 1]
k
(respectively [0, 1]

k
, [0, 1]

k+1
) into fields with paths in Cp−1 (respectively

Cp−1, Cp−2). In the above formulas,
- a0(t1, . . . , tk) is the regression coefficient of Z(t1, . . . , tk) on Z(t1, . . . , tk−1, 0),
- a1(t1, . . . , tk) is the regression coefficient of Z(t1, . . . , tk) on Z(t1, . . . , tk−1, 1),
- b(t1, . . . , tk, tk+1), c(t1, . . . , tk, tk+1) are the regression coefficients of Z(t1, . . . , tk−1, tk+1) on

the pair
(
Z(t1, . . . , tk),

∂Z
∂tk

(t1, . . . , tk)
)
.

Let us prove the statement about Z̃(t1, . . . , tk, tk+1). The other two are simpler. Suppose

for the moment that Z̃(t1, . . . , tk, tk+1) is centered. Denote by V the subspace of L2 (Ω,=, P )
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generated by the pair
(
Z(t1, . . . , tk),

∂Z
∂tk

(t1, . . . , tk)
)
. Denote by ΠV ⊥ the version of the orthogonal

projection of L2 (Ω,=, P ) on the orthogonal complement of V , which is:

ΠV ⊥(Y ) := Y −
[
bZ(t1, . . . , tk) + c

∂Z

∂tk
(t1, . . . , tk)

]
,

where b and c are the regression coefficients of Y on the pair

Z(t1, . . . , tk),
∂Z

∂tk
(t1, . . . , tk).

If {Y (θ) : θ ∈ Θ} is a random field with continuous paths and such that θ → Y (θ) is continuous
in L2 (Ω,=, P ) , then a.s.

(θ, t1, . . . , tk)→ ΠV ⊥(Yθ)

is continuous.
From the definition:

Z̃(t1, . . . , tk, tk+1) = 2 (tk+1 − tk)−2ΠV ⊥ (Z(t1, . . . , tk−1, tk+1)) .

On the other hand, by Taylor’s formula:

Z(t1, . . . , tk−1, tk+1) = Z(t1, . . . , tk) + (tk+1 − tk)
∂Z

∂tk
(t1, . . . , tk) +R2 (t1, . . . , tk, tk+1)

with

R2 (t1, . . . , tk, tk+1) =

∫ tk+1

tk

∂2Z

∂t2k
(t1, . . . , tk−1, τ) (tk+1 − τ) dτ

so that

(7.12) Z̃(t1, . . . , tk, tk+1) = ΠV ⊥
[
2 (tk+1 − tk)−2R2 (t1, . . . , tk, tk+1)

]
.

It is clear that the paths of the random field Z̃ are p− 1 times continuously differentiable for

tk+1 6= tk. Relation (7.12) shows that they have a continuous extension to [0, 1]
k+1

with Z̃(t1, . . . , tk, tk) =

ΠV ⊥
(
∂2Z
∂t2k

(t1, . . . , tk)
)
. In fact,

ΠV ⊥
(
2 (sk+1 − sk)−2R2 (s1, . . . , sk, sk+1)

)
=

= 2 (sk+1 − sk)−2
∫ sk+1

sk

ΠV ⊥

(
∂2Z

∂t2k
(s1, . . . , sk−1, τ)

)
(sk+1 − τ) dτ.

A.s. the integrand is a continuous function of the parameters therein so that, a.s.:

Z̃ (s1, . . . , sk, sk+1)→ ΠV ⊥

(
∂2Z

∂t2k
(t1, . . . , tk)

)
when (s1, . . . , sk, sk+1)→ (t1, . . . , tk, tk)

This proves (c) in case Z̃ is centered.

It remains to consider the case when Z̃ is purely deterministic, say Z̃(t1, . . . , tk) = f(t1, . . . , tk).
Making tk+1 tend to tk in the regression equation, we see that

b(t1, . . . , tk, tk) = 1 c(t1, . . . , tk, tk) = 0(7.13)

∂b

∂tk
(t1, . . . , tk, tk) = 0

∂c

∂tk
(t1, . . . , tk, tk) = 1(7.14)

So that b(t1, . . . , tk, tk+1) = 1+O
(
(tk−tk+1)2

)
and c(t1, . . . , tk, tk+1) = tk+1−tk+O

(
(tk−tk+1)2

)

and

f̃(t1, . . . , tk, tk+1) = 2(tk+1−tk)−2
[
f(t1, . . . , tk−1, tk+1)−Z(t1, . . . , tk)−(tk+1−tk)

∂Z

∂tk
(t1, . . . , tk)

]
+O(1)

The result is now a simple consequence of the Taylor formula. In the same way, when p ≥ 3, we

obtain the continuity of the partial derivatives of Z̃ up to the order p− 2. ¤
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Proof of Theorem 7.5.

We apply Theorem 7.2. It is easy to check that whenever the parameter set is a compact
interval in the line, it is not necessary the process to be defined in a neighborhood of S, since this
assumption is in fact used to define the derivative at the boundary of S. In the case of an interval,
we simply use one-sided derivatives at the extremes.

The conditions required for (7.8) to hold true are fulfilled.
Set β(t) ≡ 1. Then:

• For t 6= 0, 1, under the condition X(t) = u,X ′(t) = 0 , the event {M ≤ u} can be written
{∀s ∈ [0, 1], Xt(s) ≤ βt(s)u} with the notation of Lemma 7.6. This event will be denoted
Au(X

t, βt).
• For t 6= 0, 1, under the condition X(t) = u,X ′(t) = 0, X ′′(t) is equal to Xt(t)
• under the condition X(0) = u, the event {M ≤ u} is equal to Au(X

0, β0).
• under the condition X(1) = u, the event {M ≤ u} is equal to Au(X

1, β1).

We prove, for example, that

P{Au(Xt, βt)}
is a continuous function of u. Let h > 0. We have the inequalities:

(7.15)∣∣P{Au(Xt, βt)}−P{Au−h(Xt, βt)}
∣∣ ≤ P

(
{Au(Xt, βt)}\{Au−h(Xt, βt)}

)
+P
(
{Au−h(Xt, βt)}\{Au(Xt, βt)}

)

≤ P
{

sup
s∈[0,1]

(Xt(s)− βt(s)u) ∈ [−h‖βt‖∞, 0]
}
+ P

{
sup
s∈[0,1]

(Xt(s)− βt(s)u) ∈ [0, h‖βt‖∞]
}

Now, apply Ylvisaker’s Theorem 1.21 to prove that the expression above tends to zero as h→ 0,
which proves the continuity of P{Au(Xt, βt)}. Similar arguments can be applied to prove that
each one of the three terms in the right-hand side of (7.8) is a continuous function of u. ¤

Our next lemma is the basic technical tool to prove the fundamental Theorem 7.3.

Lemma 7.7. Suppose Z = {Z(t) : t ∈ [0, 1]} is a stochastic process that verifies H2. Define:

Fv (u) = E {ξv.1IAu}
where

Au = Au(Z, β) = {Z(t) ≤ β (t)u for all t ∈ [0, 1]},
β(.) is a real valued C2 function defined on [0, 1],
ξv = G(Z(t1)−β(t1)v, . . . , Z(tm)−β(tm)v) for some positive integer m, t1, . . . , tm ∈ [0, 1] , v ∈

R and some C∞ function G : Rm → R having at most polynomial growth at ∞, that is, | G(x) |≤
C(1+ ‖ x ‖p) for some positive constants C, p and all x ∈ Rm.

Then, for each v ∈ R, Fv is of class C1 and its derivative is a continuous function of the pair
(u, v) that can be written in the form:

(7.16) F ′v(u) = β(0)E
{
ξ0v,u.1IAu(Z0,β0)

}
.pZ(0) (β (0) .u)

+ β(1)E
{
ξ1v,u.1IAu(Z1,β1)

}
.pZ(1)(β(1).u)

−
∫ 1

0

β(t)E
{
ξtv,u

(
Ztt − βt(t).u

)
1IAu(Zt,βt)

}
.pZ(t),Z′(t) (β (t) .u, β

′ (t) .u) dt,

Proof.

Au \Au−h = Au ∩
[
u− h < sup

t:β(t)>0

Z(t)

β(t)
≤ u

]
.

The set B+ := {t ∈ [0, 1] : β(t) > 0} is open in [0, 1], so it is a countable union of disjoint open
intervals: B+ =

⋃
n(an, bn)(The reader may notice that intervals having the form [0, bn) or (an, 1]

may be present). By a monotone convergence argument,

E
(
ξv1IAu\Au−h

)
= lim
N→+∞

lim
ε→0

E
[
ξv1I{u−h<supt∈BNε Y (t)≤u}

]
,
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where

Y (t) :=
Z(t)

β(t)
, BNε := ∪Nn=1(an + ε; bn − ε)

and ε is small enough so that BNε is well-defined. Since β(t) is bounded away from zero on BN
ε ,

the conditions of Theorem 7.2 are fulfilled by the process Y (t). Putting the weights ξv at every
global maxima, we get

(7.17)

E
(
ξv1IAu\Au−h

)
= lim
N→+∞

lim
ε→0

N∑

n=1

∫ bn+ε

an−ε
dt

∫ u

u−h
dx E

[
ξv|Y ′′(t)|1IAx

∣∣Y (t) = x, Y ′(t) = 0
]
pY (t),Y ′(t)(x, 0)

+

N∑

n=1

∫ u

u−h

[
E
[
ξv1IAx

∣∣Y (an + ε) = x
]
pY (an+ε)(x) + E

[
ξv1IAx

∣∣Y (bn − ε) = x
]
pY (bn−ε)(x)

]
dx

Changing variables in each integral, we get:

(7.18)

E
[
ξv1IAu\Au−h

]
= lim
N→+∞

lim
ε→0

N∑

n=1

∫ bn+ε

an−ε
dt

∫ u

u−h
dx

β(t)E
[
ξv|Z ′′(t)− β′′(t)x|1IAx

∣∣Z(t) = β(t)x, Z ′(t) = β′(t)x
]
pZ(t),Z′(t)

(
β(t).x, β′(t)x)

+
N∑

n=1

∫ u

u−h

[
β(an + ε)E

[
ξv1IAx

∣∣Z(an + ε) = β(an + ε)x
]
pZ(an+ε)

(
β(an + ε).x

)

+ β(bn − ε)E
[
ξv1IAx

∣∣Z(bn − ε) = β(bn − ε)x
]
pZ(bn−ε)

(
β(bn − ε).x

)]
dx

We get, as in the proof of Theorem 7.8:
(7.19)

E
[
ξv1IAu\Au−h

]
= lim
N→+∞

lim
ε→0

N∑

n=1

∫ bn+ε

an−ε
dt

∫ u

u−h
dxβ(t)E

[
ξtv,u|Zt(t)− βt(t).x|1IAx(Zt,βt)

]
pZ(t),Z′(t)

(
β(t).x, β′(t)x)

+

N∑

n=1

∫ u

u−h

[
β(an + ε)E

[
ξv1IAx

∣∣Z(an + ε) = β(an + ε)x
]
pZ(an+ε)

(
β(an + ε).x

)

+ β(bn − ε)E
[
ξv1IAx

∣∣Z(bn − ε) = β(bn − ε)x
]
pZ(bn−ε)

(
β(bn − ε).x

)]
dx

In the present form we can see that the conditional expectations and the densities appearing
in the right-hand side of this formula are bounded, so excepting the case where an = 0 or bn = 1,
the contribution of the points an + ε and bn − ε tends to zero as ε→ 0 since β(an) = β(bn) = 0.
Letting ε→ 0 and N tend to +∞ in that order we obtain:

(7.20)

E
(
ξv1IAu\Au−h

)
=

∫

B+
β(t)dt

∫ u

u−h
dx E

[
ξtv,x

∣∣Zt(t)−βt(t).x
∣∣1IAx(Zt,βt)

]
pZ(t),Z′(t)

(
β(t).x, β′(t)x)

+

∫ u

u−h
dx (β(0))+ E

[
ξ0v,x1IAx(Z0,β0)

]
pZ(0)

(
β(0).x)

+

∫ u

u−h
dx (β(1))+ E

[
ξ1v,x1IAx(Z1,β1)

]
pZ(1)

(
β(1).x).

Lemma 7.7 shows that the integrand is a continuous function of x, so that, taking into account
also of the sign of Zt(t)− βt(t).u inside the expectation, we obtain:

(7.21)

lim
h↓0

1

h
E
(
ξv1IAu\Au−h

)
= −

∫

B+
β(t) E

[
ξtv,u(Z

t(t)−βt(t).u)1IAu(Zt,βt)
]
pZ(t),Z′(t)

(
β(t).u, β′(t)x

)
dt

+ (β(0))+ E
(
ξ0v,u1IAu(Z0,β0))pZ(0)

(
β(0).u

)
+ (β(1))+ E

(
ξ1v,u1IAu(Z1,β1))pZ(1)

(
β(1).u

)
.
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Similar computations - that we will not perform here - show an analogous result for

lim
h↓0

1

h
E
{
ξv.1IAu−h\Au

}

This finishes the proof of the lemma. ¤

Proof of Theorem 7.3.

We proceed by induction on k. We will give some details for the first two derivatives including
some implicit formulas that will illustrate the procedure for general k.

We introduce the following additional notations. Put Y (t) := X(t)− β(t)u and define, on the
interval [0, 1], the processes X0, X1, Xt, Y 0, Y 1, Y t, and the functions β0, β1, βt, as in Lemma 7.6.
Notice that the regression coefficients corresponding to the processes X and Y are the same, so
that anyone of them may be used to define the functions β0, β1, βt. One can easily check that

Y 0(s) = X0(s)− β0(s)u

Y 1(s) = X1(s)− β1(s)u

Y t(s) = Xt(s)− βt(s)u.

For t1, . . . , tm ∈ [0, 1] ,m ≥ 2, we define by induction the stochastic processes X t1,...,tm =

(Xt1,...,tm−1)
tm , Y t1,...,tm = (Y t1,...,tm−1)

tm and the function βt1,...,tm = (βt1,...,tm−1)
tm , applying

Lemma 7.6 for the computations at each stage.
With the aim of somewhat reducing the size of the formulas we will express the successive

derivatives in terms of the processes Y t1,...,tm instead of Xt1,...,tm . The reader must keep in mind
that for each m-tuple t1, . . . , tm the results depend on u through the expectation of the stochastic
process Y t1,...,tm . Also, for a stochastic process Z we will use the notation

A(Z) = A0(Z, β) = {Z(t) ≤ 0 : for all t ∈ [0, 1]}

First derivative
Suppose that X satisfies H2. We apply formula (7.16) in Lemma 7.7 for ξ ≡ 1, Z = X and

β(.) ≡ 1 obtaining for the first derivative:
(7.22)

F ′(u) = E
[
1IA(Y 0)

]
pY (0)(0) + E

[
1IA(Y 1)

]
pY (1)(0)−

∫ 1

0

E
[
Y t1(t1)1IA(Y t1 )

]
pY (t1),Y ′(t1)(0, 0)dt1.

This expression is exactly the expression in (7.8) with the notational changes just mentioned and
after taking profit of the fact that the process is Gaussian, via regression on the condition in each
term. Notice that according to the definition of the Y -processes:

E
[
1IA(Y 0)

]
= E

[
1IAu(X0,β0)

]

E
[
1IA(Y 1)

]
= E

[
1IAu(X1,β1)

]

E
[
Y t1(t1)1IA(Y t1 )

]
= E

[
Y t1(t1)1IAu(Xt1 ,βt1 )

]
.

Second derivative.
Suppose that X satisfies H4. Then, X

0, X1, Xt1 satisfy H3, H3, H2 respectively. Therefore
Lemma 7.7 applied to these processes can be used to show the existence of F ′′(u) and to compute
a similar formula, except for the necessity of justifying differentiation under the integral sign in
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the third term. We get the expression:

(7.23) F ′′(u) = −E
[
1IA(Y 0)

]
p
(1)
Y (0)(0)− E

[
1IA(Y 1)

]
p
(1)
Y (1)(0)

+

∫ 1

0

E
[
Y t1(t1)1IA(Y t1 )

]
p
(1,0)
Y (t1),Y ′(t1)

(0, 0)dt1

+ pY (0)(0)
{
β0(0)E

[
1IA(Y 0,0)

]
pY 0(0)(0) + β0(1)E

[
1IA(Y 0,1)

]
pY 0(1)(0)

}

−
∫ 1

0

β0(t2)E
[
Y 0,t2(t2)1IA(Y 0,t2 )

]
pY 0(t2),(Y 0)′(t2)(0, 0)dt2+

+ pY (1)(0)
{
β1(0)E

[
1IA(Y 1,0)

]
pY 1(0)(0) + β1(1)E

[
1IA(Y 1,1)

]
pY 1(1)(0)

}

−
∫ 1

0

β1(t2)E
[
Y 1,t2(t2)1IA(Y 1,t2 )

]
pY 1(t2),(Y 1)′(t2)(0, 0)dt2−

−
∫ 1

0

pY (t1),Y ′(t1)(0, 0)





−βt1(t1)E
[
1IA(Y t1 )

]
+ βt1(0)E

[
Y t1,0(t1)1IA(Y t1,0 )

]
pY t1 (0)(0)+

+βt1(1)E
[
Y t1,1(t1)1IA(Y t1,1 )

]
pY t1 (1)(0)−

−
∫ 1
0
βt1(t2)E

[
Y t1,t2(t1)Y

t1,t2(t2)1IA(Y t1,t2 )

]
pY t1 (t2),(Y t1 )′(t2)(0, 0)dt2




dt1,

In this formula p
(1)
Y (t0)

, p
(1)
Y (t1)

and p
(1,0)
Y (t1),Y ′(t1)

(0, 0) stand respectively for the derivative of pY (t0)(.),

the derivative of pY (t1)(.) and the derivative with respect to the first variable of pY (t1),Y ′(t1)(., .).
To validate the above formula, notice the following points:

• The first two lines are obtained by differentiating with respect to u, the densities pY (0)(0) =
pX(0)(−u), pY (1)(0) = pX(1)(−u), pY (t1),Y ′(t1)(0, 0) = pX(t1),X′(t1)(−u, 0).

• Lines 3 and 4 come from the application of Lemma 7.7 to differentiate E
[
1A(Y 0)

]
. The

lemma is applied with Z = X0, β = β0, ξ = 1.
• Similarly, lines 5 and 6 contain the derivative of E

[
1A(Y 1)

]
.

• The remaining corresponds to differentiate the function

E
[
Y t1(t1)1IA(Y t1 )

]
= E

[
(Xt1(t1)− βt1(t1)u)1IAu(Xt1 ,βt1 )

]

in the integrand of the third term in (7.22). The first term in line 7 comes from the
simple derivative

∂

∂v
E
[
(Xt1(t1)− βt1(t1)v)1IAu(Xt1 ,βt1 )

]
= −βt1(t1)E(1IA(Y t1 )).

The other terms are obtained by applying Lemma 7.7 to compute

∂

∂u
E
[
(Xt1(t1)− βt1(t1)v)1IAu(Xt1 ,βt1 )

]
,

putting Z = Xt1 , β = βt1 , ξ = Xt1(t1)− βt1(t1)v.
• Finally, differentiation under the integral sign is valid since because of Lemma 7.6, the

derivative of the integrand is a continuous function of (t1, t2, u) due to regularity and
non-degeneracy of the Gaussian distributions involved, and the application of Ylvisaker’s
Theorem.

General case.
With the above notation, given the m−tuple t1, . . . , tm of elements of [0, 1] we will

call the processes Y, Y t1 , Y t1,t2 , . . . , Y t1,...,tm−1 the ”ancestors” of Y t1,...,tm . In the same
way we define the ancestors of the function βt1,...,tm .

Assume the following induction hypothesis: If X satisfies H2k then F is k times
continuously differentiable and F (k) is the sum of a finite number of terms belonging to
the class Dk which consists of all expressions of the form:

(7.24)

∫ 1

0

..

∫ 1

0

ds1..dspQ(s1, .., sp)E
[
ξ1IA(Y t1,..,tm )

]
K1(s1, .., sp)K2(s1, .., sp)

where:
- 1 ≤ m ≤ k.
- t1, . . . , tm ∈ [0, 1] ,m ≥ 1.
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- s1, .., sp, 0 ≤ p ≤ m, are the elements in {t1, . . . , tm} that belong to (0, 1) (that is,
which are neither “0” nor “1”). When p = 0 no integral sign is present.

- Q(s1, .., sp) is a polynomial in the variables s1, .., sp.
- ξ is a product of values of Y t1,...,tm at some locations belonging to {s1, .., sp} .
- K1(s1, .., sp) is a product of values of some ancestors of βt1,...,tm at some locations

belonging to the set {s1, .., sp} ∪ {0, 1} .
- K2(s1, .., sp) is a sum of products of densities and derivatives of densities of the

random variables Z(τ) at the point 0, or the pairs (Z(τ), Z ′(τ)) at the point (0, 0) where
τ ∈ {s1, .., sp} ∪ {0, 1} and the process Z is some ancestor of Y t1,...,tm .
Notice that K1 does not depend on u but K2 is a function of u.
It is clear that the induction hypothesis is verified for k = 1. Assume that it is true up
to the integer k and that X satisfies H2k+2. Then F

(k) can be written as a sum of terms
of the form (7.24). Consider a term of this form and observe that the variable u may
appear in three locations:
(1) In ξ, where differentiation is simple given its product form, the fact that ∂

∂uY
t1,...,tq (s) =

−βt1,...,tq (s), q ≤ m, s ∈ {s1, . . . , sp} and the boundedness of moments allowing to
differentiate under the integral and expectation signs.

(2) In K2(s1, .., sp) which is clearly C∞ as a function of u. Its derivative with respect to
u takes the form of a product of functions of the types K1(s1, .., sp) and K2(s1, .., sp)
defined above.

(3) In 1A(Y t1,..,tm ). Lemma 7.7 shows that differentiation produces 3 terms depending

upon the processes Y t1,...,tm,tm+1 with tm+1 belonging to (0, 1) ∪{0, 1}. Each term
obtained in this way belongs to Dk+1.

The proof is achieved by taking into account that, as in the computation of the second
derivative, Lemma 7.6 implies that the derivatives of the integrands are continuous functions
of u that are bounded as functions of (s1, .., sp, tm+1, u) if u varies in a bounded set. ¤

The statement and proof of Theorem 7.3 can not, of course, be used to obtain explicit expres-
sions for the derivatives of the distribution function F . However, the implicit formula for F (k)(u)
as sum of elements of Dk can be transformed into explicit upper-bounds if one replaces everywhere
the indicator functions 1IA(Y t1,..,tm ) by 1 and the functions βt1,..,tm(.) by their absolute value.

On the other hand, Theorem 7.3 permits to have the exact asymptotic behaviour of F (k)(u) as
u→ +∞ in case Var(Xt) is constant. Even though the number of terms in the formula increases
rapidly with k, there is exactly one term that is dominant. It turns out that as u→ +∞, F (k)(u)
is equivalent to the k-th derivative of the equivalent of F (u). We will come back to this point in
Chapter 8.

3. Continuity of the density of the maximum of random fields

Let S ⊂ Rd, d > 1 and X = {X(t) : t ∈ U} a real-valued random field defined on some open
neighborhood U of S. We assume that S and X satisfy the assumptions A1 to A5 of Section 1.
We know from Theorem 7.2 that the probability distribution of the maximum M = maxt∈S X(t)
has a density pM which verifies equality (7.1).

As we did in Theorem 7.5, corresponding to the one-dimensional case, we will now prove that
pM is continuous. The problem is more difficult here, since the equivalent of Lemma 7.6 is harder.

The result is the following :

Theorem 7.8. In addition to the above assumptions, for every s ∈ S, t ∈ Sj j = 0, 1, ..., d0,
s 6= t, the joint distributions of the triplets (X(t), X ′(t), X ′′(t)), (X(s), X(t), X ′j(t)) do not degen-
erate. Then the density pM given by (7.1) is continuous.
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Proof. For t ∈ Sj and s ∈ S, we define the normalization

n(t, s) := ‖(s− t)j,N‖+
1

2
‖s− t‖2.

where (s−t)j,N is the normal component of (s−t), i.e. its orthogonal projection onto the subspace
Nt,j (see Section 1 for the notation).

For s 6= t, t ∈ Sj , define Xt(s) by means of the Gaussian regression:

(7.25) X(s) = at(s)X(t)+ < bt(s), X ′(t) > + n(t, s)Xt(s),

The reader should notice that X t(s) is not the same as before, since the present normalization
is different. Let us consider the expression in the right-hand side of (7.1). A dominated convergence
argument shows that it is enough to prove the continuity of the integrands appearing in that
formula. Such an integrand has the form:

E
(
|det(X ′′j (t))|1IAx

∣∣X(t) = x,X ′j(t) = 0
)
pX(t),X′j(t)(x, 0)σj(dt)

The density pX(t),X′j(t)(x, 0) is clearly a continuous function of x. The regression of X ′′j (t) on the

condition does not present any problem and the only remaining point is to check that

P(Ax
∣∣X(t) = x,X ′j(t) = 0)

is a continuous function of x. We write this as an unconditional probability, using the regression
formula 7.25, so that it becomes:

P{Y t(s) ≤ γt(s) x for all s ∈ S, s 6= t},
where

Y t(s) = Xt(s) +
〈bt(s), X ′j,N (t)〉

n(t, s)

and

γt(s) =
1− at(s)
n(t, s)

On the other hand, from the regression formula it follows easily that the C2−functions at and bt,
verify:

at(t) = 1, (at)′(t) = 0, bt(t) = 0, (bt)′(t) = Id,

where Id is the identity in Rd.
The reader can check that there exist positive constants K, c and γ̄ such that for all s ∈ S, s 6= t,
one has:

(7.26)

E(Y t(s)) ≤ K

Var(Y t(s)) ≥ c

|γ(s, t)| ≤ γ̄

Let us denote Cx := {Y t(s) ≤ γt(s) x for all s ∈ S, s 6= t} and let h > 0. Clearly:

|P{Cx} − P{Cx−h}| ≤ P{Cx \ Cx−h}+ P{Cx−h \ Cx},
and it suffices to prove that both terms in the right-hand side are small if h is small. Let us do it
for the first one, the second is similar. We have:

(7.27) P{Cx \ Cx−h} ≤ P{−h.γ̄ < sup
s∈S,s6=t

[
Y t(s)− γ(s, t).x

]
≤ 0}.

To finish, observe that the random field {Y t(s)− γ(s, t).x : s, t ∈ S, s 6= t} verifies the hypothesis
of Theorem 1.22. So,the distribution of its supremum has no atom in R. This shows that the
right-hand side of (7.27) tends to zero as h→ 0, and we are done. ¤
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Remark.

The last proof exhibits the main technical difference between one-parameter processes and
multidimensional parameter ones, in what concerns the study of the regularity of the distribution
of the maximum. The random field {X t(s) : s ∈ S, s 6= t} is constructed after Gaussian regression
and re-normalization. In the multidimensional parameter case, it does not have a limit as s→ t,
the paths present a “helix behavior” as one approaches the point t.

In the one-dimensional parameter case, this new process can be extended continuously to
s = t, and the extension also preserves a part of the regularity of the original process. So, we are
able to iterate the procedure, re-normalize again, and continue in this way. This is the basis of
the proof of Theorem 7.3 that we are unable to reproduce for general Gaussian random fields.

Exercises

Exercise 7.1. (a) Check the following inequalities:

P(M ≤ u
∣∣X0 = u) = P(M ≤ u,X ′(0) < 0

∣∣X(0) = u)

≥ P
(
X ′(0) < 0

∣∣X(0) = u
)
− E(Uu[0, 1]1I{X′(0)<0}

∣∣X(0) = u).

P(M ≤ u
∣∣X(1) = u) = P(M ≤ u,X ′(1) > 0

∣∣X(1) = u) ≥
≥ P

(
X ′(1) > 0

∣∣X(1) = u
)
− E(Du[0, 1]1I{X′(1)>0}

∣∣X(1) = u)

If x′′ < 0 :

P(M ≤ u
∣∣X(t) = u,X ′(t) = 0, X ′′(t) = x′′) ≥

≥ 1− E([Du([0, t]) + Uu([t, 1])]
∣∣X(t) = u,X ′(t) = 0, X ′′(t) = x′′).

(b) Using the inequalities in (a) prove the following lower bound for the density of the maximum:

pM (u) ≥ P(M ≤ u
∣∣X(0) = u)pX(0)(u) + P(M ≤ u

∣∣X(1) = u)pX(1)(u)

(7.28)

+

∫ 1

0

E
(
X ′′−(t)1IM≤u

∣∣X(t) = x,X ′(t) = 0
)
pX(t),X′(t)(x, 0)dt

−
∫ 1

0

ds

∫ 0

−∞
dx′
∫ +∞

0

x′spX(s),X′(s),X(0),X′(0)(u, x
′
s, u, x

′)dx′s−

−
∫ 1

0

dt

∫ 0

−∞
|x′′|

[ ∫ t
0
ds
∫ 0
−∞ |x′|pX(s),X′(s),X(t),X′(t),X′′(t)(u, x′, u, 0, x′)dx′

+
∫ 1
t
ds
∫ +∞
0

x′pX(s),X′(s),X(t),X′(t),X′′(t)(u, x
′, u, 0, x′′)dx′

]
dx′′.

Exercise 7.2. (a) Prove inequality (7.6).
(b) Prove (7.7) which gives an asymptotic bound for pM (u) as u→ +∞.

Exercise 7.3. Let {X(s, t) : s, t ∈ R} be a real-valued two-parameter Gaussian, centered
stationary isotropic random field with covariance Γ,Γ(0) = 1. Assume that its spectral measure
µ is absolutely continuous with respect to Lebesgue measure in R2 with density

µ(dx, dy) = f(ρ)dsdt, ρ = (x2 + y2)
1
2 ,

so that

2π

∫ +∞

0

ρf(ρ)dρ = 1.

Assume further that Jk =
∫ +∞
0

ρkf(ρ)dρ <∞, for 1 ≤ k ≤ 5.
For short, denote by X,Xs, Xt, Xss, Xst, Xtt the values of X and the first and second partial
derivatives at the point (s, t) and X ′ = (Xs, Xt)

T and X ′′ the matrix of second order partial
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derivatives.
Let S = {(s, t) : s2 + t2 ≤ 1} be the closed disk of radius 1 centered at the origin and M =
max(s,t)∈S X(s, t).

(a) Prove that

• X ′ is independent of X and X ′′, and has variance πJ3Id
• X ′′st is independent of X, X ′ X ′′ss and X ′′tt and has variance π

4 J5
• Conditionally on X = u, the random variables X ′′ss and X ′′tt have

– expectation: −πJ3
– variance: 3π4 J5 − (πJ3)

2

– covariance: π
4 J5 − (πJ3)

2.

(b) Prove that
pM (u) ≤ (I1 + I2)ϕ(u),

where I1, I2 are computed by the formulas:

I1 =
1

4
√
2πJ3

∫ ∞

0

[
(α2 + a2 − c2x2)Φ(a− cx) + [2aα− α2(a− cx)]ϕ(a− cx)

]
xϕ(x)dx,

with

a = 2πJ3u , c =

√
πJ5
4
,

I2 =

√
2

J3

[(3π
4
J5 − (πJ3)

2
) 1
2ϕ(bu) + πJ3uΦ(bu)

]
,

b =
πJ3

(
3π
4 J5 − (πJ3)2

) 1
2

.





CHAPTER 8

The tail of the distribution of the maximum

Let X = {X(t) : t ∈ S} be a real-valued random field defined on some parameter set S and
M := supt∈S X(t) its supremum. In this chapter, we present recent results which allow, in certain
cases, to give more precise approximations of the tails of the distribution of the random variable
M . We will be especially interested in the approximation of P(M > u) for large u, but we also
give results that can be used for all u.

For Gaussian processes, a number of fundamental results have been presented in Chapter 2,
that we have called the basic inequalities. These are essential for the development of most of the
mathematical theory. However, in a wide number of applications, the general situation is that
these inequalities are not good enough, one reason being that they depend on certain constants
that one is unable to estimate or for which estimations differ substantially from the true values.
Some refinements of the same subject, either for certain classes of processes or touching special
topics concerning the computation of the distribution of the maximum, have also been considered
in Chapters 3, 4, 5 and 9.

Since the 1990’s several methods have been introduced with the aim of obtaining more precise
results than those arising from the classical theory, at least under certain restrictions on the process
X . These results are interesting both from the standpoint of the mathematical theory and of their
use in significant applications. The restrictions on X include the requirement that the domain S
have some finite-dimensional geometrical structure and the paths of the random field, a certain
regularity.

Examples of these contributions are the double sum method by Piterbarg (1996); the Euler-
Poincaré Characteristic (EPC) approximation, Taylor, Takemura and Adler (2005), Adler and
Taylor’s book(2007); the tube method , Sun (1993) and also the methods contained in the previ-
ous chapters just mentioned. We refer to these books and papers for an account of these results.

This chapter is divided into two parts. In the first part, we consider two special topics which
concern only the tails of the distribution of one-parameter Gaussian processes:
In section 1 we will look at the asymptotic behavior of the successive derivatives of the distribution
of the maximum and related questions, using the methods of Chapter 7.
In section 2 we again use similar tools to study the tails of the distribution of the maximum
of certain unbounded Gaussian processes, that is, processes for which the probability q that the
supremum is finite is smaller than 1, and we are willing to understand the speed at which P(M ≤ u)
approaches the limiting value q as u→ +∞. This section opens what seems to be an unexplored
subject until now.

The second part, starting in Section 3, is the main body of the chapter. It is based upon
Theorem 7.2 of Chapter 7, allowing to express the density pM of FM by means of a general
formula. Even though this is an exact formula, it is only implicit as an expression for the density,
since the relevant random variable M appears in the right-hand side. However, it can be usefully
employed for our purposes.

First, one can use Theorem 7.2 to obtain bounds for pM (u) and thus for P{M > u} for
every u by means of replacing some indicator function in (7.1) by the condition that the normal
derivative is “extended outward” (see below for the precise meaning). This will be called the
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“direct method”. Of course, this may be interesting whenever the expression one obtains can be
handled, which is the actual situation when the random field has a law which is stationary and
isotropic. For this family of random fields, our method relies on the application of some known
results on the spectrum of random matrices, which we will use without proof and one can find in
Mehta’s book (2004).

Second, one can use Theorem 7.2 to study the asymptotics of P{M > u} as u→ +∞. More
precisely, one wants to write, whenever it is possible

(8.1) P{M > u} = A(u) exp
(
− 1

2

u2

σ2
)

+ B(u)

where A(u) is a known function having polynomially bounded growth as u→ +∞,
σ2 = supt∈S Var(X(t)) and B(u) is an error bounded by a centered Gaussian density with variance
σ21 , σ

2
1 < σ2. We will call the first (respectively the second) term in the right-hand side of (8.1)

the “first (resp second) order approximation of P{M > u}.”

First order approximation has been considered by Taylor, Takemura and Adler (2005) and
also Adler and Taylor (2007) by means of the expectation of the EPC of the excursion set Eu :=
{t ∈ S : X(t) > u}. This works for large values of u. The same authors have considered the
second order approximation, that is, how fast does the difference between P{M > u} and the
expected EPC tend to zero when u→ +∞.

We will address the same question both for the direct method and the EPC approximation
method. Our results on the second order approximation only speak about the size of the vari-
ance of the Gaussian bound. More precise results are only known in the special case where S is
a compact interval of the real line, the Gaussian process X is stationary and satisfies a certain
number of additional requirements. We have stated this special result without proof in Chapter
4. It is due to Piterbarg (1981) when the domain interval is small enough and to Azais, Bardet
and Wschebor (2002) in its general form. See the remarks after Proposition 4.1.

The first order approximation is computed for the direct method in Theorem 8.8 in the case
of stationary isotropic random fields defined on a polyhedron, from which a new upper bound for
P{M > u} for all real u follows.

As for second order approximation, Theorem 8.10 is the first result here in this direction. It
gives a rough bound for the error B(u) as u → +∞, in case the maximum variance is attained
at some strict subset of the face in S having the largest dimension. In Theorem 8.12 we consider
random fields with constant variance. This is close to Theorem 4.3 in Taylor, Takemura and
Adler (2005). In Theorem 8.15, S is convex, the random field is stationary and isotropic and we
are able to compute the exact asymptotic rate for the second order approximation as u → +∞
corresponding to the direct method.

In all cases, the second order approximation for the direct method provides an upper bound
for the one arising from the EPC method.

From technical point of view, the proofs of the results about the supremum of random fields
contained in Section 3 to 5 require a minimum of elementary differential geometry which does not
go beyond the definitions of embedded differentiable manifold, differentiation of functions defined
on it (as in Chapter 6) and curvature. The reader can consult any introductory book on the
subject.

1. One-dimensional parameter: asymptotic behavior of the derivatives of FM

Theorem 8.1. Let X be a stochastic process with parameter set [0, 1] verifying the hypotheses
H2k of Section 2 in Chapter 7. We also assume that E(X(t)) = 0 and Var(X(t)) = 1.
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Then, as u→ +∞,

(8.2) F (k)(u) ≈ (−1)k−1 u
k

2π
e−u

2/2

∫ 1

0

√
r11(t, t)dt.

Proof. We use the notations and results of Chapter 7.
To prove the result for k = 1 notice first that under the hypothesis of the theorem, one has

r(t, t) = 1, r01(t, t) = 0, r02(t, t) = −r11(t, t).

An elementary computation of the regression (7.11) replacing Z by X, shows that:

bt(s) = r(s, t), ct (s) =
r01(s, t)

r11(t, t)

and

βt(s) = 2
1− r(s, t)
(t− s)2

since we start with β(t) = 1 for every t.
This shows that for every t ∈ [0, 1] one has infs∈[0,1](β

t(s)) > 0 because of the non-degeneracy
condition and βt(t) = −r02(t, t) = r11(t, t) > 0. The expression for F ′ becomes:

(8.3) F ′(u) = ϕ(u)L(u),

where

L(u) = L1(u) + L2(u) + L3(u),

L1(u) = P(Au(X
0, β0),

L2(u) = P(Au(X
1, β1),

L3(u) = −
∫ 1

0

E
{
(Xt

t − βt(t)u)1IAu(Xt,βt)

} dt

(2πr11(t, t))1/2
.

Since for each t ∈ [0, 1] the process X t is bounded it follows that

a.s. 1IAu(Xt,βt) → 1 as u→ +∞.
A dominated convergence argument shows now that L3(u) is equivalent to

− u

(2π)1/2

∫ 1

0

r02(t, t)

(r11(t, t))1/2
dt =

u

(2π)1/2

∫ 1

0

√
r11(t, t)dt.

Since L1(u), L2(u) are bounded by 1, (8.2) follows for k = 1.

For k ≥ 2, write

(8.4) F (k)(u) = ϕ(k−1)(u)L(u) +
h=k∑

h=2

(
k − 1

h− 1

)
ϕ(k−h)(u)L(h−1)(u)

As u → +∞, for each j = 0, 1, ..., k − 1, ϕ(j)(u) ' (−1)j ujϕ(u) so that the first term in (8.4)
is equivalent to the expression in (8.2). Hence, to prove the theorem it suffices to show that the
successive derivatives of the function L are bounded. In fact, we prove the stronger inequality

(8.5) |L(j)(u)| ≤ ljϕ(
u

aj
), j = 1, ..., k − 1

for some positive constants lj , aj , j = 1, ..., k − 1.
We first consider the function L1. One has:

β0(s) =
1− r(s, 0)

s
for 0 < s ≤ 1, β0(0) = 0,

(β0)′(s) =
−1 + r(s, 0)− s.r10(s, 0)

s2
for 0 < s ≤ 1, (β0)′(0) =

1

2
r11(0, 0).
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The derivative L′1(u) becomes

L′1(u) = β0(1)E
{
1IAu(X0,1,β0,1)

}
p0X(1)(β

0(1)u)−

−
∫ 1

0

β0(t)E
{
(X(t)0,t − β0,t(t)u)1IAu(X0,t,β0,t)

}
pX0(t),(X0)′(t)(β

0(t)u, (β0)′(t)u) dt.

Notice that β0(1) is non-zero so that the first term is bounded by a constant times a non-degenerate
Gaussian density. Even though β0(0) = 0, the second term is also bounded by a constant times
a non-degenerate Gaussian density because the joint distribution of the pair (X0(t), (X0)′(t) is
non-degenerate and the pair (β0(t), (β0)′(t)) 6= (0, 0) for every t ∈ [0, 1].

Applying a similar argument to the succesive derivatives we obtain (8.5) with L1 instead of
L.

The same follows with no changes for

L2(u) = P(Au(X
1, β1).

For the third term

L3(u) = −
∫ 1

0

E
{
(Xt(t)− βt(t)u)1IAu(Xt,βt)

} dt

(2πr11(t, t))1/2

we proceed similarly, taking into account βt(s) 6= 0 for every s ∈ [0, 1].
So (8.5) follows and we are done. ¤

1.1. A refinement. It is possible to refine the result obtaining the exact first order approx-
imation and a bound for the second order approximation, not only for the tail of the distribution,
but also for its derivatives. That is, the following refinement allows us to write the successive
derivatives of FM in an analogous form to (8.1) in which the second term in the right-hand side
is bounded by a Gaussian density having a variance which is smaller that the supremum of the
variance of the process.

Let n = 0, 1, 2, .... We will use repeatedly the Hermite polynomials, defined as

(8.6) Hn(x) := ex
2(− ∂

∂x

)n
e−x

2

and the modified Hermite polynomials:

(8.7) Hn(x) := ex
2/2
(
− ∂

∂x

)n
e−x

2/2.

For the properties of the Hermite polynomials we refer to Mehta’s book (2004).

Theorem 8.2. Suppose that X satisfies the hypotheses of the theorem with k ≥ 2. For
j = 1, ..., k, one has:

(8.8) F (j)(u) = (−1)j−1Hj−1(u)

[
1 + (2π)−1/2 u

∫ 1

0

(r11(t, t))
1/2dt

]
ϕ(u) + ρj(u)ϕ(u)

where
| ρj(u) |≤ Cj exp(−δu2)

with C1, C2, ... positive constants and δ > 0 does not depend on j.

Proof. The proof of (8.8) is a slight modification of the one of the previous theorem.

Notice first that from the above computation of β0(s) it follows that 1) if X0(0) < 0, then if u
is large enough X0(s)−β0(s).u ≤ 0 for all s ∈ [0, 1] and 2) if X0(0) > 0, then X0(0)−β0(0).u > 0
so that:

L1(u) = P(X0(s)− β0(s).u ≤ 0 for all s ∈ [0, 1]) ↑ 1

2
as u ↑ +∞.

On account of (8.5) this implies that if u ≥ 0:

0 ≤ 1

2
− L1(u) =

∫ +∞

u

L′1(v)dv ≤ D1 exp(−δ1u2)
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with D1, δ1 positive constants.
L2(u) is similar. Finally:

(8.9) L3(u) = −
∫ 1

0

E
{
Xt(t)− βt(t)u

} dt

(2πr11(t, t))1/2
−

−
∫ 1

0

E
{
(Xt(t)− βt(t)u)1I(Au(Xt,βt))C

} dt

(2πr11(t, t))1/2

The first term in (8.9) is equal to:

(2π)−1/2.u.

∫ 1

0

(r11(t, t))
1/2dt.

As for the second term in (8.9) denote β# = inf
s,t∈[0,1]

βt(s) > 0 and let u > 0. Then:

P(
(
Au(X

t, βt)
)C

) ≤ P(∃ s ∈ [0, 1] such that Xt(s) > β#.u) ≤ D3 exp(−δ3u2)
with D3, δ3 are positive constants, the last inequality being a consequence of the basic inequality
2.33.

The remainder follows in the same way as the proof of Theorem 8.1. ¤

2. An Application to Unbounded Processes.

As we have seen in Chapter 2, the tails of the probability distribution of the supremum of
a Gaussian processes which a.s. has bounded paths have a nice behavior for large values of the
argument, since they are bounded by the tails of the distribution of one Gaussian variable. As we
have seen, this has important consequences to handle the supremum of a Gaussian processes, via
the exponential bound for the tails of its probability distribution.

In this section we consider a more unexplored subject, that is, the behavior of large values of
the supremum of Gaussian processes in case they are unbounded. One should observe that if a
separable centered Gaussian process {Z(t) : t ∈ T} is unbounded then P({sup |Z(t)| <∞, t ∈ T})
= 0, but this does not imply that q = P({supZ(t) < ∞, t ∈ T}) = 0. [Notice that {supZ(t) <
+∞, t ∈ T} is not a subspace of the space of possible paths, so that the Gaussian 0 or 1 law can
not be applied to it].

We will see that the methods of Chapter 7, which a priori had the purpose of studying
the regularity of the distribution of MT , are useful to understand the asymptotic behavior of
an interesting family of one-parameter unbounded processes. In fact the tail of the probability
distribution of MT , having total mass q strictly smaller than 1, that is:

q − P(MT ≤ u),

which tends to zero as u → +∞, is not necessarily bounded by a Gaussian tail and can be
estimated using the differentiation theorems above.

Let X = {X(t) : t ∈ [0, 1]} satisfy the hypothesis H2 of Chapter 7. We also assume that the
process is centered.

Let β : [0, 1] → R+ be a continuous function that vanishes only at t = 0, twice continuously
differentiable for t ∈ (0, 1]. We are going to study the behavior as u→ +∞ of the function:

F (u) = P(X(t) ≤ β(t).u for all t ∈ [0, 1])

which is obviously the (defective) distribution function of the supremum over (0, 1] of the un-
bounded Gaussian process:

Zt =
X(t)

β(t)

that has exploding paths at the only point t = 0.
Clearly,

a.s. lim
u→+∞

1I{X(t)≤β(t).u for all t∈[0,1]} = 1I{X(0)<0}

so that:

q = F (+∞) =
1

2
.
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Theorem 8.3. Assume that if t ↓ 0 one has β(t) ≈ C tα, β′(t) ≈ C α.tα−1, β′′(t) ≈
C α(α− 1) tα−2, where C,α are positive constants.

Then, we have
(i) If 0 < α ≤ 1,

1

2
− F (u) ≤ a. exp(−b.u2) for u > 0

where a, b are positive constants.
(ii) If α > 1,

(8.10)
1

2
− F (u) ≈ K

u1/(α−1)
when u→ +∞

where K is a positive constant depending on C, α, Var {X(0)}, Var {X ′(0)} that we will obtain
explicitly in the proof.

Proof. With no loss of generality, we may assume that Var {X(t)} = 1 for all t ∈ [0, 1]. If

this is not the case, it suffices to replace the process by X(t)/ [Var {X(t)}] 12 and the function β(t)

by β(t)/ [Var {X(t)}] 12 .
To study the behavior of

1

2
− F (u) =

∫ +∞

u

F ′(x) dx

when u→ +∞, we write F ′(x) using Lemma 7.7 that is, on account of β(0) = 0 :

F ′(x) = β(1)P(X1(t) ≤ β1(t).x ∀ t ∈ [0, 1]) pX(1)(β(1).x)

(8.11)

−
∫ 1

0

β(t) E
{[
Xt(t)− βt(t)x

]
1I{Xt(s)≤βt(s)x ∀ s∈[0,1]}

}
pX(t),X′(t)(β(t)x, β

′(t)x) dt.(8.12)

A simple computation shows that in the present case the process X1 and the function β1 are
the continuous extensions to [0, 1] of

X1(t) =
X(t)− r(t, 1)X(1)

1− t , β1(t) =
β(t)− r(t, 1)β(1)

1− t
defined for t ∈ [0, 1).

In the same way, for t ∈ [0, 1], X t,βt are the continuous extensions to [0, 1] of

Xt(s) =
2

(s− t)2
[
X(s)− r(s, t)X(t)− r10(s, t)

r11(t, t)
X ′(t)

]

βt(s) =
2

(s− t)2
[
β(s)− r(s, t)β(t)− r10(s, t)

r11(t, t)
β′(t)

]

defined for s ∈ [0, 1] , s 6= t.
In fact the proof of the formula (8.11) requires the function β(.) to be of class C2 on the whole

interval [0, 1], which need not to be our case. The proof that (8.11) holds true for x > 0 is left to
the reader, and is a consequence of the hypotheses on β(.) near t = 0.

It is easily seen that the first term in the right-hand side of (8.11) is bounded above by
a1. exp(−b1.x2), where a1 and b1 are positive constants.

As for the second term, the density in the integrand is:

(8.13) pX(t),X′(t)(β(t)x, β
′(t)x) =

1

2π [Var {X ′(t)}] 12
exp

[
−x

2

2

(
β2(t) +

(β′(t))2

Var {X ′(t)}

)]

and

βt(s) =
2

(s− t)2 [β(s)− β(t)− (s− t)β′(t)]− r20(t+ θ1(s− t), t)β(t)−

(8.14) −r12(t, t+ θ2(s− t))
r11(t, t)

β′(t) (0 < θ1, θ2 < 1)
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so that

βt(t) = β“(t)− r20(t, t)β(t)−
r12(t, t)

r11(t, t)
β′(t)

si 0 < t ≤ 1.
Assume now hypothesis (i). Using the conditions on the function β(.), one can verify that

if x > 1, the absolute value of the integrand in the right-hand side of (8.11) is bounded by
a2. exp(−b2.x2), a2 and b2 positive constants. This proves the first part of the theorem.

If condition (ii) holds, take ε, 0 < ε < 1 and use the splitting:

1

2
− F (u) = 1

2
− Fε(u) +Gε(u)

where

Fε(u) = P(X(t) ≤ β(t).u for all t ∈ [0, ε])

and

0 ≤ Gε(u) ≤ P(sup
t∈[ε,1]

X(t)

β(t)
> u) ≤ g1 exp(−g2.u2),

with g1, g2 positive constants depending on ε, the last inequality resulting from an application of

(2.33) in Chapter 2 to the bounded process X(t)
β(t) for t ∈ [ε, 1].

Hence, to finish the proof of (ii) it suffices to show (ii) when one replaces F (u) by Fε(u), where
ε > 0 is fixed and small enough.

With that purpose, we apply the same formula (8.11) mutatis mutandis, that is changing the
interval [0, 1] by [0, ε]. We obtain:

F ′ε(x) = β(ε)P(X1(t) ≤ β1(t).x for all t ∈ [0, ε]) pX(ε)(β(ε).x)(8.15)

−
∫ ε

0

β(t) E
{[
Xt(t)− βt(t)x

]
1I{Xt(s)≤βt(s)x for all s∈[0,ε]}

}

. pX(t),X′(t)(β(t)x, β
′(t)x) dt.

In the integral in the right-hand side of (8.15) make the change of variable z = tα−1x. Then,

t(x) =
(
z
x

) 1
α−1 → 0 when x→ +∞ for each z > 0 fixed.

For an adequate choice of ε, we have for each z > 0:

a.s. 1I{Xt(x)(s)≤βt(x)(s)x for all s∈[0,ε]} → 1 when x→ +∞.

This follows from the statement:

(8.16) for z > 0 fixed, βt(x)(s)x→ +∞ when x→ +∞ uniformly in s ∈ [0, ε] .

To prove (8.16) use (8.14) and the form of β(t) near t = 0. We have (elementary checking):
-if 1 < α < 2 and L is any positive real number, one can choose ε > 0 small enough so that:

(8.17) βt(s).x ≥ L.x− C1.t.z − C2.z for all s, t ∈ [0, ε] ,

and C1, C2 are some positive constants.
- if α ≥ 2 one can choose small enough ε > 0 in such a way that:

(8.18) βt(s).x ≥ C ′1.
z

t
− C ′2.t.z − C ′3.z for all s, t ∈ ]0, ε] ,

and C ′1, C
′
2, C

′
3 are some positive constants. Either (8.17) or (8.18) imply (8.16).

To find the equivalent of the right-hand side of (8.15) is now an exercise (apply dominated
convergence). We get:

F ′ε(x) ≈
(σ
α

)α/(α−1) 1√
2π
C1/(1−α)Iα/(α−1)x

α/(1−α) when x→ +∞,

where σ = [Var {X ′(0)}] 12 and Ia is defined, for a ≥ 0 by means of:

Ia =

∫ +∞

0

ya
exp(−y2/2)√

2π
dy.
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Finally, (8.10) follows integrating once. One also obtains the value of the constant

K = (α− 1)
(σ
α

)α/(α−1) 1√
2π
C1/(1−α)Iα/(α−1)

¤

3. A general bound for pM

We need to introduce some further notations 7.
For t in Sj , j ≤ d0 we define Ct,j as the closed convex cone generated by the set of directions:

{λ ∈ R
d : ‖λ‖ = 1 ;∃ sn ∈ S, (n = 1, 2, . . .) such that sn → t,

t− sn
‖t− sn‖

→ λ as n→ +∞},

whenever this set is non-empty and Ct,j = {0} if it is empty. We will denote by Ĉt,j the dual cone
of Ct,j , that is:

Ĉt,j := {z ∈ R
d : 〈z, λ〉 ≥ 0 for all λ ∈ C}.

Notice that these definitions easily imply that Tt,j ⊂ Ct,j and Ĉt,j ⊂ Nt,j . Remark also that for

j = d0, Ĉt,j = Nt,j .
We will say that the function X(.) has an “extended outward” derivative at the point t in Sj ,

j ≤ d0 if X ′j,N (t) ∈ Ĉt,j .
Theorem 8.4. Under assumptions A1 to A5 of Chapter 7, Section 1, one has :

(a) pM (x) ≤ p(x) where

(8.19) p(x) :=
∑

t∈S0
E
(
1IX′(t)∈Ĉt,0

∣∣X(t) = x
)
pX(t)(x) +

d0∑

j=1

∫

Sj

E
(
|det(X ′′j (t))|1IX′j,N (t)∈Ĉt,j

∣∣X(t) = x,X ′j(t) = 0
)
pX(t),X′j(t)(x, 0)σj(dt).

(b) P{M > u} ≤
∫ +∞

u

p(x)dx.

Proof. (a) follows from Theorem 7.2 and the observation that if t ∈ Sj , one has

{M ≤ X(t)} ⊂ {X ′j,N (t) ∈ Ĉt,j}. (b) is an obvious consequence of (a). ¤

The actual interest of this Theorem depends on the feasibility of computing p(x). It turns
out that this can be done in some relevant cases, as we will see in the next section. The results

can be compared with the approximation of P{M > u} by means of
∫ +∞
u

pE(x)dx given by Adler
and Taylor (2007) and Taylor, Takemura and Adler (2005), where

(8.20) pE(x) :=
∑

t∈S0
E
(
1IX′(t)∈Ĉt,0

∣∣X(t) = x
)
pX(t)(x)

+

d0∑

j=1

(−1)j
∫

Sj

E
(
det(X ′′j (t))1IX′j,N (t)∈Ĉt,j

∣∣X(t) = x,X ′j(t) = 0
)
pX(t),X′j(t)(x, 0)σj(dt).

Under certain conditions,
∫ +∞
u

pE(x)dx is the expected value of the EPC of the excursion set Eu.

The advantage of pE(x) over p(x) is that one can have nice expressions for it (see Exercise 8.1).
Conversely p(x) has the obvious advantage that it is an upper-bound of the true density pM (x).
Hence, upon integrating once, it provides an upper-bound for the tail probability, for every u
value.
We can go a bit farther, and show that [p̄(x) + pE(x)]/2 is also an upper bound for pM (x). This
follows easily upon the following observation: Denote by Ej the event that the random linear op-
erator X ′′j (t) is non-negative definite. In the formula giving pM (x) (see Theorem 7.2 in Chapter 7),

one can replace inside the conditional expectation |det(X ′′j (t))|1IAx by (−1)j det(X ′′j (t))1IAx1IEj ,
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since under the conditioning Ej occurs, and obviously, by
| det(X′′j (t))|+(−1)j det(X′′j (t))

2 1IAx1IEj . Re-

placing 1IAx1IEj by 1IX′j,N (t)∈Ĉt,j
we get for pM (x) the more precise upper bound [p̄(x) + pE(x)]/2.

Under additional conditions, these upper bounds both provide good first order approximations
for pM (x) as x→∞ as we will see in the remaining of this chapter. In the special case in which the
random field X is centered and has a law that is invariant under orthogonal linear transformations
and translations, we give in the next section a procedure to compute p(x).

4. Computing p(x) for stationary isotropic Gaussian fields

For one-parameter centered Gaussian process having constant variance and satisfying certain
regularity conditions, a bound for pM (x) has been given by inequality (7.6) of Chapter 7. In
the two-dimensional parameter case, Mercadier (2005) has given a bound for P{M > u}, using
a method especially suited to dimension 2 that will been presented in Chapter 9. When the
parameter is one or two-dimensional, these bounds are sharper than the ones below which apply
to any dimension.

We will assume that the process X is centered Gaussian, with a covariance function that can
be written as

(8.21) E
(
X(s)X(t)

)
= ρ
(
‖s− t‖2

)
,

where ρ : R+ → R is of class C4 . Without loss of generality, we assume that ρ(0) = 1. Assumption
(8.21) is equivalent to saying that the law of X is invariant under orthogonal linear transformations
and translations of the underlying parameter space Rd.

We will also assume that the set S has a polyhedral shape. More precisely we assume that
each Sj(j = 1, . . . , d) is a union of subsets of affine manifolds of dimension j in Rd.

For the proof of Theorem 8.8 below, which gives an expression for the bound p(x) of the
density, we need some auxiliary computational lemmas.

The first lemma is elementary and the proof is left to the reader. Here, and in the remainder
of this chapter, we use the abridged notation: ρ′ := ρ′(0), ρ′′ := ρ′′(0)

Lemma 8.5. Under the conditions above, for each t ∈ U , i, i′, k, k′, j = 1, . . . , d:

(1) E
(
∂X
∂ti

(t).X(t)
)
= 0,

(2) E
(
∂X
∂ti

(t). ∂X∂tk (t)
)
= −2ρ′δik and ρ′ < 0,

(3) E
(
∂2X
∂ti∂tk

(t).X(t)
)
= 2ρ′δik,E

(
∂2X
∂ti∂tk

(t).∂X∂tj (t)
)
= 0

(4) E
(
∂2X
∂ti∂tk

(t). ∂2X
∂ti′∂tk′

(t)
)
= 24ρ′′

[
δii′ .δkk′ + δi′k.δik′ + δikδi′k′

]
,

(5) ρ′′ − ρ′2 ≥ 0
(6) If t ∈ Sj, the conditional distribution of X ′′j (t) given X(t) = x,X ′j(t) = 0 is the same as

the unconditional distribution of the random matrix

Z + 2ρ′xIj ,

where Z = (Zik : i, k = 1, . . . , j) is a symmetric j × j matrix with centered Gaussian
entries, independent of the pair

(
X(t), X ′(t)

)
such that, for i ≤ k, i′ ≤ k′ one has :

E(ZikZi′k′) = 4
[
2ρ′′δii′ + (ρ′′ − ρ′2)

]
δikδi′k′ + 4ρ′′δii′ .δkk′(1− δik) .

Our second lemma is the following:

Lemma 8.6. Let

(8.22) Jn(x) :=

∫ +∞

−∞
e−y

2/2Hn(z)dy, n = 0, 1, 2, . . .

where z stands for the linear form z = ay+bx and a, b are real parameters that satisfy a2+b2 = 1/2.
Then

Jn(x) = (2b)n
√
2π Hn(x).
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Proof. From the definitions of Hn and Hn we get

∞∑

n=0

(w)n

n!
Hn(z) = e−w

2+2wz
∞∑

n=0

(w)n

n!
Hn(z) = e−

w2

2 +wz,

using the Taylor expansion of e(z−w)
2

and e
(z−w)2

2 in w around 0. Therefore

∞∑

n=0

(w)n

n!
Jn(x) =

∫

R

e−
y2

2 −w
2+2w(ay+bx)dy

= e2wbx−2(bw)
2

∫

R

e
(y−2wa)2

2 dy

=
√
2π

∞∑

n=0

(2bw)n

n!
Hn(x).

This implies Jn(x) = (2b)n
√
2π Hn(x). ¤

We also need the integrals

In(v) =

∫ +∞

v

e−t
2/2Hn(t)dt.

They are computed in the next lemma, which can be proved easily, using standard properties of
Hermite polynomials. This is also left to the reader.

Lemma 8.7. (a)

In(v) = 2e−v
2/2

[n−12 ]∑

k=0

2k
(n− 1)!!

(n− 1− 2k)!!
Hn−1−2k(v)(8.23)

+ 1I{n even} 2
n
2 (n− 1)!!

√
2π Φ(x)

(b)

(8.24) In(−∞) = 1I{n even}2
n
2 (n− 1)!!

√
2π

We are now ready to state and prove the announced expression for p(x):

Theorem 8.8. Assume that the random filed X is centered Gaussian, satisfies conditions
A1-A5 of Chapter 7, Section 1, and has a covariance having the form (8.21) which verifies the
regularity conditions of the beginning of this section. Moreover, let S have polyhedral shape. Then,
p(x) can be expressed by means of the formula:

(8.25) p(x) = ϕ(x)




∑

t∈S0
σ̂0(t) +

d0∑

j=1

[( |ρ′|
π

)j/2
Hj(x) +Rj(x)

]
gj



 ,

where

• gj is a geometric parameter of the face Sj defined by

(8.26) gj =

∫

Sj

σ̂j(t)σj(dt),

where σ̂j(t) is the normalized solid angle of the cone Ĉt,j in Nt,j, that is:

σ̂j(t) =
σd−j−1(Ĉt,j ∩ Sd−j−1)
σd−j−1(Sd−j−1)

for j = 0, . . . , d− 1,(8.27)

σ̂d(t) = 1.(8.28)

Notice that for convex or other usual polyhedra σ̂j(t) is constant for t ∈ Sj, so that gj is
equal to this constant multiplied by the j-dimensional geometric measure of Sj.
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• For j = 1, . . . d,

(8.29) Rj(x) =
( 2ρ′′
π|ρ′|

) j
2
Γ((j + 1)/2

π

∫ +∞

−∞
Tj(v) exp

(
− y2

2

)
dy

where

(8.30) v := −(2)−1/2
(
(1− γ2)1/2y − γx

)
with γ := |ρ′|(ρ′′)−1/2,

(8.31) Tj(v) :=

[ j−1∑

k=0

H2k(v)

2kk!

]
e−v

2/2 − Hj(v)

2j(j − 1)!
Ij−1(v),

where In is given in the previous lemma.

For the proof of the theorem, we still need some additional ingredients from random matrices
theory.

The random n×n real random matrix Gn is said to have the GOE distribution (for “Gauss-
ian Orthogonal Ensemble”), if it is symmetric, has centered Gaussian entries gik, i, k = 1, . . . , n
satisfying E(g2ii) = 1, E(g2ik) = 1/2 if i < k and the random variables: {gik, 1 ≤ i ≤ k ≤ n} are
independent.

Following Mehta (2004), we denote qn(ν) the density of eigenvalues of n×n GOE matrices at
the point ν, that is, qn(ν)dν is the probability of Gn having an eigenvalue in the interval (ν, ν+dν).
One has the formula:

eν
2/2qn(ν) = e−ν

2/2
n−1∑

k=0

c2kH
2
k(ν)

+ 1/2 (n/2)1/2cn−1cnHn−1(ν)
[ ∫ +∞

−∞
e−y

2/2Hn(y)dy − 2

∫ +∞

ν

e−y
2/2Hn(y)dy

]
(8.32)

+ 1I{n odd }
Hn−1(ν)∫ +∞

−∞ e−y2/2Hn−1(y)dy
,

where ck := (2kk!
√
π)−1/2, k = 0, 1, . . .. The proof can be found in Mehta’s book, ch. 7.

We will use the following remark due to Fyodorov (2006), that we state as a lemma.

Lemma 8.9. Let Gn be a GOE n× n matrix. Then, for ν ∈ R one has:

(8.33) E
(
|det(Gn − νIn)|

)
= 23/2Γ

(
(n+ 3)/2

)
exp(ν2/2)

qn+1(ν)

n+ 1
,

Proof. Denote by ν1, . . . , νn the eigenvalues of Gn. It is well-known (Mehta (2004), Kendall
et alt. (1983)) that the joint density fn of the n-tuple of random variables (ν1, . . . , νn) is given by
the formula

fn(ν1, . . . , νn) = kn exp
(
−
∑n
i=1 ν

2
i

2

) ∏

1≤i<k≤n
|νk−νi| , with kn := (2π)−n/2(Γ(3/2))n

( n∏

i=1

Γ(1+i/2)
)−1
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Then,

E
(
|det(Gn − νIn)|

)
= E

( n∏

i=1

|νi − ν|
)

=

∫

Rn

n∏

i=1

|νi − ν|kn exp(−
∑n
i=1 ν

2
i

2
)

∏

1≤i<k≤n
|νk − νi| dν1, . . . , dνn

= eν
2/2 kn

kn+1

∫

Rn

fn+1(ν1, . . . , νn, ν)dν1, . . . , dνn = eν
2/2 kn

kn+1

qn+1(ν)

n+ 1
.

The remainder is plain. ¤

Proof of Theorem 8.8:

We use the definition (8.19) given in Theorem 8.4 and the moment computations of Lemma
8.5 which imply that:

pX(t)(x) = ϕ(x)(8.34)

pX(t),X′j(t)(x, 0) = ϕ(x)(2π)−j/2(−2ρ′)−j/2(8.35)

X ′(t) is independent of X(t)(8.36)

X ′j,N (t) is independent of (X ′′j (t), X(t), X ′j(t)).(8.37)

Since the distribution of X ′(t) is centered Gaussian with variance −2ρ′Id, it follows that :
E(1IX′(t)∈Ĉt,0

∣∣X(t) = x) = σ̂0(t) if t ∈ S0,
and if t ∈ Sj , j ≥ 1:

(8.38) E(|det(X ′′j (t))|1IX′j,N (t)∈Ĉt,j
∣∣X(t) = x,X ′j(t) = 0)

= σ̂j(t) E(|det(X ′′j (t))|
∣∣X(t) = x,X ′j(t) = 0)

= σ̂j(t) E(|det(Z + 2ρ′xIj)|).
In the formula above, σ̂j(t) is the normalized solid angle defined in the statement of the theorem
and the random j × j real matrix Z has the distribution of Lemma 8.5 .
A standard moment computations shows that Z has the same distribution as the random matrix:

√
8ρ′′Gj + 2

√
ρ′′ − ρ′2ξIj ,

where Gj is a j × j GOE random matrix, ξ is standard normal in R and independent of Gj . So,
for j ≥ 1 one has

E
(
|det(Z + 2ρ′xIj)|

)
= (8ρ′′)j/2

∫ +∞

−∞
E
(
|det(Gj − νIj)|

)
ϕ(y)dy,

where ν is given by (8.30).

For the conditional expectation in (8.19) plug the last expression into (8.38) and use (8.33),
(8.32) and Lemma 8.7. For the density in (8.19) use (8.35). Then, after some algebra, Lemma 8.6
gives (8.25). ¤

Remarks on the theorem.

• The “principal term” is

(8.39) ϕ(x)




∑

t∈S0
σ̂0(t) +

d0∑

j=1

[( |ρ′|
π

)j/2
Hj(x)

]
gj



 ,

which is the product of a standard normal density times a polynomial with degree d0.
Integrating once, we get -in our special case- the formula for the expectation of the EPC
of the excursion set given in Adler and Taylor (2007).
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• The “complementary term”

(8.40) ϕ(x)

d0∑

j=1

Rj(x)gj ,

can be computed by means of a formula, as it follows from the statement of the theorem.
These formulas will be in general quite unpleasant due to the complicated form of Tj(v).
However, for low dimensions they are simple. For example:

(8.41) T1(v) =
√
2π
[
ϕ(v)− v(1− Φ(v))

]
,

(8.42) T2(v) = 2
√
2πϕ(v),

(8.43) T3(v) =

√
π

2

[
3(2v2 + 1)ϕ(v)− (2v2 − 3)v(1− Φ(v))

]
.

• Second order asymptotics for pM (x) as x → +∞ will be mainly considered in the fol-
lowing sections. However, we can state already that the complementary term (8.40) is
equivalent, as x→ +∞, to

(8.44) ϕ(x) gd0Kd0x
2d0−4 e

− 12
γ2

3−γ2
x2
,

where the constant Kj , j = 1, 2, ... is given by:

(8.45) Kj = 23j−2
Γ
(
j+1
2

)
√
π(2πγ)j/2(j − 1)!

ρ′′j/4
( γ

3− γ2
)2j−4

.

We are not going to go through this calculation, which is completely elementary but
requires some extra work which is left to the reader. An outline of it is the following.
Replace the Hermite polynomials in the expression for Tj(v) given by (8.31) by the
well-known expansion (see again Mehta’s book):

(8.46) Hj(v) = j!

[j/2]∑

i=0

(−1)i (2v)j−2i

i!(j − 2i)!

and Ij−1(v) by means of the formula in Lemma 8.7.
Evaluating the term of highest degree in the polynomial part, one proves that, as

v → +∞, Tj(v) is equivalent to

(8.47)
2j−1√
π(j − 1)!

v2j−4e−
v2

2 .

Using now the definition of Rj(x) and changing variables in the integral in (8.29), one
gets for Rj(x) the equivalent:

(8.48) Kjx
2j−4 e

− 12
γ2

3−γ2
x2
.

In particular, the equivalent of (8.40) is given by the highest order non-vanishing term
in the sum.

• Consider now the case in which S is the sphere Sd−1 and the process satisfies the same
conditions as in the theorem. Even though the theorem can not be applied directly,
it is possible to deal with this example to compute p(x), only performing some minor
changes. In this case, only the term that corresponds to j = d − 1 in (8.19) does not

vanish, Ĉt,d−1 = Nt,d−1, so that 1IX′d−1,N (t)∈Ĉt,d−1
= 1 for each t ∈ Sd−1 and one can use

invariance under the orthogonal group to obtain:
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(8.49) p(x) = ϕ(x)
σd−1

(
Sd−1

)

(2π)(d−1)/2
E
(
|det(Z + 2ρ′xId−1) + (2|ρ′|)1/2ηId−1|

)

where Z is a (d− 1)× (d− 1) centered Gaussian matrix with the covariance structure of
Lemma 8.5 and η is a standard normal real random variable, independent of Z. (8.49)
follows from the fact that the normal derivative at each point is centered Gaussian with
variance 2|ρ′| and independent of the tangential derivative. So, we apply the previous
computation, replacing x by x+ (2|ρ′|)−1/2 η and obtain the expression:

p(x) = ϕ(x)
2πd/2

Γ(d/2)
∫ +∞

−∞

[( |ρ′|
π

)(d−1)/2
Hd−1(x+ (2|ρ′|)−1/2y) +Rd−1(x+ (2|ρ′|)−1/2y)

]
ϕ(y)dy.(8.50)

5. Asymptotics as x→ +∞
In this section we will consider the errors in the direct and the EPC methods (see Section 3)

for large values of the argument x. Theses errors are:

(8.51) p(x)− pM (x) =
∑

t∈S0
E
(
1IX′(t)∈Ĉt,0 .1IM>x

∣∣X(t) = x
)
pX(t)(x)

+

d0∑

j=1

∫

Sj

E
(
|det(X ′′j (t)|1IX′j,N (t)∈Ĉt,j .1IM>x

)∣∣X(t) = x,X ′j(t) = 0
)
pX(t),X′j(t)(x, 0)σj(dt).

(8.52) pE(x)− pM (x) =
∑

t∈S0
E
(
1IX′(t)∈Ĉt,0 .1IM>x

∣∣X(t) = x
)
pX(t)(x)

+

d0∑

j=1

(−1)j
∫

Sj

E
(
det(X ′′j (t)1IX′j,N (t)∈Ĉt,j

.1IM>x

)∣∣X(t) = x,X ′j(t) = 0
)
pX(t),X′j(t)(x, 0)σj(dt).

It is clear that for every real x,

|pE(x)− pM (x)| ≤ p(x)− pM (x)

so that the upper bounds for p(x)− pM (x) will automatically be upper bounds for
|pE(x)− pM (x)|.

Our next theorem gives sufficient conditions allowing to ensure that the error

p(x)− pM (x)

is bounded by a constant times a Gaussian density having strictly smaller variance than the
maximum variance of the given process X . In this theorem, we assume that the maximum of the
variance is not attained in S\Sd0 . This excludes constant variance or some other stationary-like
condition. This kind of processes will be considered later on in Theorem 8.12. For parameter
dimension d0 > 1, a result of this type for non-constant variance processes is Theorem 3.3 of
Taylor, Takemura and Adler (2005).

Theorem 8.10. Assume that the process X satisfies conditions A1 -A5 of Chapter 7, Section
1. With no loss of generality, we assume that maxt∈S Var(X(t)) = 1. In addition, we will assume
that the set Sv of points t ∈ S where the variance of X(t) attains its maximal value is contained
in Sd0(d0 > 0) the non-empty face having largest dimension and that no point in Sv is a boundary
point of S\Sd0 . Then, there exist some positive constants C, δ such that for every x > 0.

(8.53) |pE(x)− pM (x)| ≤ p(x)− pM (x) ≤ Cϕ(x(1 + δ)),

where ϕ(.) is the standard normal density.
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Proof. Let W be an open neighborhood of the compact subset Sv of S such that
dist(W, (S\Sd0)) > 0 where dist denote the Euclidean distance in Rd. For t ∈ Sj∩W c, the density

pX(t),X′j(t)(x, 0)

can be written as the product of the density of X ′j(t) at the point 0, times the conditional density
of X(t) at the point x given that X ′j(t) = 0, which is Gaussian with some bounded expectation
and a conditional variance which is smaller than the unconditional variance, hence, bounded by
some constant smaller than 1. Since the conditional expectations in (8.51) are uniformly bounded
by some constant, due to the bounds on the moments of the Gaussian law (see Chapter 2), one
can deduce that:

(8.54) p(x)− pM (x) =

∫

W∩Sd0
E
(
|det(X ′′d0(t))|1IX′d0,N (t)∈Ĉt,d0 .1IM>x

∣∣X(t) = x,X ′d0(t) = 0
)

.pX(t),X′d0 (t)
(x, 0)σd0(dt) +O(ϕ((1 + δ1)x)),

as x → +∞, for some δ1 > 0. Our following task is to choose W such that one can assure that
the first term in the right hand-side of (8.54) has the same form as the second, with a possibly
different positive constant δ1.

To do this , for s ∈ S and t ∈ Sd0 , let us write the Gaussian regression formula of X(s) on
the pair (X(t), X ′d0(t)):

(8.55) X(s) = at(s)X(t) + 〈bt(s), X ′d0(t)〉+
‖t− s‖2

2
Xt(s).

where the regression coefficients at(s), bt(s) are respectively real-valued and Rd0-valued.

From now onwards, we will only be interested in those t ∈W . In this case, since W does not
contain boundary points of S\Sd0 , it follows that

Ĉt,d0 = Nt,d0 and 1IX′d0,N (t)∈Ĉt,d0
= 1.

Moreover, whenever s ∈ S is close enough to t it has to belong to Sd0 . For each t, {Xt(s) :
s ∈ S} is a “helix process” (compare with the Chapter 7, Section 3 where a similar normalization
has been introduced).

Let us prove that, almost surely, the paths of the real-valued random field {X t(s) : t ∈
W ∩ Sd0 , s ∈ S} are bounded. With no loss of generality (take a chart) we may assume that s
varies in a closed ball in Rd0 containing t as an interior point, and remove the subscript d0 for the
derivative. Let us write the Taylor expansion of X(.) around the point t:

(8.56) X(s) = X(t) + 〈s− t,X ′(t)〉 + ‖s− t‖2
∫ 1

0

〈v,X ′′((1− α)t+ αs)(1− α)v〉 dα

where v = s−t
‖s−t‖ , and 〈, 〉, ‖.‖ denote respectively Euclidean scalar product and norm in Rd0 .

For each α perform the Gaussian regression of 〈v,X ′′((1 − α)t + αs)(1 − α)v〉 on the pair
(X(t), X ′(t)), that is:

(8.57) 〈v,X ′′((1− α)t+ αs)(1− α)v〉 = ãt(s, α, v)X(t) + 〈b̃t(s, α, v), X ′(t)〉+ X̃t(s, α, v)

where the notation is as above, mutatis mutandis. From the regression formulas it follows that
ãt(s, α), b̃t(s, α) are uniformly bounded, independently of s, t, α, v. Comparing (8.55) with (8.57),
it follows that

Xt(s) = 2

∫ 1

0

X̃t(s, α, v)(1− α) dα
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and the a.s. boundedness of X t(s), t ∈ W ∩ Sd0 , s ∈ S follows (The reader may check that for
d0 > 1, even though limr↓0Xt(t+ rv) exists for each v ∈ Sd0−1, it may depend on v, so that the
function Xt(.) can be discontinuous at s = t).

Let us go back to formula (8.54).

Conditionally on X(t) = x,X ′d0(t) = 0 the event {M > x} can be written as

{Xt(s) > βt(s) x, for some s ∈ S}
where

(8.58) βt(s) =
2(1− at(s))
‖t− s‖2 .

Our next goal is to prove that if we can choose W in such a way that

(8.59) inf{βt(s) : t ∈W ∩ Sd0 , s ∈ S, s 6= t} > 0,

then we are done. In fact, apply the Cauchy-Schwarz inequality to the conditional expectation in
(8.54). Under the conditioning, the elements of X ′′d0(t) are the sums of affine functions of x with
bounded coefficients plus centered Gaussian variables with bounded variances, hence, the absolute
value of the conditional expectation is bounded by an expression of the form

(8.60)
(
Q(t, x)

)1/2(
P
(

sup
s∈S\{t}

Xt(s)

βt(s)
> x

))1/2
,

where Q(t, x) is a polynomial in x of degree 2d0 with bounded coefficients. For each t ∈W ∩ Sd0 ,
the second factor in (8.60) is bounded by

(
P
(
sup

{Xt(s)

βt(s)
: t ∈W ∩ Sd0 , s ∈ S, s 6= t

}
> x

))1/2
.

Now, we apply to the bounded separable Gaussian process

{Xt(s)

βt(s)
: t ∈W ∩ Sd0 , s ∈ S, s 6= t

}

the basic inequality 2.33 of Chapter 2, which gives the bound

P
(
sup

{Xt(s)

βt(s)
: t ∈W ∩ Sd0 , s ∈ S, s 6= t

}
> x

)
≤ C2 exp(−δ2x2),

for some positive constants C2, δ2 and any x > 0. Also, the same argument above for the density
pX(t),X′d0 (t)

(x, 0) shows that it is bounded by a constant times the standard normal density. To

finish, it suffices to replace these bounds in the first term at the right-hand side of (8.54).

It remains to choose W for (8.59) to hold true. Consider the auxiliary process

(8.61) Y (s) :=
X(s)√
r(s, s)

, s ∈ S.

Clearly, Var(Y (s)) = 1 for all s ∈ S. We set

rY (s, s′) := Cov(Y (s), Y (s′)) , s, s′ ∈ S.
Let us assume that t ∈ Sv. Since the function s Ã Var(X(s)) attains its maximum value at

s = t, it follows that X(t), X ′d0(t) are independent. This implies that in the regression formula

(8.55) the coefficients are easily computed and at(s) = r(s, t) which is strictly smaller than 1 if
s 6= t, because of the non-degeneracy condition.
Then

(8.62) βt(s) =
2(1− r(s, t))
‖t− s‖2 ≥ 2(1− rY (s, t))

‖t− s‖2 .
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Since rY (s, s) = 1 for every s ∈ S, the Taylor expansion of rY (s, t) as a function of s, around
s = t takes the form:

(8.63) rY (s, t) = 1 + 〈s− t, rY20,d0(t, t)(s− t)〉+ o(‖s− t‖2),
where the notation is self-explanatory.

Also, using that Var(Y (s)) = 1 for s ∈ S, we easily obtain:

(8.64) −rY20,d0,(t, t) = Var(Y ′d0(t)) = Var(X ′d0(t))

where the last equality follows by differentiation in (8.61) and putting s = t. (8.64) implies that
−rY20,d0,(t, t) is uniformly positive definite on t ∈ Sv, meaning that its minimum eigenvalue has a

strictly positive lower bound. This, on account of (8.62) and (8.63), already shows that

(8.65) inf{βt(s) : t ∈ Sv, s ∈ S, s 6= t} > 0,

The foregoing argument also shows that

(8.66) inf{−τ(at)′′d0(t)τ : t ∈ Sv, τ ∈ Sd0−1, s 6= t} > 0,

since whenever t ∈ Sv, one has at(s) = r(s, t) so that

(at)′′d0(t) = r20,d0,(t, t).

To end up, assume there is no neighborhood W of Sv satisfying (8.59). In that case using a
compactness argument, one can find two convergent sequences {sn} ⊂ S , {tn} ⊂ Sd0 , sn → s0,
tn → t0 ∈ Sv such that

βtn(sn)→ ` ≤ 0.

` may be −∞.
t0 6= s0 is not possible, since it would imply

` = 2
(1− at0(s0))
‖t0 − s0‖2

= βt0(s0),

which is strictly positive.
If t0 = s0, on differentiating in (8.55) with respect to s along Sd0 we get:

X ′d0(s) = (at)′d0(s)X(t) + 〈(bt)′d0(s), X ′d0(t)〉+
∂d0
∂s

‖t− s‖2
2

Xt(s),

where (at)′d0(s) is a column vector of size d0 and (bt)′d0(s) is a d0 × d0 matrix. Then, one must

have at(t) = 1, (at)′d0(t) = 0 . Thus

βtn(sn) = −uTn (at0)′′d0(t0)un + o(1),

where un := (sn − tn)/‖sn − tn‖. Since t0 ∈ Sv we may apply (8.66) and the limit ` of βtn(sn)
cannot be non-positive. ¤

A straightforward application of Theorem 8.10 is the following

Corollary 8.11. Under the hypotheses of Theorem 8.10, there exists positive constants C, δ
such that, for every u > 0 :

0 ≤
∣∣∣∣
∫ +∞

u

pE(x)dx− P(M > u)

∣∣∣∣ ≤
∫ +∞

u

p(x)dx− P(M > u) ≤ C P(ξ > u),

where ξ is a centered Gaussian variable with variance 1− δ
The precise order of approximation of p(x)− pM (x) or pE(x)− pM (x) as x→ +∞ remains in

general an open problem, even if one only asks for the constants σ2d, σ
2
E respectively which govern

the second order asymptotic approximation and which are defined by means of

(8.67)
1

σ2d
:= lim

x→+∞
−2x−2 log

[
p(x)− pM (x)

]

and

(8.68)
1

σ2E
:= lim

x→+∞
−2x−2 log

∣∣pE(x)− pM (x)
∣∣
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whenever these limits exist. In general, we are unable to compute the limits (8.67) or (8.68) or
even to prove that they actually exist or differ. In the remainder of this chapter, we will give
some lower-bounds for the lim inf as x → +∞. This is already interesting since it gives some
upper-bounds for the speed of approximation for pM (x) either by means of p(x) or pE(x). A more
precise result is Theorem 8.15 below, where we are able to prove the existence of the limit and
compute σ2d when X is centered Gaussian, defined on a convex parameter set, and has a law which
is invariant under isometries and translations of Rd.

For the next theorem we need an additional condition on the parameter set S. For S verifying
A1 we define

(8.69) κ(S) = sup
0≤j≤d0

sup
t∈Sj

sup
s∈S,s6=t

dist
(
(t− s), Ct,j

)

‖s− t‖2

where dist is the Euclidean distance in Rd.

In Exercise 8.2 at the end of this chapter, it is proved that κ(S) < ∞ for various relevant
classes of parameter sets:

• S is convex (in which case, in fact κ(S) = 0.),
• S is a C3 manifold, with or without boundary
• S verifies a certain kind of local convexity condition which is precisely described in the

exercise.

However, κ(S) < ∞ can fail in general. A simple example showing what is going on is the
following: take an orthonormal basis of R2 and put

S = {(λ, 0) : 0 ≤ λ ≤ 1} ∪ {(µ cos θ, µ sin θ) : 0 ≤ µ ≤ 1}
where 0 < θ < π, that is, S is the boundary of an angle of size θ. One easily checks that
κ(S) = +∞.

Theorem 8.12. Let X be a stochastic process on S satisfying conditions A1-A5 in Section 1
of Chapter 7. Suppose in addition that Var(X(t)) = 1 for all t ∈ S and that κ(S) < +∞.
Then

(8.70) lim inf
x→+∞

−2x−2 log
[
p(x)− pM (x)

]
≥ 1 + inf

t∈S

1

σ2t + λ(t)κ2t

with

σ2t := sup
s∈S\{t}

Var
(
X(s)

∣∣X(t), X ′(t)
)

(1− r(s, t))2

and

(8.71) κt := sup
s∈S\{t}

dist
(
− Λ−1t r01(s, t), Ct,j

)

1− r(s, t) ,

where

• Λt := Var(X ′(t))
• λ(t) is the maximum eigenvalue of Λt
• in (8.71), j is such that t ∈ Sj ,(j = 0, 1, . . . , d0).

The quantity in the right hand side of (8.70) is strictly bigger than 1.

Remark. In formula (8.70) it may happen that the denominator in the right-hand side is
identically zero, in which case we put +∞ for the infimum. This is the case of the one-parameter
process X(t) = ξ cos t+ η sin t where ξ, η are independent standard normal random variables (the
sine-cosine process), and S is an interval having length strictly smaller than π.
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Proof. Let us first prove that supt∈S κt <∞.
For each t ∈ S, let us write the Taylor expansions

r01(s, t) = r01(t, t) + r11(t, t)(s− t) +O(‖s− t‖2)
= Λt(s− t) +O(‖s− t‖2)

where O is uniform on s, t ∈ S, and
1− r(s, t) = (s− t)TΛt(s− t) +O(‖s− t‖2) ≥ L2‖s− t‖2,

where L2 is some positive constant. It follows that for s ∈ S, t ∈ Sj , s 6= t, one has:

(8.72)
dist

(
− Λ−1t r01(s, t), Ct,j

)

1− r(s, t) ≤ L3
dist

(
(t− s), Ct,j

)

‖s− t‖2 + L4,

where L3 and L4 are positive constants. So,

dist
(
− Λ−1t r01(s, t), Ct,j

)

1− r(s, t) ≤ L3 κ(S) + L4.

which implies supt∈S κt <∞.

With the same notations as in the proof of Theorem 8.10, using (7.1) and (8.19), one has:

(8.73) p(x)− pM (x) = ϕ(x)B(x)

where

B(x) :=
∑

t∈S0
E
(
1IX′t(t)∈Ĉt,0

1IM>x

∣∣X(t) = x
)

+

d0∑

j=1

(2π)−j/2

∫

Sj

E
(
|det(X ′′j (t))|1IX′j,N (t)∈Ĉt,j1IM>x

∣∣X(t) = x,X ′j(t) = 0
)
[det(Var(X ′j(t)))]

−1/2σj(dt).

Proceeding in a similar way to that of the proof of Theorem 8.10, an application of the Hölder
inequality to the conditional expectation in each term in the right-hand side of (8.73) shows that
the desired result will follow as soon as we prove that:

(8.74) lim inf
x→+∞

−2x−2 log P
(
{X ′j,N ∈ Ĉt,j} ∩ {M > x}

∣∣X(t) = x,X ′j(t) = 0
)
≥ 1

σ2t + λ(t)κ2t
,

for each j = 0, 1, . . . , d0, where the liminf has some uniformity in t.

Let us write the Gaussian regression of X(s) on the pair (X(t), X ′(t))

X(s) = at(s)X(t) + 〈bt(s), X ′(t)〉+Rt(s).

Since X(t) and X ′(t) are independent, one easily computes :

at(s) = r(s, t)

bt(s) = Λ−1t r01(s, t).

Hence, conditionally on X(t) = x, X ′j(t) = 0, the events

{M > x} and {Rt(s) > (1− r(s, t))x− rT01(s, t)Λ−1t X ′j,N (t) for some s ∈ S}
coincide.
Denote by (X ′j,N (t)|X ′j(t) = 0) the regression of X ′j,N (t) on X ′j(t) = 0. So, the probability in

(8.74) can written as

(8.75)

∫

Ĉt,j

P{ζt(s) > x− rT01(s, t)Λ
−1
t x′

1− r(s, t) for some s ∈ S}pX′j,N (t)|X′j(t)=0(x
′)dx′

where
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• ζt(s) := Rt(s)

1− r(s, t)
• dx′ is the Lebesgue measure on Nt,j . Recall that Ĉt,j ⊂ Nt,j .

If −Λ−1t r01(s, t) ∈ Ct,j one has

−rT01(s, t)Λ−1t x′ ≥ 0

for every x′ ∈ Ĉt,j , because of the definition of Ĉt,j .

If −Λ−1t r01(s, t) /∈ Ct,j , since Ct,j is a closed convex cone, we can write

−Λ−1t r01(s, t) = z′ + z′′

with z′ ∈ Ct,j , z′⊥z′′ and ‖z′′‖ = dist(−Λ−1t r01(s, t), Ct,j).
So, if x′ ∈ Ĉt,j :

−rT01(s, t)Λ−1t x′

1− r(s, t) =
z′Tx′ + z′′Tx′

1− r(s, t) ≥ −κt‖x′‖

using that z′Tx′ ≥ 0 and the Cauchy-Schwarz inequality. It follows that in any case, if x′ ∈ Ĉt,j
the expression in (8.75) is bounded by

(8.76)

∫

Ĉt,j

P
(
ζt(s) > x− κt‖x′‖ for some s ∈ S

)
pX′j,N (t)|X′j(t)=0(x

′)dx′.

To obtain a bound for the probability in the integrand of (8.76) we will use the classical
inequality for the tail of the distribution of the supremum of a Gaussian process with bounded
paths.

The Gaussian process (s, t)) Ã ζt(s), defined on (S × S)\{s = t} has continuous paths. As
the pair (s, t) approaches the diagonal of S×S, ζ t(s) may not have a limit but, almost surely, one
can prove that it is bounded using a similar argument to the one in the proof of Theorem 8.10 for
“helix processes”, that is, Taylor expansion followed by Gaussian regression.

We set

• mt(s) := E(ζt(s)) (s 6= t)
• m := sups,t∈S,s6=t |mt(s)|
• µ := E

(
| sups,t∈S,s6=t

[
ζt(s)−mt(s)

]
|
)
.

The almost sure boundedness of the paths of ζ t(s) implies that m <∞ and µ <∞. Applying
the basic inequality (2.25) of Theorem 2.9 to the centered process s Ã ζ t(s) −mt(s) defined on
S\{t} , we get whenever x− κt‖x′‖ −m− µ > 0:

P{ζt(s) > x− κt‖x′‖ for some s ∈ S}
≤ P{ζt(s)−mt(s) > x− κt‖x′‖ −m for some s ∈ S}

≤ 2 exp
(
− (x− κt‖x′‖ −m− µ)2

2σ2t

)
.

The Gaussian density in the integrand of (8.76) is bounded by

(2πλj(t))
j−d
2 exp

‖x′ −m′j,N (t)‖2

2λj(t)

where λj(t) and λj(t) are respectively the minimum and maximum eigenvalue of Var(X ′j,N (t)|X ′j(t))
and m′j,N (t) is the conditional expectation E(X ′j,N (t)|X ′j(t) = 0). Notice that λj(t), λj(t),m

′
j,N (t)

are bounded, λj(t) is bounded below by a positive constant and λj(t) ≤ λ(t).
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Replacing into (8.76) we have the bound :

(8.77) P
(
{X ′j,N ∈ Ĉt,j} ∩ {M > x}

∣∣X(t) = x,X ′j(t) = 0
)

≤ (2πλj(t))
j−d
2 2

∫

Ĉt,j∩{x−κt‖x′‖−m−µ>0}
exp−

( (x− κt‖x′‖ −m− µ)2
2σ2t

+
‖x′ −m′j,N (t)‖2

2λ(t)

)
dx′

+ P
(
‖X ′j,N (t)|X ′j(t) = 0‖ ≥ x−m− µ

κt

)
,

where it is understood that the second term in the right-hand side vanishes if κt = 0.
Let us consider the first term in the right-hand side of (8.77). We have:

(x− κt‖x′‖ −m− µ)2
2σ2t

+
‖x′ −m′j,N (t)‖2

2λ(t)

≥ (x− κt‖x′‖ −m− µ)2
2σ2t

+
(‖x′‖ − ‖m′j,N (t)‖)2

2λ(t)

=
[
A(t)‖x′‖+B(t)(x−m− µ) + C(t)

]2
+

(x−m− µ− κt‖m′j,N (t)‖)2

2σ2t + 2λ(t)κ2t
,

where the last inequality is obtained after some algebra, A(t), B(t), C(t) are bounded functions
and A(t) is bounded below by some positive constant.

So, the first term in the right-hand side of (8.77) is bounded by :

(8.78) 2.(2πλj)
j−d
2 exp−

( (x−m− µ− κt‖m′j,N (t))2

2σ2t + 2λ(t)κ2t

)

∫

Rd−j
exp−

[(
A(t)‖x′‖+B(t)(x−m− µ) + C(t)

)]2
dx′

≤ L|x|d−j−1 exp−
( (x−m− µ− κt‖m′j,N (t)‖)2

2σ2t + 2λ(t)κ2t

)

where L is some constant. The last inequality follows easily using polar coordinates.

Consider now the second term in the right-hand side of (8.77). Using the form of the condi-
tional density p

X′j,N (t)
∣∣X′j(t)=0(x

′), it follows that it is bounded by

(8.79) P
{
‖(X ′j,N (t)

∣∣X ′j(t) = 0)−m′j,N (t)‖ ≥
x−m− µ− κt‖m′j,N (t)‖

κt

}

≤ L1|x|d−j−2 exp−
( (x−m− µ− κt‖m′j,N (t)‖)2

2λ(t)κ2t

)

where L1 is some constant. Putting together (8.78) and (8.79) with (8.77), we obtain (8.74). ¤

The following two corollaries are straightforward consequences of Theorem 8.12:

Corollary 8.13. Under the hypotheses of Theorem 8.12 one has

lim inf
x→+∞

−2x−2 log |pE(x)− pM (x)| ≥ 1 + inf
t∈S

1

σ2t + λ(t)κ2t
.

Corollary 8.14. Let X a stochastic process on S satisfying A1 -A5. Suppose in addition
that E(X(t)) = 0, E(X2(t)) = 1, Var(X ′(t) = Id for all t ∈ S.
Then

lim inf
u→+∞

− 2u−2 log
∣∣∣P(M > u)−

∫ +∞

u

pE(x)dx
∣∣∣ ≥ 1 + inf

t∈S

1

σ2t + κ2t
.
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and

pE(x) =
[ d0∑

j=0

(−1)j(2π)−j/2gjHj(x)
]
ϕ(x).

where gj is given by (8.26) and Hj(x) has been defined in Section 4.

The proof follows directly from Theorem 8.12 the definition of pE(x) and the calculation of

(8.80) E
(
|det(X ′′j (t))|

∣∣X(t) = x,X ′j(t) = 0
)
,

which is detailed in Exercise 8.6.

6. Examples

1) A simple application of Theorem 8.10 is the following. Let X be a one parameter real-
valued centered Gaussian process with regular paths, defined on the interval [0, T ] and satisfying
an adequate non-degeneracy condition. Assume that the variance v(t) has a unique maximum,
say 1 at the interior point t0, and k = min{j : v(2j)(t0) 6= 0} < ∞. Notice that v(2k)(t0) < 0.
Then, one can obtain the equivalent of pM (x) as x→∞ which is given by:

(8.81) pM (x) ' 1− v′′(t0)/2
kC

1/k
k

E
(
|ξ| 12k−1

)
x1−1/kϕ(x),

where ξ is a standard normal random variable and Ck = − 1
(2k)!v

(2k)(t0) +
1
4 [v

′′(t0)]21Ik=2. The

proof is a direct application of the Laplace method, and the reader can prove it in Exercise 8.3 at
the end of this chapter.
Integrating the density from u to +∞, one gets the corresponding bound for P{M > u}. An
independent proof under somewhat weaker hypotheses can be found in Piterbarg (1996).

2) Let the process X be centered and satisfy A1-A5. Assume that the the law of the process
is isotropic and stationary, so that the covariance has the form (8.21) and verifies the regularity
condition of Section 4. To simplify somewhat the computations, with no loss of generality we add
the normalization ρ′ = ρ′(0) = −1/2. One can easily check that

(8.82) σ2t = sup
s∈S\{t}

1− ρ2(‖s− t‖2)− 4ρ′2(‖s− t‖2)‖s− t‖2
[1− ρ(‖s− t‖2)]2

Furthermore if

(8.83) ρ′(x) ≤ 0 for x ≥ 0,

one can show that the sup in (8.82) is attained as ‖s− t‖ → 0 and is independent of t. Its value is

(8.84) σ2t = 12ρ′′ − 1.

The proof is elementary (see Exercise 8.4 at the end of this chapter).

Let S be a convex set. For t ∈ Sj , s ∈ S:
(8.85) dist

(
− r01(s, t), C

)
= dist

(
− 2ρ′(‖s− t‖2)(t− s), C

)
.

The convexity of S implies that (t− s) ∈ C. Since C is a convex cone and −2ρ′(‖s− t‖2) ≥ 0, one
can conclude that −r01(s, t) ∈ C so that the distance in (8.85) is equal to zero. Hence,

κt = 0 for every t ∈ S
and an application of Theorem 8.12 gives the inequality

(8.86) lim inf
x→+∞

− 2

x2
log
[
p(x)− pM (x)

]
≥ 1 +

1

12ρ′′ − 1
.

A direct consequence is that the same inequality holds true when replacing p(x)− pM (x) by
|pE(x)− pM (x)| in (8.86). The bound for the EPC method has been obtained by other methods



6. EXAMPLES 175

in Taylor and Adler (2003).

Our next theorem improves (8.86). In fact, under the same hypotheses, it says that the liminf
is an ordinary limit and the sign ≥ is an equality sign.

Theorem 8.15. Assume that X is centered, satisfies hypotheses A1-A5, the covariance has
the form (8.21) with ρ′(0) = −1/2, ρ′(x) ≤ 0 for x ≥ 0. Let S be a convex set, and d0 = d ≥ 1.
Then

(8.87) lim
x→+∞

− 2

x2
log
[
p(x)− pM (x)

]
= 1 +

1

12ρ′′ − 1
.

Remark Notice that since S is convex, the added hypothesis that the maximum dimension
d0 such that Sj is not empty is equal to d is not an actual restriction. In fact, in this case, S is a
subset of some affine manifold having dimension d0, that is, the smallest one containing S, and a
simple change of parameter allows to consider S as a subset of Rd0 .

Proof. In view of (8.86), it suffices to prove that

(8.88) lim sup
x→+∞

− 2

x2
log
[
p(x)− pM (x)

]
≤ 1 +

1

12ρ′′ − 1
.

Using (7.1) and the definition of p(x) given by (8.19), one has the inequality

(8.89) p(x)− pM (x) ≥ (2π)−d/2ϕ(x)

∫

Sd

E
(
|det(X ′′(t))|1IM>x

∣∣X(t) = x,X ′(t) = 0)σd(dt),

where the right-hand side is a lower bound since it only contains the term corresponding to the
largest dimension. We have already replaced the density pX(t),X′(t)(x, 0) by its explicit expression

using the law of the process. Under the condition {X(t) = x,X ′(t) = 0} if vT0 X
′′(t)v0 > 0 for

some v0 ∈ Sd−1, a Taylor expansion around the point t implies that M > x. It follows that

(8.90) E
(
|det(X ′′(t))|1IM>x

∣∣X(t) = x,X ′(t) = 0
)

≥ E
(
|det(X ′′(t))|1I

sup
v∈Sd−1

vTX ′′(t)v > 0

∣∣X(t) = x,X ′(t) = 0
)
.

We now apply Lemma 8.5 which describes the conditional distribution of X ′′(t) given X(t) =
x,X ′(t) = 0 . Using the notations of this lemma, we may write the right-hand side of (8.90) as :

E
(
|det(Z − xId)|1I

sup
v∈Sd−1

vTZv > x

)
,

which is obviously bounded below by

(8.91) E
(
|det(Z − xId)|1IZ11>x

)

=

∫ +∞

x

E
(
|det(Z − xId)|

∣∣Z11 = y
)
(2π)−1/2σ−1 exp

(
− y2

2σ2
)
dy,

where σ2 := Var(Z11) = 12ρ′′ − 1. The conditional distribution of Z given Z11 = y is easily
deduced from Lemma 8.5. It can be represented by the random d× d real symmetric matrix

Z̃ :=




y Z12 . . . . . . Z1d
ξ2 + αy Z23 . . . Z2d

. . .

ξd + αy


 ,

where the random variables {ξ2, . . . , ξd, Zik, 1 ≤ i < k ≤ d} are independent centered Gaussian
with

Var(Zik) = 4ρ′′ (1 ≤ i < k ≤ d) ; Var(ξi) =
16ρ′′(8ρ′′ − 1)

12ρ′′ − 1
(i = 2, . . . , d) ; α =

4ρ′′ − 1

12ρ′′ − 1
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Notice that 0 < α < 1.

Choose now α0 > 0 such that (1 + α0)α < 1. The expansion of det(Z̃ − xId) shows that if
x(1 + α0) ≤ y ≤ x(1 + α0) + 1 and x is large enough, then

E
(
|det(Z̃ − xId)|

)
≥ L α0(1− α(1 + α0))

d−1 xd,

where L is some positive constant. This implies that

1√
2πσ

∫ +∞

x

exp(− y2

2σ2
)E
(
|det(Z̃−xId)|

)
dy ≥ L√

2πσ

∫ x(1+α0)+1

x(1+α0)

exp(− y2

2σ2
)α0(1−α(1+α0))d−1 xddy

for x large enough. On account of (8.89),(8.90),(8.91), we conclude that for x large enough,

p(x)− pM (x) ≥ L1x
d exp−

[x2
2

+
(x(1 + α0) + 1)2

2σ2

]
.

for some new positive constant L1. Since α0 can be chosen arbitrarily small, this implies (8.88). ¤

3) Consider the same processes of Example 2, but now defined on the non-convex set {a ≤
‖t‖ ≤ b}, 0 < a < b. The same calculations as above show that κt = 0 if a < ‖t‖ ≤ b and

κt = max
{

sup
z∈[2a,a+b]

−2ρ′(z2)z
1− ρ(z2) , sup

θ∈[0,π]

−2aρ′(2a2(1− cos θ))(1− cosθ)
1− ρ(2a2(1− cos θ))

}
,

for ‖t‖ = a.

4) Let us keep the same hypotheses as in Example 2 but without assuming that the covariance
is decreasing as in (8.83). The variance is still given by (8.82) but κt is not necessarily equal to
zero. More precisely, relation (8.85) shows that

κt ≤ sup
s∈S\{t}

2
ρ′(‖s− t‖2)+‖s− t‖

1− ρ(‖s− t‖2)

The normalization: ρ′ = −1/2 implies that the process X is “identity speed”, that is
Var(X ′(t)) = Id so that λ(t) = 1. An application of Theorem 8.12 gives

(8.92) lim inf
x→+∞

− 2

x2
log
[
p(x)− pM (x)

]
≥ 1 + 1/Z∆.

where

Z∆ := sup
z∈(0,∆]

1− ρ2(z2)− 4ρ′2(z2)z2

[1− ρ(z2)]2 + max
z∈(0,∆]

4
[
ρ′(z2)+z

]2

[1− ρ(z2)]2 ,

and ∆ is the diameter of S.

Let us show on a numerical example that all these quantities can be actually computed.
Suppose that d = 2 and let us consider the covariance r(s, t) defined as follows: τ is the Fourier
transform of the probability measure on R2 having density

1

π
exp−‖z‖

2

2
[1− exp−‖z‖

2

2
],

We put

r(s, t) := τ
(
√

2

3
(s− t)

)
.

One easily verifies that, with our previous notation,

r(s, t) = ρ(‖s− t‖2) = with ρ(z) = 2
(
e−z/3 − e−z/6

2

)
, z ≥ 0.

Check that our conditions are satisfied (the change of scale has been chosen so that ρ′(0) = −1/2)
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Figure 8.1. Representation of the function ρ(z2)

Numerically we find that

2ρ′(z2)+z

1− ρ(z2) ,

vanishes for z in the interval [0; 2.884...] and attains its maximum value: 0.0689... for z = 3.7....
On the other hand

sup
z∈(0,∆]

1− ρ2(z2)− 4ρ′2(z2)z2

[1− ρ(z2)]2

is always attained at Z = 0+ and takes the constant value 4/3.
As a consequence, for a diameter of S smaller than 2.884., the bound for the exponent 1+1/Z∆

takes the value 7/4 = 1.75, and takes the minimum value of 1.7473 for a diameter greater or equal
to 3.7....

5) Suppose that

• the process X = X(t) : t ∈ Rd is stationary with covariance having the form

Γ(t1, . . . , td) =
∏

i=1,...,d

Γi(ti)

where Γ1, ...,Γd are d covariance functions on R which are monotone, positive on [0,+∞)
and of class C4,

• S is a rectangle

S =
∏

i=1,...,d

[ai, bi] , ai < bi.

Then, adding an appropriate non-degeneracy condition, conditions A2-A5 are fulfilled and Theo-
rem 8.12 applies

Clearly

−r0,1(s, t) =




Γ′1(s1 − t1)Γ2(s2 − t2) . . .Γd(sd − td)
...

Γ1(s1 − t1) . . .Γd−1(sd−1 − td−1).Γ′d(sd − td)




belongs to Ct,j for every s ∈ S. As a consequence κt = 0 for all t ∈ S. On the other hand, standard
regressions formulas show that

Var
(
X(s)

∣∣X(t), X ′(t)
)

(1− r(s, t))2 =
1− Γ21 . . .Γ

2
d − Γ′21 Γ

2
2 . . .Γ

2
d − · · · − Γ21 . . .Γ

2
d−1Γ

′2
d

(1− Γ1 . . .Γd)2
,

where Γi stands for Γi(si − ti). Computation and maximisation of σ2t should be performed nu-
merically in each particular case.
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Exercises

Exercise 8.1. For n = 1, 2, ..., let Gn be an n × n GOE random matrix (see Section 4).
Define:

Dn(λ) = (−2)n E
(
det(Gn − λIn)

)
, (λ ∈ R)

a) Prove that

• D1(λ) = 2λ
• D′n(λ) = 2nDn−1(λ) (n = 2, 3, ...)

b) Prove that

Dn(0) = (−1)n/2 n!

(n/2)!

if n is even and Dn(0) = 0 if n is odd.
c) Using a), b) and the fact that the Hermite polynomials satisfy the same relations, conclude

that

Dn(λ) = Hn(λ) ∀ λ ∈ R, n = 1, 2, ...

d) Prove that under the conditions of Theorem 8.8 of this Chapter,

pE(x) = ϕ(x)




∑

t∈S0
σ̂0(t) +

d0∑

j=1

( |ρ′|
π

)j/2
Hj(x)gj



 .

(Hint: Mimic the proof of Theorem 8.8 and take into account c)).

Exercise 8.2. Let κ(S) be defined in (8.69):
Prove that:
a) If S is convex, then κ(S) = 0.
b) If S is a C3−manifold, with or without boundary, then κ(S) <∞.
c) Assume that S verifies the following condition:
For every t ∈ S there exists an open neighborhood V of t in Rd and a C3 diffeomorphism ψ : V →
B(0, r) (where B(0, r) denotes the open ball in Rd centered at 0 and having radius r, r > 0) such
that

ψ(V ∩ S) = C ∩B(0, r), where C is a convex cone.

Then, κ(S) <∞.

Exercise 8.3. Prove the equivalence (8.81) for one-parameter processes given in Example 1
of Section 5 of this chapter.

Exercise 8.4. Prove that formula (8.84) under the conditions or Example 2) of this chapter.

Exercise 8.5. Perform the details of the computations appearing in the Examples 3,4,5 of
this chapter.

Exercise 8.6. Computation of E
(
det(X ′′(t))

∣∣X(t) = x,X ′(t) = 0
)
. Let X(t) t ∈ Rd be a

Gaussian field with real values and such that

• It has C2 paths
• E(X(t) = 0
• Var(X(t)) is constant and non singular. Without loos of generality we suppose that

Var(X(t)) = Id.

a) Prove that X(t) and X ′(t) are independent.
b) Prove that E(XijXkl) is a symmetric function of (i, j, k, l): (it is invariant by permutation).
c) Admit or prove the following classical result: let Y1, . . . , Yn be n centered jointly Gaussian

variables, then

• if n = 2m+ 1; E
(
Y1 . . . Yn) = 0,
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• if n = 2m;

E
(
Y1 · · ·Yn) =

∑
E
(
Yi1Yi2

)
. . .E

(
Yi2m−1Yi2m

)

where the sum is over the (2m)!
m!2m ways of grouping pairwise the 2m variables.

Hint: compute moments using the characteristic function or see Adler (1981) pp 108-109.
4 Let ∆ be a n× n centered Gaussian matrix with entries ∆ij . Suppose that

E
(
∆ij∆kl

)
= E(i, j, k, l)− 1Ii=j1Ik=l,

where E is a symmetric function of (i, j, k, l). Prove that

• if n is odd E
(
det(∆)

)
= 0.

• if n = 2m

E
(
det(∆)

)
=

(−1)m(2m)!

m!2m
.

Hint : develop the determinant using permutations and signature and use the formula above to
see that the part corresponding to E vanishes.

5 Let D = ∆− xIn where ∆ is as in 4. Prove that

E(det(D)) = (−1)n
[n/2]∑

j=0

(−1)j
(
n

2j

)
(2j)!

j!2j
xn−2j = (−1)nHn(x).

6 Conclude.

This result, due to Delmas (2001), extends to the non-stationary case, Lemma 11.7.1 of Adler
and Taylor (2007).





CHAPTER 9

The record method

This chapter presents a very efficient method for the numerical computation the distribution
of the maximum of a stochastic process or a random field with two-dimensional parameter . It is
based mainly on a paper by Mercadier (2006) and the Matlab toolbox MAGP (Mercadier 2005),
which uses the routine Rind of the Matlab package WAFO (WAFO-group, 2000).

1. Smooth processes with one dimensional parameter

1.1. Main result. The basic idea is the following: let {X(t), t ∈ R} be a real valued sto-
chastic process with almost surely absolutely continuous sample paths, and suppose that we are
looking for an expression of

1− FM (u) = P{M > u}.
We denote MT = sup{X(t) : 0 ≤ t ≤ T} and M = M1. Instead of looking at all crossings of the
level u, we will look only at those crossings that are “record times” . The set R of “record times”
is defined by

R := {t ∈ [0, 1] : X(s) < X(t),∀s ∈ [0, t)},
with the convention that 0 is always in R. We have the following trivial identity

(9.1) P{M ≥ u} = P{X(0) > u}+ P{∃t ∈ R : X(t) = u}.
The number of “record times” t such that X(t) = u is equal to 0 or 1. The second term in the
right hand side of (9.1) is equal to the expectation of

R(u) := Nu(X,R) = #{t ∈ R : X(t) = u}.
On this idea is based the following result:

Theorem 9.1 (Rychlik’s formula). Let X = X(t), t ∈ [0, 1] be a real valued stochastic process
with almost surely absolutely continuous sample paths such that for almost all t ∈ [0, 1] X(t) admits
a density pX(t) and E(|X ′(t)|) <∞. Then for every u ∈ R

(9.2) P{M > u} = P{X(0) ≥ u} + lim
δ→0

1

δ

∫ u+δ

u

dx

∫ 1

0

E
(
X ′(t)+1It∈R

∣∣X(t) = x)pX(t)(x) dt.

Remarks:- A first version of this formula under stronger conditions is due to Rychlik (1990).
The present version is due to Mercadier(2006)

- The limit in (9.2) is in fact a manner of choosing a convenient version of the conditional
expectation. For Gaussian processes under certain conditions the usual conditional distributions
defined by the regression formulas is convenient, see Corollary 9.2.

- The expression (9.2) seems at first sight worthless since its right hand side does not seem
to be simpler than the left hand side. But in the next section we will deduce from formula (9.2)
some upper bounds that are sharp.

Corollary 9.2. Suppose that in addition to the conditions of Theorem 9.1 the process X(t)
is Gaussian with C1 paths and satisfies

• For s, t ∈ [0, 1], s < t, the distribution of (X(s), X(t)) does not degenerate.
• For t ∈ [0, 1], the distribution of (X(t), X ′(t)) does not degenerate.

Then

(9.3) P{M > u} = P{X(0) > u}+
∫ 1

0

E
(
X ′(t)+1It∈R

∣∣X(t) = u)pX(t)(u)dt.

181
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Proof of Theorem 9.1 The main idea is that the number R(u) of record points taking a
particular value u is equal to 0 or 1 and that

P{M ≥ u} = P{X(0) ≥ u}+ E(R(u)).

To compute the expectation E(R(u)), we use the Banach formula (see Exercise 3.8). Let g(u) be
a continuous bounded function, we have

∫

R

g(u)R(u)du =

∫ 1

0

|X ′(t)|g(X(t))1It∈Rdt.

Taking expectations in both sides gives:
∫

R

g(u)E[R(u)]du =

∫

R

du g(u)

∫ 1

0

dtE[|X ′(t)|1It∈R
∣∣X(t) = u)pX(t)(u)

showing that the two function of u:

E[R(u)] and

∫ 1

0

E[|X ′(t)|1It∈R
∣∣X(t) = u)pX(t)(u)dt

are u-almost surely equal. From this we deduce that the two functions P{M > u}, and P{X(0) >
u}+ E[R(u)] are u-almost surely equal. The result follows because P{M > u} is càd-làg. ¤

The proof of the corollary is left to the reader.

The next proposition is an easy consequence of Rychlik’s formula, which is a version under
weaker hypotheses of Theorem 8.12 for random fields.

Proposition 9.3. Let {X(t) : 0 ≤ t ≤ T} be a Gaussian process that satisfies

• it is twice differentiable in quadratic mean,
• for all t ∈ [0, T ], E(X(t)) = 0, Var(X(t)) = 1,
• Var(X ′(t)) is bounded away from zero. Without loss of generality we can use the “unit
speed transformation” and suppose that Var(X ′(t)) = 1,

• for all s 6= t, r(s, t) < 1.

Then for every δ > 0 there exists some constant Cδ such that

(9.4) 0 ≤ 1− Φ(u) + T

√
2

π
ϕ(u)− P{MT > u} ≤ Cδ exp

[
−
((

1 +
1

Z

)u2(1− δ)
2

)]
,

where

Z := sup
0≤s<t≤T

[Var(X(s)
∣∣X(t), X ′(t))

(1− r(s, t))2 +
(r+0,1(s, t))

2

(1− r(s, t))2
]
< +∞.

Proof. We use a method that has been employed in the context of random fields, in the
proof of Theorem 8.12. Clearly the expression in (9.4) is bounded by

∫ 1

0

E
(
X ′(t)+1It/∈R

∣∣X(t) = u)pX(t)(u)dt.

An application of the Hölder inequality shows that it sufficient to give bounds to

P{∃s : s < t, X(s) ≥ u
∣∣X(t) = u,X ′(t) > 0}.

For that purpose we write the regression of X(s) on (X(t), X ′(t)):

X(s) = r(s, t)X(t) + r0,1(s, t)X
′(t) +Rt(s).

The three terms in the right hand side above are independent. Under the condition {X(t) =
u,X ′(t) > 0} the event X(s) ≥ u can be written:

Rt(s)

1− r(s, t) +
r0,1(s, t)

1− r(s, t)X
′(t) ≥ u.
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It is obvious that the left hand side in the inequality above is smaller than

Y t(s) :=
Rt(s)

1− r(s, t) +
r+0,1(s, t)

1− r(s, t)X
′(t).

Suppose for the moment that Y t(s) is bounded and that Z is finite, then using the Landau-
Shepp-Fernique inequality (2.33), we know that for every δ > 0 there exists some constant C ′δ
such that

P{∃s : s < t, X(s) ≥ u
∣∣X(t) = u,X ′(t) > 0} ≤ C ′δ exp

[
− u2(1− δ)

2Z

]
.

The rest of the proof is plain.
It remains to prove that Y t(s) is bounded and that its maximal variance is finite. The variance

is the sum of the variance of the two terms. The variance can become infinite or Y t(s) can become
infinite, only for s tending to t. Using Taylor’s formula at t:

X(s) = X(t) + (s− t)X ′(t) + (s− t)2
2

Q(s),

where Q(s) is an integral remainder. It is easy to see that

1− r(s, t) ≈ (s− t)2
2

, r0,1(s, t) ≈ (s− t).

and that lims→tRt(s) is just the projection in L2(Ω) of Q(s) onto the orthogonal complement of
the linear subspace generated by X(t), X ′(t), so that we can conclude that it is a.s. finite and has
finite variance. ¤

1.2. Numerical application. The exact implicit formula (9.3) can be turned into an explicit
upper-bound by means of a discretization of the condition {X(s) < X(t),∀s ∈ [0, t)} .
One convenient way is to use the points {kt/n, k = 0, . . . , n− 1} to get

(9.5) P{M > u} ≤ P{X(0) > u}+
∫ 1

0

E
(
X ′(t)+1IX(0),...,X(t(n−1)/n)<u

∣∣X(t) = u)px(t)(u)dt.

On the other hand the time discretization provides the trivial lower-bound

(9.6) P{M > u} ≥ 1− P{X(0), . . . , X((n− 1)/n) ≤ u}.

The main point is that, when the process is Gaussian, the integrals that appear in (9.5) and (9.6)
can be computed using the MAGP tool-box. All details are given the web-page of Mercadier
(2005). The program is able to perform such calculations for n up to 100.

The precision of the computations of MAGP has been evaluated by Mercadier in two ways:
First, comparing the lower bounds (9.6) with the exact theoretical value for the “sine-cosine”

process (i.e. the centered Gaussian process with covariance Γ(t) = cos t) given by Berman(1971
b) and Delmas (2003 b) (See Exercise 4.1).

Second, comparing lower and upper-bounds with results in other chapters of this book . For
example Figure 9.1 compares the lower and upper-bound of this chapter with the lower-bounds
and upper-bounds given by two or three terms in the Rice series for the centered stationary process

with covariance γ1(t) = e−t2/2 (see Chapter 5).

From these comparisons it appears that one can trust the result from MAGP up to 10−3.

Another question is the precision of the estimation, which can be measured by the difference
between (9.5) and (9.6).

We will consider that the estimation given by (9.5) and (9.6) is “numerically significant” if
it corresponds to an absolute error smaller than 10−2 and to a relative error smallerc than 10−1.
We will concentrate ourselves on the case of stationary centered Gaussian processes with variance
1 and “unit speed” (Var(X ′(t)) = 1). The result depends of course on T and u. The larger u (or
the smaller T ), the better the results.
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Figure 9.1. Comparison of the present bounds with those of Chapter 5. From
top to bottom : Upper-bound from Chapter 5, upper-bound (9.5), lower-bound
(9.6), lower-bound from Chapter 5 (M stands for MT ).

It happens that for levels u ≥ 1 the result is numerical significant for times intervals of sizes
20 to 25 in “unit-speed measure”. See Mercadier (2006) for more details.

One can check in Figure 9.1, that the record method implemented by MAGP is, at this stage,
the most efficient for numerically computing the distribution of the maximum.

2. Non-smooth Gaussian processes

When the process has non-differentiable paths, one way is to use smoothing, as in Chapter 5.
Another way is Durbins formula (Durbin, 1985), based on the pseudo-derivative defined as the
normalized increment (X(t)−X(s))/(t−s). Mercadier has found that this method is very unstable.
A better way is to use the time discretization and the lower-bound (9.6).

It remains to give bounds on the discretization error. This will be done for a process defined
on [0.1], discretized at the points k/n, k = 0, 1, . . . , n which has the same irregularity as the Wiener
process (Brownian motion), i.e. it satisfies the law of iterated logarithm (LIL), for fixed t, almost
surely:

(9.7) −1 = lim inf
s→0

X(t+ s)−X(t)√
2s log(log(1/s))

and lim sup
s→0

X(t+ s)−X(t)√
2s log(log(1/s))

= 1.

Generalizations to other local behaviors can be performed using similar tools, mutatis mutan-
dis, that is, changing this oscillation by the one of the processes being considered.

Our method is based on the following heuristic approximations (which may not be actually
verified by the paths)

(1) The instant t∗ where the maximum is attained satisfies the lim inf part of the LIL.
(2) The maximum of the discretized process is attained among the point k/n at the point

t∗n which is the nearest to t∗.
(3) |t∗n − t∗| has a uniform distribution among the possible value in [0, 1/(2n)].

With all these approximations we get

M −Mn '
√

2Z log(log(1/Z)),

where Z is uniformly distributed over [0, 1/2n] which amounts to saying that:
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(9.8) P{M > u} '
∫ 1/2n

0

P{Mn > u−
√

2z log(log(1/z))}2n dz

Notice that the right hand side of (9.8) is easy to compute numerically using MAGP.
Results are shown in Figure 9.2 for the maximum of processes defined on an interval [0, T ] and

parametrized by the length T . They refer to the Ornstein-Uhlenbeck process (that is, the centered
stationary Gaussian process with covariance Γ(t) := exp(−t), t ≥ 0). These results are compared
with the exact value from Delong’s (1981) paper. The figure suggests that the approximation
(9.8) is very good.
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Figure 9.2. Ornstein-Uhlenbeck process : Approximation (9.8) (Top) , lower-
bound (9.6) (bottom) and exact value (solid line) for P{MT > 1.1} as a function
of T .

3. Two-parameter Gaussian processes

3.1. Main result. This section is based on similar ideas to those of Section 1, adapted to
two-parameter processes. We consider a continuous random field X = {X(t) : t ∈ S} with real
values and defined on a compact subset S of R2 and MS := maxt∈S X(t).

Let us consider now a “rather high” level u and a realization such that {MS > u}.
Let us suppose that the probability that the process remains above the level u for all t ∈ S

can be neglected. Then, the event {MS > u} is almost equivalent to

“the level curve Cu := {t ∈ S : X(t) = u} is not empty”.

More precisely, let us choose a particular direction (say South) and to consider the point at the
southern extremity of Cu (which is in general unique). To do so denote by l the lexicographic
order on R2, that is:

s = (s1, s2) l t = (t1, t2)⇔ {s2 < t2} or {s2 = t2; s1 < t1}.
We define the “lexicographic past” L(t) of a point t ∈ S as

L(t) := {s ∈ S : sl t}.
A point t ∈ S will be called a “record point” if for all points s ∈ L(t): X(s) < X(t). We denote
by R the set of record points. Obviously there is at most one record point where the process X(t)
takes a particular value u, and this point is (in general) at the southern extremity of the level
curve.
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Eventually the event {M > u} is almost equivalent to

{The number of record points on Cu is 1 and not 0}.
We assume the following hypotheses:

(A0) The set S is compact, convex, the parameterization ρ : [0, L]→ ∂S of the boundary ∂S
by its arc length is of class C1, except perhaps at a finite number of points where ρ is
only continuous. Moreover we will assume that ρ(0) is the point of ∂S which is minimal
with respect to l.

(A1) The sample paths of the random field Z := (X,X10) are almost surely continuously
differentiable.

(A2) For t ∈ S, the distribution of Z(t) does not degenerate.
(A3) For every w ∈ R2 there is almost surely no point t ∈ S such that Z(t) = w and

det(Z ′(t)) = 0.

Recall the notation Xij(t1, t2) :=
∂i+j

∂ti1∂t
j
2

X(t1, t2) (i, j = 0, 1, ...).

Theorem 9.4. Let S be a subset of R2 satisfying (A0). Let X(t) be a real valued Gaussian
process defined on some neighborhood of S and satisfying assumptions (A1-A3). Then for every
real u :

(9.9) P{M > u} = P{Y (0) > u}+
∫ L

0

E(|Y ′(`)|1IX(s)<u,∀s∈L(ρ(`))
∣∣Y (`) = u)pY (`)(u)d`

+

∫

S

E(|X20(t)−X01(t)+|1IX(s)<u,∀s∈L(t)
∣∣X(t) = u,X01(t) = 0)pX(t),X01(t)(u, 0)dt,

where: Y (`) := X(ρ(`)).

Sufficient conditions for (A3) are given in Proposition 6.5.

Proof. The proof is very close to that of Theorem 7.2 and will be sketched.
Assume that the event {M > u}⋂{Y (0) < u} occurs. Then, Cu is non empty and compact.

The point τ which is minimal for l on Cu is uniquely determined. We want to prove that τ is a
record point.

• If τ and ρ(0) have the same second coordinate, L(τ) is reduced to the segment I :=
[ρ(0); τ). The value of the process X(t) in ρ(0) is less than u and by definition, the
process X(t) cannot take the value u on I. X(t) cannot take a value larger than u on I
because of the Intermediate Value Theorem. As a consequence τ is a record point.

• If τ and ρ(0) have distinct second coordinate then ρ(0)2 < τ2. On L(τ), X(t) cannot
take the value u. Suppose that there exists τ̃ in L(τ) such that X(τ̃) > u. The whole
segment [ρ(0), τ̃ ] is in S and thus in L(τ) and by the Intermediate Value Theorem, there
is a point on this segment where X(t) takes the value u which is not possible.

Adding the trivial case {Y (0) > u}, we have proved that, on the event Y (0) 6= u, which has
probability 1, almost surely {M > u} is the disjoint union of the two events

“ Y (0) > u ” and “there exist exist a record point with value u”.

The event “there exist exist a record point with value u” can be split into two disjoints ones
depending on whether τ belongs to ∂S or Ṡ. Since there is at most one record point, these two
cases are disjoints and their probabilities are equal to the expectation of the number of record
points in ∂S and Ṡ.

Let us consider a non-increasing function F ,R → R satisfying:

F(x) = 1 if x < −1/2 , F(x) = 0 if x ≥ 0.

Then

Fn(x) := F(nx) ↑ 1Ix<0 as n ↑ +∞.
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We compute first the expectation of number of zeroes of Z(t) on S with the weights
Fn(sups∈L(t)X(s)−X(t)) using the Rice formula (Theorem 6.4) and then we pass to the monotone
limit as n→∞.

For the boundary of S

E(#{` ∈ [0, L) : ρ(`) ∈ R, Y (`) = u})

we have to use the same kind of proof after splitting (0, L) into a finite number of sub-intervals
in which ` Ã Y (`) is C1. We remark that almost surely Y (.) does not takes the value u at the
extremities of these intervals. Summing up, we get the result. ¤

Theorem 9.5 (Bounds). Let S be a subset of R2 satisfying:
(A’0) : S is compact, S and its complement are connected, the parameterization ρ : [0, L]→ ∂S of
the boundary ∂S by its arc length is of class C1 except perhaps at a finite number of points where
ρ is only continuous.

Let X be a real valued Gaussian process defined on some neighborhood of S, satisfying as-
sumptions (A1) and (A2). Then, for every real u, using the notations of Theorem 9.9:

(9.10) P{M > u} ≤ P{Y (0) > u}+
∫ L

0

E(|Y ′(`)|)
∣∣Y (`) = u)pY (`)(u)d`

+

∫

S

E(|X20(t)−X01(t)+|
∣∣X(t) = u,X01(t) = 0)pX(t),X01(t)(u, 0)dt,

Proof. Let M∂ be the maximum of X(t) on ∂S. One has:

(9.11) P{M > u} = P{M∂ > u}+ P
(
{M > u} ∩ {M∂ < u}

)

≤ P{Y (0) > u}+ P{UYu ([0, L] > 0}+ P{∃t ∈ Ṡ : X(t) = u,X10(t) = 0, X20 < 0, X01 > 0}.

The last inequality is due to the fact that if M > u and M∂ < u , the level curve Cu is contained
in the interior of S . There exists at least one point on this curve with minimal second coordinate.
It follows that:

P{M > u} ≤ P{Y (0) > u}+E{UYu ([0, L]}+E
(
#{t ∈ Ṡ : X(t) = u,X10(t) = 0, X20 < 0, X01 > 0}

)

It suffices to apply the Rice formula (Theorem 6.2), remarking that under condition X(t) =
u,X10(t) = 0 we have : det(Z ′(t)) = X20(t).X01(t). ¤

3.2. Numerical application. As in Section 1.2 the exact formula (9.9) can be transformed
into an explicit upper-bound by discretizing the condition 1IX(s)<u,∀s∈L(t) . For simplicity we limit

now our attention to the case where S is the square [0, T ]2 and the process X is “standardized”
i.e. centered, stationary, isotropic, with variance one and “identity speed”. In that case

• The two terms in (9.9) corresponding to the edges 0× [0, T ] and 1× [0, T ] are equal and
equal to

∫ T

0

E((X10(v, 0))
+1IX(s)<u,∀s∈L(v,0)

∣∣X(v, 0) = u)φ(u)dv.

• The term corresponding to the edge [0, T ]× 1 vanishes: indeed if there is a record point
τ on this edge, the derivative X01 must vanish. Because of Rice formula (or using
Bulinskaya’s Lemma 1.20) the expectation of the number of such points is zero.

If in formula (9.9), we replace the whole lexicographic past L(t) of a point t by its intersection
Ln(t) with a grid :

Ln(t) := L(t) ∩ {(
kt

n
,
lt

n
), k = 0, . . . , n, l = 0, . . . , n}.
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we get the upper-bound:

P{M > u} ≤ Φ(u) + ϕ(u)
[
2

∫ T

0

E(X+01(v, 0)1IX(s)<u,∀s∈Ln(v,0)
∣∣X(v, 0) = u)dv(9.12)

+

∫ T

0

E(X+10(v, 0)1IX(s)<u,∀s∈Ln(v,0)
∣∣X(v, 0) = u)dv

+
1√
2π

∫∫

[0,T ]2
E(X20(t)

−X01(t)
+1IX(s)<u,∀s∈Ln(t)

∣∣X(t) = u,X01(t) = 0)dt
]
.

The main point is that this upper-bound can computed by MAGP.

In the other direction, we get a lower-bound using discretization :

(9.13) P{M > u} ≥ P
{
max

(
X(

kt

n
,
lt

n
), k = 0, . . . , n, l = 0, . . . , n

)
> u

}
.

Figure 9.3 shows these bounds compared with equivalent in Adler (1981) and the equivalent
given by the Euler-Poincaré Characteristic method.
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Figure 9.3. P{M > u} for the random field with Gaussian covariance on

[0,
√
10]2 from top to bottom : the upper bound (9.10), the Euler characteristic

approximation, the upper-bound (9.12) , the lower-bound (9.12) , the equivalent
by Adler(1981).

Exercises

Exercise 9.1. Prove Corollary 9.2 using Ylvisaker’s Theorem and the regression method of
Proposition 9.3

Exercise 9.2. Suppose that S is the square [0, T ]2. Suppose that the process X(t) is “stan-
dardized” then show that the upper bound (9.10 ) takes the form

P{M > u} ≤ Φ(u) +

√
2

π
Tφ(u) +

T 2u

((2π)

[
cφ(u/c) + uΦ(u/c)

]
φ(u),

with c :=
√

Var(X20)− 1
Show that the difference between this bound and the equivalent given by EPC method :

Φ(u) +
√
2
πφ(u) +

T 2u
(2π)φ(u) is bounded by

T 2u

((2π)3/2
c3u−2φ

(
u

√
1 + c2

c2

)[
cφ(u/c) + uΦ(u/c)

]
φ(u).



CHAPTER 10

Asymptotic methods for infinite time horizon

A contrario to Chapter 8 this chapter considers asymptotic results for intervals of time with
size tending to infinity. Let us consider the crossings of the level u by a stationary Gaussian
process. In Section 1 the level u tends to infinity jointly with the size so that the expectation of
the number of crossings remains constant. In that case it is proven that, under weak hypotheses,
the asymptotic distribution of the number of crossings is Poisson. This implies that the maximum
of the process converges, after renormalization, to a Gumbel distribution.

In Section 2 the level u is fixed and the number of crossings tends to infinity. Under some
conditions, this number of crossings satisfies a central limit theorem. The main tool is in fact an
elementary presentation of Wiener Chaos decomposition .

1. Poisson character of “high” up-crossings

In this section we give a proof of the following theorem, originally due to Volkonskii and
Rozanov (1959,1961).

Theorem 10.1. Let X = {X(t) : t ∈ R} be a zero-mean stationary Gaussian process with
covariance Γ(τ) = E(X(t)X(t+ τ)) satisfying the following conditions:
- Γ(0) = 1.
- λ2 <∞
- Γ(τ) log(τ)→ 0 as τ →∞ (Berman’s condition)
- If one writes Γ(τ) = 1− λ2τ2/2 + θ(τ) then, for some δ > 0 the integral

∫ δ

0

θ′(τ)

τ2
dτ

is convergent (this is Geman’s condition, that we have already mentioned in Proposition 4.2).

Set

Cu := E
(
Uu(X; [0, 1])

)
=
√
λ2

exp(−u2/2)
2π

and define, for t ∈ R+

(10.1) Ru(t) := Uu(X; [0, C−1u t])

Then, as u → +∞ the family of point processes {Ru(t) : t ≥ 0} converges weakly in the
Skorohod space to a standard Poisson process.

Remark. Notice that Berman’s condition implies that |Γ(τ)| < 1 for all τ 6= 0 (See Feller,
1966, Ch. XV).

This theorem has a direct interest for modelling phenomena depending on time, like pollu-
tion levels, floods or other situations in which up-crossings of a threshold by a certain stochastic
process imply the occurrence of a relevant event. This theorem is the mathematical explanation
of a standard procedure which consists in using the Poisson process as a model to represent the
sequence of these random time points, whenever the threshold and the size of the time window are

189
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large enough. Of course, beyond the statement of the theorem, the fitting of such a model to em-
pirical data is a problem of statistical nature which should be appropriately considered in each case.

In the formulation above, the process is Gaussian and stationary, has some local regularity
given by Geman’s condition and some mixing (asymptotic independence for distant values of the
parameter) given by Berman’s condition. In fact, the mild “Geman condition” is not needed in
its full generality (see Leadbetter et al. (1983) for a longer proof without this condition and also
for various extensions, including to non-Gaussian processes).

We are using here only some elementary well-known properties of point processes defined on
the half-line [0,+∞) (see for example Neveu, 1977) . We will indistinctly call “point process”
the random set of points Ψ = {tk}, the random measure µΨ having a unit atom at each one of
these points, which we will assume to be almost surely locally finite and the càd-làg version of its
cumulative distribution function, that is, for t ≥ 0, FΨ(t) = #{k : tk ≤ t}. Weak convergence of
these point processes is to be understood as weak convergence of the stochastic process FΨ(.) in
the Skorohod space, see Section 4.1 of Chapter 4. The two properties that we will use without
proving them are the following:

Proposition 10.2 (Rényi, 1967).

(a) Let T > 0. The family of point processes {FΨn(.)}n=1,2,... is tight in the space D[0, T ] if
and only if the sequence of distributions of the (integer-valued) random variables {FΨn(T )}n=1,2,...
is tight on the line.

(b) Assume that a point process as above verifies the following conditions,
for any subset B of [0,+∞) which is a union of intervals:

(10.2) E
(
µΨ(B)

)
≤ λ(B)

and

(10.3) P
{
µΨ(B) = 0

}
= exp(−λ(B)).

Then, Ψ is a standard Poisson process.

The next useful corollary of Theorem 10.1 states that, after re-normalization, the maximum
MT of the process converges weakly to a Gumbel distribution:

Corollary 10.3. Under the conditions of Theorem 10.1, setting

MT := sup
t∈[0,T ]

Xt, aT := (2 log T )1/2

bT := (2 log T )1/2 + log

(
λ2
2π

)
(2 log T )−1/2

then as T → +∞
P{aT (MT − bT ) ≤ x} → exp(−e−x).

Both the theorem and its corollary can be extended, under mild conditions, to constant
variance non-stationary processes (see Azäıs and Mercadier, 2003).

Proof of Theorem 10.1 : Without loss of generality we may assume that λ2 = 1. Set
ρ(t) := sups>t |Γ(s)|. If it is not otherwise specified, all limits in this proof are for u→ +∞. Let
T0 be such that ρ(T0) < 1/3.

We break the proof into several steps.

Step 1: Let T (u) be increasing as a function of u, and tend to infinity in a controlled manner,
meaning that T (u) = O

(
(Cu)

−1/2).
Let us prove that
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(10.4) P{MT (u) > u} =
√
λ2
2π
T (u)φ(u)

(
1 + o(1)

)
.

Let u be large enough so that T (u) > T0. We use the computation in the proof of Proposition
4.2 of Chapter 4.

For short, denote ν2 the second factorial moment of the up-crossings on an interval of length
T (u). It suffices to prove that

ν2 = T (u)φ(u) o(1)

For given ε > 0, choose δ > 0 so that

∫ δ

0

θ′(τ)

τ2
dτ < ε.

Then,

ν2 ≤ T (u)φ(u)
[
ε+ T0φ(δ1u) + (T (u)− T0)φ1/2+δ2(u)

]

where δ1, δ2 > 0,which implies (10.4).

Step 2: It is sufficient to prove the result for t ∈ [0, T ] and each T ∈ R+. We use Proposition
10.2 (a) and observe that by construction E

(
Ru(T )

)
= T which obviously implies tightness of the

probability distributions of the random variables {Ru(T )}u>0. So, the family of processes Ru(.)
is tight and if we denote by R(.) a limit process of the family, what remains is to show that R(.) is
a standard Poisson process. For this goal, we use the characterization of Poisson processes given
by Proposition 10.2 (b).

Clearly Fatou’s lemma implies that the process R(.) satisfies (10.2). The remainder of the
proof is based upon a discretization argument to verify condition (10.3). We do this first when B
is a unique interval. Due to the stationarity of the process, we may assume that B = (0, L].

Set Ju = (0, C−1u L]. Consider the partition of Ju into n = n(u) intervals I1, ..., In of equal

length C−1u L/n, where n − 1 is the integer part of C
−1/2
u L. Then each interval Ii (i = 1, ..., n)

satisfies the result of step 1.
We now divide each interval Ii into intervals of length q = q(u) such that q.u → 0, but

sufficiently slowly in a way that will be precised later on. In Step 3 we will prove the following
intermediate results:

•
(10.5) P{Uu(Ju) = 0} = P{MJu < u}+ o(1).

• For all intervals A = Au ⊂ Ju having the form Au = [aq, bq], a, b integers,

(10.6) 0 ≤ P{X(kq) ≤ u : ∀k; kq ∈ Au} − P{MAu < u} = λ(Au)Cuo(1),

withMAu := supt∈Au X(t), where the o(1) is uniform over all sequences of intervals with
length bounded below by some positive number.

•

(10.7) P{X(kq) ≤ u : ∀k; kq ∈ Du} =
n∏

i=1

P{X(kq) ≤ u : ∀k; kq ∈ Ii}+ o(1)

A direct consequence of these equivalences is that

(10.8)

P{Uu(Ju) = 0} =
n∏

i=1

(
1− C1/2u

(
1 + o(1)

))
=
(
1− C1/2u

(
1 + o(1)

))C−1/2u L
(
1+o(1)

)
v + o(1)

= exp(−L)
(
1 + o(1)

)
.
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Use now that R([0, L)) is the weak limit of Uu(Ju) through a sub-sequence of u’s tending to +∞
to conclude that (10.3) holds true when B is a single interval.

Step 3

We prove (10.5).
Clearly, P{MJu < u} ≤ P{Uu(Ju) = 0}. On the other hand:

P{Uu(Ju) = 0} = P{Uu(Ju) = 0;X(0) < u}+P{Uu(Ju) = 0;X(0) ≥ u} ≤ P{MJu < u}+1−Φ(u).

Consider now (10.6). We define U qu(Au) as the number of up-crossings of the size-q discretiza-
tion of X on the interval Au. More precisely

U qu(Au) := #{k ∈ Z : kq ∈ Au, X(kq) > u,X
(
(k − 1)q

)
< u}

Then

0 ≤ P{X(kq) ≤ u : ∀k; kq ∈ Au}−P{MAu < u} ≤ P{Uu(Au)−U qu(Au) > 0} ≤ E
(
Uu(Au)−U qu(Au)

)
.

An upper-bound for the right-hand side is given in the following auxiliary lemma, of which
we give a proof after finishing the one of the theorem.

Lemma 10.4. Let Au, q and U qu(Au) be defined as above. Then,

E[Uu(Au)− U qu(Au)] = o
(
λ(Au)Cu

)
,

with o
(
λ(Au)Cu

)
uniform over the considered class of intervals.

We now prove (10.7). We use the Li and Shao’s Normal Comparison Lemma, lemma 2.1. Let
Σ be the variance matrix of X(kq) for kq in Ju and Σ′ the variance matrix obtained by setting to
zero the extra-diagonal blocks of Σ with respect to the partition I1, ..., In.

Using the Li-Shao inequality in both senses, we obtain:

(10.9)

∣∣∣∣∣P{X(kq) ≤ u : ∀k; kq ∈ Ju} −
n∏

i=1

P{X(kq) ≤ u : ∀k; kq ∈ Ii}
∣∣∣∣∣

≤ 1

4

∑

i,j=1,...,N,i<j

|Σij | exp
(
− u2

1 + |Σij |

)
,

where N is the number of discretization points in Ju. Using stationarity and remarking that the

function r Ã r exp
(
− u2

1+r

)
is increasing on (0, 1) we obtain that the right-hand side in formula

(10.9) is bounded above by

(10.10)
1

4

∑

l=1,N

k(l)ρ(lq) exp

(
− u2

1 + ρ(lq)

)
,

where k(l) is the difference of the number of occurrences of the quantity Γ(lq) between Σ and Σ′.
It is easy to see that

k(l) = l(n− 1) for lq < C−1u L/n(10.11)

k(l) ≤ C−1u L/q for every q.(10.12)

So, using T0 already introduced in Step 1, and the monotonicity of r Ã r exp
(
− u2

1+r

)
we can

bound the terms in the sum (10.10) in the following way:

for 0 < l < T0/q we use (10.11) and ρ(lq) ≤ 1

for T0/q ≤ l <
C−1u L

nq
we use (10.11) and ρ(lq) ≤ ρ(T0)

for
C−1u L

nq
≤ l we use (10.12) and the fact that tÃ

C−1u L

nq
is non decreasing,
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to conclude that the expression in formula (10.10) is bounded by

(10.13) (const)
∑

0<l<T0/q

l.n exp(−u
2

2
) + (const)

∑

T0/q≤l<C
−1
u L
nq

l.n exp(− u2

1 + ρ(T0)
)

+ (const)
C−1u
q2

∫ C−1u L

C−1u L/n

ρ(t) exp

(
− u2

1 + ρ(t)

)
dt = I1 + I2 + I3,

It is easy to see that

I1 ≤ (const)C−1/2u q−2 exp(−u2/2)

I2 ≤ (const)
(C−1u L

nq

)2
n exp(− u2

1 + ρ(T0)
) ≤ q−2(const) exp(

3u2

4
) exp(− u2

1 + ρ(T0)
)

and that these quantities tend to zero as soon as q does not go to zero faster than some power of
u.

As for I3,

I3 ≤ (const)Cuq
−2
∫ C−1u L

C−1u L/n

ρ(t) exp
(
u2ρ(t)

)
dt

≤ (const)(qu)−2
∫ L

0

u2ρ(tC−1u ) exp
(
u2ρ(tC−1u )

)
dt,

after a change of variables. Since ρ(z) log(z) → 0, ρ(z) ≤ (const)
(
log(z)

)−1
and u2ρ(tC−1u ) is

bounded and converges pointwise to zero, the dominated convergence theorem implies that

(10.14)

∫ L

0

u2ρ(tC−1u ) exp
(
u2ρ(tC−1u )dt→ 0.

Now it suffices to impose that (qu)−2 grows to infinity slower than (10.14) and than some power
of u to prove that I1, I2 and I3 tend to zero.

Step 4: Let D = ∪i=1,pDi = ∪i=1,p(ai, bi] be a union of disjoint intervals. We can apply the
same arguments as above, discretization and normal comparison lemma, to show that

P{MD < u} =
∏

i=1,p

P{MDi
< u},

that gives the result. The proof is simpler in the sense that terms like I1 and I2 in formula 10.13
are not present. The only modification is to use a monotone convergence argument in order to
replace the extremes of the intervals: (C−1u ai, C

−1
u bi] by multiples of q.

¤

Proof of Lemma 10.4: The stationarity of the process implies that

E
(
Uu(A)

)
= λ(A)Cu

and since A is supposed to be of the form (kq, hq] k, h ∈ N

E
(
U qu(A)

)
=
(λ(A)

q

)
P{X(0) < u < X(q)}.

Remark that

Jq(u) := P{X(0) < u < X(q)} = P
{
|Y1 − u| <

q

2
Y2
}
,

with Y1 := X(0)+X(q)
2 , Y2 := X(q)−X(0)

q are two independent Gaussian variables with respective

variances: σ21 :=
1+r(q)
2 , σ22 :=

2
(
1−r(q)

)
q2 .
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We want to prove that Jq(u) ≈ qCu. With this goal we compute

(10.15)
(
Cuq

)−1
Jq(u) =

(
Cuq

)−1
∫ +∞

0

dy2
ϕ(y2/σ2)

σ2

∫ u+(qy2)/2

u−(qy2)/2
dy1

ϕ(y1/σ1)

σ1

=

∫ +∞

0

y2
σ22

exp
(
− y22

2σ22

)[ σ2

2σ1
√
λ2

∫ 1

−1
exp

(
− u2

2σ21
(1− σ21)−

uqsy2
2σ21

− q2s2y22
8σ21

)
ds
]
dy2.

since 1− σ21 ' λ2q
2

4 , σ1 ' 1 σ22 ' λ2 we see that pointwise in s and y2

− u2

2σ21
(1− σ21)−

uqsy2
2σ21

+
q2y22
8σ21

→ 0.

On the other hand,the integrand in the last term of (10.15) is bounded by

(10.16) (const)y2 exp
(
− y22

2σ22

)
exp

(
− u2

2σ21
(1− σ21) +

uqy2
2σ21

)

For

y2 >
2uqσ22
σ21

the exponent in formula (10.16) is bounded by − y22
4σ22

so that the integral for y2 in [
uqσ22
σ21

,+∞]

tends, by the dominated convergence theorem, to
∫ +∞

0

y2
λ2

exp
(
− y22

2λ2

)
dy2

The remaining integral can be bounded by

(const)

∫ 2uqσ22
σ21

0

y2 exp
uqy2
2σ21

dy2 ≤ (const)

∫ 2uqσ22
σ21

0

y2 exp
u2q2σ22
σ41

dy2.

Since uq → 0, we see that this integral tends to zero.
¤

Proof of Corollary 10.3: Set

τ = exp(−x), u2 = 2(log T + x+ log
(√λ2
2π

)
.

We have TCu = τ . By Theorem 10.1

P{MT < u} ≈ P{Ru(τ) = 0} ≈ exp(−τ).
Remarking that

u =
x

at
+ bt + o(a−1t )

we get the result. ¤

1.1. Extensions to random fields. There exist a series of extensions of the Volkonskii-
Rozanov Theorem (Theorem 10.1). We consider here only two of them and do not give proofs.
Both refer to real-valued d-parameter random fields, with d > 1.

The first one consists in studying, instead of the number of up-crossings of a high level, as
was done above, the geometric measure of the inverse image of a high level, that is, to replace
the 0-dimensional measure by the (d − 1)-geometric measure, under an adequate normalization.
This has been done in Wschebor (1986) using Rice formulas for random fields and is the subject
of Exercise 10.2.

The second is based upon the remark that whenever some mixing-like condition is present,
one can expect that the point process of local maxima above a high level have a Poisson behavior
under a similar renormalization to the one of the Volkonskii- Rozanov Theorem, adapted to the
multiparameter case.
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We restrict ourselves to quote here Theorem 14.1 of Piterbarg’s book (1996), which implies a
consequence which is near to Corollary 10.3 above:

Theorem 10.5 (Piterbarg). Suppose that the real-valued Gaussian, centered stationary ran-
dom field {X(t) : t ∈ Rd} satisfies the following conditions:

- the covariance Γ(t) = E(X(s)X(s+ t)) verifies Γ(0) = 1 and Γ(t)→ 0 as ‖t‖ → ∞,
- the process is three times differentiable, in the mean square sense,
- there exist C > 0, α > 1 and δ > 0 such that:

λd
(
t ∈ [0, T ]d; Γ(t) logα(‖t‖) > C

)
= O(T d(1−δ)) T → +∞.

Then if MT = maxt∈[0,T ]d X(t)

P
{(

(MT − lT )lT
)
< x

}
→ exp(− exp(−x)) T →∞,

where lT is the largest solution in l of the equation

T d
√

det(Λ)ld−1 exp(−l2/2) = (2π)(d+1)/2.

and Λ = Var(X ′(0).

2. Central limit theorem for non-linear functionals

2.1. Ergodic processes. Let Y = {Y (t) : t ∈ R}, be a real-valued stochastic process defined
on some probability space (Ω,A,P). The process is said to be strictly stationary if for any choice
of the positive integer k and t1, ..., tk, t ∈ R, the joint distribution (in Rk) of Y (t1+ t), ...., Y (tk+ t)
does not depend on t. Clearly, if the process in Gaussian, it is strictly stationary if and only if,
for any choice of τ ∈ R, the expectation and covariance E(Y (t)) and Cov(Y (t), Y (t + τ)) do not
depend on t.

We will assume some mild regularity of the paths of the process Y such as that almost surely,
they are Riemann-integrable on every bounded interval. For example, if the paths are a.s. càd-
làg, this follows easily. In fact, this condition can be replaced by some more general measurability
condition without affecting what follows. We denote σ(Y) the smallest σ-algebra with respect to
which all the functions Y (t) : Ω→ R, t ∈ R are measurable. Clearly, σ(Y) ⊂ A.

Let Y be a real-valued strictly stationary process and η a random variable defined on (Ω,A,P),
which is also σ(Y)−measurable. For t ∈ R one can define the random variable θt(η) which is the
image of η under the translation of size t, in the following natural way: if η has the form

(10.17) η = g
(
Y (t1), ..., (tk)

)
,

where g : Rk → R is Borel-measurable, we define

θt(η) = g
(
Y (t1 + t), ..., (tk + t)

)

For general η, we approximate it in probability by means of cylindrical functions having
the form (10.17) and commute the limit with the translation, using the strict stationarity of
the process. A σ(Y)−measurable random variable η is “invariant” if for every t ∈ R, almost
surely θt(η) = η. The stochastic process Y is called ”ergodic” when η is invariant if and only if
it is almost surely constant. A famous theorem due to Maruyama (1949) states that if Y is a
stationary Gaussian process, it is ergodic, if and only if its spectral measure has no atoms.

Assume now that Y is a strictly stationary stochastic process and E(|Y (t)|) < +∞ (notice that
this expectation does not depend on t). Then, the classical Birkhoff-Khintchine ergodic theorem
says that, almost surely, as T → +∞ the time average,

1

T

∫ T

0

Y (t)dt

converges to an invariant random variable with finite expectation, I∞ with E(I∞) = E(Y (0)).
If the process is also ergodic, then this random variable is almost surely constant and equal to
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E(Y (0)). This corresponds to the usual statement that for strictly stationary ergodic processes,
“one can replace time averages by space averages”.

A similar result holds true for the time average

1

T

∫ 0

−T
Y (t)dt.

For proofs, the reader can consult, for example, again Cramér and Leadbetter’s book, or Brown
(1976).

2.2. Non-linear functionals. Let us now turn to the main subject of this section. Let
X = {X(t) : t ∈ R} be a centered real-valued stationary Gaussian process. Without loss of
generality, we assume that Var(X(t)) = 1 ∀t ∈ R. We want to consider functionals having the
form:

(10.18) Tt := 1/t

∫ t

0

F (X(s)) ds,

where F is some function in L1(φ(x)dx).
Set µ := E(F (Z)), Z being a standard normal variable. The ergodic theorem implies that a.s.

the expression in (10.18) has an invariant limit as t→ +∞, which is also σ(X )−measurable. So,
if the spectral measure of the process has no atoms, because of Maruyama’s Theorem, this limit
is a.s. constant and equal to µ. Our aim is to compute the speed of convergence and establish for
it a central limit theorem.

We will assume furthermore that the function F is in L2(φ(x)dx). For the statement of the
next result, which is not hard to prove, we need the following additional definition. The Gaussian
process {X(t) : t ∈ R} is called “m-dependent” if Cov(X(s), X(t)) = 0 whenever |t− s| > m.

Theorem 10.6 (Hoeffeding and Robins, 1948). With the notations and hypotheses above, if
the process X(t) is m dependent, then

√
t

(
1/t

∫ t

0

F (X(s)) ds− µ
)
→ N(0, σ2) in distribution as t→ +∞,

where σ2 is the variance of F (Z). Z stands for a standard normal variable.

Our aim is to extend this result to processes which are not m−dependent. The proof we
present follows Berman (1992 b) with a generalization, due to Kratz and León (2001) (see also
Léon, 2006), to functions F in (10.18) having an Hermite rank not necessarily equal to 1. For
ε > 0, we will approximate the given process X by a new one Xε which is 1/ε-dependent and
estimate the error.

We need to recall some facts and prove some auxiliary ones before stating and proving the
main results. Hn(x) denote the modified Hermite’s polynomials of degree n, orthogonal w.r.t. the
standard Gaussian measure that have been already defined in Chapter 8 . Recall, that Hn can be
defined by means of the identity:

exp(tx− t2/2) =
∞∑

n=0

Hn(x)
tn

n!
.

Since F is in L2(φ(x) dx), it can be written as

Fn =
∞∑

n=0

anHn(x),

with

an =
1

n!

∫ ∞

−∞
F (x)Hn(x)φ(x)dx,
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and the norm of F in L2(φ(x)dx) satisfies

||F ||22 =
∞∑

n=0

a2nn!.

The Hermite rank of F is defined as the smallest n such that an 6= 0. For our purpose, we
can assume that this rank greater or equal than 1.

A useful standard tool to perform computations with Hermite polynomials is Mehler’s formula
which we state and prove with an extension (see León and Ortega, 1989).

Lemma 10.7 (Mehler’s formula). (a) Let (X,Y ) be a centered Gaussian vector E(X2) =
E(Y 2) = 1 and ρ = E(XY ). Then,

E(Hj(X)Hk(Y )) = δj,kρ
j .

(b) Let (X1, X2, X3, X4) be a centered Gaussian vector with variance matrix

Σ =




1 0 ρ13 ρ14
0 1 ρ23 ρ24
ρ13 ρ23 1 0
ρ14 ρ24 0 1




Then, if r1 + r2 = r3 + r4,

E
(
Hr1(X1)Hr2(X2)Hr3(X3)Hr4(X4)

)
=

∑

(d1,d2,d3,d4)∈Z

r1!r2!r3!r4!

d1!d2!d3!d4!
ρd113ρ

d2
14ρ

d3
23ρ

d4
24,

where Z is the set of di’s satisfying : di ≥ 0;

(10.19) d1 + d2 = r1 ; d3 + d4 = r2 ; d1 + d3 = r3 ; d2 + d4 = r4.

If r1 + r2 6= r3 + r4 the expectation is equal to zero.
Notice that the four equations in (10.19) are not independent, and that the set Z is finite and
contains, in general, more than one 4-tuple.

Proof. We give a proof of (b), (a) being a particular case. We have

(10.20) E
( 4∏

i=1

exp(tiXi −
1

2
t2)
)
= exp(ρ13t1t3 + ρ14t1t4 + ρ23t2t3 + ρ24t2t4)

First, we have by definition

exp(tx− 1

2
t2) =

∞∑

q=0

tqHq(x)

q!
.

So, the left hand side of (10.20) is equal to

∞∑

ri=0

tr11 t
r2
2 t

r3
3 t

r4
4

r1!r2!r3!r4!
E
(
Hr1(X1)Hr2(X2)Hr3(X3)Hr4(X4)

)
.

Second, the right hand side of (10.20) is equal to

(10.21)

∞∑

r=0

1

r!
(ρ13t1t3 + ρ14t1t4 + ρ23t2t3 + ρ24t2t4)

r

=
∞∑

r=0

∑

d1+d2+d3+d4=r

1

d1!d2!d3!d4!
td1+d21 td3+d42 td1+d33 td2+d44 .

Identifying both sides it follows that the expectation E
(
Hr1(X1)Hr2(X2)Hr3(X3)Hr4(X4)

)
is zero

if r1 + r2 6= r3 + r4. In the other cases, the monomial of degree (r1, r2, r3, r4) in the right hand
side of (10.20) corresponds to r = (r1 + r2 + r3 + r4)/2 and it can be found in a unique term in
the sum

∑∞
r=0. The result follows.

¤
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As an additional hypothesis, we will assume that the process X has a spectral density f(λ).
X has the following spectral representation:

(10.22) X(t) =
√
2

∫ ∞

0

[
cos(tλ)

√
f(λ)dW1(λ) + sin(tλ)

√
f(λ)dW2(λ)

]
,

where W1 and W2 are two independent Wiener processes (Brownian motions) . Indeed, using
isometry properties of the stochastic integral, it is easy to see that the process given by (10.22) is
centered, Gaussian and with covariance

Γ(t) = E(X(s)X(s+ t)) = 2

∫ ∞

0

cos(λs) cos(λ(t+ s))f(λ)dλ+2

∫ ∞

0

sin(λs) sin(λ(t+ s))f(λ)dλ

= 2

∫ ∞

0

cos(λt)f(λ)dλ

Define now the function ψ(.) as the convolution 1I[− 12 , 12 ] ∗ 1I[− 12 , 12 ]. This function is even, non

negative, ψ(0) = 1, has support included in [−1, 1] and a non-negative Fourier transform. Set

ψε(.) :=
1
εψ(ε.) and let ψ̂ε be its Fourier transform. Define

(10.23) Xε(t) :=
√
2

∫ ∞

0

[
cos(tλ)

√
f ∗ ψ̂ε(λ)dW1(λ) + sin(tλ)

√
f ∗ ψ̂ε(λ)dW2(λ)

]
,

where the convolution must be understood after prolonging f as an even function on R. The
covariance function Γε of X

ε(t) satisfies Γε(t) = Γ(t)ψ(εt). This implies that the process Xε(t) is
1
ε -dependent. We have the following proposition:

Proposition 10.8. Let X be a centered stationary Gaussian process with spectral density f(λ)
and covariance function Γ with Γ` ∈ L1(R), ` positive integer. Let Xε(t) be defined by (10.23).
Then

(10.24) lim
ε→0

lim
t→∞

E

[
1√
t

∫ t

0

(
H`(X(s))−H`(X

ε(s))
)
ds

]2
= 0.

Proof. Using Mehler’s formula and the change of variables τ = s1 − s2:

E

[
1√
t

∫ t

0

(
H`(X(s))−H`(X

ε(s))
)
ds

]2

= 2`!

(∫ t

0

(1− τ/t)(Γ`(τ) + Γ`ε(τ)− 2ρ`ε(τ))dτ

)

= 2`!(

∫ t

0

(1− τ/t)(Γ`ε(τ)− Γ`(τ))dτ + 2

∫ t

0

(1− τ/t)
(
Γ`(τ)− ρ`ε(τ))dτ

)
,

where ρε(τ) := E[X(0)Xε(τ)].
Since |Γε(τ)|` ≤ |Γ(τ)|`, we see that the first term tends to zero, as t tends to infinity and

then ε tend to zero, on applying the dominated convergence theorem.
As for the second, we have
∫ t

0

(1− τ/t)
[
Γ`(τ)− ρ`ε(τ)

]
dτ =

∫ t

0

(1− τ/t)dτ
∫ +∞

−∞
cos(λτ)

[
f∗(`)(λ)− g∗(`)ε (λ)

]
dλ.

where gε is the spectral density λ Ã
√
f(λ)

√
(f ∗ ψ̂ε)(λ) and g

∗(`)
ε denotes the convolution of

gε, ` times with itself.

Using Fubini’s Theorem:

(10.25)

∫ t

0

(1− τ/t)dτ
∫ +∞

−∞
cos(λτ)

(
f∗(`)(λ)− g∗(`)ε (λ)

)
dλ

=

∫ +∞

−∞

1− cosλt

tλ2
(
f∗(`)(λ)− g∗(`)ε (λ)

)
dλ =

∫ +∞

−∞

1− cosλ

λ2
(
f∗(`)(

λ

t
)− g∗(`)ε (

λ

t
)
)
dλ,
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When ` is equal to 1, the function f and thus gε are bounded and continuous and the
dominated convergence theorem implies that the limit as t→∞ of (10.25) is equal to

[
f(0)− gε(0)

] ∫ +∞

−∞

1− cosλ

λ2
dλ.

This quantity tends to zero as ε→ 0.
When ` > 1 we first prove that g∗`ε is bounded by ‖f ∗ ψε‖∞. We have:

(10.26) g∗2ε (λ) =

∫ +∞

−∞
gε(λ− λ1)gε(λ1)dλ1

≤ ‖f ∗ ψε‖∞
∫ +∞

−∞
f(λ− λ1)f(λ1)dλ1 ≤ ‖f ∗ ψε‖∞,

because of the Cauchy-Schwarz inequality.
For k > 2, we use induction. Clearly:

∫ +∞

−∞
(f ∗ ψ̂ε)(λ)dλ = Γε(0) = Γ(0)ψ(0) = 1,

so that

(10.27) g∗(k)ε (λ) ≤ ‖g∗(k−1)ε ‖∞
∫ +∞

−∞

(
(f ∗ ψε)(λ)f(λ)

) 1
2 dλ ≤ ‖g∗(k−1)ε ‖∞ ≤ ‖f ∗ ψε‖∞.

Now gε(.−λ
t ) converges to gε(.) in L

1(R), as t→ +∞. This is nothing more than the continuity

of the translation. The duality between L1(R) and L∞(R) implies that g
∗(k)
ε (λt )→ g

∗(k)
ε (0). Using

(10.25) and (10.27)
∫ +∞

0

(1− τ/t)Γ`(τ)− ρ`ε(τ)dτ →
(
f∗`(0)− g∗`(0)

) ∫ +∞

−∞

1− cosλ

λ2
dλ,

as t→ +∞.

Fatou’s Lemma and the definition of gε imply that

(10.28) lim inf
ε→0

g∗(`)ε (0) ≥ f∗(`)(0).

On the other hand

g∗`ε (0) =

∫ ∞

−∞
gε(λ`−1)g

∗(`−1)
ε (λ`−1) dλ`−1

(10.29)

=

∫

R`−1
gε(λ`−1)gε(λ`−1 − λ`−2) . . . gε(λ2 − λ1)gε(λ1) dλ1, . . . , dλ`−1

≤
[∫

R`−1
(f ∗ ψ̂ε)(λ`−1)(f ∗ ψ̂ε)(λ`−1 − λ`−2) . . . (f ∗ ψ̂ε)(λ2 − λ1)(f ∗ ψ̂ε)(λ1) dλ1, . . . , dλ`−1

]1/2

×
[∫

R`−1
f(λ`−1)f(λ`−1 − λ`−2) . . . f(λ2 − λ1)f(λ1) dλ1, . . . , dλ`−1

]1/2
,

= [(f ∗ ψ̂ε)∗(`)(0)]1/2[f∗(`)(0)]1/2 → f∗(`)(0) as ε→ 0,

using the Cauchy-Schwarz inequality and the continuity of f ∗(`) since Γl is in L1.
Summing up, (10.28) and (10.29) imply lim

ε→0
g∗(`)ε (0) = f∗(`)(0), and we are done. ¤

Theorem 10.9. Let X be a Gaussian process satisfying the hypotheses of Proposition 10.8
and F a function in L2(φ(x)dx) with Hermite rank ` ≥ 1. Then, as t→ +∞,

√
tTt =

1√
t

∫ t

0

F (X(s))ds→ N(0, σ2(F )) in distribution
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where

σ2(F ) := 2

∞∑

k=`

a2kk!

∫ ∞

0

Γk(s)ds.

Proof. Define FM :=

M∑

n=`

anHn(x) and T
M
t :=

1

t

∫ t

0

FM (X(s))ds. Let M = M(δ) > ` such

that

2

∞∑

k=M+1

a2k < δ.

Using Mehler’s formula, we get

t Var(Tt − TMt ) = 2
∞∑

k=M

c2kk!

∫ t

0

(1− s

t
)Γk(s)ds ≤ 2

∞∑

k=M

c2kk!

∫ ∞

0

|Γ|k(s)ds < δ

∫ ∞

0

|Γ|`(s)ds.

Since δ is arbitrary, we only need to prove the asymptotic normality for TMt . Let us introduce

TM,ε
t =

1

t

∫ t

0

FM (Xε(s))ds,

where Xε(t) has been defined in (10.23). By Proposition 10.8 recalling that for k ≥ l, Γk is in
L1(R) since Γ` is, we obtain:

lim
ε→0

lim
t→∞

t Var(TMt − TMε
t ) = 0.

Now Theorem 10.6 for m- dependent sequences implies that
√
t TM,ε

t is asymptotically normal.
Notice that

σM,ε := lim
t→∞

tVar(TMε
t ) = 2

M∑

k=0

a2kk!

∫ 1
ε

0

Γkε(s)ds

and that σMε → σ2(F ) when ε→ 0 and M →∞, giving the result. ¤

2.3. Hermite expansion for crossings of regular processes. Let X be a centered sta-
tionary Gaussian process. With no loss of generality for our purposes, we assume that Γ(0) =
−Γ′′(0) = 1 and Γ(t) 6= ±1 for t 6= 0. We also assume Geman’s Condition of Proposition 4.2:

Γ(t) = 1− t2/2 + θ(t) with

∫
θ′(t)

t2
dt converges at 0+.

We define the following expansions

(10.30) x+ =
∞∑

k=0

akHk(x), x− =
∞∑

k=0

bkHk(x), |x| =
∞∑

k=0

ckHk(x),

We have a1 = 1/2, b1 = −1/2, c1 = 0 and using (8.7) and integration by parts for k > 2:

ak =
1

k!

∫ +∞

0

xHk(x)ϕ(x)dx =
1

k!
√
2π
Hk−2(0).

The classical properties of Hermite polynomials easily imply that for positive k:

a2k+1 = b2k+1 = c2k+1 = 0

a2k = b2k =
(−1)k+1√

2π2kk!(2k − 1)

c2k = 2a2k.

We have the following Hermite expansion for the number of up-crossings:
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Theorem 10.10. Under the conditions above,

Uu := Uu(X, [0, T ]) =

∞∑

j=0

∞∑

k=0

dj(u)ak

∫ T

0

Hj(X(s))Hk(X
′(s))ds a.s.

where dj(u) = 1
j!φ(u)Hj(u) and ak is defined by (10.30). We have similar results, replacing ak

by bk or ck, for the number D(u, [0, T ]) of down-crossings and for the total number of crossings
N(u, [0, T ]).

Proof. Let g(.) ∈ L2(φ(x)dx) and define the functional

T+g (t) =

∫ t

0

g(X(s))X ′+(s)ds.

The convergence of the Hermite expansion implies that a.s.

(10.31) T+g (t) =

∞∑

j=0

∞∑

k=0

gj ak

∫ t

0

Hj(X(s))Hk(X
′(s))ds,

where the g′js are the coefficients of the Hermite expansion of g. Using that for each s, X(s) and
X ′(s) are independent, we get:

(10.32) E
[ ∫ t

0

[
g(X(s))|X ′(s)| −

∑

j,k≥0:k+j≤Q
gjakHj(X(s))Hk(X

′(s))
]
ds
]2

≤ (const)t2
∑

j,k≥0:k+j≥Q
j!g2jk!a

2
k,

On the other hand, using Proposition 4.2,

ν2(u, T ) = E
(
Uu([0, T ])(Uu([0, T ])− 1)

)
=

∫ T

0

2(T − τ)A+0,τ (u, u)dτ,

with

A+0,τ (u, u) = E
(
X ′+(0)X ′+(τ)

∣∣X(0) = X(τ) = u)pX(0),X(τ)(u, u) ≤
θ′(τ)

τ2
,

For every T , ν2(u, T ) is a bounded continuous function of u and the same holds true for E(U 2u).
Let us now define

U δu :=
1

2δ

∫ T

0

1I|X(t)−u|≤uX
′+(t)dt

In our case, hypotheses H1,u of Lemma 3.1 are a.s. satisfied. This lemma can be easily extended
to up-crossings, showing that

U δu → Uu a.s. as δ → 0.

By Fatou’s Lemma
E
(
(Uu)

2
)
≤ lim inf

δ→0
E
(
(U δu)

2
)

To obtain an inequality in the opposite sense, we use the so-called Banach formula (3.31) (see
Exercise 3.8). To do that, notice that this formula remains valid if one replaces in the left-hand
side the total number of crossings by the up-crossings and in the right-hand side |f ′(t)| by f ′+(t).
So, on applying it to the random path X(.), we see that:

U δu =
1

2δ

∫ u+δ

u−δ
Uxdx.

and using Jensen’s inequality,

lim sup
δ→0

E
(
(U δu)

2
)
≤ lim sup

δ→0

1

2δ

∫ u+δ

u−δ
E
(
(Ux)

2
)
dx = E

(
(Uu)

2
)

So, E
(
(U δu)

2
)
→ E

(
(Uu)

2
)
and since the random variables involved are non-negative, a stan-

dard argument of passage to the limit based upon Fatou’s Lemma shows that U δ
u → Uu in L2.We

now apply (10.31) to U δu.
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(10.33) U δu =

∞∑

j,k=0

dδj(u)akζjk,

where dδj(u) are the Hermite coefficients of the function xÃ 1
δ 1I‖x−u‖≤δ and

ζjk =

∫ T

0

Hj(X(s))Hk(X
′(s))ds.

Notice that

(10.34) dδj(u)→
1

j!
φ(u)Hj(u) = dj(u).

On the other hand, let us denote by Sq the closed linear subspace of the L2 of the probability
space, generated by the random variables {ζjk : j, k ≥ 0, j + k = q}.

A direct application of Mehler’s formula’s Lemma 10.7, part (b), plus Fubini’s Theorem, shows
that the subspaces {Sq}q=0,1,... are pairwise orthogonal. So, we may rewrite (10.33) in the form:

(10.35) U δu =

∞∑

q=0

γδq

where

γδq =
∑

j+k=q

dδj(u)akζjk → γq :=
∑

j+k=q

dj(u)akζjk.

For every integer Q > 0,
∑Q
q=0 γ

δ
q is equal to ΠQ(U

δ
u), where ΠQ is the orthogonal projector on

the space generated by the first Q spaces SQ. Using the convergence of U δu and the continuity of
the projection:

ΠQ(U
δ
u)→ ΠQ(Uu).

On the other hand

ΠQ(U
δ
u)→

Q∑

q=0

γq as δ → 0.

This implies that:

(10.36) U =
∞∑

q=0

∑

j+k=q

dj(u)akζjk.

¤

Theorem 10.11. Let X = {X(t) : t ∈ R} be a centered stationary Gaussian process verifying
the conditions at the beginning of this subsection. Furthermore, let us assume that:

∫ +∞

0

|Γ(t)|dt,
∫ +∞

0

|Γ′(t)|dt,
∫ +∞

0

|Γ′′(t)|dt <∞.

Let {gk}k=0,1,2,... a sequence of coefficients which satisfies
∑+∞
0 g2kk! <∞. Put:

Ft :=
1√
t

∑

k,j≥0
gjak

∫ t

0

Hj(X(s))Hk(X
′(s))ds

where ak has been defined in (10.30). Then

Ft − E(Ft)→ N(0, σ2) in distribution as t→ +∞
where

0 < σ2 =

∞∑

q=1

σ2(q) <∞,
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and

σ2(q) :=

q∑

k=0

q∑

k′=0

akak′gq−kgq−k′
∫ +∞

0

E
[
Hq−k(X(0))Hk(X

′(0))Hq−k′(X(s))Hk′(X
′(s))

]
ds.

The integrand in the right-hand side of this formula can be computed using Lemma10.7. Similar
results exist, mutatis mutandis, for the sequences {bk} and {ck}.

A consequence is

Corollary 10.12. If the process X satisfies the conditions of Theorem 10.11 then, as T →
+∞

1√
t

(
Uu
(
[0, T ]

)
− T e

−u2/2

2π

)
→ N(0, σ21) in distribution

1√
t

(
Nu
(
[0, T ]

)
− T e

−u2/2

π

)
→ N(0, σ22) in distribution,

where σ21 and σ22 are finite and positive .

Remark The result of Theorem 10.11 is in fact true under weaker hypotheses namely∫ +∞
0

|Γ(t)|dt <∞,
∫ +∞
0

|Γ′′2(t)|dt <∞, see Theorem 1 of Kratz and León (2001) or Kratz (2006).
Our stronger hypotheses make it possible to make a proof self-contained and rather short.

Proof of the theorem

Since Γ is integrable, the process X admits a spectral density. The hypotheses and the
Riemann-Lebesgue Lemma imply that:

Γ(i)(t)→ 0 i = 0, 1, 2 as t→ +∞.
Hence, we can choose T0 so that for t ≥ T0

(10.37) Γ(t) := sup{|Γ(t)|, |Γ′(t)|, |Γ′′(t)|} ≤ 1/4.

Step1 In this step we prove that one can choose Q large enough so that Ft can be replaced
with an arbitrarily small error (in the L2 sense) by

FQt :=
1√
t

Q∑

q=0

Gqt with Gqt :=

q∑

k=0

gq−kak

∫ t

0

Hq−k(X(s))Hk(X
′(s))ds.

Let us consider

(10.38)
1

t
E
(
(Gqt )

2
)
=

1/t

q∑

k,k′=0

gq−kakgq−k′ak′
∫ t

0

dt1

∫ t

0

E
(
Hq−k(X(t1))Hk(X

′(t1))Hq−k′(X(t2))Hk′(X
′(t2))dt2.

To give an upper-bound for this quantity we split it into two parts.
The part corresponding to |t1 − t2| ≥ T0 is bounded, using Lemma 10.7, by

(10.39)

(const)

q∑

k,k′=0

|gq−k||ak||gq−k′ ||ak′ |
∫ t

T0

∑

(d1,d2,d3,d4)∈Z

k!(q − k)!k′!(q − k′)!
d1!d2!d3!d4!

|Γ(s)|d1 |Γ′(s)|d2+d3 |Γ′′(s)|d4

≤ (const)

q∑

k,k′=0

|gq−k||ak||gq−k′ ||ak′ |
∫ t

T0

∑

(d1,d2,d3,d4)∈Z

k!(q − k)!k′!(q − k′)!
d1!d2!d3!d4!

(
1

4
)(q−1)Γ(t),

where Z is as in Lemma 10.7, setting r1 = q − k, r2 = k, r3 = q − k′, r4 = k′.

Remarking that sup
d

1

d!(k − d)! ≤
2k

k!
it follows that

k!(q − k)!k′!(q − k′)!
d1!d2!d3!d4!

in (10.39) is bounded

above by 2q(k′)!(q−k′)! or 2q(k)!(q−k)! depending on the way we group terms. As a consequence
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it is also bounded above by 2q
√

(k′)!(q − k′)!(k)!(q − k)! and the right-hand side of (10.39) is
bounded above by

(10.40) (const)

q∑

k,k′=0

|gq−k||ak||gq−k′ ||ak′ |q2−q
√

(k′)!(q − k′)!(k)!(q − k)!
∫ +∞

0

Γ(t)dt

≤ (const)

q∑

k,k′=0

|gq−k||ak||gq−k′ ||ak′ |
√

(k′)!(q − k′)!(k)!(q − k)!

where we have used that the number of terms in Z is bounded by q.
On the other hand, the integration region in (10.38) corresponding to |t1 − t2| ≤ T0 can be

covered by at most [t/T0] squares of size 2T0. Using Jensen’s inequality as we did for the proof of
(10.32) we obtain:

(10.41) E
((
Gq2T0

)2) ≤ (const)T 20

q∑

k=0

(q − k)!k!g2q−ka2k.

Finally,

1

t
E
((
Gqt
)2) ≤ (const)

q∑

k=0

(q − k)!k!g2q−ka2k,

which is the general term of a convergent series. This proves also that σ2 is finite.

Step 2 Let us prove that σ2 > 0. It is sufficient to prove that σ2(2) > 0. Recall that a1 = 0
so that

(10.42) σ2(2) = a20g
2
2

∫ +∞

0

E
(
H2(X(0))H2(X(s))ds

+ a22g
2
0

∫ +∞

0

E
(
H2(X

′(0))H2(X
′(s))ds

+ 2a0g2a2g0

∫ +∞

0

E
(
H2(X(0))H2(X

′(s))ds.

Using the Mehler formula

(10.43) σ2(2) = 2a20g
2
2

∫ +∞

0

Γ2(s)ds+ 2a22g
2
0

∫ +∞

0

(Γ′′(s))2ds+ 4a0g2a2g0

∫ +∞

0

(Γ′(s))2ds

=

∫ +∞

−∞

(
λ4a20g

2
2 + λ22a0g2a2g0 + a20g

2
)
f2(λ)dλ

=

∫ +∞

−∞

(
λ2a2g0 + a0g2

)2
f2(λ)dλ > 0.

Step 3 Set

FQ,εt :=
1√
t

Q∑

q=0

Gq,εt ,

with

Gq,εt =

q∑

k=0

gq−kak

∫ t

0

Hq−k(X
ε(s))Hk

(
(Xε)′(s)

)
ds.

In this step, we prove that FQt can be replaced, with an arbitrarily small error if ε is small enough,

by FQ,εt . Since the expression of FQt involves only a finite number of terms having the form:

K0q−k,k :=
1√
t

∫ t

0

Hq−k(X(s))Hk

(
X ′(s)

)
ds
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if ε is small enough, one can replace with an arbitrarily small error by

Kε
q−k,k :=

1√
t

∫ t

0

Hq−k(X
ε(s))Hk

(
(Xε)′(s)

)
ds.

For that purpose we study

(10.44) E(K0q−k,k −Kε
q−k,k)

2 = 2

∫ t

0

t− s
t

E
[
Hq−k(X(0))Hk

(
X ′(0)

)
Hq−k(X(s))Hk

(
X ′(s)

)]

+ E
[
Hq−k(X

ε(0))Hk

(
(Xε)′(0)

)
Hq−k(X

ε(s))Hk

(
(Xε)′(s)

)]

− 2E
[
Hq−k(X(0))Hk

(
X ′(0)

)
Hq−k(X

ε(s))Hk

(
(Xε)′(s)

)]
ds.

Consider the computation of terms of the kind

(10.45)

∫ t

0

t− s
t

E
[
Hq−k(Y1(0))Hk

(
Y ′1(0)

)
Hq−k(Y2(s))Hk

(
Y ′2(s)

)]
ds

where the processes Y1(t) and Y2(t) are chosen among {X(t), Xε(t)}. It suffices to prove that all
these terms have the same limit, as t→ +∞ and then ε→ 0 whatever the choice is.

Applying Lemma 10.7, the expectation of (10.45) is equal to

∫ t

0

t− s
t

∑

d1,...,d4∈Z

(q − k)!2k!2
d1!d2!d3!d4!

(ρ(s))d1(ρ′(s))d2(−ρ′(s))d3(−ρ′′(s))d4ds,

where ρ(.) is the covariance function between the processes Y1 and Y2 and Z is defined as in
Lemma 10.7. Again, since the number of terms in Z is finite, it suffices to prove that

lim
ε→0

lim
t→∞

∫ t

0

t− s
t

(ρ(s))d1(ρ′(s))d2+d3(ρ′′(s))d4ds,

where (d1, . . . , d4) is chosen in Z, does not depend on the way to choose Y1 and Y2. ρ is the

Fourier transform of (say) g(λ) whig is taken among f(λ); f ∗ ψ̂ε(λ) or
√
f(λ)

√
f ∗ ψ̂ε(λ). Define

g(λ) = iλg(λ) and g(λ) = −λ2g(λ). Then (ρ(s))d1(ρ′(s))d2+d3(ρ′′(s))d4 is the Fourier transform
of the function

h(λ) = g∗d1(λ) ∗ g∗(d2+d3)(λ)g∗d4(λ).
The continuity and boundedness of f imply that all the functions above are bounded and contin-
uous. The same reasoning that led to (10.25) shows that

∫ t

0

t− s
t

ρ(s)d1ρ′(s)d2+d3(ρ′′(s))d4ds =

∫ +∞

−∞

1− cosλ

λ2
h(
λ

t
),

As t→ 0, the right-hand side converges, using dominated convergence, to
∫ +∞

−∞

1− cosλ

λ2
h(0)dλ.

The continuity of f now gives the result, as in Proposition 10.8.
¤.

Proof of Corollary 10.12:

Some attention must be payed to the fact that the coefficients

dj(u) =
1

j!
φ(u)Hj(u)

do not satisfy
∑
j = 0∞j!d2j (u) <∞. They only satisfy the relation

(10.46) j!d2j (u) is bounded
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First, considering the bound given by the right hand side of (10.40), we can improve it by rein-
troducing the factor q2−q that had been bound by 1. We get that in its new expression this right
hand side is bounded by

(const)q2−q
q∑

k,k′=0

|dq−k(u)||ak||dq−k′(u′)||ak′ |
√

(k′)!(q − k′)!(k)!(q − k)!

≤ (const)q2−q
q∑

k=0

(
dq−k(u)

)2
a2k(k)!(q − k)!

≤ (const)q2−q
q∑

k=0

a2kk! ≤ (const)q2−q.

Second we have to replace the bound (10.41). Since the series in 10.36 is convergent E
((
Gq2T0

)2)

is the term of a convergent series and this in enough to conclude. ¤.

2.4. Extensions to random fields. Some of these results can be extended to real-valued
random fields, to obtain convergence for the geometric measure of level sets corresponding to a
fixed hight u, as well as some related functionals defined on them, when the observation window
grows to the whole space. More precisely, Iribarren (1989) contains a Central Limit Theorem for
integrals on the level set, under some regularity and mixing conditions. The main tool are the
formulas (6.9) and (6.10). This asymptotic result has been used when d = 2 by Cabaña (1987) to
provide a method to test the isotropy of the law of the random field, on the basis of the observation
of level sets. The original idea is simple and fruitful: a deformation in the domain which breaks
isotropy is reflected in the length of the level sets, and this can be used to estimate anisotropy.
The same idea is used in Wschebor (1985, Chapter 3) for general d ≥ 1. Some extensions can be
found in Kratz and León (2001).

Exercises

Exercise 10.1. Prove Theorem 10.6. Hint: partition the interval [0, t] into 2n− 1 intervals,
(n being a function of t) I1, J1, . . . , Jn−1, In, the Ji’s being of size m.

Exercise 10.2. Let {X(t) : t ∈ Rd}, d ≥ 2 be a real-valued, centered Gaussian, stationary
random field with paths of class C4 and covariance:

Γ(t) = E(X(s)X(s+ t)) , s, t ∈ R
d.

We assume the normalization Γ(0) = 1 and that −Γ′′(0) = Var(X ′(t)) is positive definite;
For each u ∈ R, denote by σ(T, u) the (d − 1)−dimensional geometric measure of the inter-

section of the inverse image of u with the window T ⊂ Rd.

a) Prove that for each Borel subset T of Rd, one has:

E
(
σ(T, u)

)
= λd(T )φ(u)E

(
‖ξ‖
)
,

where ξ is a centered random vector with values in Rd, Var(ξ) = −Γ′′(0).

b) Put (see the notation in a)):

c(u) = φ(u)E
(
‖ξ‖
)
.

Under the additional (mixing-type) hypothesis that for i = 0, 1, 2:

(log ‖t‖)1− i
2Γ(i)(t)→ 0 as ‖t‖ → +∞,

prove that for each bounded Borel set T ⊂ Rd, as u→ +∞, one has:

(10.47) µ((c(u))−1/dT, u)→ λd(T )

in probability.
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(Hint: Apply Rice’ formula for k = 2).





CHAPTER 11

Geometric characteristics of random sea-waves

In this chapter we will consider extremely simplified representations of a very complicated
phenomenon and our presentation will not go into the actual fluid dynamics and numerical prob-
lems. We will only consider a set of limited questions which interest oceanographers, at least since
the 1950’s, say since the founding papers of M.S. Longuett-Higgins and collaborators.

The random sea surface will be modelled using a special Gaussian stationary model that
appears as a limit of the superposition of infinitely many elementary sea-waves obeying to the
Euler model.

For the defined random surface, we consider some geometrical characteristics like wave-length,
crests, length and speed of contours. The various Rice formulas are use to compute expectation
or Palm distribution (see definition below) of such quantities. Some numerical applications are
presented and a brief description of some non-Gaussian models is given in Section 5.

1. Gaussian model for infinitely deep sea

Let us consider a moving incompressible fluid (the water of the sea) in a domain of infinite
depth. If one writes the Euler equations, after some approximations one can show that a class
of solutions describing the sea level W (t, x, y), where t is the time variable and x, y are space
variables, is given by

(11.1) W (t, x, y) = f cos(λtt+ λxx+ λyy + θ),

where f and θ and the amplitude and the phase and the pulsations λt, λx, λy are some parameters
that satisfy the so-called Airy relation

(11.2) κ =
λ2t
g

with κ2 := λ2x + λ2y

where g is the acceleration of gravity. In what follows, we assume that units have been chosen so
that g = 1.

For a suitable random choice of f and θ namely, independent, f having Rayleigh distribution
(see Exercise 3.12) and θ uniform in [0, 1π], W (t, x, y) is an elementary Gaussian field called the
sine-cosine process, because it can be written in the form:

(11.3) W (t, x, y) = ξ1 sin(λtt+ λxx+ λyy) + ξ2 cos(λtt+ λxx+ λyy)

where ξ1 and ξ2 are two independent standard normal random variables.

Since the Euler equation is linear, a finite sum of elementary waves having the form (11.3) is
again a solution. The limit of such a sum as the number of elementary waves tends to infinity is,
using the results in Chapter 1, a stationary random field having the particularity that its spectral
measure F (dλt, dλx, dλy) lies in the surface defined by the Airy relation. This surface is a parab-
oloid having circular sections for constant t.

This will be our basic model. It is an approximation which can be valid only over short
periods of time (about 1 hour) and over short geographical areas (several kilometers). It is also
understood that very long-period phenomena, like tide and surge, have been removed, so that we
will also assume that the process is centered.

209
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The symmetry of the distribution implied by the Gaussian hypothesis (i.e. that the random
fields W (t, x, y) and −W (t, x, y) have the same law), is considered by certain authors as a draw-
back for an adequate representation of the true behavior of the sea level. We will present in
Section 5 of this chapter an extension, intending to take this problem into account.

The covariance function of the process, that is:

Γ(∆t,∆x,∆y) = E
{
W (t, x, y)W (t+∆t, x+∆x, y +∆y)

}

is the Fourier transform of the Borel measure F (dλt, dλx, dλy).

Figure 11.1. Representation of the surface on which the spectral measure lies .

Since the spectral measure is symmetric with respect to 0, the lower half of the paraboloid
can be removed for our calculations. If we keep only the polar variable κ and α where α is the
angle of the vector (λx, λy) with the x-axis, we can write

(11.4) Γ(∆t,∆x,∆y) =

∫ +∞

0

∫ 2π

0

cos(
√
κ∆t+ κ cosα∆x+ κ sinα∆y)G̃(dκ, dα).

Here G̃ is the measure obtained by expressing in polar coordinates the projection of the spectral
measure (after removing the lower part) onto the plane (λx, λy). Notice that this measure does
not need to by symmetric, in the sense that it may not be invariant under the transformation
(κ, α)→ (κ, α+ π).

A standard form to write the spectral representation of the covariance is a slight modification
of (11.4). Put ω = λt (the pulsation) and make the change of variables ω = λt =

√
κ. Then:

(11.5) Γ(∆t,∆x,∆y) =

∫ +∞

0

∫ 2π

0

cos
(
ω∆t+ ω2 cos(α∆x) + ω2 sin(α∆y)

)
G(dω, dα)

G is the the spectral measure of the random wave in the so-called sense of “wave community”. It
is a non-negative measure expressed in m2/s which is a unit of power. G is called the “directional
power spectrum”. More details on wave modelling can be founds, for example, in Kinsman (1965)
or Ochi (1998).
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2. Some geometric characteristics of waves

For the time being, the observation of the sea level is performed by indirect methods. As far
as the authors know, registration of the height as a function of the three variables t, x, y is not
available and measurements are often limited to the spectrum, in the sense of (11.5), computed
as solutions of certain inverse problems. So, a very important question is to deduce from these
spectrums some information on the geometry of the waves.

2.1. Time waves. Suppose for the moment that the location (x, y) is fixed and we consider
the level W (t) = W (t, x, y) as a function of the time variable only. The length and the height of
waves can be defined in various ways. The definitions given by Lindgren and Rychlik (1995) are
the following:

Let t3 be a down-crossing of zero “chosen at random” (this notion will be defined precisely
later on, using the Palm distribution) and consider (see figure 11.2):

• t1, the last up-crossing of zero preceeding t3
• the point (t2, w2) where the maximum between t1 and t3 is attained
• t5 the first up-crossing of zero following t3
• the point (t4, w4) where the minimum between t3 and t5 is attained.

Then the wave is defined as the part of the curve between t1 and t5, its length is L = t5 − t1,
its height is H = w2 − w4 its half length can be also defined as t5 − t3 or t3 − t1.

t
1

t
2

t
3

t
4

t
5

Figure 11.2. Remarquable points in the definition of wave-length and wave-height.

Other definitions exist, based on local extrema (again, see Lindgren and Rychlik (1995) and
references therein).

Definition 11.1 (Palm distribution). Let {Ti,Mi}i=1,2,.. be a stationary marked point process.
This means that {Ti}i=1,2,.. is a point process on the real line (see Chapter 10) and to each point
Ti is attached a random variable Mi,“the mark” that takes its values in some measurable space E.
Then, for every measurable subset B of E, the Palm distribution of B is given by:

(11.6) P(B) :=
E(#{Ti ∈ [0, T ] :Mi ∈ B})

E(#{Ti ∈ [0, T ]})
Because of the stationarity, this quantity does not depend of the value of T > 0.

If the process is defined on the real line and is ergodic (see Chapter 10) then, almost surely
one has:

P(B) = lim
T→∞

(#{Ti ∈ [0, T ] :Mi ∈ B})
#{Ti ∈ [0, T ]}
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so that the Palm measure can be estimated in a consistent way as T → +∞ by means of the
quotient in the right-hand side of this formula, on the basis of the observation of the point process
in the window [0, T ].

On the other hand, when applied to random waves, according to the definition given by (11.6),
the Palm measure can be computed using one-parameter weighted Rice formula. A basic example
is the following:

Proposition 11.2 (Rychlik (1987)). Let {X(t), t ∈ R} be a centered stationary Gaussian
process satisfying the conditions of Theorem 6.2. The density of the Palm distribution of the half
wave period T5 − T3 is

pT5−T3(τ) = (const)pX(0),X(τ)(0, 0)E
(
X ′(0)X ′(τ)1IX(s)≤0,∀s∈[o,τ ]

∣∣X(0) = X(τ) = 0)

See Exercise 11.1 which contains a hint for the proof.

3. Level curves, crests and velocities for space waves

Let Z = {Z(x, y) : (x, y) ∈ R2} be real-valued 2-parameter centered stationary Gaussian
process with differentiable paths. The part of the level curve corresponding to level u contained
in the Borel set S, is:

Cu(Z, S) = {(x, y) ∈ S : Z(x, y) = u}.
Its mean length E

(
L(Cu(Z, S))

)
is given by Rice formula for random fields (Theorem 6.8):

Theorem 11.3. Assume that the process Z satisfies the conditions of Theorem 6.8. Then,
with the notations above

(11.7) E
(
L(Cu(Z, S))

)
= λ2(S)pZ(u)E

(
‖Z ′(0, 0)‖

)
=

√
2

π
λ2(S)pZ(u)

√
γ2E(k)

where Σ is the variance matrix of Z ′(0, 0), γ2 > γ1 are its eigenvalues; k2 := (1 − γ1
γ2
); E(k) :=

∫ π/2
0

(1− k2 sin2 θ)1/2dθ is the elliptic integral of the first kind and pZ is the density of Z(x, y).

Proof. Applying Theorem 6.8 we get

E
(
L(Cu(Z, S))

)
=

∫

S

E
(
‖Z ′(x, y)‖

∣∣Z(x, y) = u)pZ(x,y)(u)dxdy = λ2(S)pZ(u)E‖Z ′(0, 0)‖,

because of stationarity. This prove the first relation.
As for the second, after, diagonalization of Var(Z ′(0, 0)), ‖Z ′(0, 0)‖, can be represented by

‖√γ1ξ1 + √γ2ξ2‖, where ξ1 and ξ2 are two independent standard normal variables. Passing to
polar coordinates we have

E
(
‖Z ′(0, 0)‖

)
=

∫ +∞

0

dρ

∫ 2π

0

√
γ1 sin

2(θ) + γ2 cos2(θ) ρe−ρ
2/2dθ

=

√
2

π

√
γ2

∫ π/2

0

√
cos2(θ) + (γ1/γ2) sin

2(θ)dθ =

√
2

π

√
γ2

∫ π/2

0

√
1 +

(γ1
γ2
− 1
)
sin2(θ)dθ.

¤

Remarks:

• One can find this formula already in Longuet-Higgings (1957, formula (2.3.13))
• Formula (11.7) gives a generalization to every level u of Corrsin’s formula (1955). This

formula was established for u = 0 in a different manner. It says that

E [L(Cu(Z, S))]
λ2(S)

=
1

4

∫ 2π

0

Ẽ(Nθ
u)dθ
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where Ẽ(Nθ
u) is the expectation per unit of space of the number of crossings in the

direction θ. By Rice’s formula

Ẽ(Nθ
u) =

√
2m2,θ
π

pZ(u)

where m2,θ is the second spectral moment in the direction θ. Without loss of generality
we can assume that the direction in the plane has been chosen to diagonalize the variance
matrix of Z ′. Then

Σ(θ) =

(
γ2 0
0 γ1

)

and m2,θ =
√
γ2(1− (1− γ1

γ2
) sin2 θ)1/2 so that the right-hand side in (11.7), for S having

Lebesgue measure equal to 1 is equal to:

pZ(u)

√
2

π

√
γ2

∫ π/2

0

(1− (1− γ1
γ2

) sin2 θ)1/2dθ = pZ(u)

√
2

π

√
γ2E(k).

3.1. Length of a Crest. A crest is defined as a local maximum in a given direction, say θ,
of the sea surface modelled as in Section 1.

We define first a static crest at a fixed time (say t = 0) as

Cs(S, θ) := {(x, y) ∈ S;W ′
θ(x, y) = 0;W ′′

θ (x, y) < 0}
where W ′

θ; W
′′
θ are respectively the first and second derivatives of the field W (x, y) in the θ

direction of the (x, y) plane at point (x, y, 0). Since θ is the direction of a straight line it can be
chosen in [0, π).

It is also possible to define moving crest as

Cm(S, T, θ) := {(z cos θ, z sin θ, t) ∈ S×[0, T ];W ′
θ(z cos θ, z sin θ, t) = 0;W ′′

θθ(z cos θ, z sin θ, t) < 0}.
See Azäıs León and Ortega (2005) for more details.

Proposition 11.4. To simplify the presentation, and without loss of generality, we assume
that θ = 0. Let us define the spectral moments

mijk =

∫ ∞

0

∫ 2π

0

(ω2 cos(α))i(ω2 sin(α))jωkG(dω, dα),

where G has been defined in (11.5). Set mij = mij0, with definitions above and if the process W ′
θ

satisfies the conditions of Theorem 6.8. Then

E
(
L(Cs(S, θ))

)
=
λ2(S)

√
γ2

2π(a11)1/2
E(k),

where k =
√

1− γ1
γ2

; a11 = E[W ′
x(0, 0, 0)

2] = m20 and γ2 > γ1 are the eigenvalues of Σ the

variance matrix of the gradient of W ′
x

Σ(θ) =

(
m40 m31
m31 m22

)
.

Proof. Denote by S(x, y) the process W (x, y, 0) and let Z(x, y) =
∂S

∂x
(x, y). Then CsS,0 can

be written as

CsS,0 = {(x, y) ∈ S;Z(x, y) = 0;Z ′x(x, y) < 0}

where Z ′x stands for
∂Z

∂x
(x, y). Thus

E(L(CsS,0)) = E

∫

C0(Z,S)
1I{Z′x(x,y)<0}dσ

where C0(Z, S) = {(x, y) ∈ S : Z(x, y) = 0}. Since Z ′ and −Z ′ have the same distribution,

E(L(CsS,0)) = E

∫

C0(Z,S)
1I{Z′x(x,y)≥0}dσ =

1

2
E(L(C0(Z, S)).
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Applying Theorem 11.3 we get

E(L(CsS,0)) =
1

2π

λ2(S)

(a11)1/2
√
γ2E(k)

with a11 = Var(Z(x, y)) and γ2 > γ1 are the eigenvalues of the variance matrix of Z ′.
¤

Remark. When W is an elementary wave of the form

W (x, y) = ξ1 cos(λxx+ λyy) + ξ2 sin(λxx+ λyy),

where ξ1, ξ2 are two standard normal variables, direct computations on the sine-cosine process
show that

(11.8) E(L(CsS,0)) =
λ2(S)

√
λ2x + λ2y

2π
Thus, the length of the crest is a non-linear functional of the spectrum.

3.2. Velocity of contours. In this section we give a more rigorous basis to some heuristic
considerations of Longuet-Higgins (1957). Other approaches to the same problem have been
proposed by Podgórski et al. (2000) and Baxevani et al. (2003) where several notions of velocity
are introduced, including the one used here, called “velocity in the direction of the gradient”. Our
results are different in the sense that we look at the two components of the gradient while the
cited authors express their results in terms of the joint distribution of the modulus and the angle.

Speed of crossings Let us fix y (say y = 0). We want to study the speed of a crossing of a
given level u chosen “ at random” among all the crossings. Define S0 as the section of S in the
direction of the x axis. Using stationarity, it is always possible to suppose that S0 = [0,M ] for
some value M . Also by stationarity we can look at the speed of the sea at time 0. A crossing is a
point x such that

(11.9) W (x, 0, 0) = u

The expectation of the number of crossings Nu is given by Rice’s formula

D := E(Nu) =M

√
2m200
π

pZ(u)

The speed of such crossings can be computed using the implicit function theorem. From (11.9)
we get that

(11.10) Cx(x) :=
dx

dt
= −W

′
t (x, 0, 0)

W ′
x(x, 0, 0)

.

The mean number of crossings with speed Cx in the interval [α1, α2] (α1 < α2) can also be
computed using a Rice formula. If the spectral measure S defined in (11.5) is not reduced to a
unit atom, then:

(11.11) N := E(Nu1ICx∈[α1,α2]) =

∫ α2

α1

dc

∫ M

0

dx

∫ ∞

−∞
|x′|pW,W ′

x,Cx(u, x
′, c)dx′

where pW,W ′
x,Cx is the joint density of (W (x, 0, 0),W ′

x(x, 0, 0), Cx(x, 0, 0)) which does not depend
on x because of stationarity. As the values of the process and its derivative at a given point are
independent random variables, we get:

N =MpW (u)

∫ α2

α1

dc

∫ ∞

−∞
|x′|pW ′

x,Cx
(x′, c)dx′

The probability of a crossing chosen at random to have a speed in the range [α1, α2] is therefore
N
D . Divide now by α2 − α1, let both α1 and α2 tend to a common limit c, and we get that the
distribution of the speed of the crossing is given by

p̃Cx(c) =

√
π

2m200

∫ ∞

−∞
|x′|pW ′

x,Cx
(x′, c)dx′
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where

pW ′
x,W

′
t
(x′, t′) =

∆−1/2

2π
exp{− 1

2∆
(m002x

′2 − 2m101x
′t′ +m200t

′2)}
with

∆ = det

(
m200 m101
m101 m002

)
.

Making the change of variables c = − t′

x′ we get

p̃Cx(c) =
1

2
∆(m002 + 2m101c+m200c

2)−3/2(m200)
−1/2

This is (with a slightly different notation) formula (2.5.14) in Longuett-Higgins (1957) where
it is shown that it can also be written as

p̃Cx(c) =
1

2
∆m−2200((c− ĉ) + ∆m−2200)

−3/2

showing that this distribution is symmetric around its mean value ĉ = −m101
m200

. An important point
is that this speed does not depend on the level.

3.3. Velocity of level curves. To define the normal velocity of a level curve we fix a point
P = (0, x0, y0) such that W (0, x0, y0) = u and consider:

• The level surface in time and space

C1 :=
{
(t, x, y) :W (t, x, y) = u

}
for (t, x, y) in some neighbourhood of (0, x0, y0)

• The level curve at fixed time

C2 :=
{
(x, y) :W (0, x, y) = u

}
for (x, y) in some neighbourhood of (x0, y0).

In an infinitesimal interval of time the point P moves to P ′ = P + dt ~v where:

• ~v is in the tangent space to C1. So, ~v is orthogonal to the gradient of W , that is,
(W ′

t ,W
′
x,W

′
y) (the derivatives are computed at the point P ),

• the t-coordinate of ~v is equal to 1,

• Define ~V = (Vx, Vy) , as the orthogonal projection of ~v onto the x, y-plane. ~V is the
“normal velocity to the curve ” if it is orthogonal to C2 at the point P.

Then, Vx and Vy satisfy the following equations

W ′
t + VxW

′
x + VyW

′
y = 0

VxW
′
y − VyW ′

x = 0

And it is easy to deduce that

Vx = − W ′
tWx

(W ′
x)
2 + (W ′

y)
2

Vy = − W ′
tWy

(W ′
x)
2 + (W ′

y)
2

Following Longuet-Higgins it is simpler to obtain first the distribution of (Kx,Ky) with Kx =
−W ′

t/W
′
x and Ky = −W ′

t/W
′
y and then pass to the distribution of the velocity using the change

of variables formula. As in the preceding proof, we consider two intervals [α1, α2], α1 < α2 and
[α3, α4], α3 < α4, for t = 0 and define

D := E(L(Cu(Z, S))) = |S|p(u)E‖Wxy(0, 0, 0)‖
where Z(x, y) =W (0, x, y) and Wxy is the gradient limited to the variables x and y and

(11.12) N := E

[∫

Cu(Z,S)
1IKx∈[α1,α2]1IKy∈[α3,α4]dσ

]
.

This expectation can be computed using Rice formula for integrals on a level set (Theorem 6.10
of Chapter 6), as soon as the process W (t, x, y) satisfies the hypotheses of Theorem 6.8.
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N = λ2(S)pW (u)E
[
‖Wxy‖1IKx∈[α1,α2]1IKy∈[α3,α4]

]

= λ2(S)pW (u)

∫

R3

√
x′2 + y′21I{−x′/t′∈[α1,α2]}1I{−y′/t′∈[α3,α4]}pW ′

x,W
′
y,W

′
t
(x′, y′, t′)dx′dy′dt′

Making the change of variables kx = −x′/t′, ky = −y′/t′, t′ = t′ with dx′dy′dt′ = t′2dkxdkydt′,
after some calculations we get

N = 4λ2(S)pW (u)π−2∆−1/22

×
∫ α2

α1

∫ α4

α3

dkxdky

√
k2x + k2y[µ11k

2
x + 2µ12kxky − 2µ13kx + µ22k

2
y − 2µ23ky + µ33)]

−2

where ∆2 and µij are respectively, the determinant, and, the entries of the inverse matrix, of

(11.13)



m200 m110 m101
m110 m020 m011
m101 m011 m002


 .

Letting α1 and α2 tend to kx and α3 and α4 tend to ky we get the joint density of Kx and Ky:

p̃Kx,Ky
(kx, ky)) = lim

α1, α2 → kx
α3, α4 → ky

1

(α2 − α1)(α4 − α3)
N

D

=
1

π
(γ2)

−1/2∆−1/22 (E(k))−1
√
k2x + k2y[µ11k

2
x + 2µ12kxky − 2µ13kx + µ22k

2
y − 2µ23ky + µ33)]

−2

where k =
√

1− γ1
γ2
, as before but γ1 and γ2 are the eigenvalues of the matrix

(
m200 m110
m110 m020

)
.

Again we find the same result as in Longuett-Higgins (1957, equation 2.6.21).
We look now at the distribution of the velocity

−→
V = (Vx, Vy) = (

Kx

K2x +K2y
,

Ky

K2x +K2y
)

so that:
dKxdKy = (V 2x + V 2y )

−2dVxdVy. As a consequence

p̃Vx,Vy (vx, vy) =
1

π
(γ2)

−1/2∆−1/22 (E(k))−1(v2x + v2y)
7/2

× [µ11v
2
x + 2µ12vxvy − 2µ13vx(v

2
x + v2y) + µ22v

2
y − 2µ23vy(v

2
x + v2y) + µ33(v

2
x + v2y)

2)]−2.

Velocity of crests: Since the distributions of W and −W are the same, the mean velocity
of a crest is the mean speed of the zero level set for the process W ′

θ. Thus the same result holds
changing the meaning of the moments in matrix (11.13).

4. Real Data

In this section we present a numerical application from Azäıs León and Ortega (2005). We
consider two directional spectra kindly provided by M. Prevosto from Ifremer in France, depicted
in figures 11.3

We now compare the geometric characteristics of the random seas corresponding to these
spectrums.

Figure 11.4 shows the expected length of static crests along directions, showing a maximum
at approximately 1.3 rad. It is interesting to observe that, in accordance with theoretical results,
this direction is orthogonal to the direction for the maximum integral of the spectrum, which is
the most probable direction for the waves.



4. REAL DATA 217

  0.2

  0.4

  0.6

  0.8

30

210

60

240

90

270

120

300

150

330

180 0

  Level Curves for Spectrum 1

  0.2

  0.4

  0.6

  0.8

30

210

60

240

90

270

120

300

150

330

180 0

 Level Curves for Spectrum 2

Figure 11.3. Representation of the two spectrums
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Figure 11.4. Expected length of static crests per unit area; circles: spectrum1;
cross spectrum2

Figures 11.5 show the level curves for probability densities of the velocity of a level contour
of W (x, y, t). Both graphs show a clear asymmetry as predicted by Longuet-Higgins (1957). The
distributions are clearly different though the spectra differ only slightly.

Figure 11.5. Representation of the distributions of the velocities of contours
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5. Generalizations of the Gaussian model

The crest-trough symmetry of the Gaussian model does not correspond exactly to reality,
especially in the critical situation of very high waves. In practice it is often observed that the
crests are peaked and narrow while the troughs are wide and shallow. This can affect significantly
the distribution of the slopes of the waves, as well as the extremal behavior. These are two
important issues to study wave slamming on ships or offshore structures. Unfortunately, the
description and understanding of non-Gaussian models appears to be very difficult, so that effective
generalizations are based on “nearly-Gaussian” models. We will sketch here two of them: the
transformed Gaussian models and the Lagrange models. We limit ourselves us to one or two-
dimensional models.

5.1. Transformed Gaussian models. Let us consider the elevation W (t) of the sea as a
function of time. We assume that it follows a model having the form:

(11.14) W (t) = µ+G(X(t)),

where X(t) is a stationary Gaussian process and G(.) is a “nice function”. Such an equation
has several advantages: firstly, computations are tractable because they can be conducted on the
Gaussian process X(t), second the transformation (11.14) modifies the extremal behavior as it
can be seen in Azäıs et al. (2007). Notice that this is not the case with the Lagrange model in
the next section.

The function G can be

• a polynomial, in which case it is convenient to use a low degree polynomial (say 4) and
represent it in the Hermite basis (see Azäıs et al., 2007, and references therein). The
estimation of G(.) is based on the marginal density of the process W (t) and uses the
method of moments.

• Non-parametric, as in Rychlik et al. (1997). In this case the function G can be estimated
by the intensity of crossings. We give an example of extreme situations corresponding to
a registration of the Camilla hurricane in 1969. Figure 11.6 shows a small discard from
normality in the high levels.
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Figure 11.6. Number of up-crossings of a level for data from the Camilla hur-
ricane. In dotted line is given the expectation under the Gaussian model.



EXERCISES 219

5.2. Lagrange models. We return to the equations of a incompressible fluid. Under less
crude assumptions than for the Euler equation we obtain the Lagrange model which has as a main
characteristic that water particles have a circular movement around a mean position.

Random models issued from that model are described in a paper by Lindgren (2006). The sea
surface (depending on t, x) is described as a parametric surface depending on t (the time) and a
dummy parameter u which is close to the location. It represents the mean position around which
particles are moving. The sea surface is written as:

(t, u)Ã
(
X(t, u),W (t, u)

)
,

where W (t, u) is the height of the sea at the location X(t, u) at time t. The two random fields
X(t, u),W (t, u) are jointly Gaussian and described by the stochastic integrals:

W (t, u) =

∫

R

exp
(
i(κ(λ)u− λt)

)
dξ(λ)

W (t, u) = u+

∫

R

i
cosh(κ(λ)h)

sinh(κ(λ)h)
exp

(
i(κ(λ)u− λt)

)
dξ(λ),

where h is the water depth, κ(λ) is defined (up to the sign, the choice of which defines different
kinds of waves) by the relation λ2 = |κ|tanh(|κ|h) and ξ is a complex spectral process with

orthogonal increment satisfying dξ(−λ) = dξ(λ).
This model is essentially used to compute distribution of steepness of waves that differ signif-

icantly from the Euler model.

Exercises

Exercise 11.1. Prove Proposition 11.2. Let Fn a continuous approximation of the function
1I.>0 as defined for example in 6.7, define Y t(s) = X(s) and

g(t, Y t) = Fn[ sup
s∈[t,t+τ ]

X(s)]

and use a monotone convergence argument.

Exercise 11.2. Prove formula (11.8) by a direct computation.
Consider now the case of a spectrum G with two atoms , which is the sum of two spectra of

elementary waves. Show that the length of the crest is not a linear function of the spectrum.

Exercise 11.3. Prove formula (11.11). Prove first that if the spectral measure G is not
restricted to a Dirac measure, the joint distribution of the derivatives Wt and Wx does not degen-
erate.

Second, replacing the indicator function 1I[α1,α2] by a continuous approximation, prove (11.11)
using Theorem 6.4. Then conclude.

Exercise 11.4. Prove formula (11.12) using Theorem 6.10 and the same kind of approxima-
tion than in Exercise 11.3.

Exercise 11.5. Give a detailed version of the last argument of Section 3.3 concerning the
velocity of crests.





CHAPTER 12

Systems of random equations

In this chapter we are going to use Rice formula to study the number of real roots of a system
of random equations. Our emphasis is on polynomial systems, even though we will also give some
results on non-polynomial ones.

Let us consider m polynomials in m variables with real coefficients

Xi(t) = Xi(t1, ..., tm), i = 1, ...,m.

We use the notation

(12.1) Xi(t) :=
∑

‖j‖≤di

a
(i)
j tj ,

where j := (j1, ..., jm) is a multi-index of non-negative integers, ‖j‖ := j1+ ...+ jm, j! := j1!...jm!,

t = (t1, ..., tm) ∈ Rm, tj := tj11 ....t
jm
m , a

(i)
j := a

(i)
j1...,jm

. The degree of the i-th polynomial is di and
we assume that di ≥ 1∀i.

We denote NX(V ) the number of roots of the system of equations

(12.2) Xi(t) = 0, i = 1, ...,m.

lying in the Borel subset V of Rm. We denote NX = NX(Rm).

Let us randomize the coefficients of the system. In the case of one equation in one variable, a
certain number of results on the probability distribution of the number of roots have been known
for a long time, starting in the thirties with the work of Bloch and Polya (1932) and Littlewood
and Offord (1938, 1939) and especially, of Marc Kac (1943). We are not going to consider this
special subject here, see for example the book by Bharucha-Reid and Sambandham (1986).

Instead, when m > 1 little is known on the distribution of the random variables NX(V ) or
NX , even for simple choices of the probability law on the coefficients. This appears to be quite
different and much harder than one equation only, and it is this case that we will consider in this
chapter. In fact, we will be especially interested in large systems, in the sense that m À 1. In
the last 15 years some initial progress has been made in the understanding of the distributional
properties of the number of roots. The first important result in this context is the Shub-Smale
Theorem (1993), in which the authors computed by means of a simple formula the expectation
of NX when the coefficients are Gaussian, centered independent random variables with certain
specified variances (see Theorem 12.1 below). Extensions of their work, including new results for
one polynomial in one variable, can be found in the review paper by Edelman and Kostlan (1995).
See also Kostlan (2002).

There is of course the curiosity about the number of roots, for example, being able to answer
the question wether the system has no real roots, i.e. NX = 0, or, in the random case, what can
one say about P(NX = 0) or P(NX > n) where n is some meaningful integer for the underlying
problem. More deeply, the study of the number or roots is associated to natural questions in
Numerical Analysis and Complexity Theory. Generally speaking, the complexity in solving a
system of equations numerically is naturally related to the number of roots. So, understanding
of the mean (or probabilistic) behavior of an algorithm with respect to a family of problems
of this sort is associated to the distribution of the random variable NX . On the other hand,
the condition number of a system of equations, which measures in this case the difficulty for an
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algorithm to separate roots, is related to analogous problems, and plays a central role in complexity
computations. We are not going to pursue this subject here, the interested reader can consult the
book by Blum, Cucker, Shub and Smale (1998).

It is obvious that the distribution of the number of roots will depend on the probability law
that we put on the coefficients of the system. So, the first question is what conditions should we
require to this law. As we said above, only a restricted family of distributions has been considered
until now. The Shub-Smale distribution on the coefficients is invariant under the orthogonal group
of the underlying space Rm and is related to the H. Weyl L2−structure in the space of polynomial
systems (see also the book by Blum et alt (1998) on this subject).

In section 2 we review some results which extend the computation of the expectation to some
other probability laws on the coefficients, which have a centered Gaussian law that is invariant
under the orthogonal group of Rm. This allows to extend substantially the family of examples
and to show that the behavior of the expectation of the number of roots can be very different
from the one in the Shub-Smale Theorem.

We have also included some recent asymptotic results for variances, but only for the Shub-
Smale model with equal degrees (that we call Kostlan-Shub-Smale). The main tool is Rice formula
to compute the factorial moments of the number of zeros of a random field (see Theorem 6.3) and
the asymptotics is for large systems, meaning by that m → +∞. We are only giving some
brief sketch of the proofs, which turn out to require lengthy calculations, at least when using
the available methods. At present, a major open problem is to show weak convergence of some
renormalization of NX , under the same asymptotics.

In section 3 we consider “smooth analysis”, that is, we start with a non-random system,
perturb it with some noise, and the question is what can we say about the number of roots of the
perturbed system, under some reasonable hypotheses on the relationship between “signal” and
“noise”. Here again, we are only able to give results having some interest when the number m of
equations and unknowns become large.

Finally, in Section 4 we consider random systems having a probability law which is invariant
under translations as well as orthogonal transformations of the underlying Euclidean space. This
implies that the system is non-polynomial and the expectation of NX is infinite in non-trivial
cases. So, one has to localize and consider NX(V ) for subsets V of Rm having finite Lebesgue
measure. These systems are interesting by themselves and under some general conditions, one
can use similar methods to compute the expected number of roots per unit volume, as well as to
understand the behavior of the variance as the the number of unknowns m tends to infinity, which
turns out to be strikingly opposite to the one in the Kostlan-Shub-Smale model for polynomial
systems.

All the above concerns “square” systems. We have not included results on random systems
having less equations than unknowns. If the system has n equations and m unknowns with n < m,
generically the set of solutions will be (m− n)−dimensional, and the description of the geometry
becomes more complicated (and more interesting) than for m = n. A recent contribution to the
calculation of the expected value of certain parameters describing the geometry of the (random)
set of solutions is in P. Bürgisser (2006).

1. The Shub-Smale model

We say that (12.2) is a Shub-Smale system, if the coefficients

{a(i)j : i = 1, ...,m; ‖j‖ ≤ di}
are centered independent Gaussian random variables, such that

(12.3) Var
(
a
(i)
j

)
=

(
di
j

)
=

di!

j!(di − ‖j‖)!
1.1. Expectation of NX .

Theorem 12.1 (Shub-Smale(1993)). Let the system (12.2) be a Shub-Smale system.
Then,

(12.4) E
(
NX

)
=
√
D
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where D = d1...dm is the Bézout number of the polynomial system.

Proof. . For i = 1, ...,m, let X̃i denote the homogeneous polynomial of degree di in m + 1
variables associated to Xi, that is:

X̃i(t0, t1, ...., tm) =
∑

∑m
h=0 jh=di

a
(i)
j1...,jm

tj00 t
j1
1 ....t

jm
m ,

Yi denotes the restriction of X̃i to the unit sphere Sm in Rm+1. It is clear that

(12.5) NX =
1

2
NY (Sm)

A simple computation using (12.3) and the independence of the coefficients, shows that

X̃1, ..., X̃m are independent Gaussian centered random fields, with covariances given by:

(12.6) rX̃i(t, t′) = E
(
X̃i(t)X̃i(t

′)
)
= 〈t, t′〉di , t, t′ ∈ R

m+1, i = 1, ...,m.

Here 〈., .〉 denotes the usual scalar product in Rm+1.

For E(NY (Sm)) we apply Rice formula to the random field Y defined on the parameter set
Sm:

(12.7) E
(
NY (Sm)

)
=

∫

Sm
E
(
|det(Y ′(t))|

∣∣Y (t) = 0
) 1

(2π)m/2
σm(dt),

where σm(dt) stands for the m−dimensional geometric measure on Sm. (12.7) follows easily from
the fact that for each t ∈ Sm, the random variables Y1(t), ..., Ym(t) are i.i.d. standard normal.

Since E(Y 2i (t)) = 1 for all t ∈ Sm, on differentiating under the expectation sign, we see that
for each t ∈ Sm, Y (t) and Y ′(t) are independent, and the condition can be erased in the condi-
tional expectation in the right-hand side of (12.7).

Since the law of Y ′(t) is invariant under the orthogonal group of Rm+1 it suffices to compute
the integrand at one point of the sphere. Denote the canonical basis of Rm+1 by {e0, e1, ..., em}.
Then:

(12.8)

E
(
NY (Sm)

)
= σm(Sm)

1

(2π)m/2
E
(
|det(Y ′(e0))|

)

=
2π(m+1)/2

Γ(m+12 )

1

(2π)m/2
E
(
|det(Y ′(e0))|

)
.

To compute the probability law of Y ′(e0), let us write it as an m×m matrix with respect to the
orthonormal basis e1, ..., em of the tangent space to Sm at e0. This matrix is

((
∂X̃i

∂tj
(e0)))i,j=1,...,m

and

E
(∂X̃i

∂tj
(e0)

∂X̃i′

∂tj′
(e0)

)
= δii′

∂2rX̃i

∂tj∂t′j′

∣∣∣
t=t′=e0

= diδii′δjj′ ,

The last equality follows computing derivatives of the function rX̃i given by (12.6). So,

(12.9) det(Y ′(e0)) =
√
D det(G)

where G is an m×m matrix with i.i.d. standard normal entries.



224 12. SYSTEMS OF RANDOM EQUATIONS

To finish, we only need to compute E(|det(G)|). One way to do it, is to observe that |det(G)|
is the volume (in Rm) of the set

{v ∈ R
m : v =

m∑

k=1

λk gk, 0 ≤ λk ≤ 1, k = 1, ...,m}

where {g1, ..., gm} are the columns of G. Then using the invariance of the standard normal law in
Rm with respect to isometries, we get:

E(|det(G)|) =
m∏

k=1

E(‖ηk‖),

where ηk is standard normal in Rk. An elementary computation gives:

E(‖ηk‖) =
√
2
Γ((k + 1)/2)

Γ(k/2)

which implies:

E(|det(G)|) = 1√
2π

2(m+1)/2 Γ((m+ 1)/2).

Using (12.9), (12.8) and (12.5), we get the result. ¤

Remark
When the hypotheses of Theorem 12.1 are verified, and moreover all the degrees di (i =

1, ...,m) are equal, formula (12.4) was first proved by Kostlan. In what follows, we will call such
a model the KSS (Kostlan-Shub-Smale) model.

1.2. Variance of the number of roots. We restrict this subsection to the KSS model.
In this case, a few asymptotic results have been proved on variances, when the number m of
unknowns tends to ∞. More precisely, consider the normalized random variable

nX =
NX

√
D
.

It is an obvious consequence of Theorem 12.1 that E(nX) = 1. Let us denote σ2m,d = Var(nX).
We have:

Theorem 12.2. Assume that the random polynomial system (12.1) is a KSS system with
common degree equal to d, d ≥ 2, and assume that d ≤ d0 < ∞, where d0 is some constant
independent of m.
Then, as m→ +∞:

• If d = 2, Var(nX) ≈ 1
2
logm
m

• If d = 3, Var(nX) ≈ 3
2
logm
m2

• If d ≥ 4,Var(nX) ≈ Kd

m3∧(d−2)
where K4 =

15
2 , Kd =

3465
64 if d ≥ 5.

Remark
A simple but interesting corollary of the fact that Var(nX) tends to zero as m→ +∞ is that

nX =
NX

dm/2

tends to 1 in probability. Using a similar method, it is also possible to obtain the same type of
result if we allow d tend to infinity, slowly enough. For d ≥ 3 one can find a proof of this weaker
result in Wschebor (2005). Notice that the theorem above is more precise, it gives the equivalent
of the normalized variance as m→ +∞.
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Proof of Theorem 12.2. We use the same notations as in the beginning of this section.
We have:

(12.10) Var(nX) =
E((NX)2)

dm
− 1 =

1

4

E(NY (NY − 1))

dm
+

1

2dm/2
− 1.

We will not perform the detailed computations of the proof, which turn out to be somewhat
heavy, but only sketch the main steps and give some more details in the cases d = 2 and d > 5.
The remaining ones are similar and the detailed computations are contained in Wschebor (2007).
The general scheme is the following: we show that the first term in the right-hand side of (12.10)
has the form 1 + αm where αm has the speed in the statement. This will be sufficient.

We use Rice formula:

(12.11) E
(
NY (NY − 1)

)
=

∫

Sm×Sm
E
(
|det(Y ′(s)||det(Y ′(t)|

∣∣Y (s) = Y (t) = 0
)

pY (s),Y (t)(0, 0) σm−1(ds)σm−1(dt),

where:

pY (s),Y (t)(0, 0) =
1

(2π)m
(
1− 〈s, t〉)2d

)m/2 .

Conditional expectation.

• Let s, t ∈ Sm be linearly independent.
• v2, ..., vm pairwise orthogonal, vk ⊥ s, t for k = 2, ...,m.
• Bs = {v′1, v2, ..., vm} orthonormal basis of the tangent space Ts(S

m) = s⊥ (in Rm+1)
• Bt = {v′′1 , v2, ..., vm} orthonormal basis of Tt(S

m) = t⊥ (in Rm+1)

We express the derivatives Y ′(s) and Y ′(t) in the basis Bs and Bt respectively and compute
the covariances of the pairs of coordinates. This is standard calculation. Once this has been
done, we can perform the Gaussian regression of the matrices Y ′(s) and Y ′(t) on the condition
Y (s) = Y (t) = 0 and replace the conditional expectation in 12.11 by:

dm E
(
|det(Ms)||det(M t)|

)
,

where the matrices M s,M t have the following joint law:

• (Ms
ik,M

t
ik) (i, k = 1, ...m) are independent bivariate Gaussian centered random vectors,

• for i = 1, ...,m; k = 2, ...m,

E
(
(Ms

ik)
2
)
= E

(
(M t

ik)
2
)
= 1,

E
(
Ms
ikM

t
ik

)
= 〈s, t〉d−1

•
σ2 = E

(
(Ms

i1)
2
)
= E

(
(M t

i1)
2
)
= 1− d〈s, t〉2d−2

1 + 〈s, t〉2 + ...+ 〈s, t〉2d−2 ,

τ = E
(
(Ms

i1M
t
i1)
)
〈s, t〉d−2

[
1− d

1 + 〈s, t〉2 + ...+ 〈s, t〉2d−2
]

Gaussian regression of M t
ik on Ms

ik. For i = 1, ...,m; k = 2, ...,m :

M t
ik =M t

ik − 〈s, t〉d−1Ms
ik + 〈s, t〉d−1Ms

ik = ζik + 〈s, t〉d−1Ms
ik,

where E(ζ2ik) = 1− 〈s, t〉2d−2 and ζik is independent of all the rest.

For i = 1, ...,m; k = 1 the regression has the form:

M t
i1 =M t

i1 −
τ

σ2
Ms
i1 +

τ

σ2
Ms
i1 = ζi1 +

τ

σ2
Ms
i1,

with E(ζ2i1) = σ2 − τ2

σ2 and again ζi1 is independent of all the rest.
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Notice that if d = 2, one has σ2 = 1−〈s,t〉2
1+〈s,t〉2 = −τ which obviously implies that M t

i1 = −Ms
i1

almost surely, for i = 1, ...,m. So, we distinguish in the computation between d = 2 and d > 2.
In the last case, |τ | < σ2.

Case d = 2
Replace the above results in the right-hand side of (12.11). We get:

(12.12) E
(
NY (NY − 1)

)
=

2m

(2π)m

∫ ∫

Sm×Sm

1

(1− 〈s, t〉4)m/2 ∆ σm(ds) σm(dt),

where

• ∆ = (1− 〈s, t〉2)(m−1)/2 E
(
|det(As)||det(At)|

)
,

• (asik, a
t
ik)i,k=1,...,m are centered Gaussian independent pairs,

• E((asik)
2) = E((atik)

2) = 1 and E(asika
t
ik) = 〈s, t〉 for i = 1, ...,m; k = 2, ...m,

• σ2 = E((asi1)
2) = 1−〈s,t〉2

1+〈s,t〉2 and ati1 = −asi1 for i = 1, ...,m.

We divide the integral in (12.12) into two parts: I1 is the integral over the pairs (s, t) ∈ Sm×Sm
such that |〈s, t〉| ≥ δm = 1

mδ where δ > 0 will be chosen afterwards in such a way that this part is
negligible, and I2 over the pairs such that |〈s, t〉| ≤ δm. The second part will be the relevant one.

Bound for I1. We take common factor
√
1−〈s,t〉2
1+〈s,t〉2 in the first column of both matrices As, At.

Since each one of the resulting matrices is standard normal, we apply the Cauchy-Schwarz inequal-
ity to bound E

(
|det(As)||det(At)|

)
and use that if G is a GOE m×m matrix, then

E
(
(det(G))2

)
= m! .

So,

I1 ≤
2m

(2π)m

∫ ∫

|〈s,t〉|≥δm

(1− 〈s, t〉2)(m−1)/2
(1− 〈s, t〉4)m/2 m!

1− 〈s, t〉2
1 + 〈s, t〉2 σm(ds) σm(dt).

Now we use the invariance of the integrand and the measure under the orthogonal group and
the form of the volume element on Sm. So, rewriting the right-hand side:

I1 ≤
2m

(2π)m
σm(Sm)σm−1(S

m−1) m!

∫

|t0|≥δm

(1− t20)(m+1)/2
(1− t40)m/2

(1− t20)
m
2 −1 dt0

≤ 2m

(2π)m
2π(m+1)/2

Γ((m+ 1)/2)

2πm/2

Γ(m/2)
m!

∫

|t0|≥δm
(1− t20)(m−1)/2 dt0

≤ (const)2m m1−δ exp[−1

2
m1−2δ],

using the usual Stirling’s formula and the choice δm = 1
mδ . If 0 < δ < 1/2, this shows that I1

2m

goes to zero faster that any power of m.

Equivalent for I2. This is finer than the bound for I1. For the conditional expectation, we
use the computation of the absolute value of the determinant as the volume of the parallelotope
generated by the columns. On account of the invariance of the standard normal distribution
under the isometries of the underlying Euclidean space and using a similar expression to the one
to obtain the bound for I1, we see that ∆ in (12.12) can be written as:

∆ = (1− 〈s, t〉2)(m−1)/2E(‖ξ‖2m)
1− 〈s, t〉2
1 + 〈s, t〉2

[m−1∏

k=1

E
(
‖ξ‖k

∥∥η + 〈s, t〉
(1− 〈s, t〉2)1/2 ξ

∥∥
k

)]
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and

(12.13)

I2 =
2m

(2π)m
σm(Sm)σm−1(S

m−1)m
m−1∏

k=1

E(‖ξ‖k)]2
∫ δm

−δm

(1− t20)(m−1)/2
(1 + t20)

(m+2)/2

.

m−1∏

k=1

E
(
‖ξ‖k

∥∥η + t0
(1−t20)1/2

ξ
∥∥
k

)

[E(‖ξ‖k)]2
dt0 .

On replacing the various terms here, and making the change of variables t0 =
θ√
m
:

(12.14)
I2

4.2m
=

1√
π

Γ((m+ 1)/2)

Γ(m/2)
m

∫ δm

−δm

(1− t20)(m−1)/2
(1 + t20)

(m+2)/2

m−1∏

k=1

E
(
‖ξ‖k

∥∥η + t0
(1−t20)1/2

ξ
∥∥
k

)

[E(‖ξ‖k)]2
dt0

= Cm

∫ m
1
2
−δ

−m
1
2
−δ

(1− θ2/m)(m−1)/2

(1 + θ2/m)(m+2)/2

m−1∏

k=1

E
(
‖ξ‖k

∥∥η + θ/
√
m

(1−θ2/m)1/2 ξ
∥∥
k

)

[E(‖ξ‖k)]2
dθ,

where

Cm =
1√
πm

Γ((m+ 1)/2)

Γ(m/2)
.

We want to write this expression for I2
4.2m in the form 1 + αm. This is based upon the following

lemmas, some of which are well-known and the remaining ones are proved by standard computa-
tions.

Lemma 12.3. We have the expansion, valid for real z, z → +∞ (see Erdelyi et al. (1953), p
57).

Γ(z) = e−zzz−
1
2 (2π)

1
2

[
1 +

1

12z
+

1

288z2
− 139

51840z3
− ...

]
.

Lemma 12.4. For c ∈ R and k = 1, 2, ... let:

Gk(c) = E
(
[(η1 + c)2 + η22 ...+ η2k]

1/2
)
,

where the random variables η1, ..., ηk are i.i.d. standard normal.
Then:

(1) Gk(0) =
√
2Γ((k+1)/2)Γ(k/2) .

(2) G′k(0) = 0.
(3) 0 ≤ G′′(c) ≤ G′′(0) = 1

kGk(0) for all c.

(4) |G′′′k (c)| ≤ 3(
√

2/π + |c|) E
(
‖η‖−3k−1

)

where η is standard normal in Rk−1 and the notation (that we use without further ex-
planation) is that ‖η‖h denotes Euclidean norm of a vector in Rh.
This inequality has some interest if k ≥ 5 since otherwise the right-hand side is infinite.

The proof of parts (1),(2),(3) are given in Lemma 12.13 below.

Lemma 12.5. Cm = 1√
2π

[
1− 1

4m + 1
32m2 +

5
128m3 +O( 1m4 )

]

Lemma 12.6. For k = 1, 2, ...; j an integer, set mkj = E(‖ξ‖jk). Then,

mkj = 2
j
2
Γ((j + k)/2)

Γ(k/2)

Lemma 12.7. For fixed integer j, we have:

mkj = k
j
2

[
1 +

1

k

(j2
4
− j

2

)
+

1

k2
(
− j3

12
+
j2

4
− j

6

)

+
1

k3
( j4
24
− 5

24
j3 − j2

12
+
j

6

)
+O(1/k4)

]

where the bound in ”O” depends on j.
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With these ingredients and some additional effort, one can prove that:

(12.15)

I2
4.2m

=
(
1− 1

4m
+O(

1

m2
)
)[ ∫ m

1
2
−δ

−m
1
2
−δ

1√
2π
e−

θ2

2 (1 +
θ2

2

logm

m
) dθ +O(1/m)

]

=
(
1− 1

4m
+O(

1

m2
)
)[ ∫ +∞

−∞

1√
2π
e−

θ2

2 (1 +
θ2

2

logm

m
) dθ +O(1/m)

]

= 1 +
1

2

logm

m
+O(1/m)

This shows that

Var(nX) ≈ 1

2

logm

m
and finishes the computation when d = 2.

Case d ≥ 3. Instead of the general formula in the case d = 2, we have:

(12.16) E
(
NY (NY − 1)

)
=

dm

(2π)m

∫ ∫

Sm×Sm

1

(1− 〈s, t〉2d)m/2 ∆ σm(ds) σm(dt),

where

∆ = (1− 〈s, t〉2d−2)(m−1)/2 (σ4 − τ2)1/2

.
[m−1∏

k=1

E
(
‖ξ‖k‖η +

〈s, t〉d−1
(1− 〈s, t〉2d−2)1/2 ξ‖k

)
E
(
‖ξ‖m‖η +

τ

(σ4 − τ2)1/2 ξ‖m
)]
.

In each factor, ξ, η are independent standard normal vectors in Rk. The proof that the part of the
integral corresponding to the pairs (s, t) ∈ Sm×Sm such that |〈s, t〉| ≥ δm, with δm = 1/mδ, 0 <
δ < 1/2 is negligible is similar to the case d = 2 (take into account that σ2 ≤ (const)(1− 〈s, t〉2))
and the question is again the equivalent of the integral over the set |〈s, t〉| < δm. The overall
computation is similar to the case d = 2, with some minor differences.

Using as above the invariance under isometries, we have to consider the new integral:

I2
4dm

=
Γ((m+ 1)/2)√

πΓ(m/2)

∫

|t0|<δm

(1− t2d−20 )(m−1)/2

(1− t2d0 )m/2
(σ4 − τ2)1/2(1− t20)

m
2 −1 Hm dt0,

where

• Hm =
∏m
k=1

[
1

(Gk(0))2
E
(
‖ξ‖k‖η + αkξ‖k

)]

• αk =
td−10

(1−t2d−20 )1/2
if k = 1, ...,m− 1 and αm = τ

(σ4−τ2)1/2 .

Again we perform the change of variables t0 = θ/
√
m :

I2
4dm

= Cm

∫ m1/2−δ

−m1/2−δ

(1− ( θ
2

m )d−1)(m−1)/2

(1− ( θ
2

m )d)m/2
(σ4 − τ2)1/2(1− θ2

m
)
m
2 −1 Hm dθ,

with

Hm = (1 +
1

2

τ2

σ4 − τ2 cm)
m−1∏

k=1

[
1 +

1

2

(θ2/m)d−1

1− (θ2/m)d−1
ck

]
,

where

ck =
mk3

k mk1
.
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Lemma 12.8.

ck = 1 +
1

k
− 1

4k2
− 55

48k3
+O(1/k4).

Lemma 12.9. Let

Am =
(1− ( θ

2

m )d−1)(m−1)/2

(1− ( θ
2

m )d)m/2
(1− θ2

m
)
m
2 −1.

Then,

Am = exp
[
− θ2

2
+

1

m
(θ2 − 1

4
θ4) +

1

m2
(
1

2
θ4 − 1

6
θ6) +

1

m3
(
1

3
θ6 − 1

8
θ8)

− 1

2

θ2d−2

md−2 +
1

md−1 (
1

2
θ2d−2 +

1

2
θ2d)− θ4d−4

4m2d−3
+ 0(1/m8δ)

]

Lemma 12.10. Let x = t20 ≤ 1
m2δ

→ 0.
Then,

τ2 = xd−2
[
(d− 1)2 + d2(x2 + x2d − 2xd+1 + 2xd+2)

− 2d(1− d)(−x+ xd − xd+1 + x2d)
]
+O(x8)

σ4 − τ2 =1− (d− 1)2xd−2+

d(d− 2)xd−1
[
2− x− xd−1 + 2xd − xd+1 − x2d−1

]
+O(x8).

Case d > 5. We have

• τ2 = Ou(
1
m8δ

)

• σ4 − τ2 = 1 +Ou(
1
m8δ

)

• Hm = 1 +Ou(1/m
10δ−1)

We choose δ so that 10δ − 1 > 3.

I2
4dm

=
1√
2π

[
1− 1

4m
+

1

32m2
+

5

128m3
+O(

1

m4
)
][
1 +Ou(1/m

10δ−1)
]

.

∫ m
1
2
−δ

−m
1
2
−δ

exp
[
− θ2

2
+

1

m
(θ2 − 1

4
θ4) +

1

m2
(
1

2
θ4 − 1

6
θ6) +

1

m3
(
1

3
θ6 − 1

8
θ8) +Ou(

1

m10δ−1
)
]
dθ.

Notice (key point) that excluding the first term, all other terms in the exponent are Ou(1) as
m→ +∞, that is, are uniformly small if m is large enough.

Expanding and using the moments of the standard normal distribution (up to order 12), we
get, for d > 5:

I2
4dm

= 1 +
3465

64

1

m3
+O(

1

m10δ−1
),

so that Var(nX) ≈ 3465
64

1
m3 .

The cases d = 3, 4, 5 can be treated in a similar way.
¤

2. More general models

The probability law of the Shub-Smale model defined in section 1 has the simplifying prop-
erty of being invariant under the orthogonal group of the underlying Euclidean space Rm. In
this section we present the extension of formula (12.4) to general systems which share the same
invariance property. This paragraph follows Azäıs and Wschebor (2005 b).

We require the polynomial random fields Xi (i = 1, ...,m) to be centered, Gaussian, indepen-
dent and their covariances

rXi(s, t) = E(Xi(s)Xi(t))

to be invariant under orthogonal linear transformation of Rm, i.e. rXi(Us, Ut) = rXi(s, t) for
any orthogonal transformation U and any pair s, t ∈ Rm. This implies in particular that the
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coefficients a
(i)
j remain independent for different i’s but can now be correlated from one j to

another for the same value of i. It is easy to check that this implies that for each i = 1, ...m, the
covariance rXi(s, t) is a function of the triple

(
〈s, t〉, ‖s‖2, ‖t‖2

)
. It is somewhat harder but can

also be proved (see Spivak (1979)) that this function is in fact a polynomial with real coefficients,
say Q(i)

(12.17) rXi(s, t) = Q(i)(〈s, t〉, ‖s‖2, ‖t‖2),
satisfying the symmetry condition

(12.18) Q(i)(u, v, w) = Q(i)(u,w, v)

A natural question is which are the polynomials Q(i) such that the function in the right-hand
side of (12.17) is a covariance, that is, non-negative definite. A simple way to construct a class of
covariances of this type is to take

(12.19) Q(i)(u, v, w) = P (u, vw),

where P is a polynomial in two variables with non-negative coefficients. In fact, the functions
(s, t) Ã 〈s, t〉 and (s, t) Ã ‖s‖2‖t‖2 are covariances and the set of covariances is closed un-
der linear combinations with non-negative coefficients as well as under multiplication, so that
P (〈s, t〉, ‖s‖2 ‖t‖2) is also the covariance of some random field.

The situation becomes simpler if one considers only functions of the scalar product, i.e.

Q(u, v, w) =

d∑

k=0

ck u
k.

The necessary and sufficient condition for
∑d
k=0 ck 〈s, t〉k to be a covariance is that ck ≥ 0 ∀ k =

0, 1, ..., d. In that case, it is the covariance of the random field X(t) :=
∑
‖j‖≤d aj t

j where the a′js

are centered, Gaussian, independent random variables, Var(aj) = c‖j‖
‖j‖!
j! (The proof of this is

left to the reader). The Shub- Smale model is the special case corresponding to the choice ck =
(
d
k

)
.

The general description of the polynomial covariances which are invariant under the action of
the orthogonal group, is in Kostlan (2002), part II.

We now state the extension of the Shub-Smale formula to the general case.

Theorem 12.11. Assume that the Xi are independent centered Gaussian polynomial random
fields with covariances rXi(s, t) = Q(i)(〈s, t〉, ‖s‖2, ‖t‖2) (i = 1, ...,m).

Let us denote by Q
(i)
u , Q

(i)
w , Q

(i)
uv , ... the partial derivatives of Q(i). We assume that Q(i)(x, x, x)

and Q
(i)
u (x, x, x) do not vanish for x ≥ 0. Set

qi(x) :=
Q
(i)
u

Q(i)

ri(x) :=
Q(i)

(
Q
(i)
uu + 2Q

(i)
uv + 2Q

(i)
uw + 4Q

(i)
vw

)
−
(
Q
(i)
u +Q

(i)
v +Q

(i)
w

)2

(Q(i))2

where the functions in the right-hand sides are always computed at the triple (x, x, x). Put

hi(x) := 1 + x
ri(x)

qi(x)
.

Then, for all Borel sets V we have

(12.20) E
(
NX(V )

)
= κm

∫

V

( m∏

i=1

qi(‖t‖2)
)1/2

Eh(‖t‖2)dt.

In this formula,

Eh(x) := E
(
(
m∑

i=1

hi(x)ξ
2
i )
1/2
)
,
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where ξ1, ..., ξm are i.i.d. standard normal in R and

κm =
1√
2π

Γ(m/2)

πm/2
.

Proof. .
Let us put Kj = E(‖ηj‖) with ηj standard normal in Rj . An elementary computations gives:

Km =
√
2
Γ((m+ 1)/2)

Γ(m/2)
.

We define the integral

Jm :=

∫ +∞

0

ρm−1

(1 + ρ2)(m+1)/2
dρ =

√
π/2

1

Km

that will appear later on. Consider the normalized Gaussian fields

Zi(t) :=
Xi(t)(

Q(i)(‖t‖2, ‖t‖2, ‖t‖2)
)1/2

which have variance 1. Denote Z(t) = (Z1(t) , ..., Zm(t))T . Applying Rice Formula for the
expectation of the number of zeros of Z:

E
(
NX(V )

)
= E

(
NZ(V )

)
=

∫

V

E
(
|det(Z ′(t)|

∣∣Z(t) = 0
) 1

(2π)
m
2
dt,

where Z ′(t) := [Z ′1(t)
... · · ·

... Z ′m(t)] is the matrix obtained by concatenation of the vectors
Z ′1(t), ..., Z

′
m(t). Note that since E

(
Z2i (t)

)
is constant, it follows that E

(
Zi(t)

∂Zi
∂tj

(t)
)
= 0 for all

i, j = 1, ...,m. Since the field is Gaussian this implies that Zi(t) and Z ′i(t) are independent and
given that the coordinate fields Z1, ...Zm are independent, one can conclude that for each t, Z(t)
and Z ′(t) are independent. So

(12.21) E
(
NX(V )

)
= E

(
NZ(V )

)
=

1

(2π)
m
2

∫

V

E (|det(Z ′(t)|) dt.

A straightforward computation shows that the (α, β)- entry, α, β = 1, ...,m, in the covariance
matrix of Z ′i(t) is

E

(
∂Zi
∂tα

(t)
∂Zi
∂tβ

(t)

)
=

∂2

∂sα∂tβ
rZi(s, t) |s=t= ri(‖t‖2)tαtβ + qi(‖t‖2)δαβ ,

where δα,β denotes the Kronecker symbol. This can be rewritten as

Var
(
Z ′i(t)

)
= qiIm + ritt

T ,

where the functions in the right-hand side are to be computed at the point ‖t‖2. Let U be the
orthogonal transformation of Rm that gives the coordinates in a basis with first vector t

‖t‖ , we get

Var
(
UZ ′i(t)

)
= Diag

(
(ri.‖t‖2 + qi), qi, ..., qi

)
,

so that

Var
(UZ ′i(t)√

qi

)
= Diag

(
hi, 1, ..., 1

)
.

Put now

Ti :=
UZ ′i(t)√

qi
and set

T := [T1
...
. . .

... Tm]

We have

(12.22) |det
(
Z ′(t)

)
| = |det

(
T
)
|
m∏

i=1

q
1/2
i .
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Now, we write

T =




W1

· · ·
· · ·
· · ·
Wm



,

where the Wi are random row vectors. Because of the properties of independence of all the entries
of T , we know that :

• W2, ...,Wm are independent standard normal vectors in Rm

• W1 is independent from the other Wi, i ≥ 2, and has a centered Gaussian distribution
with variance matrix Diag(h1, ..., hm).

Now E
(
|det(T )|

)
is calculated as the expectation of the volume of the parallelotope generated

by W1, ...,Wm in Rm. That is,

|det(T )| = ‖W1‖
m∏

j=2

d(Wj , Sj−1),

where Sj−1 denotes the subspace of Rm generated by W1, ...,Wj−1 and d denotes the Euclidean
distance. Using the invariance under isometries of the standard normal distribution of Rm we
know that, conditioning on W1, ...,Wj−1, the projection PS⊥j−1(Wj) of Wj on the orthogonal S⊥j−1
of Sj−1 has a distribution which is standard normal on the space S⊥j−1 which is of dimension

m − j + 1 with probability 1. Thus E
(
d(Wj , Sj−1)

∣∣W1, ...,Wj−1
)
= Km−j+1. By successive

conditionings on W1, W1,W2 etc... , we get:

E
(
|det(T )|

)
= E

(
(

m∑

i=1

hi(x)ξ
2
i )
1/2
)
×
m−1∏

j=1

Kj ,

where ξ1, ..., ξm are i.i.d. standard normal in R. Using (12.22) and (12.21) we obtain (12.20) . ¤

2.1. Examples. 1.- Let Q(i)(u, v, w) = Qli(u) for some polynomial Q. We get:

qi(x) = liq(x) = li
Q′(x)

Q(x)
, hi(x) = h(x) = 1− xQ

′2(x)−Q(x)Q′′(x)

Q(x)Q′(x)
.

Applying formula (12.20) with V = Rm, and using polar coordinates:

(12.23) E(NX) =
2√
π

Γ((m+ 1)/2)

Γ(m/2)

√
l1...lm

∫ ∞

0

ρm−1q(ρ2)m/2
√
h(ρ2)dρ.

2.- If in Example 1.- we put Q(u) = 1+u we get the Shub-Smale model. Replacing in (12.23)
an elementary computation reproduces (12.4).

3.- A simple variant of Shub & Smale theorem corresponds to taking Q(i)(u) = 1 + ud for all
i = 1, ...,m (here all the Xi’s have the same law). Even though in this case the derivative Q(i)(u)
vanishes at zero, the reader can easily check that the conclusion of Theorem 12.11 remains valid,
and

q(x) = qi(x) =
dud−1

1 + ud
; h(x) = hi(x) =

d

1 + ud
,

E(NX) =

√
2

π
Km

∫ +∞

0

ρmd−1

(1 + ρ2d)(m+1)/2
dρ = d(m−1)/2,

which differs by a constant factor from the analogous Shub & Smale result for (1 + u)d which is
dm/2.

4.- Linear systems with a quadratic perturbation
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Consider linear systems with a quadratic perturbation

Xi(s) = ξi+ < ηi, s > +ζi‖s‖2,
where the ξi, ζi, ηi, i = 1, ...,m are independent and standard normal in R,R and Rm respectively.
This corresponds to the covariance rXi(s, t) = 1 + 〈s, t〉+ ‖s‖2‖t‖2.

If there is no quadratic perturbation, it is obvious that the number of roots is almost surely
equal to 1.

For the perturbed system, applying Theorem 12.11 and performing the computations required
in this case, we obtain:

q(x) =
1

1 + x+ x2
; r(x) =

4

1 + x+ x2
− (1 + 2x)2

(1 + x+ x2)2
; h(x) =

1 + 4x+ x2

1 + x+ x2

and

E(NX) =
Hm

Jm
with Hm =

∫ +∞

0

ρm−1(1 + 4ρ2 + ρ4)
1
2

(1 + ρ2 + ρ4)
m
2 +1

dρ.

An elementary computation shows that E(NX) = o(1) as m → +∞ (see the next example for a
more precise behavior). In other words, the probability that the perturbed system has no solution
tends to 1 as m→ +∞.

5.- More general perturbed systems

Let us consider the covariances given by the polynomials

Qi(u, v, w) = Q(u, v, w) = 1 + 2ud + (vw)d.

This corresponds to adding a perturbation depending on the product of the norms of s, t to the
modified Shub-Smale systems considered in our first example. We know that for the unperturbed

system, one has E(NX) = d
m−1
2 . Notice that the factor 2 in Q has only been added for computa-

tional convenience and does not modify the random variable NX of the unperturbed system. For
the perturbed system, we get

q(x) =
2dxd−1

(1 + xd)2
; r(x) =

2d(d− 1)xd−2

(1 + xd)2
; h(x) = d.

Therefore,

(12.24) E(NX) =

√
2

π
Km

∫ +∞

0

ρm−1
(
2dρ2(d−1)

(1 + ρ2d)2

)m
2 √

d dρ

=

√
2

π
Km2m/2d

m+1
2

∫ +∞

0

ρmd−1

(1 + ρ2d)m
dρ.

The integral can be evaluated by an elementary computation and we obtain

E(NX) = 2−
m−2
2 d

m−1
2 ,

which shows that the mean number of zeros is reduced by the perturbation at a geometrical rate
as m grows.

6.-Polynomial in the scalar product, real roots

Consider again the case in which the polynomials Q(i)are all equal and the covariances depend
only on the scalar product, i.e. Q(i)(u, v, w) = Q(u). We assume further that the roots of Q, that
we denote −α1, ...,−αd, are real (0 < α1 ≤ .... ≤ αd). We get

q(x) =

d∑

h=1

1

x+ αh
; r(x) =

d∑

h=1

1

(x+ αh)2
; h(x) =

1

qi(x)

d∑

h=1

αh
(x+ αh)2

.
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It is easy now to write an upper bound for the integrand in (12.20) and compute the remaining
integral, thus obtaining the inequality

E(NX) ≤
√
αd
α1
dm/2,

which is sharp if α1 = ... = αd.

If we further assume that d = 2, with no loss of generality Q(u) has the form Q(u) =
(u+ 1)(u+ α) with α ∈ [0, 1]. Replacing q by 1

x+1 +
1

x+α in formula (12.23) we get:

E(NX) =
√

2/πKm(12.25) ∫ ∞

0

ρm−1
( 1

1 + ρ2
+

1

α+ ρ2
)(m−1)/2( 1

(1 + ρ2)2
+

α

(α+ ρ2)2
)1/2

dρ.

One can compute the limit of the right-hand side as α → 0. For this purpose, notice that the
function α → α

(α+ρ2)2 attains its maximum at α = ρ2 and is dominated by 1
4ρ2 . We divide the

integral in the right-hand side of (12.25) into two parts, setting for some δ > 0

Iδ,α :=

∫ δ

0

ρm−1
( 1

1 + ρ2
+

1

α+ ρ2
)(m−1)/2( 1

(1 + ρ2)2
+

α

(α+ ρ2)2
)1/2

dρ,

and

Jδ,α :=

∫ +∞

δ

ρm−1
( 1

1 + ρ2
+

1

α+ ρ2
)(m−1)/2( 1

(1 + ρ2)2
+

α

(α+ xρ2)2
)1/2

dρ.

By dominated convergence,

Jδ,α →
∫ +∞

δ

(2ρ2 + 1

ρ2 + 1

)(m−1)/2 dρ

1 + ρ2
,

as α→ 0. On the other hand

I−δ,α ≤ Iδ,α ≤ I+δ,α

where

(12.26) I−δ,α :=

∫ δ

0

( ρ2

1 + ρ2
+

ρ2

α+ ρ2
)(m−1)/2

√
α

ρ2 + α
dρ

=

∫ δ/α

0

( αz2

1 + αz2
+

αz2

α(z2 + 1)

)(m−1)/2 dz

z2 + 1
→ Jm,

as α→ 0, and

(12.27) I+δ,α :=

∫ δ

0

( ρ2

1 + ρ2
+

ρ2

α+ ρ2
)(m−1)/2( 1

1 + ρ2
+

√
α

ρ2 + α

)
dρ

→
∫ δ

0

(2ρ2 + 1

ρ2 + 1

)(m−1)/2 dρ

1 + ρ2
+ Jm,

as α → 0. Since δ is arbitrary, the integral in the right-hand size of (12.27) can be chosen

arbitrarily small. Using the identity KmJm =
√
π/2, we get

E(NX)→ υ := 1 +
1

Jm

∫ +∞

0

(2ρ2 + 1

ρ2 + 1

)(m−1)/2 dρ

1 + ρ2
,

as α→ 0. Since 2ρ2

ρ2+1 <
2ρ2+1
ρ2+1 < 2:

1 + 2(m−1)/2 < υ < 1 +
2(m−1)/2

Jm

π

2
.
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3. Non-centered systems (smoothed analysis)

The aim of this section is to remove the hypothesis that the coefficients have zero expectation.
Let us start with a non-random system

Pi(t) = 0 (i = 1, . . . ,m),(12.28)

and perturb it with a polynomial noise {Xi(t) : i = 1, . . . ,m}, that is, we consider the new system:

Pi(t) +Xi(t) = 0 (i = 1, . . . ,m)

What can one say about the number of roots of the new system? Of course, to obtain results
on E(NP+X) we need a certain number of hypotheses both on the noise X and the polynomial
“signal” P , especially the relation between the size of P and the probability distribution of X.

Some of these hypotheses are of technical nature, allowing to perform the computations.
Beyond this, roughly speaking, Theorem 12.12 below says that if the relation signal over noise is
neither too big nor too small, in a sense that we make precise later on, then there exist positive
constants C, θ, 0 < θ < 1 such that

E(NP+X) ≤ C θmE(NX).(12.29)

Inequality (12.29) becomes of interest if the starting non-random system (12.28) has a large
number of roots, possibly infinite, and m is large. In this situation, the effect of adding polyno-
mial noise is a reduction at a geometric rate of the expected number of roots, as compared to
the centered case. In formula (12.29), E(NX) can be computed or estimated using the results in
sections 1 and 2 and bounds for the constants C, θ can be explicitly deduced from the hypotheses.

Before the statement we need to introduce some additional notations and hypotheses: H1 and
H2 concern only the noise, H3 and H4 include relations between noise and signal.

The noise will correspond to polynomials Q(i)(u, v, w) =
∑di
k=0 c

(i)
k uk, c

(i)
k ≥ 0, considered in

section 2, i.e. the covariances are only function of the scalar product. Also, each polynomial Q(i)

has effective degree di, i.e.

c
(i)
di
> 0 (i = 1, . . . ,m).

and does not vanish for u ≥ 0, which amounts to saying that for each t the distribution of Xi(t)
does not degenerate.

An elementary calculation then shows that for each polynomial Q(i), as u→ +∞:

qi(u) ∼
di

1 + u
,(12.30)

hi(u) ∼
c
(i)
di−1

dic
(i)
di

· 1

1 + u
.(12.31)

Since we are interested in the large m asymptotics, the polynomials P, Q can vary with m and
we will require somewhat more than relations (12.30) and (12.31), as specified in the following
hypotheses:

H1) hi is independent of i (i = 1, . . . ,m) (but may vary with m). We put h = hi.
H2) There exist positive constants Di, Ei (i = 1, . . . ,m) and q such that

0 ≤ Di − (1 + u)qi(u) ≤
Ei

1 + u
, and (1 + u)qi(u) ≥ q(12.32)

for all u ≥ 0, and moreover

max
1≤i≤m

Di, max
1≤i≤m

Ei

are bounded by constants D, E respectively, which are independent of m. q is also
independent of m.

Also, there exist positive constants h, h such that

h ≤ (1 + u)h(u) ≤ h(12.33)
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for u ≥ 0.

Notice that the auxiliary functions qi, ri, h (i = 1, . . . ,m) will also vary with m. To simplify
somewhat the notations we are dropping the parameter m in P, Q, qi, ri, h. However, in H2) the
constants h, h do not depend on m. One can check that these conditions imply that h(u) ≥ 0
when u ≥ 0.

Let us now describe the second set of hypotheses. Let P be a polynomial in m real variables
with real coefficients having degree d and Q a polynomial in one variable with non-negative

coefficients, having also degree d, Q(u) =
∑d
k=0 ck u

k. We assume that Q does not vanish on
u ≥ 0 and cd > 0. Define

H(P,Q) := sup
t∈Rm

{
(1 + ‖t‖) ·

∥∥∥∥∥∇
(

P√
Q(‖t‖2)

)
(t)

∥∥∥∥∥

}

K(P,Q) := sup
t∈Rm\{0}

{
(1 + ‖t‖2) ·

∣∣∣∣∣
∂

∂ρ

(
P√

Q(‖t‖2)

)
(t)

∣∣∣∣∣

}

where ∂
∂ρ denotes the derivative in the direction defined by t

‖t‖ , at each point t 6= 0.

For r > 0, put:

L(P,Q, r) := inf
‖t‖≥r

P (t)2

Q(‖t‖2) .

One can check by means of elementary computations, that for each pair P, Q as above, one has

H(P,Q) <∞, K(P,Q) <∞.
With these notations, we introduce the following hypotheses on the systems P, Q, as m grows:

H3)

Am =
1

m
·
m∑

i=1

H2(Pi, Q
(i))

i
= o(1) as m→ +∞(12.34)

Bm =
1

m
·
m∑

i=1

K2(Pi, Q
(i))

i
= o(1) as m→ +∞.(12.35)

H4) There exist positive constants r0, l such that if r ≥ r0:

L(Pi, Q
(i), r) ≥ l for all i = 1, . . . ,m.

Theorem 12.12 (Armentano and Wschebor (2007)). Under the hypotheses H1, H2, H3, H4,
one has

E(NP+X) ≤ C θmE(NX)(12.36)

where C, θ are positive constants, 0 < θ < 1.

3.1. Remarks on the statement of Theorem 12.12.

1.- It is obvious that our problem does not depend on the order in which the equations

Pi(t) +Xi(t) = 0 (i = 1, . . . ,m)

appear. However, conditions (12.34) and (12.35) in hypothesis H3) do depend on the
order. One can restate them saying that there exists an order i = 1, . . . ,m on the
equations, such that (12.34) and (12.35) hold true.

2.- Condition H3) can be interpreted as a bound on the quotient signal over noise. In fact,
it concerns the gradient of this quotient. In (12.35) appears the radial derivative, which
happens to decrease faster as ‖t‖ → ∞ than the other components of the gradient.

Clearly, if H(Pi, Q
(i)), K(Pi, Q

(i)) are bounded by fixed constants, (12.34) and
(12.35) hold true. Also, some of them may grow as m → +∞ provided (12.34) and
(12.35) remain satisfied.
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3.- Hypothesis H4) goes in the opposite direction: for large values of ‖t‖ we need a lower
bound of the relation signal over noise.

4.- A result of the type of Theorem 12.12 can not be obtained without putting some restric-
tions on the relation signal over noise. In fact consider the system

Pi(t) + σXi(t) = 0 (i = 1, . . . ,m)(12.37)

where σ is a positive real parameter. As σ ↓ 0 the expected value of the number of roots
of (12.37) tends to the number of roots of Pi(t) = 0, (i = 1, . . . ,m), for which no a
priori bound is available. In this case, the relation signal over noise tends to infinity. On
the other hand, if we let σ → +∞, the relation signal over noise tends to zero and the
expected number of roots will tend to E(NX).

Proof of Theorem 12.12 We follow the same lines of the proof of Theorem 12.11
Let

Zj(t) =
Pj(t) +Xj(t)√
Q(j)(‖t‖2)

(j = 1, . . . ,m)

and

Z = (Z1, .., Zm)T .

Clearly,

NP+X(V ) = NZ(V )

for any subset V of Rm.
{Zj(t) : t ∈ Rm} (j = 1, . . . ,m) are independent centered Gaussian process,

E(Z2j (t)) = 1

for all j = 1, . . . ,m and all t ∈ Rm. This implies that Zj(t) and ∇Zj(t) are independent for each
t ∈ Rm. We apply Rice formula to compute E(NZ(V )), that is:

E(NZ(V )) =

∫

V

E
(
|det (Z ′(t)) |

∣∣Z(t) = 0
)
· pZ(t)(0) dt,

Using the independence between Z ′(t) and Z(t), one gets:

(12.38) E(NZ(V )) =
∫

V

E (|det (Z ′(t)) |) · 1

(2π)m/2
· exp

[
−1

2

(
P1(t)

2

Q(1)(‖t‖2) + · · ·+
Pm(t)2

Q(m)(‖t‖2)

)]
dt

and our main problem consists in the evaluation of E (|det (Z ′(t)) |).
As in the centered case, we have:

Cov

(
∂Zi
∂tα

(t),
∂Zj
∂tβ

(t)

)
= δij

[
ri(‖t‖2)tα tβ + qi(‖t‖2)δαβ

]

for i, j, α, β = 1, . . . ,m.
For each t 6= 0, let Ut be an orthogonal transformation of Rm that takes the first element of

the canonical basis into the unit vector t
‖t‖ . Then

Var

(
Ut∇Zj(t)√
qj(‖t‖2)

)
= Diag

(
h(‖t‖2), 1 . . . , 1

)
(12.39)

where we denote the gradient ∇Zj(t) as a column vector.

Diag(λ1, . . . , λm) denotes them×m diagonal matrix with elements λ1, . . . , λm in the diagonal.
So we can write

Ut∇Zj(t)√
qj(‖t‖2)

= ζj + αj (j = 1 . . . ,m)
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where ζj is a Gaussian, centered random vector in Rm having covariance given by (12.39),
ζ1, . . . , ζm are independent and αj is the non-random vector

αj =

Ut∇
(

Pj(t)√
Q(j)(‖t‖2)

)

√
qj(‖t‖2)

(α1j , ..., αmj) (j = 1 . . . ,m).(12.40)

We denote by T the m×m random matrix having columns ζj + αj , (j = 1, . . . ,m). We have

|det (Z ′(t)) | = |det(T )| ·
m∏

i=1

(
qi(‖t‖2)

)1/2

so that

E (|det (Z ′(t)) |) = E (|det(T )|) ·
m∏

i=1

(
qi(‖t‖2)

)1/2
.(12.41)

Denote by η1, . . . , ηm the columns of T , i.e.

ηj = ζj + αj (j = 1, . . . ,m)

where the ζij are Gaussian centered independent and

Var(ζij) = 1 for i = 2, . . . ,m; j = 1, . . . ,m

Var(ζ1j) = h(‖t‖2) for j = 1, . . . ,m.

Proceeding as in the centered case to compute the volume of the associated parallelotope, we
obtain the bound:

E (|detT |) ≤
√
h(‖t‖2) ·

m∏

j=1

E (‖ξj + cj(t)‖j)(12.42)

where ‖ · ‖j denotes Euclidean norm in Rj , (‖ · ‖ = ‖ · ‖m), ξj is a random vector with normal
standard distribution in Rj and cj(t) is a non-random vector in Rj having norm

‖α̃j‖, j = 1, . . . ,m.

where α̃j =
(
α1j/

√
h(‖t‖2), α2j , ..., αmj

)T
and the αij are given in (12.40). We denote

γj(c) = E (‖ξj + c‖j)
where c ∈ Rj is non-random. We have (see the auxiliary Lemma 12.13 after this proof):

γj(c) ≤
(
1 + ‖c‖2j

1

2j

)
γj(0).

Replacing in (12.42) and using (12.38), (12.41) we get:

(12.43) E(NZ) ≤ 1

(2π)m/2
Lm ·

∫

Rm

{√
h(‖t‖2)

(
m∏

i=1

qi(‖t‖2)
)1/2

· exp


−1

2

m∑

i=1

Pi(t)
2

Q(i)(‖t‖2) +
1

2

m∑

j=1

‖cj(t)‖2j
1

j



}
,

where

Lm =

m∏

i=1

E(‖ξi‖i) =
1√
2π

2(m+1)/2 Γ

(
m+ 1

2

)
.

Our final task is to obtain an adequate bound for the integral in (12.43). For j = 1, . . . ,m (use
H1)):

|α̃1j | =
1√

h(‖t‖2) qj(‖t‖2)
·
∣∣∣∣∣
∂

∂ρ

Pj(‖t‖2)√
Q(j)(‖t‖2)

∣∣∣∣∣ ≤
1√
h q

K(Pj , Q
(j))
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and

‖αj‖ =

∥∥∥∥∇
(

Pj(t)√
Q(j)(‖t‖2)

)∥∥∥∥
√
qj(‖t‖2)

≤ 1
√
q
H(Pj , Q

(j)).

Then, if we bound ‖α̃j‖2 by:

‖α̃j‖2 ≤ |α̃1j |2 + ‖αj‖2

we obtain

‖α̃j‖2 ≤
1

h q
K2(Pj , Q

(j)) +
1

q
H2(Pj , Q

(j))

which implies

m∑

j=1

‖cj‖2j ·
1

j
≤ 1

q
mAm +

1

h q
mBm.

Replacing in (12.43) we get the bound:

E(NZ) ≤ smHm

where

sm =

(
h

h

)1/2
· exp

(1
2

(1
q
mAm +

1

h q
mBm

))
= eo(m) (as m→ +∞)

and

(12.44) Hm =
1

π(m+1)/2
Γ
(m
2

)
·
∫

Rm

(
m∏

i=1

qi(‖t‖2)
)1/2√

h(‖t‖2) E(‖ξm‖) e
− 12

∑m
i=1

Pi(t)
2

Q(i)(‖t‖2) dt.

The integrand in (12.44) is the same as in the expectation in the centered case, except for the
exponential, which will help for large values of ‖t‖.

Let us write Hm as

Hm = H(1)m (r) +H(2)m (r)

where H
(1)
m (r) corresponds to integrating on ‖t‖ ≤ r and H

(2)
m (r) on ‖t‖ > r instead of the whole

Rm in formula (12.44). We first choose r large enough so that the condition in hypothesis H4) is
satisfied. Then

H(2)m (r) ≤ e−lm/2 E(NX).(12.45)

We now turn to H
(1)
m (r). We have, bounding the exponential in the integrand by 1 and using

hypothesis H2):

(12.46) H(1)m (r) ≤ 1

π(m+1)/2
Γ
(m
2

)
h
1/2

E(‖ξm‖)
(

m∏

i=1

D
1/2
i

)
σm−1

∫ r

0

ρm−1

(1 + ρ2)(m+1)/2
dρ,

where σm−1 is the (m − 1)−dimensional area measure of Sm−1. The integral in the right hand
side is bounded by

π

2

(
r2

1 + r2

)m−1
2

.

Again using H2), we have the lower bound:

E(NX) ≥

≥ 1

π(m+1)/2
Γ
(m
2

)
h1/2 E(‖ξm‖)

∫ +∞

0

[
m∏

i=1

(
Di

1 + ‖t‖2 −
Ei

(1 + ‖t‖2)2
)1/2]

1

(1 + ‖t‖2)1/2 dt

=
1

π(m+1)/2
Γ
(m
2

)
h1/2 E(‖ξm‖)

(
m∏

i=1

D
1/2
i

)
σm−1

∫ +∞

0

ρm−1

(1 + ρ2)(m+1)/2

m∏

i=1

(
1− Fi

1 + ρ2

)1/2
dρ
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where we have denoted Fi = Ei/Di, (i = 1, . . . ,m), which implies

Fi ≤
maxk Ek

q
(i = 1, . . . ,m).

Choose now τ > 1 large enough, to have

λ2 =
r2

1 + r2
< 1− max1≤i≤m Fi

1 + τ2 r2
= ν2

and we get for E(NX) the lower bound:
(12.47)

E(NX) ≥ 1

π(m+1)/2
Γ
(m
2

)
h1/2E(‖ξm‖)

(
m∏

i=1

D
1/2
i

)
σm−1 ν

m

∫ +∞

τ r

ρm−1

(1 + ρ2)(m+1)/2
dρ.

Now, compare (12.46) and (12.47) and use the elementary equivalence, for each a > 0

∫ +∞

a

ρm−1

(1 + ρ2)(m+1)/2
dρ '

√
π

2m
as m→ +∞.

We get:

H1m(r) ≤ C1λ
m
1 E(N

X)

where C1 is a positive constant and λ/ν < λ1 < 1. This implies

E(NP+X) ≤ sm

[
C1λ

m
1 + e−lm/2

]
E(NX) ≤ C θmE(NX)

for positive constants C, θ, 0 < θ < 1.
More precisely, we can obtain first θ and then, m0 and the constant C, in such a way that

whenever m ≥ m0, inequality (12.36) holds true. The reader can verify, following step by step the
proof, that a possible choice is the following:

Choose r0 and ` from H4),

θ1 = max
{ r0√

r20 +
1
2

, e−`/2
}
, θ =

1 + θ1
2

Put Fi = Ei/Di, (i = 1, . . . ,m) and F̄ = max{F1, ..., Fm}. From the hypotheses, one has
F̄ ≤ Ē/q. Let τ > 0 such that:

F̄

1 + τ2r20
<

1

2

1

1 + r20
.

Choose m0 (using H3) ) so that if m ≥ m0 one has:

e
1
2 [
mAm
q +mBm

hq ]
θm1
√
m ≤ θm

π
( τ2r20
1 + τ2r20

)(m−1)/2
<
e−2√
m
.

Then, (12.36) is satisfied for m ≥ m0, with

C = 30.
h̄

h

√
1 + r20
r0

.

¤
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3.2. Auxiliary Lemma.

Lemma 12.13. Let γ : Rk → R, k ≥ 1 be defined as

γ(c) = E(‖ξ + c‖))

where ξ is a standard normal random vector in Rk, and c ∈ Rk. Then

(i) γ(0) =
√
2
Γ( k+12 )
Γ( k2 )

.

(ii) γ is a function of ‖c‖ and verifies:

γ(c) ≤ γ(0)

(
1 +

1

2k
‖c‖2

)
.(12.48)

Proof. (i) follows on integrating in polar coordinates.
(ii) That γ is a function of ‖c‖ is a consequence of the invariance of the distribution of ξ under
the orthogonal group of Rk. For k = 1, (12.48) follows from the exact computation

γ(c) =
√

2/π e−
1
2 c
2

+ c

∫ c

−c

1√
2π

e−
1
2x
2

and a Taylor expansion at c = 0, which gives

γ(c) ≤
√

2/π

(
1 +

1

2
c2
)
.

For k ≥ 2, we write

γ(c) = E
([

(ξ1 + a)2 + ξ22 + · · ·+ ξ2k
]1/2)

= G(a)

where a = ‖c‖ and ξ1, . . . , ξk are independent standard normal variables. Differentiating under
the expectation sign, we get:

G′(a) = E

(
ξ1 + a

[(ξ1 + a)2 + ξ22 + · · ·+ ξ2k]
1/2

)
,

so that G′(0) = 0 due to the simmetry of the distribution of ξ.
One can differentiate formally once more, obtaining:

G′′(a) = E

(
ξ22 + · · ·+ ξ2k

[(ξ1 + a)2 + ξ22 + · · ·+ ξ2k]
3/2

)
.(12.49)

For the validity of equality (12.49) for k ≥ 3 one can use that if d ≥ 2, 1
‖x‖ is integrable in Rd

with respect to the Gaussian standard measure. For k = 2 one must be more careful but it holds
true and left to the reader. The other ingredient of the proof is that one can verify that G′′ has a
maximum at a = 0. Hence, on applying Taylor’s formula, we get

G(a) ≤ G(0) +
1

2
a2G′′(0).

Check that G′′(0) =
√
2
k

Γ( k+12 )
Γ( k2 )

which, together with (i) gives:

G′′(0)

G(0)
=

1

k

which implies (ii).
¤
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3.3. Examples.
• Shub-Smale noise Assume that the noise follows the Shub-Smale model. If the degrees di

are uniformly bounded, one can easily check that H1) and H2) are satisfied.
For the signal, we give two simple examples. Let

Pi(t) = ‖t‖di − rdi ,
where di is even and r > 0 remains bounded as m varies. One has:

∂

∂ρ

(
Pi√
Q(i)

)
(t) =

di ‖t‖di−1 + di r
di ‖t‖

(1 + ‖t‖2) di2 +1
≤ di(1 + rdi)

(1 + ‖t‖2)3/2

∇
(

Pi√
Q(i)

)
(t) =

di ‖t‖di−2 + di r
di

(1 + ‖t‖2) di2 +1
· t

which implies
∥∥∥∥∥∇
(

Pi√
Q(i)

)
(t)

∥∥∥∥∥ ≤
di(1 + rdi)

(1 + ‖t‖2)3/2 .

So, since the degrees d1, . . . , dm are uniformly bounded, H3) follows. H4) also holds under the
same hypothesis.

Notice that an interest in this choice of the Pi’s lies in the fact that obviously the system
Pi(t) = 0 (i = 1, . . . ,m) has infinite roots (all points in the sphere of radius r centered at the
origin are solutions), but the expected number of roots of the perturbed system is geometrically

smaller than the Shub-Smale expectation
√
D, when m is large.

Our second example of signal is as follows. Let T be a polynomial of degree d in one variable
that has d distinct real roots. Define:

Pi(t1, . . . , tm) = T (ti) (i = 1, . . . ,m).

One can easily check that the system verifies our hypotheses, so that there exist C, θ positive
constants, 0 < θ < 1 such that

E(NP+X) ≤ C θmdm/2

where we have used the Kostlan-Shub-Smale formula. On the other hand, it is clear that NP = dm

so that the diminishing effect of the noise on the number of roots can be observed.

•Q(i) = Q, Only real roots Assume that all the Q(i)’s are equal, Q(i) = Q, and Q has only real
roots. Since Q does not vanish on u ≥ 0, all the roots should be strictly negative, say −α1, . . . ,−αd
where 0 < α1 ≤ α2 ≤ · · · ≤ αd. With no loss of generality, we may assume that α1 ≥ 1.

We will assume again that the degree d (which can vary withm) is bounded by a fixed constant
d as well as the roots αk ≤ α (k = 1, . . . , d) for some constant α. One verifies (12.32), choosing
Di = d, Ei = d ·max1≤k≤d (αk − 1). Similary, a direct computation gives (12.33).

Again let us consider the particular example of signals:

Pi(t) = ‖t‖di − rdi

where di is even and r is positive and remains bounded as m varies.
∣∣∣∣∣
∂

∂ρ

(
Pi√
Q(i)

)∣∣∣∣∣ ≤ di(α+ rdi)
1

(1 + ‖t‖2)3/2

so that K(Pi, Q
(i)) is uniformly bounded. A similar computation shows that H(Pi.Q

(i)) is uni-
formly bounded. Finally, it is obvious that

L(Pi, Q
(i), r) ≥

(
1

1 + α

)d

for i = 1, . . . ,m and any r ≥ 1. So the conclusion of Theorem 12.12 can be applied.
One can check that the second signal in the previous example also works with respect to this

noise.
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•Some other examples. Assume that the covariance of the noise has the form of Example 4.1.1.
Q is a polynomial in one variable having degree ν and positive coefficients, Q(u) =

∑ν
k=0 bku

k. Q
may depend on m, as well as the exponents l1, . . . , lm. Notice that di = ν · li (i = 1, . . . ,m). One
easily verifies that H1) is satisfied.

We assume that the coefficients b0, . . . , bν of the polynomial Q verify the conditions

bk ≤
ν − k + 1

k
bk−1 (k = 1, 2, . . . , ν)

Moreover, l1, . . . , lm, ν are bounded by a constant independent of m and there exist positive
constants b, b such that

b ≤ b0, b1, . . . , bν ≤ b.

Under these conditions, one can check that H2) holds true, with Di = di (i = 1, . . . ,m).
For the relation signal over noise, conditions are similar to the previous example.

Notice that already if ν = 2, and we choose for Q the fixed polynomial:

Q(u) = 1 + 2a u+ b u2

with 0 < a ≤ 1,
√
b > a ≥ b > 0, then the conditions in this example are satisfied, but the

polynomial Q (hence Qdi) does not have real roots, so that it is not included in Example 3.3.

4. Systems having a law invariant under orthogonal transformations and
translations

In this section we assume that Xi : Rm → R, i = 1, . . . ,m are independent centered Gaussian
random fields with covariances having the form

(12.50) rXi(s, t) = γi(‖t− s‖2), (i = 1, . . . ,m).

We will assume that γi is of class C2 and, with no loss of generality, that γi(0) = 1.
The computation of the expectation of the number of roots belonging to a Borel set V can be

done using Rice formula (12.21), obtaining:

(12.51) E
(
NX(V )

)
= (2π)−m/2E

(
|det(X ′(0))|

)
λm(V )

To prove (12.51) we take into account that the law of the random field is invariant under transla-
tions and for each t, X(t) and X ′(t) are independent. Compute, for i, α, β = 1, ...,m

E

(
∂Xi

∂tα
(0)

∂Xi

∂tβ
(0)

)
=

∂2rXi

∂sα∂tβ

∣∣∣∣
t=s

= −2γ′i(0)δαβ ,

which implies, using a similar method to the one in the proof of Theorem 12.1 :

E
(
|det(X ′(0))|

)
=

1√
π
2mΓ((m+ 1)/2)

m∏

i=1

|γ′i(0)|1/2

and replacing in (12.51)

(12.52) E
(
NX(V )

)
=

1√
π

( 2
π

)m/2
Γ((m+ 1)/2)

[ m∏

i=1

|γ′i(0)|1/2
]
λm(V ).

Next, let us consider the variance. One can prove that under certain additional technical
conditions, the variance of the normalized number of roots:

nX(V ) =
NX(V )

E
(
NX(V )

)

- which has obviously mean value equal to 1- grows exponentially when the dimension m tends
to infinity. This establishes a striking difference with respect to the results in section 1. In other
words, one should expect to have large fluctuations of nX(V ) around its mean for systems having
large m.

Our additional requirements are the following:

1) All the γi coincide, γi = γ, i = 1, ...,m,
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2) the function γ is such that (s, t)Ã γ(‖t− s‖2) is a covariance for all dimensions m.

It is well known (Schoenberg, 1938) that γ satisfies 2) and γ(0) = 1 if and only if there exists
a probability measure G on [0,+∞) such that

(12.53) γ(x) =

∫ +∞

0

e−xwG(dw) for all x ≥ 0.

Theorem 12.14 (Azäıs-Wschebor, 2005b)). Let rXi(s, t) = γ(‖t− s‖2) for i = 1, ...,m where
γ is of the form (12.53). We assume further that

(1) G is not concentrated at a single point and
∫ +∞

0

x2G(dx) <∞.

(2) {Vm}m=1,2... is a sequence of Borel sets, Vm ⊂ Rm, λm(∂Vm) = 0 and there exist two
positive constants δ, ∆ such that for each m, Vm contains a ball with radius δ and is
contained in a ball with radius ∆.

Then,

(12.54) Var
(
nX(Vm)

)
→ +∞,

exponentially fast as m→ +∞.

Proof. To compute the variance of NX(V ) we start as in the case of the KSS model:

(12.55) Var
(
NX(V )

)
= E

(
NX(V )

(
NX(V )− 1

))
+ E

(
NX(V )

)
−
[
E
(
NX(V )

)]2
,

so that to prove (12.54), it suffices to show that

(12.56)
E
(
NX(V )

(
NX(V )− 1

))

[
E
(
NX(V )

)]2 → +∞

exponentially fast as m→ +∞. The denominator in (12.56) is given by formula (12.52). For the
numerator, we can apply Rice formula for the second order factorial moment:

(12.57) E
(
NX(V )

(
NX(V )− 1

) )

=

∫∫

V×V
E
(
|det(X ′(s)) det(X ′(t))|

∣∣X(s) = X(t) = 0
)
pX(s),X(t)(0, 0) ds dt,

Next, we compute the ingredients of the integrand in (12.57). Because of invariance under
translations, the integrand is a function of τ = t − s. We denote with τ1, ..., τm the coordinates
of τ .

The Gaussian density is immediate:

(12.58) pX(s),X(t)(0, 0) =
1

(2π)m
1

[1− γ2(‖τ‖2)]m/2
.

Let us turn to the conditional expectation in (12.57). We put

E
(
|det(X ′(s)) det(X ′(t))|

∣∣X(s) = X(t) = 0
)
= E

( ∣∣det(As) det(At)
∣∣ ),

where As = ((Asiα)), A
t = ((Atiα)) are m × m random matrices having as joint - Gaussian -

distribution the conditional distribution of the pair X ′(s), X ′(t) given that X(s) = X(t) = 0. So,
to describe this joint distribution we must compute the conditional covariances of the elements
of the matrices X ′(s) and X ′(t) given the condition C : {X(s) = X(t) = 0}. This is easily done
using standard regression formulas:

E

(
∂Xi

∂sα
(s)

∂Xi

∂sβ
(s)
∣∣C
)

=
∂2r

∂sα∂tβ

∣∣∣∣
t=s

− 1

1− (r(s, t))2
∂r

∂sα
(s, t)

∂r

∂sβ
(s, t)

E

(
∂Xi

∂sα
(s)

∂Xi

∂tβ
(t)
∣∣C
)

=
∂2r

∂sα∂tβ
(s, t) +

1

1− (r(s, t))2
∂r

∂sα
(s, t)

∂r

∂tβ
(s, t)r(s, t).

Replacing in our case, we obtain
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(12.59) E
(
AsiαA

s
iβ

)
= E

(
AtiαA

t
iβ

)
= −2γ′(0)δαβ − 4

γ′2τατβ
1− γ2 ,

(12.60) E
(
AsiαA

t
iβ

)
= −4γ′′τατβ − 2γ′δαβ − 4

γγ′2τατβ
1− γ2 ,

and for every i 6= j:

E
(
AsiαA

s
jβ

)
= E

(
AtiαA

t
jβ

)
= E

(
AsiαA

t
jβ

)
= 0,

where γ = γ(‖τ‖2), γ′ = γ′(‖τ‖2), γ′′ = γ′′(‖τ‖2).
Take now an orthonormal basis of Rm having the unit vector τ

‖τ‖ as first element. Then the

variance (2m)× (2m) matrix of the pair Asi , A
t
i - the i−th rows of As and At respectively - takes

the following form:

T =




U0 · · · . . | U1 · · · . .
. V0 · · · . | . V1 · · · .

. .
. . . . | . .

. . . .
. . · · · V0 | . . · · · V1
U1 · · · . . | U0 · · · . .
. V1 · · · . | . V0 · · · .

. .
. . . . | . .

. . . .
. . · · · V1 | . . · · · V0




,

where

U0 = U0(‖τ‖2) = −2γ′(0)− 4
γ′2 ‖τ‖2
1− γ2 ;

V0 = −2γ′(0) ;

U1 = U1(‖τ‖2) = −4γ′′ ‖τ‖2 − 2γ′ − 4
γγ′2‖τ‖2
1− γ2 ;

V1 = V1(‖τ‖2) = −2γ′;
and there are zeros outside the diagonals of each one of the four blocks. Let us perform a second
regression of Atiα on Asiα, that is, write the orthogonal decompositions

Atiα = Bt,siα + CαA
s
iα (i, α = 1,m),

where Bt,siα is centered Gaussian independent of the matrix As, and

For α = 1, C1 =
U1
U0
, Var(Bt,si1 ) = U0

(
1− U21

U20

)
;

For α > 1, Cα =
V1
V0
, Var(Bt,siα ) = V0

(
1− V 21

V 20

)
.

Conditioning we have :

E
(
|det(As)||det(At)|

)
= E

[
|det(As)|E

(
|det((Bt,siα + CαA

s
iα)i,α=1,..,m)|

∣∣As
)]

with obvious notations. For the inner conditional expectation, we can proceed in the same way
as we did in the proof of Theorem 12.11 to compute the determinant, obtaining a product of
expectations of Euclidean norms of non-centered Gaussian vectors in Rk for k = 1, ...,m. Now we
use the well-known inequality

E
(
‖ξ + v‖

)
≥ E

(
‖ξ‖
)

valid for ξ standard normal in Rk and v any vector in Rk, and it follows that

E
(
|det(As)||det(At)|

)
≥ E

(
|det(As)|

)
E
(
|det(Bt,s)|

)
.
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Since the elements of As (resp. Bt,s) are independent, centered Gaussian with known variance,
we obtain:

E
∣∣det(As) det(At)

∣∣ ≥ U0V
m−1
0

(
1− U21

U20

)1/2(
1− V 21

V 20

)(m−1)/2
L2m.

Going back to (12.56) and on account of (12.52) and (12.57) we have

(12.61)
E
(
NX(V )

(
NX(V )− 1

) )

E
(
NX(V )

)2 ≥
(
λm(V )

)−2
∫∫

V×V
dsdt

[
1− V 21 V −20

1− γ2
]m/2

H(‖τ‖2).

Let us put V = Vm in (12.61) and study the integrand in the right hand side. The function

H(x) =

(
U20 (x)− U21 (x)
V 20 − V 21 (x)

)1/2

is continuous for x > 0. Let us show that it does not vanish if x > 0.
It is clear that U21 ≤ U20 on applying the Cauchy-Schwarz inequality to the pair of variables

Asi1, A
t
i1. The equality holds if and only if the variables Asi1, A

t
i1 are linearly dependent. This

would imply that the distribution - in R4 - of the random vector

ζ :=
(
X(s), X(t), ∂1X(s), ∂1X(t)

)

would degenerate for s 6= t (we have denoted ∂1 differentiation with respect to the first coordinate).
We will show that this is not possible. Notice first that for each w > 0, the function

(s, t)Ã e−‖t−s‖
2w

is positive definite, hence the covariance of a centered Gaussian stationary field defined on Rm,
say {Zw(t) : t ∈ Rm} whose spectral measure has the non-vanishing density:

fw(x) = (2π)−m/2(2w)−m/2 exp
(
− ‖x‖

2

4w

)
(x ∈ R

m).

The field {Zw(t) : t ∈ Rm} satisfies the conditions of Proposition 3.1 of Azäıs & Wschebor (2004)
so that the distribution of the 4-tuple

ζw :=
(
Zw(s), Zw(t), ∂1Z

w(s), ∂1Z
w(t)

)

does not degenerate for s 6= t. On account of (12.53) we have,

Var(ζ) =

∫ +∞

0

Var(ζw)G(dw),

where integration of the matrix is integration term by term. This implies that the distribution of
ζ does not degenerate for s 6= t and that H(x) > 0 for x > 0.

We now show that for τ 6= 0:

1− V 21 (‖τ‖2)V −20
1− γ2(‖τ‖2) > 1

which is equivalent to

(12.62) −γ′(x) < −γ′(0)γ(x) , ∀x > 0.

The left-hand side of (12.62) can be written as

−γ′(x) = 1

2

∫∫ +∞

0

(
w1 exp(−xw1) + w2 exp(−xw2)

)
G(dw1)G(dw2)

and the right-hand side

−γ′(0)γ(x) = 1

2

∫∫ +∞

0

(
w1 exp(−xw2) + w2 exp(−xw1)

)
G(dw1)G(dw2),

so that

−γ′(0)γ(x) + γ′(x) =
1

2

∫∫ +∞

0

(w2 − w1)
(
exp(−xw1)− exp(−xw2)

)
G(dw1)G(dw2),
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which is ≥ 0 and is equal to zero only if G is concentrated at a point, which is not the case.
This proves (12.62). Now, using the hypotheses on the inner and outer diameter of Vm, the result
follows by a compactness argument. ¤





CHAPTER 13

Random fields and condition numbers of random matrices

Let A be an invertible n×n real matrix and b ∈ Rn. We are interested in understanding how
the solution x ∈ Rn of the linear system of equations

(13.1) Ax = b

is affected by perturbations in the input (A, b).
Early work by Turing (1948) and von Neumann and Goldstine (1947) identified that the key

quantity is:
κ(A) = ‖A‖.‖A−1‖

where ‖A‖ denotes the operator norm of A defined in the usual way:

‖A‖ = max
‖x‖=1

‖Ax‖.

Here ‖v‖ denotes the Euclidean norm of v ∈ Rn. Of course, other norms can be considered, but in
this chapter we will restrain ourselves to the Euclidean norm. If A is singular, we put κ(A) = +∞.
Turing called κ(A) the condition number of A.
The first meaning of κ(A) is a consequence of the following property that the reader can easily

check.

Let x + ∆x be the solution of system (13.1) when the input is (A + ∆A, b + ∆b) instead of

(A, b). If κ(A) ‖∆A‖‖A‖ < 1, then

(13.2)
‖∆x‖
‖x‖ ≤ κ(A)

1− κ(A) ‖∆A‖‖A‖

(‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

)
.

In fact,
(A+∆A)∆x = ∆b− (∆A)x

which implies, whenever ‖A−1(∆A)‖ < 1:

∆x = (A+∆A)−1(∆b− (∆A)x) = (I +A−1(∆A))−1A−1(∆b− (∆A)x)

and taking norms:

‖∆x‖ ≤ ‖(I +A−1(∆A))−1‖‖A−1‖(‖∆b‖+ ‖∆A‖‖x‖)

≤ ‖(I +A−1(∆A))−1‖‖A−1‖(‖∆b‖‖b‖ +
‖∆A‖
‖A‖ )‖A‖‖x‖,

from which (13.2) follows.

Notice that the factor κ(A)

1−κ(A) ‖∆A‖
‖A‖

tends to κ(A) when ‖∆A‖ → 0. Thus, κ(A) is a bound for

the amplification of the relative error between output and input in the system (13.1), when the
last one is small. The reader may also easily check that, in addition, κ(A) is sharp in the sense
that no smaller number will satisfy a similar inequality for all increments ∆A and ∆b. In other
words, if one thinks on binary floating point arithmetic, log2 κ(A) measures the loss of precision
due to error in the input. So, for numerical analysis purposes, it is usual that the relevant function
of the matrix A appears to be log2 κ(A).

Matrices A with κ(A) small are said to be well-conditioned, those with κ(A) large are said to
be ill-conditioned. The set Σ = {A : κ(A) = +∞} is called the set of ill-posed matrices.

249
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The distance of a matrix A to the set Σ is closely related to κ(A) as shown in the next theorem.
For a proof, see Blum et al. (1998):

Theorem 13.1 (Eckart-Young, 1936). For any n× n real matrix A one has

κ(A) =
‖A‖

dF (A,Σ)

Here dF means distance in Rn
2

with respect ot the Frobenius norm ‖A‖ =
√∑

a2ij.

The relationship between conditioning and distance to ill-posedness is a recurrent theme in
numerical analysis (see for example Demmel, 1987). κ(A) appears in more elaborate round-off
analysis of algorithms, in which errors may occur in all the operations. As an example, let us
mention such an analysis for Cholesky’s method (see Wilkinson, 1963). If A is symmetric and
positive definite we may solve the linear system Ax = b by using Cholesky’s factorization. Assume
the length of the mantissa in the binary representation used in the computation is equal to `. Then,
if ` is large enough, one can prove that

‖∆x‖
‖x‖ ≤ 3n3 2−`κ(A).

The interested reader can find a variety of related subjects in the books by Higham (1996)
and Trefethen and Bau (1997).

Next, we introduce some notation. Given A, an n × n real matrix, we denote by ν1, ...., νn,
0 ≤ ν1 ≤ .... ≤ νn the squares of the singular values of A, that is, the eigenvalues of ATA. If
X : Sm−1 → R is the quadratic polynomial X(x) = xTATAx, then:

• νn = ‖A‖2 = maxx∈Sn−1 X(x)
• in case A is non-singular, it follows that ν1 =

1
‖A−1‖2 = minx∈Sn−1 X(x).

Hence,

κ(A) =

(
νn
ν1

) 1
2

when ν1 > 0, and κ(A) = +∞ if ν1 = 0. Notice also that κ(A) ≥ 1 and κ(rA) = κ(A) for any real
r, r 6= 0.

That is, the computation of the condition number of an n × n matrix A is a problem about
the spectrum of the non-negative definite matrix ATA or, more precisely, about the largest and
the smallest singular values of A.

Suppose one is interested in the analysis of a certain algorithm in which the condition number
κ(A) plays a role. Typically, the condition number will be a component appearing in some bound
for the cost of the algorithm, in which - as in the example above - the size of the problem and the
length of the mantissa in the floating point computation will also be present. A natural setting
consists in imagining that the algorithm is applied to a problem which is drawn at random from a
certain family of problems, which in our case amount to choose at random the coefficients of the
system of equations. The cost of the algorithm and κ(A) become random variables. One can try
to compute, or give bounds, for the expectation or the higher moments of the cost, or estimate its
distribution function and this will depend on the moments or the probability distribution of κ(A)
itself. Thus, in our case, the question of probabilistic analysis of algorithms, becomes a problem
on the spectrum of random matrices.

There is large body of knowledge on random matrices and specifically, on their singular values
or eigenvalues. Our general reference is Mehta’s book (3d edition, 2004), to which we have already
referred in Chapter 12. See also Girko’s book (1996).
Since the 1930’s motivation and methods have come from different sources, may be starting

with Fisher in 1939 in multivariate statistics (see Muirhead’s book, 1982, or Kendall, Stuart and
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Ord, 1983). By the mid-1950’s, Wigner’s work (see for example his papers of 1958 and 1967)
was followed by a big interest on random matrices in some areas of mathematical physics, which
continues until the present times (see for example Soshnikov, 1998, Davidson and Szarek, 2001,
Tracy and Widom, 1999). A third source of interest has been numerical analysis , motivated by
the above mentioned condition number problems, may be starting with a paper by Steve Smale
(1985). A very interesting survey of analytical methods, originally inspired by numerical analysis
problems but also including a diversity of applications, is Edelman and Rao (2005).

In this chapter we are only considering a very small part of the subject, which concerns the
condition number κ(A). One reason to include this topic here is that the methods we will present
are based upon random fields and Rice formulas, which is the core of this book. In some cases, these
methods do not give optimal results, as it happens in the canonical case of matrices having i.i.d.
standard normal entries. However, for non-centered Gaussian matrices our methods still provide
the best bounds for the tails of the probability distribution of κ(A) of which the authors are aware.

We start in Section 1 with some elementary upper-bounds for E(log κ(A)) when A is a random
matrix with i.i.d. - not necessarily Gaussian - entries. The methods are ad-hoc, but we are not
aware of the existence of better general bounds.

The remainder of the chapter concerns Gaussian matrices. Section 2 is on centered matrices
and Section 3 on non-centered ones.

1. Condition numbers of non-Gaussian matrices

The results of this section are extracted from Cuesta-Albertos and Wschebor (2003).
Throughout this section, we assume that A = ((aij)), i, j = 1, 2, ..., n is an n × n matrix,

where the aij ’s are independent identically distributed real-valued random variables defined on
some probability space (Ω,A,P). We denote with µ the common distribution measure of the aij ’s.

1.1. A general bound for E(log κ(A)) for symmetric entries.

Theorem 13.2. We assume that the distribution µ satisfies the following conditions:

(1) For any pair α, β of real numbers, α < β, one has

(13.3) µ

(
[α, β]

)
≤ µ

([
−β − α

2
,
β − α
2

])
.

(2) E [|a1,1|r] = 1, for some r > 0.
(3) There exist positive numbers C, γ such that

µ([−α, α]) ≤ Cαγ , for all α > 0.

Then,

(13.4) E[log κ(A)] ≤
(
1 +

2

r

)
log n+

1

r
+

1

γ

{
[(2 + γ) log n+ logC]

+
+ 1
}
,

where x+ = max(x, 0) for real x.

Proof. Notice that ‖A‖ ≤
(∑n

i,j=1 a
2
i,j

)1/2
. So, with the only assumption that the random

entries are identically distributed, one has, for t > 0:

(13.5) P [‖A‖ > t] ≤ P

[
n2 sup

i,j=1,...n
a2i,j > t2

]
≤ P




n⋃

i,j=1

{
|ai,j | >

t

n

}
 ≤ n2P

[
|a1,1| >

t

n

]
.
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Hence, for αn ≥ 0

E[log ‖A‖] ≤ αn +

∫ ∞

αn

P[log ‖A‖ > x]dx(13.6)

= αn +

∫ ∞

αn

P[‖A‖ > ex]dx

≤ αn +

∫ ∞

αn

n2P

[
|a1,1| >

ex

n

]
dx

≤ αn +

∫ ∞

αn

n2
( n
ex

)r
dx = αn + n2+r

1

r
e−rαn ,

where the last inequality follows from Markov inequality and Assumption (2).
Choose αn ≥ 0 to minimize the right-hand side of (13.6), i.e. αn =

(
1 + 2

r

)
log n and it follows

that

(13.7) E[log ‖A‖] ≤
(
1 +

2

r

)
log n+

1

r
.

We now consider the factor ‖A−1‖. Denote A−1 = ((bi,j))i,j=1,...,n, that is:

bi,j =
ai,j

det(A)
, i, j = 1, ..., n,

where ai,j is the cofactor of the position (i, j) in the matrix A.
Clearly the r.v.’s |bi,j |, i, j = 1, .., n are identically distributed so that we may apply (13.5) to

the matrix A−1 instead of A:

P
[
‖A−1‖ > t

]
≤ n2P

[
|b1,1| >

t

n

]
= n2P

[∣∣∣∣∣
a1,1∑n

j=1 a1,ja
1,j

∣∣∣∣∣ >
t

n

]

= n2P



∣∣∣∣∣∣
a1,1 +

n∑

j=2

a1,j
a1,j

a1,1

∣∣∣∣∣∣
<
n

t


 .

The random variables

a1,1 and η =

n∑

j=2

a1,j
a1,j

a1,1

are independent, so that, for each α > 0, denoting by Pη the probability distribution of η, and
using Fubini’s theorem and Assumption (1), we have:

P [|a1,1 + η| < α] =

∫ ∞

−∞
µ[(−α− y, α− y)]Pη(dy)

≤
∫ ∞

−∞
µ[(−α, α)]Pη(dy) = µ[(−α, α)].

Hence, by Assumption (3),

(13.8) P
[
‖A−1‖ > t

]
≤ n2µ

([
−n
t
,
n

t

])
≤ n2C

(n
t

)γ
,

and, with βn ≥ 0:

E[log ‖A−1‖] ≤ βn +

∫ ∞

βn

P
[
‖A−1‖ > ex

]
dx

≤ βn +

∫ ∞

βn

Cn2+γe−γxdx = βn + C
n2+γ

γ
e−γβn .

Choosing βn = 1
γ [(2 + γ) log n+ logC]+, one obtains:

(13.9) E[log ‖A−1‖] ≤ 1

γ

{
[(2 + γ) log n+ logC]+ + 1

}
,
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and putting together (13.7) and (13.9), (13.4) follows. ¤

Remarks on the statement of Theorem 13.2.

It is not hard to see that Assumption (1) implies that the measure µ is symmetric around 0.
In particular, this implies that in case the random variables ai,j , i, j = 1, .., n are integrable, their
common expectation must be 0.

Since κ(λA) = κ(A) for any non-zero real number λ and any nonsingular matrix A, in case

mr =
∫∞
−∞ |x|rµ(dx) <∞ it is possible to replace A by m

−1/r
r A so that assumption 2 holds true,

without modifying the condition number. Of course, in this case one must change accordingly the
constant C in assumption 3. In this sense, assumption 2 is not more restrictive than the finiteness
of the r-th moment of the probability measure µ.

1.2. Some examples.

Density Assume that µ has a density function f , that f is even and non-increasing on [0,∞)
and that mr =

∫∞
−∞ |x|rf(x)dx <∞ for some r > 0.

We replace the original density f by m
1/r
r f(m

1/r
r x) so that assumption 2 is satisfied without

changing κ(A) ; assumption 3 is verified with γ = 1 and C = 2m
1/r
r f(0). Inequality (13.4) becomes

(13.10) E[log(κ(A)] ≤ (1 +
2

r
) log n+

1

r
+

[
3 log n+

1

r
logmr + log(2f(0))

]+
+ 1.

Uniform distribution. Let µ be the uniform distribution on [−H,H], H > 0. In this case,
mr = Hr(r + 1)−1 and (13.10) holds true for any r > 0. Letting r → +∞, we obtain

(13.11) E[log κ(A)] ≤ 4 log n+ 1.

Strong concentration near the mean. Assume that the density of µ has the form

1

2

γ

|x|1−γ 1[−1,1](x),

for some γ, 0 < γ < 1.
One hasmr =

γ
r+γ for each r > 0 and easily checks that introducing the modification suggested

above, assumptions 1, 2 and 3 are satisfied with C = m
γ/r
r . Hence, Theorem 13.2 implies that for

any r > 0:

E[log κ(A)] ≤
(
1 +

2

r

)
log n+

1

r
+

1

γ

{[
(2 + γ) log n+

γ

r
log

γ

r + γ

]+
+ 1

}
,

and, letting r → +∞ it follows that

E[log κ(A)] ≤
(
2 +

2

γ

)
log n+

1

γ
.

Particular distributions. The bound in Theorem 13.2 can be improved by using the actual
distribution µ instead of the Markov inequality in (13.6) or the bound in (13.8). This is, for
example, the case for symmetric exponential or standard normal distributions but. However, in
the later case, this method is not fine enough: the precise behavior of E[log κ(A)] as n→ +∞ was
given by Edelman (1988), using analytic methods. It is the following:

E[log κ(A)] = log n+ C0 + εn,

where C0 is a known constant (C0 w 1, 537) and εn → 0.
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1.3. Smoothed analysis. We consider now the condition number when the r.v.’s in the
matrix A = (ai,j)i,j=1,...,n have the form

ai,j = mi,j + ψi,j , i, j = 1, ..., n,

where M = (mi,j)i,j=1,...,n is non-random and (ψi,j)i,j=1,...,n are i.i.d. r.v.’s with common distrib-
ution µ satisfying Assumptions (1), (2) and (3) in Theorem 13.2. This has been called “smoothed
analysis” and corresponds to the idea of exploring what happens to the condition number when a
non-random matrix is perturbed with a noise having a law which verifies a certain number of re-
quirements. We will be only looking to the effect on the moments of the loss of precision log κ(A),
when performing this operation. (See Spielman and Teng (2002) and Tao and Vu (2007), where
similar questions are considered, in the last case, allowing the measure µ to be purely atomic).

Theorem 13.3. Under the conditions stated above, if we put

mn = sup
i,j=1,...,n

|mi,j | ≤ n2/r,

then

(13.12) E[log κ(A)] ≤
(
1 +

2

r

)
log n+ log 2 +

1

r
+

1

γ

{
[(2 + γ) log n+ logC]+ + 1

}

Proof. The proof (as well as the result) is very similar to that of Theorem 13.2. For t > 0
one has:

P [‖A‖ > t] ≤ P




n∑

i,j=1

a2i,j > t2


 ≤

n∑

i,j=1

P

[
a2i,j >

t2

n2

]

=

n∑

i,j=1

P

[
|mi,j + ψi,j | >

t

n

]
≤ n2P

[
|ψ1,1| >

t

n
−mn

]
.

Now choose αn =
(
1 + 2

r

)
log n+ log 2. If x > αn, then

ex

n
−mn >

1

2n
ex.

Thus,

E[log ‖A‖] ≤ αn +

∫ ∞

αn

P [‖A‖ > ex] dx

≤ αn + n2
∫ ∞

αn

P

[
|ψ1,1| >

1

2n
ex
]
dx

≤ αn + n2
∫ ∞

αn

1(
1
2ne

x
)r dx

=

(
1 +

2

r

)
log n+ log 2 +

1

r
.

On the other hand, with the same notation as in the proof of Theorem 13.2,
A−1 = (bi,j)i,j=1,...,n and

P
[
‖A−1‖ > t

]
≤

n∑

i,j=1

P

[
|bi,j | >

t

n

]
.

For each term in this sum it is possible to repeat exactly the same computations as in the proof of
Theorem 13.2 to bound P

[
|b1,1| > t

n

]
and obtain the same bound as there for E[log ‖A−1‖]. This

finishes the proof. ¤

For higher order moments, one can obtain upper bounds for E
[
(log κ(A))k

]
, k = 2, 3, ... much

in the same way as we did for k = 1. We consider here the centered case, for smoothed analysis,
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the situation is similar.
Since log κ(A) ≥ 0 we have that

E
[
(log κ(A))k

]
≤ 2k

[
E
{(

log+ ‖A‖
)k}

+ E
{(

log+ ‖A−1‖
)k}]

.

Using the same estimates as in the case k = 1 for the tails of the probability distributions of
‖A‖ and ‖A−1‖, after an elementary computation, it is possible to obtain that if k satisfies the
inequalities 2 ≤ k ≤ 1 + (2 + γ ∧ r) log n, then

E
[
(log κ(A))

k
]
≤ (2 log n)k

[(
1 +

2

r

)k
(1 + k) +

(
1 +

2

γ

)k
(1 + Ck)

]

2. Condition numbers of centered Gaussian matrices

The purpose of the present section is to prove the following

Theorem 13.4 (Azäıs-Wschebor, 2005c). Assume that A = ((aij))i,j=1,...,n, n ≥ 3, and that

the aij ’s are i.i.d. standard normal random variables.
Then, there exist universal positive constants c, C such that for x > 1:

(13.13)
c

x
< P(κ(A) > n.x) <

C

x

Remarks
(1) The limiting distribution of κ(A)/n as n → ∞, has been computed in Edelman’s thesis

(1989). The interest of this theorem lies in the uniformity of the statement and in the relationship
that the proof below establishes with Rice formulas.

(2) This Theorem, and related ones, can be considered as results on the Wishart matrix ATA.
Introducing some minor changes, it is possible to use the same methods to study the condition
number of ATA for rectangular n×m matrices A having i.i.d. standard normal entries, n > m.

(3) We will see below that c = 0.13, C = 5.60 satisfy (13.13) for every n = 3, 4, ... Using
the same methods one can obtain more precise upper and lower bounds for each n. Improved
values for the constants, as well as extensions to rectangular matrices and to other canonical non-
Gaussian distributions can be found in Edelman and Sutton’s paper of (2005), where the proofs
are based upon the analytic theory of random matrices. In particular, for the constant C these
authors show evidence for the value C = 2. See the numerical application in the next section.

Proof of Theorem 13.4. Recall the notation in the introduction of this chapter. It is
easy to see that, almost surely, the eigenvalues of ATA are pairwise different. We introduce the
following additional notations:

• {e1, ..., en} is the canonical basis of Rn.
• B = ATA = ((bij))i,j=1,...,n
• For s 6= 0 in Rn πs : Rn → Rn denotes the orthogonal projection onto {s}⊥, the

orthogonal complement of s in Rn

• For a differentiable function F defined on a smooth manifold M embedded in some
Euclidean space, F ′(s) and F ′′(s) are the first and the second derivative of F that we
will represent, in each case, with respect to an appropriate orthonormal basis of the
tangent space.

Instead of (13.13) we prove the equivalent statement: for x > n:

(13.14)
c n

x
< P(κ(A) > x) <

Cn

x

We break the proof into several steps. Our main task is to estimate the joint density of the
pair (νn, ν1); this will be done in Step 4.

Step 1 For a, b ∈ R, a > b, one has almost surely:
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(13.15) {νn ∈ (a, a+ da) , ν1 ∈ (b, b+ db)}

=

{
∃ s, t ∈ Sn−1, < s, t >= 0, X(s) ∈ (a, a+ da) , X(t) ∈ (b, b+ db) ,

πs(Bs) = 0, πt(Bt) = 0, X ′′(s) ≺ 0, X ′′(t) Â 0

}

The random integer Na,b,da,db of pairs (s, t) belonging to the right-hand side of (13.15) is equal to
0 or to 4, so that:

(13.16) P (νn ∈ (a, a+ da) , ν1 ∈ (b, b+ db)) =
1

4
E (Na,b,da,db)

Step 2. In this step we will give a bound for E (Na,b,da,db) using a Rice-type formula. Let

V =
{
(s, t) : s, t ∈ Sn−1, < s, t >= 0

}
.

V is a C∞-differentiable manifold without boundary, embedded in R2n, dim(V ) = 2n − 3. We
will denote by τ = (s, t) a generic point in V and by σV (dτ) the geometric measure on V . We
will need the total measure σV (V ), which is a particular case of the following lemma (we will use
the full statement in the next section).

Lemma 13.5. Let a, b > 0. We define:

Va,b = {(s, t) ∈ R
n × R

n : ‖s‖2 = a, ‖t‖2 = b, 〈s, t〉 = 0},
Denote by µa,b the geometric measure of the compact C∞-manifold Va,b embedded in R2n. Then:

µa,b = (a+ b)1/2 (ab)
m−2
2 σm−1σm−2

where σn−1 denotes the surface area of Sn−1 ⊂ Rn, that is σn−1 =
2πn/2

Γ(n/2) .

Proof. Notice that, for each point (s, t) ∈ Va,b, the triplet

(
s

‖s‖ , 0), (0,
t

‖t‖ ),
1√

‖s‖2 + ‖t‖2
(t, s)

is an orthonormal basis of the normal space to Va,b at (s, t), which correspond respectively to
the unit vectors orthogonal to each one of the (2n − 1)-dimensional manifolds in R2n given by
equations:

(13.17)

‖s‖2 = a

‖t‖2 = b

〈s, t〉 = 0.

So, as δ ↓ 0, the 2n-dimensional Lebesgue measure of the set

Eδ = {(s, t) ∈ R
2n :

√
a− δ < ‖s‖ < √a+ δ,

√
b− δ < ‖t‖ <

√
b+ δ, |〈s, t〉| < δ

√
a+ b}

is equivalent to:

(2δ)3µa,b.

On the other hand:

(13.18) λ2n(Eδ) =

∫

{√a−δ<‖s‖<√a+δ}
ds

∫

{
√
b−δ<‖t‖<

√
b+δ,|〈s,t〉|<δ

√
a+b}

dt

Using polar coordinates in each iterate of the double integral in 13.18, the result follows. ¤

We go back to the proof of the theorem. Since V = V1,1, Lemma 13.5 implies that

σV (V ) =
√
2σn−1.σn−2 .

On V we define the random field

Y : V → R
2n
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by means of

Y (s, t) =

(
πs(Bs)
πt(Bt)

)
.

For τ = (s, t) a given point in V , we have that

Y (τ) ∈ {(t,−s)}⊥ ∩
{
{s}⊥ × {t}⊥

}
=Wτ

for any value of the matrix B, where {(t,−s)}⊥ is the orthogonal complement of the point (t,−s)
in R2n. In fact, (t,−s) ∈ {s}⊥ × {t}⊥ and

< Y (s, t), (t,−s) >R2n=< πs(Bs), t > − < πt(Bt), s >

=< Bs− < s,Bs > s, t > − < Bt− < t,Bt > t, s >= 0

since < s, t >= 0 and B is symmetric.
Notice that dim(Wτ ) = 2n− 3.

We also set

∆(τ) =
[
det
[
(Y ′(τ))

T
Y ′(τ)

]] 1
2

For τ = (s, t) ∈ V , Fτ denotes the event

Fτ = {X(s) ∈ (a, a+ da), X(t) ∈ (b, b+ db), X ′′(s) ≺ 0, X ′′(t) Â 0}
and pY (τ)(.) is the density of the random vector Y (τ) in the (2n− 3)-dimensional subspace Wτ of

R2n.
Applying Rice formula:

(13.19) E (Na,b,da,db)

=

∫ a+da

a

dx

∫ b+db

b

dy

∫

V

E
(
∆(s, t)1I{X′′(s)≺0,X′′(t)Â0}

∣∣X(s) = x,X(t) = y, Y (s, t) = 0
)

.pX(s),X(t),Y (s,t)(x, y, 0) σV (d(s, t))

The invariance of the law of A with respect to the orthogonal group of Rn implies that the
integrand in (13.19) does not depend on (s, t) ∈ V . Hence, we have proved that the joint law of
λn and λ1 has a density g(a, b), a > b, and

(13.20)

g(a, b) =

√
2

4
σn−1.σn−2E

(
∆(e1, e2)1I{X′′(e1)≺0,X′′(e2)Â0}X(e1) = a,X(e2) = b, Y (e1, e2) = 0

)

.pX(e1),X(e2),Y (e1,e2)(a, b, 0).

Step 3 Next, we compute the ingredients in the right-hand side of (13.20). We take as
orthonormal basis for the subspace W(e1,e2):

{(e3, 0), ..., (en, 0), (0, e3), ..., (0, en),
1√
2
(e2, e1)} = L1.

We have:

X(e1) = b11

X(e2) = b22

X ′′(e1) = B1 − b11In−1
X ′′(e2) = B2 − b22In−1

where B1 (resp. B2) is the (n − 1) × (n − 1) matrix obtained by suppressing the first (resp. the
second) row and column in B.

Y (e1, e2) = (0, b21, b31, ..., bn1, b12, 0, b32, ..., bn2, b12)
T
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so that, it has the expression in the orthonormal basis L1:

Y (e1, e2) =

n∑

i=3

(
bi1(ei, 0) + bi2(0, ei)

)
+
√
2b12

( 1√
2
(e2, e1)

)

So, the joint density of X(e1), X(e2), Y (e1, e2) appearing in (13.20) in the space R×R×W(e1,e2)

is the joint density of the r.v.’s

b11, b22,
√
2b12, b31, ..., bn1, b32, ..., bn2

at the point (a, b, 0, ..., 0). To compute this density, we first compute the joint density q of

b31, ..., bn1, b32, ..., bn2,

given a1, a2, where aj denotes the j-th column of A which is standard normal in Rn.

q is the normal density in R2(n−2), centered with variance matrix
(

‖a1‖2In−2 < a1, a2 > In−2
< a1, a2 > In−2 ‖a2‖2In−2

)
.

Set

a′j =
aj
‖aj‖

, j = 1, 2.

Now we compute the density of the triplet

(b11, b22, b12) = (‖a1‖2, ‖a2‖2, ‖a1‖‖a2‖ < a′1, a
′
2 >)

at the point (a, b, 0).
Since < a′1, a

′
2 > and (‖a1‖, ‖a2‖) are independent, the density of the triplet at (a, b, 0) is

equal to:

χ2n(a)χ
2
n(b)(ab)

−1/2p<a′1,a′2>(0)

where χ2n(.) denotes the χ
2 density with n degrees of freedom.

Let ξ = (ξ1, ..., ξn)
T be standard normal in Rn. Clearly , < a′1, a

′
2 > has the same distribution

as ξ1
‖ξ‖ , because of the invariance under the orthogonal group.

1

2t
P{| < a′1, a

′
2 > | ≤ t} = 1

2t
P{ ξ21
χ2n−1

≤ t2

1− t2 } =
1

2t
P{F1,n−1 ≤

t2(n− 1)

1− t2 }

=
1

2t

∫ t2(n−1)

1−t2

0

f1,n−1(x)dx,

where χ2n−1 = ξ22+ ...+ξ
2
n and F1,n−1 has the Fisher distribution with (1, n−1) degrees of freedom

and density f1,n−1. Letting t→ 0, we obtain

p<a′1,a′2>(0) =
1√
π

Γ(n/2)

Γ
(
(n− 1)/2

)

Summing up, the density in (13.20) is equal to :

(13.21)
1√
2
(2π)2−nπ−

1
2

1

Γ(n/2)Γ
(
(n− 1)/2

)2−n 1√
ab

exp
(
− a+ b

2

)
.

We now consider the conditional expectation in (13.20). The tangent space to V at the point
(s, t) is parallel to the orthogonal complement in Rn×Rn of the triplet of vectors (s, 0); (0, t); (t, s).
This is immediate from the definition of V .

To compute the associated matrix for Y ′(e1, e2) take the set

{(e3, 0), ..., (en, 0), (0, e3), ..., (0, en),
1√
2
(e2,−e1)} = L2.
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as orthonormal basis in the tangent space and the canonical basis in R2n. A direct calculation
gives :

Y ′(e1, e2) =




−vT 01,n−2 − 1√
2
b21

wT 01,n−2
1√
2
(−b11 + b22)

B12 − b11In−2 0n−2,n−2
1√
2
w

01,n−2 −wT 1√
2
(−b11 + b22)

01,n−2 vT 1√
2
b21

0n−2,n−2 B12 − b22In−2 − 1√
2
v




where vT = (b31, ..., bn1), w
T = (b32, ..., bn2), 0i,j is a null matrix with i rows and j columns and

B12 is obtained from B by suppressing the first and second rows and columns. The columns
represent the derivatives in the directions of L2 at the point (e1, e2). The first n rows correspond
to the components of πs(Bs), the last n ones to those of πt(Bt).

Thus, under the conditioning in (13.20),

Y ′(e1, e2) =




01,n−2 01,n−2 0
01,n−2 01,n−2

1√
2
(b− a)

B12 − aIn−2 0n−2,n−2 0n−2,1
01,n−2 01,n−2

1√
2
(b− a)

01,n−2 01,n−2 0
0n−2,n−2 B12 − bIn−2 0n−2,1




and [
det
[(
Y ′(e1, e2)

)T
Y ′(e1, e2)

]] 12
= |det(B12 − aIn−2)||det(B12 − bIn−2)|(a− b)

Step 4 Notice that B1 − aIn−1 ≺ 0 ⇒ B12 − aIn−2 ≺ 0, and similarly, B2 − bIn−1 Â 0 ⇒
B12 − bIn−2 Â 0, and that for a > b, under the conditioning in (13.20), there is equivalence in
these relations.

It is also clear that, since B12 Â 0 one has

|det(B12 − aIn−2)|1IB12−aIn−2≺0 ≤ an−2

and it follows that the conditional expectation in (13.20) is bounded by:

(13.22) an−1E
(
|det(B12 − bIn−2)|1IB12−bIn−2Â0

∣∣b11 = a, b22 = b, b12 = 0, bi1 = bi2 = 0

(i = 3, ..., n)
)
.

We further condition on a1 and a2. Since unconditionally a3, ..., an are i.i.d. standard normal
vectors in Rn, under the conditioning, their joint law becomes the law of i.i.d. standard normal
vectors in Rn−2 and independent of the condition. That is, (13.22) is equal to

(13.23) an−1E
(
|det(M − bIn−2)|1IM−bIn−2Â0

)
,

whereM is an (n−2)×(n−2) random matrix with entriesMij =< vi, vj >, (i, j = 1, ..., n−2) and
the vectors v1, ...vn−2 are i.i.d. standard normal in Rn−2. The expression in (13.23) is bounded
by

an−1E
(
det(M)

)
= an−1(n− 2)!,

The last equality is contained in the following lemma (see, for example, Mehta, 2004). We include
a proof for completeness.

Lemma 13.6. Let ξ1, ..., ξm be i.i.d. random vectors in Rp, p ≥ m, their common distribution
being Gaussian centered with variance Ip.

Denote Wm,p the matrix

Wm,p = ((< ξi, ξj >))i,j=1,...,m.

and
D(λ) = det (Wm,p − λIm)

its characteristic polynomial.
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Then,

(13.24) E (det (Wm,p)) = p(p− 1)....(p−m+ 1)

(13.25) E (D(λ)) =

m∑

k=0

(−1)k
(
m

k

)
p!

(p−m+ k)!
λk

Proof. Fix the values of ξ1, ..., ξm−1, which are linearly independent with probability 1. Let
{w1, ...., wp} be an orthonormal basis of Rp such that w1, ...., wm−1 ∈ Vm−1, where Vj denotes the
subspace generated by ξ1, ..., ξj .

Observe that det (Wm,p) is the square of the volume - in Vm ⊂ Rp - of the parallelotope
{∑m

i=1 ciξi, 0 ≤ ci ≤ 1, i = 1, ...,m}. So,
det (Wm,p) = d2(ξm, Vm−1).det (Wm−1,p)

where d(ξm, Vm−1) is the - Euclidean - distance from ξm to Vm−1. Because of rotational invariance
of the standard normal distribution in Rp, the conditional distribution of d2(ξm, Vm−1) given
ξ1, ..., ξm−1 is independent of the condition and χ2p−m+1. Hence,

E (det (Wm,p)) = E
(
E
(
d2(ξm, Vm−1).det (Wm−1,p)

∣∣ξ1, ..., ξm−1
))

= (p−m+ 1)E (det (Wm−1,p))

Iterating the procedure we get (13.24).
Let us prove (13.25). Clearly

(13.26) D(λ) =
m∑

k=0

D(k)(0)

k!
λk

Standard differentiation of the determinant with respect to λ shows that for k = 1, ...,m− 1 one
has

D(k)(λ) = (−1)k
∑

det
(
W i1,...,ik
m,p − λIm−k

)

where the sum is over all k−tuples i1, ..., ik of pairwise different non-negative integers that are
smaller or equal than m, and the (m − k) × (m − k) matrix W i1,...,ik

m,p is obtained by suppressing
in Wm,p the rows and columns numbered i1, ..., ik. Hence, applying (13.24) to each term in this
sum, and on account of the number of terms, we get

E
(
D(k)(0)

)
= (−1)km(m− 1)...(m− k + 1)p(p− 1)....(p− (m− k) + 1).

To finish, take expectations in (13.26), and notice that

D(m)(λ) = (−1)mm! ; E
(
D(0)(0)

)
= p(p− 1)...(p−m+ 1).

¤

Returning to the proof of the theorem and summing up this part, after replacing in
(13.20), we get

(13.27) g(a, b) ≤ Cn
exp

(
− (a+ b)/2

)
√
ab

an−1,

where

Cn =
1

4(n− 2)!
.

Step 5 Now we prove the upper-bound part in (13.14). One has, for x > 1

(13.28) P{κ(A) > x} = P{νn
ν1

> x2} ≤ P{ν1 <
L2n

x2
}+ P{νn

λ1
> x2, ν1 ≥

L2n

x2
}

where L is a positive number to be chosen later on.

For the first term in (13.28), we need some auxiliary lemmas that we take from Sankar et alt
(2002) in a modified form included in Cuesta-Albertos and Wschebor (2004):
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Lemma 13.7. Assume that A = (ai,j)i,j=1,...,n, ai,j = mi,j + gi,j (i, j = 1, ..., n), where the
mi,j’s are non-random and the gi,j ’s are i.i.d. standard normal r.v.’s. Let v ∈ Sn−1. Then, for
x > 0:

P
[∥∥A−1v

∥∥ > x
]
= P

(
|ξ| < 1

x

)
<

(
2

π

)1/2
1

x
,

where ξ is a standard normal random variable.

Proof. Because of the orthogonal invariance of the standard normal distribution, it suffices
to prove the result for v = e1. Denote by a1, ...., an the rows of A and α1 the first column of A−1.
Clearly, α1 is orthogonal to a2, ..., an and 〈α1, a1〉 = 1, so that α1 = γw, where |γ| = ‖α1‖ and the
unit vector w is measurable with respect to a2, ..., an and orthogonal to each one of these vectors.
Also:

‖α1‖|〈w, a1〉| = 1.

Observe now that the conditional distribution of the real-valued random variable 〈w, a1〉 given the
random vectors a2, ..., an is standard normal, so that, under this condition, ‖α1‖ can be written
as

‖α1‖ =
1

|ξ|
where ξ is standard normal. The equalities:

P
[∥∥A−1v

∥∥ > x
]
= P [‖α1‖ > x] = P

(
|ξ| < 1

x

)
,

finish the proof of the Lemma. ¤

Lemma 13.8. Let U = (U1, ..., Un) be an n-dimensional vector chosen uniformly on Sn−1 and
let tn−1 be a real valued r.v. with a Student distribution with n− 1 degrees of freedom.

Then, if c ∈ (0, n), we have that

P
[
U21 >

c

n

]
= P

[
t2n−1 >

n− 1

n− c c
]
.

Proof. U can be written as

U =
V

‖V ‖ .

where V = (V1, ..., Vn) is an n-dimensional random vector with standard normal distribution. Let
us denote, to simplify the notation K = V 22 + ...+ V 2n . Then the statement

V 21
V 21 +K

>
c

n

is equivalent to
V 21
K

>
c

n− c ,
and we have

P
[
U21 >

c

n

]
= P

[
(n− 1)V 21

K
>
n− 1

n− c c
]
= P

[
t2n−1 >

n− 1

n− c c
]
,

where tn−1 is a real valued r.v. having Student’s distribution with n− 1 degrees of freedom. ¤

Lemma 13.9. Let C be an n×n real non-singular matrix. Then, there exists w ∈ Rn, ‖w‖ = 1
such that, for every u ∈ Rn, ‖u‖ = 1, one has:

‖Cu‖ ≥ ‖C‖ |〈w, u〉|.
Proof. Since ‖C‖2 is the maximum eigenvalue of the symmetric matrix CTC , take for w

an eigenvector, ‖w‖ = 1 , so that ‖Cw‖ = ‖C‖. Then, if ‖u‖ = 1,

‖C‖2〈w, u〉 = 〈Cw,Cu〉,
which implies

‖C‖2〈w, u〉 ≤ ‖C‖ ‖Cu‖.
¤
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Lemma 13.10. Assume that A = (ai,j)i,j=1,...,n, ai,j = mi,j + gi,j (i, j = 1, ..., n), where the
gi,j ’s are i.i.d. standard normal r.v.’s and M = (mi,j)i,j=1,...,n is non random.

Then, for each x > 0 :

(13.29) P[‖A−1‖ ≥ x] ≤ C2(n)
n1/2

x
,

where

C2(n) =

(
2

π

)1/2(
sup

c∈(0,n)

√
cP

[
t2n−1 >

n− 1

n− c c
])−1

≤ C2(∞) = C2 ' 2.34737...

Proof. Let U be a random vector, independent of A with uniform distribution on Sn−1.
Applying Lemma 13.7 we have that

(13.30) P
[
‖A−1U‖ > x

]
= E

{
P
[
‖A−1U‖ > x

∣∣U
]}
≤
(
2

π

)1/2
1

x
.

Now, since if wA, ‖wA‖ = 1 satisfies ‖A−1wA‖ = ‖A−1‖, and ‖u‖ = 1, then,

‖A−1u‖ ≥ ‖A−1‖ × | < wA, u > |,
we have that, if c ∈ (0, n), then

P
[
‖A−1U‖ ≥ x

( c
n

)1/2] ≥ P
[
{‖A−1‖ ≥ x} and

{
| < wA, U > | ≥ (

c

n
)1/2

}]

= E

{
P

[{
‖A−1‖ ≥ x

}
and

{
| < wA, U > | ≥

( c
n

)1/2} ∣∣A
]}

= E

{
1I{‖A−1‖≥x}P

[
| < wA, U > | ≥

( c
n

)1/2 ∣∣A
]}

= E

{
1I{‖A−1‖≥x}P

[
t2n−1 >

n− 1

n− c c
]}

= P

[
t2n−1 >

n− 1

n− c c
]
P[‖A−1‖ ≥ x].

where we have applied Lemma 13.8. From here and (13.30) we have that

P[‖A−1‖ ≥ x] ≤ 1

P
[
t2n−1 >

n−1
n−c c

] ( 2
π
)1/2

1

x
(
n

c
)1/2.

To end the proof, notice that, if g is a standard normal random variable, then

sup
c∈(0,n)

c1/2P

[
t2n−1 >

n− 1

n− c c
]
≥ sup

c∈(0,1)
c1/2P

[
t2n−1 >

n− 1

n− c c
]

(13.31)

≥ sup
c∈(0,1)

c1/2P
[
t2n−1 > c

]

≥ sup
c∈(0,1)

c1/2P
[
g2 > c

]

≥ 0.5651/2P
[
g2 > 0.565

]
' 0.3399.

¤

We return again to the proof of Theorem 13.4. For the first term in the right-hand
side of (13.28), using the auxiliary lemmas we obtain:

P{ν1 <
L2n

x2
} = P{‖A−1‖ > x

L
√
n
} ≤ C2(n)

Ln

x
Here,

C2(n) =
( 2
π

) 1
2
[

sup
0<c<n

√
cP
(
t2n−1 >

(n− 1)c

n− c
)]−1 ≤ C2(+∞) ' 2.3473

where tn−1 is a random variable having Student’s distribution with n− 1 degrees of freedom.
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Let us now turn to the second term in the right-hand side of (13.28),

P{νn
λ1

> x2, ν1 ≥
L2n

x2
} =

∫ +∞

L2nx−2
db

∫ +∞

bx2
g(a, b)da ≤ Gn(x

2)

with

Gn(y) = Cn

∫ +∞

L2ny−1
db

∫ +∞

by

exp
(
− (a+ b)/2

)
√
ab

an−1da,

using (13.27). We have:

(13.32) G′n(y) = Cn

[
−
∫ +∞

L2ny−1
exp(−b/2)

√
b exp

(
− (by)/2

)
(by)n−3/2db+

L2ny−2
∫ +∞

L2n

exp
(
− 1

2
(a+

L2n

y
)
)
an−3/2L−1n−

1
2 y

1
2 da
]

which implies

−G′n(y) ≤ Cny
n−3/2

∫ +∞

L2ny−1
exp

(
− b(1 + y)

2

)
bn−1db

=
y−3/2

4(n− 2)!

(
y

1 + y

)n
2n
∫ +∞

L2n
2y (1+y)

e−zzn−1dz

≤ y−3/2

4(n− 2)!
2n
∫ +∞

L2n
2

e−zzn−1dz

Put In(a) =

∫ +∞

a

e−zzn−1dz. On integrating by parts we get:

In(a) = e−a
[
an−1 + (n− 1)an−2 + (n− 1)(n− 2)an−3 + ...+ (n− 1)!

]

so that for a > 2.5m

In(a) ≤
5

3
e−aan−1.

If L2 > 5 we obtain the bound

−G′n(y) ≤ Dny
−3/2 with Dn =

5

6

nn−1

(n− 2)!
L2(n−1) exp

(
−L

2n

2

)

We now apply Stirling’s formula (Abramovitz and Stegun, 1968) i.e. for all x > 0

Γ(x+ 1) exp(− 1

12x
) ≤

(x
e

)x√
2πx ≤ Γ(x+ 1),

to get

Dn ≤
5
√
2

12
√
πL2

n√
n− 2

exp(−nL
2 − 4log(L)− 2

2
) ≤ 5

√
2

12
√
πL2

n.

if we choose for L the only root larger than 1 of the equation L2 − 4log(L) − 2 = 0 (check that
L ≈ 2.3145). To finish,

0 ≤ Gn(y) =

∫ +∞

y

−G′n(t)dt < Dn

∫ +∞

y

dt

t3/2
= 2Dny

− 12 .

Replacing y by x2 and performing the numerical evaluations, the upper bound in (13.14) follows
and we get for the constant C the value 5.60.

Step 6 We consider now the lower bound in (13.14). For γ > 0 and x > 1, we have :

(13.33) P{κ(A) > x} = P
{νn
ν1

> x2
}
≥ P

{νn
ν1

> x2, ν1 <
γ2n

x2
}

= P
{
ν1 <

γ2n

x2
}
− P

{νn
ν1
≤ x2, ν1 <

γ2n

x2
}
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A lower bound for the first term in the right-hand side of (13.33) is obtained using the following
inequality, that we state as a new auxiliary lemma. The reader can find similar statements in the
papers by Szarek (1991) and Edelman (1988).

Lemma 13.11. If 0 < a < 1/n, then

P{ν1 < a} ≥ β
√
an,

where we can choose for β the value β =
(
2
3

)3/2
e−1/3

Proof. Define the index iX(t) of a critical point t ∈ Sn−1 of the function X as the number
of negative eigenvalues of X”(t). For each a > 0 put

Ni(a) = #{t ∈ Sn−1 : X(t) = tTBt < a,X ′(t) = 0, iX(t) = i},
for i = 0, 1, ..., n−1. One easily checks that if the eigenvalues of B are ν1, ..., νn, 0 < ν1 < ... < νn,
then:

• if a ≤ ν1 then Ni(a) = 0

for i = 0, 1, ..., n− 1

• if νi < a ≤ νi+1 then Nk(a) = 2

for some i = 0, 1, ..., n− 1 for k = 0, ..., i− 1

Nk(a) = 0

for k = i, ..., n− 1

• if νn < a then Ni(a) = 2

for i = 0, 1, ..., n− 1

Now consider

M(a) =

n−1∑

i=0

(−1)iNi(a)

M(a) is the Euler-Poincaré characteristic of the set S = {t ∈ Sn−1 : X(t) < a} (see for example
Adler, 1981). Since:

• if N0(a) = 0, then Ni(a) = 0 for i = 1, ..., n− 1, hence M(a) = 0 and
• if N0(a) = 2, then M(a) = 0 or 2,

in any case we have the inequality:

M(a) ≤ N0(a).

Hence,

(13.34) P{ν1 < a} = P{N0(a) = 2} = 1

2
E
(
N0(a)

)
≥ 1

2
E
(
M(a)

)

Given the definition of M(a), its expectation can be written using the following Rice formula:

E
(
M(a)

)
=

∫ a

0

dy

∫

Sn−1
E
[
det
(
X”(t)

)∣∣X(t) = y,X ′(t) = 0
]
pX(t),X′(t)(y, 0)σn−1(dt)

=

∫ a

0

σn−1(S
n−1)E

[
det
(
X”(e1)

)∣∣X(e1) = y,X ′(e1) = 0
]
pX(e1),X′(e1)(y, 0)dy.

where we have used again invariance under isometries. Applying a similar Gaussian regression -
similar to what we did in Step 4 - we obtain:

(13.35) E
(
M(a)

)
=

∫ a

0

E
[
det
(
Q− yIn−1

)]√2π

2n−1
Γ−2

(
n/2

)exp(−y/2)√
y

dy

where Q is an (n−1)× (n−1) random matrix with entry i, j equal to (< vi, vj >) and v1, ..., vn−1
are i.i.d. standard normal in Rn−1. We now use part (ii) of Lemma 13.6 :

(13.36) E
[
det
(
Q− yIn−1

)]
= (n− 1)!

n−1∑

k=0

(
n− 1
k

)
(−y)k
k!
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Under condition 0 < a < n−1, since 0 < y < a, as k increases the terms of the sum in the
right-hand side of (13.36) have decreasing absolute value, so that:

E
[
det
(
Q− yIn−1

)]
≥ (n− 1)![1− (n− 1)y].

Substituting into the right-hand side of (13.35), we get :

E
[
M(a)

]
≥
√
2π

2n−1
(n− 1)!

Γ2(n/2)
Jn(a),

where, using again 0 < a < n−1 :

Jn(a) =

∫ a

0

(
1− (n− 1)y

)exp(−y/2)√
y

dy ≥
∫ a

0

(
1− (n− 1)y

)
√
y

(1− y/2)dy ≥ 4

3

√
a,

by an elementary computation. Going back to (13.35), applying Stirling’s formula and remarking

that
(
1 + 1/n

)n+1 ≥ e we get

P{ν1 < a} ≥
(2
3

)3/2
e−1/3

√
an

This proves the lemma. ¤

Ending the proof of Theorem 13.4 Using Lemma 13.11, the first term in the right-hand
side of (13.33) is bounded below by

βγ
n

x
.

To obtain a bound for the second term, we use again our upper bound (13.27) on the joint density
g(a, b), as follows:

(13.37) P
{νn
ν1
≤ x2, ν1 <

γ2n

x2

}
=

∫ γ2nx−2

0

db

∫ bx2

b

g(a, b)da

≤ Cm

∫ γ2nx−2

0

db

∫ bx2

b

exp
(
− (a+ b)/2

)
√
ab

an−1da ≤ Cn

∫ γ2nx−2

0

b(x2 − 1)b−
1
2 (bx2)n−3/2db

≤ 1

4(n− 2)!

x2 − 1

x3
γ2nnn−1 ≤

√
2

8
√
π
enγ2n

n

x
,

on applying Stirling’s formula. Choosing now γ = 1/e, we see that the hypothesis of Lemma 13.11
is satisfied and

P
{νn
ν1
≤ x2, ν1 <

γ2n

x2

}
≤
√
2

8
√
π
e−3

n

x

Replacing into (13.33), we obtain the lower bound in (13.13) with

c =
(2
3

)3/2
e−4/3 −

√
2

8
√
π
e−3 ≈ 0.138.

¤

2.1. Monte-Carlo experiment. To study the tail of the distribution of the condition num-
ber of Gaussian matrices of various size, we used the following Matlab functions

• normrnd to simulate normal variables
• cond to compute the Condition number of matrix A.

Results over 40,000 simulations using Matlab are given in Table 13.1 and in Figure 13.1.

This table suggests, taking into account the simulation variability, that the constants c and
C should take values smaller than 0.88 and bigger than 2.00 respectively.
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Table 13.1. Values of the estimations P{κ(A) > mx} for x =
1, 2, 3, 5, 10, 15, 30, 50, 100 and m = 3, 5, 10, 30, 100, 300, 500 by Monte-Carlo
method over 40,000 simulations.

Value of x

Probability 1 2 3 5 10 20 30 50 100

Lower b.: .13/x .13 .065 .043 .026 .013 .007 .004 .003 .001

Upper b.: 5.6/x 1 1 1 1 .56 .28 .187 .112 .056

m = 3 .881 .57 .41 .26 .13 .067 .044 .027 .013

m=5 .931 .66 .48 .30 .16 .079 .053 .033 .016

m=10 .959 .71 .52 .34 .17 .088 .059 .035 .017

m=30 .974 .75 .56 .36 .19 .096 .063 .038 .019

m=100 .978 .77 .58 .38 .20 .098 .066 .040 .019

m=300 .982 .77 .58 .38 .20 .101 .069 .041 .022

m =500 .980 .77 .59 .38 .20 .100 .066 .039 .020

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P

Figure 13.1. Values of P{κ(A) > mx} as a function of x for m = 3, (down)
10, 100 and 500 (up)

3. Non-centered Gaussian matrices

Let A = ((aij))i,j=1,...,n be a random matrix. Throughout this section, we will assume
that the a′ijs are independent random variables with Gaussian distribution having expectations

mij = E(aij) and common variance σ2. We denote M = ((mij)).

The aim of the section is to prove Theorem 13.12 below, which gives a bound for the tails of
probability distribution of κ(A). One way of looking to this result, is as follows: we start with a
non-random matrixM and add noise by putting independent centered Gaussian random variables
with variance σ2 at each location. We ask for the condition number of the perturbed matrix.
Notice that the starting matrix M can have arbitrarily large (or infinite) condition number, but
for the new one, it turns out that we are able to give an upper-bound for P(κ(A) > x) which has
a similar form to the one in the centered case.

Theorem 13.12. Under the above hypotheses on A, one has, for x > 0:

(13.38) P(κ(A) > n.x) <
1

x

(
1

4
√
2πn

+ C(M,σ, n)

)
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where

C(M,σ, n) = 7

(
5 +

4 ‖M‖2 (1 + log n)

σ2n

) 1
2

Remarks.

(1) Theorem 13.12 implies that if 0 < σ ≤ 1 and ‖M‖ ≤ 1 then, for x > 0:

(13.39) P (κ(A) > n.x) <
20

σx
This is an immediate consequence of the statement in the theorem.

(2) With similar calculations than the ones we will perform for the proof of Theorem 13.12,
one can improve somewhat the constants in (13.38) and (13.39).

Proof. Due to the homogeneity of κ(A), with no loss of generality we may assume σ = 1,
changing the expected matrix M by 1

σM in the final result.
We follow closely the proof of Theorem 13.4 in the previous section, with some changes to

adapt it to the present conditions. In exactly the same way, we apply Rice formula and prove that
the joint density g(a, b), a > b of the random variables νn, ν1 is given by:

(13.40) g(a, b) =

∫

V

E
(
∆(s, t)1I{X′′(s)≺0,X′′(t)Â0}

∣∣X(s) = a,X(t) = b, Y (s, t) = 0
)

.pX(s),X(t),Y (s,t)(a, b, 0) σV (d(s, t)).

where the notations are also borrowed from the previous section.

Next, we compute the ingredients in the right-hand side of (13.40). This has some differences
with the centered case. Put aij = mij + gij with the gij ’s i.i.d. standard normal and G = ((gij)).

For each (s, t) ∈ V , we take an orthonormal basis of Rn so that its first two elements are
respectively s and t, say {s, t, w3, ..., wm}. When expressing the linear transformation x Ã A.x

(x ∈ Rn) in this new basis, we denote As,t the associated matrix and by as,tij its i, j entry. In a

similar way we get Gs,t,Ms,t, Bs,t. Notice that Gs,t has the same law as G, but the non-random
part Ms,t can vary with the point (s, t).

We denote by Bs,t1 (respectively Bs,t2 ) the (n − 1) × (n − 1) matrix obtained from Bs,t by

suppressing the first (respectively the second) row and column. Bs,t
1,2 denotes the (n− 2)× (n− 2)

matrix obtained from Bs,t by suppressing the first and second row and column.
To get an estimate for the right-hand side in (13.40) we start with the density pX(s),X(t),Y (s,t)(a, b, 0).

We denote Bs,t = ((bs,tij )) (and similarly for the other matrices).

We have:

X(s) = bs,t11

X(t) = bs,t22

X ′′(s) = Bs,t1 − bs,t11 In−1
X ′′(t) = Bs,t2 − bs,t22 In−1.

Take the following orthonormal basis of the subspace W(s,t):

{(w3, 0), ..., (wn, 0), (0, w3), ..., (0, wn),
1√
2
(t, s)} = Ls,t

Since the expression of Y (s, t) in the canonical basis of R2n is:

Y (s, t) = (0, bs,t21 , b
s,t
31 , ..., b

s,t
n1, b

s,t
12 , 0, b

s,t
32 , ..., b

s,t
n2, b

s,t
12 )

T ,

it is written in the orthonormal basis Ls,t as the linear combination:

Y (s, t) =
n∑

i=3

[
bs,ti1 .(wi, 0) + bs,ti2 .(0, wi)

]
+
√
2bs,t12 .

[
1√
2
(t, s)

]
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It follows that the joint density of X(s), X(t), Y (s, t) appearing in (13.40) in the space R ×
R×W(s,t) is the joint density of the r.v.’s

bs,t11 , b
s,t
22 ,
√
2bs,t12 , b

s,t
31 , ..., b

s,t
n1, b

s,t
32 , ..., b

s,t
n2

at the point (a, b, 0). To compute this density, first compute the joint density q of

bs,t31 , ..., b
s,t
n1, b

s,t
32 , ..., b

s,t
n2,

given as,t1 , as,t2 , where as,tj denotes the j-th column of As,t, with the additional conditions that
∥∥as,t1

∥∥ = bs,t11 = a,
∥∥as,t2

∥∥ = bs,t22 = b,
〈
as,t1 , a

s,t
2

〉
= bs,t12 = 0.

q is the normal density in R2(n−2), with the same variance matrix as in the centered case, that is
(
a.In−2 0

0 b.In−2

)
.

but not necessarily centered.
So, the conditional density q is bounded above by

(13.41)
1

(2π)n−2
1

(ab)(n−2)/2
.

Our next task is to obtain an upper bound useful for our purposes for the density of the triplet

(bs,t11 , b
s,t
22 , b

s,t
12 ) = (‖as,t1 ‖2, ‖as,t2 ‖2, < as,t1 , a

s,t
2 >)

at the point (a, b, 0) which together with (13.41) will provide an upper bound for pX(s),X(t),Y (s,t)(a, b, 0).

We do this in the next Lemma, which we will apply afterwards with ξ = as,t1 , η = as,t2 .

Lemma 13.13. Let ξ, η be to independent Gaussian vectors in Rn (n ≥ 2), E(ξ) = µ, E(η) =
ν,Var(ξ) = Var(η) = In.

Then, the density p of the random triplet
(
‖ξ‖2 , ‖η‖2 , 〈ξ, η〉

)
satisfies the following inequality,

for a ≥ 4 ‖µ‖2:

(13.42) p(a, b, 0) ≤ 1

4(2π)n
σn−1σn−2(ab)

(n−3)/2 exp(−a
8
) (a, b > 0)

Proof. . Let F : Rn × Rn → R3 be the function

F (x, y) =
(
‖x‖2 , ‖y‖2 , 〈x, y〉

)T

According to the co-area formula Prop 6.30, the density p at the point (a, b, 0) can be written as

p(a, b, 0) =

∫

F−1(a,b,0)

(
det
[
F ′(x, y). (F ′(x, y))

T
])− 12 1

(2π)n
e−

1
2 [‖x−µ‖

2+‖y−ν‖2]dγ(x, y)

where γ denotes the geometric measure on F−1(a, b, 0).
Recall the manifold Va,b given by the set of equations

‖x‖2 = a, ‖y‖2 = b, 〈x, y〉 = 0

Using Lemma 13.5,

γ(Va,b) = (a+ b)
1
2σn−1σn−2(ab)

n−2
2 .

On the other hand,

F ′(x, y) =




2.xT 0
0 2.yT

yT xT




so that if (x, y) ∈ F−1(a, b, 0), one gets:

det
[
F ′(x, y). (F ′(x, y))

T
]
= 16.ab(a+ b).

Replacing into (13.43) and taking into account condition a ≥ 4 ‖µ‖2, the result in the lemma
follows. ¤
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Summing up this part, (13.41) plus (13.42) imply that

(13.43) pX(s),X(t),Y (s,t)(a, b, 0) ≤
1

22n−
3
2πn−2

1

Γ
(
n
2

)
Γ
(
n−1
2

) exp(−
a
8 )√

ab
.

We now consider the conditional expectation in (13.40).

First, observe that the (2n − 3)- dimensional tangent space to V at the point (s, t) is parallel
to the orthogonal complement in Rn × Rn of the triplet of vectors (s, 0); (0, t); (t, s).
To compute the associated matrix for Y ′(s, t) take the set

{(w3, 0), ..., (wn, 0), (0, w3), ..., (0, wn),
1√
2
(t,−s)} = Ks,t.

as orthonormal basis in the tangent space. As for the codomain of Y , we take the canonical basis
in R2n. A direct calculation gives :

Y ′(s, t) =




−vT 01,n−2 − 1√
2
bs,t21

wT 01,n−2
1√
2
(−bs,t11 + bs,t22 )

Bs,t12 − bs,t11 In−2 0n−2,n−2
1√
2
w

01,n−2 −wT 1√
2
(−bs,t11 + bs,t22 )

01,n−2 vT 1√
2
bs,t21

0n−2,n−2 Bs,t12 − bs,t22 In−2 − 1√
2
v




where vT = (bs,t31 , ..., b
s,t
n1), w

T = (bs,t32 , ..., b
s,t
n2), 0i,j is a null matrix with i rows and j columns. The

columns represent the derivatives in the directions of Ks,t at the point (s, t). The first n rows
correspond to the components of πs(Bs), the last n ones to those of πt(Bt).
Thus, under the conditioning in (13.40),

Y ′(s, t) =




01,n−2 01,n−2 0
01,n−2 01,n−2

1√
2
(b− a)

Bs,t12 − aIn−2 0n−2,n−2 0m−2,1
01,n−2 01,n−2

1√
2
(b− a)

01,n−2 01,n−2 0

0n−2,n−2 Bs,t12 − bIn−2 0n−2,1




and [
det
[
(Y ′(s, t))

T
Y ′(s, t)

]] 1
2

= |det(Bs,t12 − aIn−2)||det(Bs,t12 − bIn−2)|(a− b)
Since Bs,t12 Â 0 one has

|det(Bs,t12 − aIn−2)|1IBs,t12 −aIn−2≺0 ≤ an−2

and the conditional expectation in (13.40) is bounded by:
(13.44)

an−1E
[
|det(Bs,t12 − bIn−2)|1IBs,t12 −bIn−2Â0

∣∣bs,t11 = a, bs,t22 = b, bs,t12 = 0, bs,ti1 = bs,ti2 = 0 (i = 3, ..., n)
]
.

We further condition on as,t1 and as,t2 , with the additional requirement that
∥∥as,t1

∥∥2 = a,∥∥as,t2
∥∥2 = b,

〈
as,t1 , a

s,t
2

〉
= 0. Since unconditionally, a3, ..., an are independent Gaussian vectors in

Rn each having variance equal to 1 and mean smaller or equal to ‖M‖, under the conditioning,
their joint law becomes the law of (n− 2) Gaussian vectors in Rn−2,independent of the condition
and also having variance equal to 1 and mean with Euclidean norm smaller than or equal to ‖M‖.

As a consequence, the conditional expectation in (13.44) is bounded by

E
(
det(Cs,t)

)

where Cs,t is an (n−2)×(n−2) random matrix, Cs,t = ((cs,tij )), c
s,t
ij =< us,ti , us,tj >, (i, j = 3, ..., n),

us,ti = ζi + µs,ti i = 3, ..., n,

ζ3, ..., ζn are i.i.d. standard normal in Rn−2 and
∥∥µs,ti

∥∥ ≤ ‖M‖ for i = 3, ..., n.
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The usual argument to compute det(Cs,t) as the square of the volume in Rn−2 of the set of

linear combinations of the form
∑i=n
i=3 νiu

s,t
i with 0 ≤ νi ≤ 1 (i = 3, ..., n), shows that

E
(
det(Cs,t)

)
≤
(
1 + ‖M‖2

)(
2 + ‖M‖2

)
...
(
n− 2 + ‖M‖2

)

= (n− 2)!

i=n−2∏

i=1

(
1 +

‖M‖2
i

)

≤ (n− 2)!

[(
1 + ‖M‖2 1 + log n

n

)]n

where we have bounded the geometric mean by the arithmetic mean.
Replacing in (13.44) and on account of the bound (13.43) we get from (13.40) the following

bound for the joint density, valid for a ≥ 4 ‖M‖2 :

(13.45) g(a, b) ≤ Cn
e−

a
8√
ab
an−1

where

Cn =
1

4(n− 2)!

[
1 + ‖M‖2 1 + log n

n

]n
.

We now turn to the proof of (13.38). One has, for x > 1 :

(13.46) P(κ(A) > x) = P (
νn
ν1

> x2) ≤ P(ν1 <
L2n

x2
) + P(

νn
ν1

> x2, ν1 ≥
L2n

x2
)

where L is a positive number to be chosen later on.
For the first term in (13.46), we use Lemma 13.10.

(13.47) P(ν1 <
L2n

x2
) = P(‖A−1‖ > x

L
√
n
) ≤ C2

Ln

x

Impose first on L the condition

L2n ≥ 4 ‖M‖2

so that for the second term in (13.46) we can make use of the bound (13.45) on the joint density
g(a, b) :

(13.48) P(
νn
ν1

> x2, ν1 ≥
L2n

x2
) =

∫ +∞

L2nx−2
db

∫ +∞

bx2
g(a, b)da ≤ Hn(x

2)

with

Hn(y) = Cn

∫ +∞

L2ny−1
db

∫ +∞

by

exp(−a
8 )√

ab
an−1da,

We have:

H ′n(y) = Cn



−
∫ +∞
L2ny−1

exp(− by
8 )(by)

n−1 db√
y

+Ln
1
2

y
3
2

∫ +∞
L2n

exp
(
−a
4

)
an−3/2da




which implies

−H ′n(y) ≤ Cny
n−3/2

∫ +∞

L2ny−1
exp

(
−by

8

)
bn−1db

≤ Cn
y3/2

8n
∫ +∞

L2n
8

e−zzn−1dz ≤ Cn
y3/2

8n
5

3
e−

L2n
8

(
L2n

8

)n−1
= Dn

1

y3/2

if we choose L2 > 20.
So,

(13.49) Hn(y) = −
∫ +∞

y

H ′n(s)ds ≤ Dn

∫ +∞

y

ds

s
3
2

≤ 2Dn
1

y1/2



3. NON-CENTERED GAUSSIAN MATRICES 271

where

Dn ≤
10

3
√
2πL2

n√
n− 2

exp

[(
1− L2

8
+ logL2 + log θ

)
n

]

where θ = 1 + ‖M‖2 1+lognn .
Choosing

L = 2
√
2(1 + 4θ)

1
2

conditions L2 > 20 and L2n ≥ 4 ‖M‖2 are verified and 1− L2

8 + logL2 + log θ < 0.
Hence,

2Dn ≤
1

4

√
n

2π
.

On account of (13.47), (13.48) and (13.49), replacing in the right-hand side of (13.46), inequality
(13.38) in the statement of the theorem follows. ¤
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Notation Meaning
(const) a positive constant, its value can change from one occurrence to an other.
AC Complement of the set A
φ Density of the standard normal distribution in R

Φ Cumulative distribution function of the standard normal distribution in R

χ2d Chi-square distribution with d degrees of freedom
λ, λd depending on the context : Lebesgue measure, in Rd

Spectral moment of order d
(const) A non important constant, it value can change from one occurrence to another
pξ(x) Density of the random variable or vector ξ at point x
B(u; r) Open ball with center u and radius r
B(u; r) Closed ball with center u and radius r
Nu(f, T ) or Nu number of roots of f(t) = u that belong to the set T
Uu(f, T ) or Uu number of up-crossings of the level u by the function f on the set T
Du(f, T ) or Du number of down-crossings of the level u by the function f on the set T
MX
T or M or MT supt∈T Xt

FM (u) P{M ≤ u}
µ(X) a median for the real random variable X
r(s, t) the covariance of a (often Gaussian) stochastic process

rij(s, t)
∂i+jr
∂si∂tj

Γ(t) the covariance function of a stationary process : Cov(X(z), X(z + t))
càd-làg French acronym for “continue à droite et limité à gauche”:

right continuous with left limits
z+ sup(0, z)
z− − inf(0, z)
z[k] z(z − 1) . . . (z − k + 1) z and k positive integers, l ≤ z

νk(u, T ) E(U
[k]
u ).

ν̃k(u, T ) E(U
[k]
u 1IX(0)<u).

Cu level set : {t ∈ S : X(t) = u}
‖.‖p Lp−norm, p > 0
‖.‖∞ the sup norm
≈ Equivalence of two functions
' Numerical approximative equality
D
= equality in distribution
{W (t) : t ≥ 0} the Wiener process
{BH(t) : t ≥ 0} fractional Brownian motion
(Ω,A,P) a probability space
λk k−th moment of the spectral measure
M Â 0 the symmetric square matrix M is positive definite
M ≺ 0 the symmetric square matrix M is negative definite
Mu,1(X,S), number of local maxima of the random field X,

having value bigger than u and belonging to the set S.
Mu,2(X,S), number of critical points of the random field X,

having value bigger than u and belonging to the set S.
Hn(x), Hermite polynomials see p. 156
H̄n(x), modified Hermite polynomials see p. 156
GOE, Gaussian Orthogonal Ensemble
In, identity n× n real matrix
σd geometrical measure of size d
{e1, . . . , en} the canonical basis.
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Azäıs, J-M, Bardet, J-M and Wschebor, M. (2002). On the Tails of the Distribution of the
Maximum of a Smooth Stationary Gaussian Process. ESAIM: Probability and Statistics, Vol. 6,
177-184.
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Azäıs, J-M., Gassiat, E. and Mercadier, C. (2007). The likelihood ratio test for general mixture
models with or without structural parameter. To appear in ESAIM: Probability and Statistics
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quantitatif. PHD dissertation. University of Toulouse, France.



REFERENCES 279

Cierco-Ayrolle, C. Croquette, A. and Delmas (2003). Computing the distribution of the maximum
of Gaussian random processes. Methodology and Computing in Applied Probability, Vol 5, 4,427-
438.
Corrsin S. (1955). A measure of the area of a homogeneous random surface in space. Quart. Appl.
Math. 12, 404 - 408.

Cramér, H. (1965). A limit theorem for the maximum values of certain stochastic processes.
Theory Prob. Appl., 10, 126-128.

Cramér, H.and Leadbetter, M.R. (1965). The moments of the number of crossings of a level by a
stationary normal process. Ann. Math. Statist., 36, 1656-1663.

Cramér, H. and Leadbetter, M.R. (1967). Stationary and Related Stochastic Processes, J. Wiley
& Sons, New-York.

Cressie, N (1980). The asymptotic distribution of the scan statistic under uniformity. Ann.
Probab, 8, 828-840.

Cressie, N. and Davies, R.W. (1981). The supremum distribution of another Gaussian process.
J. Appl. Prob., Vol 18, 131-138.

Cucker, F., Diao, H. and Wei, Y. (2005). Smoothed analysis of some condition numbers. Num.
Linear Alg. Appl. 13, 71-84.

Cucker, F.; Krick, T.; Malajovich, G. and Wschebor, M. Real polynomial systems II. Randomiza-
tion and condition number, preprint, 2008.

Cucker, F. and Wschebor, M. (2003). On the Expected Condition Number of Linear Programming
Problems, Numerische Mathematik, 94, 3, 419-478.

Cuesta-Albertos, J. and Wschebor M. (2003). Some Remarks on the Condition Number of a Real
Random Square Matrix, Journal of Complexity, Vol. 19, 4, 548-554.

Cuesta-Albertos, J.and Wschebor, M. (2004). Condition Numbers and Extrema of Random Fields,
IV Ascona Seminar on Stochastic Analysis, Random Fields and Applications, Progress in Proba-
bility, Birkhaüser, pp 69-82.
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Fernique, X. (1983). Régularité de fonctions aléatoires non-gaussiennes Lecture Notes in Math.
N 976, 1-74, Springer-Verlag.

Fyodorov, Y. (2006). Complexity of Random Energy Landscapes, Glass Transition and Absolute
Value of Spectral Determinant of Random Matrices. Physical Review Letters, Vol 92,(2004),240601
(4 pages). Erratum, ibid, Vol 93, 149901 (1 page).

Gassiat, E. (2002). Likelihood ratio inequalities with application to various mixtures. Ann. Inst.
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Flour 1994. Lecture Notes in Math. 1648, 165-264. Springer-Verlag. New York.

Ledoux, M. (2001). The Concentration of Measure Phenomenon. American Math. Soc., Provi-
dence, RI.
Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces, Springer-Verlag, New-York.

León J. and Ortega J. (1989). Weak convergence of different types of variation for biparametric
Gaussian processes, Colloquia Math. Soc. J. Bolyai, n 57, 1989, Limit theorems in Proba. and
Stat. Pecs.

León J. (2006). A note on Breuer-Major CLT for non-linear functionals of continuous time sta-
tionary Gaussian processes. Preprint

Li, W. V. and Shao, Q.-M. (2002). A normal comparison inequality and its applications. Probab.
Theory Related Fields, 122(4):494–508, (2002).

Lifshits, M.A. (1987). On the distribution of the maximum of a Gaussian process Th. Prob.
Appl., 125-132.

Lifshits, M.A.(1995). Gaussian random functions . Kluwer, The Netherlands.

Lindgren, G. (1970). Some properties of a normal process near a local maximum Ann. Math.
Statist., Vol 41, 1870-1883.

Lindgren, G. (1972). Wave-length and Amplitude in Gaussian Noise . Adv. Appl. Prob., 4,
81-108.

Lindgren, G. (1980). Extreme values and crossings for the c2-process and other functions of
multidimensional Gaussian processes with reliability applications Adv..Appl. Prob., Vol 12, 746-
774.

Lindgren, G. (1983). Use and structure of Slepian model processes for prediction and detection
in crossing and extreme value theory, University of Lund and Lund Institute of Technology, Dept.
of Math Stat. Report N 1983:4.

Lindgren, G. (2006). Slepian models for the stochastic shape of individual Lagrange sea waves.
Adv. Appl. Prob., 38, 430-450.

Lindgren, G. and Rychlik, I. (1991). Slepian models and regression approximations in crossings
and extreme value theory International Statistical Review, 59, 2, 195-225.

Lindgren G. and Rychlik I. (1995). Wave analysis toolbox a tutorial. Preprint University of Lund.

Littlewood J.E. and Offord A.C.(1938). On the number of real roots of a random algebraic
equation. J. London Math. Soc., 13, 288-295.

Littlewood,J.E. and Offord, A.C. (1939). On the roots of certain algebraic equation. Proc. London
Math. Soc., 35, 133-148.



284 REFERENCES

Longuett-Higgins, M.S. (1957). The statistical analysis of a random moving surface, Phil Trans.
Royal Soc. London, Ser. A, 249, 321-387.

Longuett-Higgins, M.S. (1962a). The statistical geometry of random surfaces. Hydraulic Insta-
bility, Symp. in Appl. Math., Vol 13, 105-143.

Longuett-Higgins, M.S. (1962b). The distribution of intervals between zeros of a stationary ran-
dom function, Phil. Trans. Royal Soc. London, 254A, 557-599.

Malevich, T. L. (1979). On Conditions for the Moments of the Number of Zeros of Gaussian
Stationary Processes to be Finite, Th. Prob. Appl., N 4, Vol. XXIV, 741-754.

Malevich, T. L. (1984). On conditions for finiteness of the factorial moments of the number of
zeros of Gaussian stationary processes Th. Prob. Appl., Vol XXIX, N 3, 534-545.

Malevich, T. L. and Volodina, L.N. (1980). Upper and lower bounds for factorial moments of the
number of zeros of a Gaussian process(russian). Izv Akad Nauk Uz USSR, No. 4, 26-33.

Malmquist, S. (1954). On certain confidence contours for distribution functions. Ann. Math.
Statist, 25, 523-533.

Marcus, M. (1970). A bound for the distribution of the maximum of continuous Gaussian processes
Ann. Math. Statist., Vol. 41, N 1, 305-309.

Marcus, M. (1972). Upper bounds for the asymptotic maxima of continuous Gaussian processes
Ann. Math. Statist., Vol 43, N 2, 522-533.

Marcus, M. (1973). Continuity of Gaussian Processes and Random Fourier Series, The Ann.
Probab., 1, 968-981.

Marcus, M. (1977). Level Crossings of a Stochastic Process with Absolutely Continuous Sample
Paths, Ann. Probab., 5, 52-71.

Marcus, M. (1989). Some bounds for the expected number of level crossings of symmetric harmo-
nizable p-stable processes Stoch. Proc. Appl., 33, 217-231.

Marcus, M.B. and Shepp, L.A. (1972). Sample behaviour of Gaussian processes. Proc. Sith
Berkeley Symp. Math. Statist. Prob., 2, 423-442.
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Rényi, A. (1967). Remarks on the Poisson process. Studia Sci. Math. Hungar, 2:119-123.

Revuz D. and Yor M. (1998). Continuous martingales and Brownian motion. 3d ED. Springer

Rice, S.O. (1939). The distribution of the maxima of a random curve. American Journal of
Mathematics,61, 409-416

Rice, S.O. (1944-1945). Mathematical Analysis of Random Noise.Bell System Tech. J., 23, 282-
332; 24, 45-156.

Rice, S.O. (1958). Distribution of the duration of fades in radio transmission Bell Sys. Tech. J.,
Vol 37, 620-623,630-631.

Rickard, J.T. (1977). The zero crossing interval statistic of the smoothed random telegraph signal
Inf. Sci., Vol 13, 253-268.

Rickard, J.T. and Pawula, R.F. (1975). The zero crossing variance of the smoothed random
telegraph signal Int. J. Control, Vol 21, 743-752.

Rychlik, I.( 1987). A note on Durbin’s formula for the first-passage density, Statistics and Proba-
bility Letters, vol. 5, pp. 425-428.

Rychlik , I. (1990). New bounds for the first passage , wavelength and amplitude density . Stoch.
Proc. Appl., 34, 313-339.

Rychlik, I., Johannesson, P. and Leadbetter, M. R. (1997). Modelling and statistical analysis of
Ocean-wave Data using transformed Gaussian processes. Marine structure 10, 13-47.

Sard, A. (1942). The measure of the critical points of differentiable maps. Bull. Amer. Math.
Soc. , 48, 883-890.

Schoenberg, I.J. (1938). Metric spaces and completely monotone functions. Ann. of Math. (2),
39(4), 811-841.

Shepp, L. A. (1971). First passage time for a particular Gaussian process. The Ann. of Math.
Stat., 42, 946-951.

Shepp, L. A. (1979). The joint density of the maximum and its location for a Wiener process with
drift. J. Appl. Prob. 16, 423-427.

Shepp, L. A. and Slepian, D.(1976). First-passage time for a particular stationary periodic Gauss-
ian process. J. Appl. Prob., 13, 27-38.



REFERENCES 287

Shub, M. and Smale, S. (1993). Complexity of Bezout’s theorem, II. Volumes and probabilities.
In Computational algebraic geometry (Nice, 1992), volume 109 of Progr. Math., pages 267-285.
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